FRED JOHNSON

EXTENDED GERGONNE SYLLOGISMS

ABSTRACT. Syllogisms with or without negative terms are studied by using Gergonne’s
ideas. Soundness, completeness, and decidability results are given.

1. BACKGROUND AND MOTIVATION

Gergonne [2] relates the familiar A, E, I, and O sentences without nega-
tive terms to five basic sentences that express the “Gergonne relations.”
These relations are: exclusion, identity, overlap, proper containment, and
proper inclusion. What makes these relations especially interesting is that
for any pair of non-empty class terms exactly one of them holds.

Faris [1] develops a formal system that takes the Gergonne relations as
basic. His system takes advantage of Lukasiewicz’s [4], which attempts
to formalize the Aristotelian syllogistic. The following paper results from
two ideas: 1) If Gergonne had been interested in studying A, E, I, and O
sentences with negative terms, the count of Gergonne relations would
be seven rather than five; and 2) The most Aristotelian way to develop
a syllogistic system based on the these seven relations is by following
Smiley’s [5] rather than Lukasiewicz’s [4].

After developing the Aristotelian “full syllogistic” based on seven
relations, we will discuss a subsystem that is adequate for representing
AEIO-syllogisms with or without negative terms.

2. THE SYSTEM

Sentences are defined by referring to:

terms: A,B,C,...
simple quantifiers: =, =, c**, ct,c ", c 7,Z
comma: ,
Qi1,...,Q, is a quantifier provided i) each Q; (1 < i < n) is a simple

quantifier, ii) Q; precedes Q; if ¢ < j, where precedence among simple
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quantifiers is indicated by the above ordering of simple quantifiers, and
iii) at least one quantifier is not a Q;. No expressions are quantifiers other
than those generated by the above three conditions. So, for example,
=, C** is a quantifier but CTT, = is not. Qab is a sentence iff Q is a
quantifier and a and b are distinct terms. So, for example, =, C*TAB
and =—, C~~,ZAB are sentences, but =, CTTAA is not. Qab is a simple
sentence iff Qab is a sentence and Q is a simple quantifier. Read simple
sentences as follows: —ab as “The a are the b,” =" ab as “The a are
the non-b,” C*ab as “The a are properly included in the b,” C*~ab as
“The a are properly included in the non-b,” C~"ab as “The non-a are
properly included in the b,” C~"ab as “The non-a are properly included
in the non-b,” and Zab as “Some a are b, some ¢ are non-b, some non-a
are b, and some non-a are non-b.” Read Qy,...,Qy,ab by putting “or”
between sentences that correspond to Q;ab. So, read =, C*+ab as “The
a are the b, or the a are properly included in the b” (or “All a are b.”)
=—,CT,c~*,C~~,Zab may be read as “Some a are not b.”

The deducibility relation (), relating sets of sentences to sentences,
is defined recursively. Read “X I y” as “y is deducible from X.” Set
brackets are omitted in the statement of the following definition. “X, y”
is short for “X U {y}” and “z,y” is short for “{x} U {y}.” “a”, “b”,...
range over terms; and “p”, “q”,... range over “+”, and “—". p* is “+”
iff p is “—"". cd(Pab) = Qab iff every quantifier that does not occur in P
occurs in Q. Read “cd” as “the contradictory of.”

(B1) =abt =ba

B2) ="abF="ba

(B3) CPlabt TP ba

(B4) ZabtF Zba

(B5) =ab,Qbct Qac, where Qis =,=", or CcP?
(B6) ="ab,=" bclt =ac

(B7) ="ab,CPbct P lac

(B8) Plab,C?bct P ac

R1) IfXFyandy,zF wthen X,z w

If X,y - Pab then X, Qab t c¢d(y) if no quantifier in P is a

(R2) quantifier in Q
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If X, Pab - y and X, Qab I y then X, Rab I y if each
quantifier in R is in P or Q

(R3)

(L) XFyiff XF gy in virtue of BI-R3.

So, for example, =—AB, C*"BC + Cc~TAC (by B7) and C~TAC,
CT=CD F c~~AD (by B8). So ="AB, c**BC, cT"CD  c~~AD
(by R1). So =—AB, c**BC, c*~,ZAD - =, =—,c*F,ct,c ,
ZCD (by R2).

THEOREM 1. (D1) If X,y F Pab then X,y + cd(Qab) if no simple
quantifier occurs in both P and Q. (D2) If X,y F cd(Pab) and X,y +
cd(Qab) then X,y F cd(Rab) if each quantifier in R is in P or Q. (D3)
If X,ytF zand v,w F y then X,v,w t z.

Proof. Begin each proof by assuming the antecedent. (D1) Then
X,Qab F cd(y) (by R2). Then X,y F ¢d(Qab) (by R2). (D2) Then
X,Pab  cd(y) and X,Qab F cd(y) (by R2). Then X,Rab F cd(y)
(by R3). Then X,y F cd(Rab) (by R2). (D3) Then X, cd(z) F cd(y)
and v, cd(y) F ed(w) (by R2). Then X, v, cd(z) F ed(w) (by R1). Then
X,v,w t z (by R2). O

A model is a quadruple (W, vy, v_,v), where i) W is a non-empty set,
ii) v4 and v_ are functions that assign non-empty subsets of W to terms
such that vy (a) Ur_(a) = W and vy (a) Nv_(a) = @, and iii) v is a
function that assigns ¢ or f to sentences such that the following conditions
are met:

0] v(=ab) =t iff v4(a) = v (b)

(ii) v(="ab) =t iff vi(a) = v_(b)

(i)  v(CPab) =t iff vy(a) C vy(b)

(iv)  v(Zab) =t iff v,(a) Nvy(b) # @ for each p and ¢

v)  v(Qi,...,Quab) =t iff for some i (1 <i<n)v(Qab) =t
y is a semantic consequence of X (X  y) iff there is no model (W, ... v)
such that v assigns ¢ to every member of X and v assigns f to y. X is
consistent iff there is a model (W, ..., v) such that v assigns ¢ to every

member of X. X is inconsistent iff X is not consistent.

THEOREM 2 (Soundness). If X -y then X E y.
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Proof. Straightforward. (For B1, note that for any model (W, ..., v),
if v4(a) = v4(b) then vy (b) = vy(a). For R2, suppose no quantifier
in P is a quantifier in Q, and suppose that X, Qab ¥ cd(y). Then there
is a model (W,...,v) in which v assigns ¢ to every member of X,
v(Qab) = t, and v(cd(y)) = f. Note that v(cd(y)) = f iff v(y) = t.
And note that since no quantifier in P is a quantifier in Q, v(Pab) = f.
So X, y ¥ Pab.) |

A chain is a set of sentences whose members can be arranged as
a sequence (Qlaiaz], Q2[azaszl, ..., Qulanai]), where Q;a;a;] is either
Q;a;a; or Q;aja; and where a; # a; if @ # j. So, for example, {=AB,
=—,CtTCB,ZCA} is a chain. A pair (X,y) is a syllogism iff X U {y}
is a chain. So ({=AB,=",CTtCB},ZCA) is a syllogism.

A normal chain is a set of sentences whose members can be arranged

as a sequence (Qjajaz, Qrazas,...,Quanar), where a; # a; if i #
7. A simple normal chain is a normal chain in which each quantifier
is simple. So, for example, {=,="AB,=BA} is a normal chain. And

{=AB,=BA} is a simple normal chain.

By definition, e(=ab) is =ba, e(="ab) is = ba, e(CPlab) is C4 P ba,
and e(Zab) is Zba.

{Q1ab,Qabc} a-reduces to Qsac iff the triple (Qab, Q,bc, Qszac) is
recorded on the following Table of Reductions:

Q2bc
= = Cq,r
= = = qu
Quab —F—1— T Qzac
cPq | P4 | cpat | CPr

So, for example, {=AB,=BC} a-reduces to =AC, and {CTTAB,
CTBC} a-reduces to C*~AC.

If X, is a simple chain then a sequence of chains X, ..., X,, (=Y}),
..., Yy is a full reduction of X, to Y, iff: 1) X,;, is a normal chain and if
m > 1 then, for 1 < ¢ < m,if X; has form {Qab}UZ then X; has form
{e(Qab)} UZ, and ii) there is no pair in Y,, that a-reduces to a sentence
and if n > 1 then, for 1 < ¢ < n, if Y; has form {Q;ab,Qzbc} UZ
then Y,y has form {Qsac} UZ. X fully reduces to Y iff there is a full
reduction of X to Y.

THEOREM 3. Every simple chain fully reduces to a simple normal chain.
Proof. Assume X; is a simple chain. We construct a sequence of
chains that is a full reduction of X; to Y,. Step 1: If X; is a simple
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normal chain let X; = Y; and go to Step 2. If X; is not a simple
normal chain find the alphabetically first pair of sentences in X; of form
(Qab, Qcb) and replace Qcb with e(Qcb), forming X,. Repeat Step 1
(with “X;” in place of “X;”). Step 2: If no pair of sentences in Y; a-
reduces to a sentence, then X; fully reduces to Y. If a pair of sentences
in Y; a-reduces to a sentence x find the alphabetically first pair that a-
reduces to z and form Y, by replacing this pair with x. Repeat Step 2
(with “Y;” in place of “Y;”). ]

So, for example, given the sequence ({=AB},{=AB,=BA}),
{=AB} fully reduces to {=AB,=BA}. And, given the sequence
({cTTAB,Cc~~CB,Cct*CA},{Cc*TAB,Cc**BC,CcTTCA}, {CTTAC,
CTTCA}), {CTTAB,C”~CB,C*"CA} fully reduces to {CTtTAC,
CTTCA}. Some chains fully reduce to themselves. {CTTAB, C~~BC,
ZCA} is an example.

{Pi[araz],...,Pylana;]} is a strand of {Qi[a1az],...,Qnlana]} iff
each P; is a simple quantifier in Q; and a; is the first term in P;[a;a;1]
iff a; is the first term in Q;[a;a;41], where P[ab] is Pab or Pba. So, for
example, {=AB,="AB} is a strand of {=, CTTAB,=",CTTAB}.

A simple normal chain is a cd-pair iff it has one of the following
forms:

{=ab,="ba (or CPba or Zba)},{="ab, CPba (or Zba)},
or {C?ab, C?"ba (or Zba)}.

THEOREM 4 (Syntactic decision procedure). If (X,y) is a syllogism
then X F y iff every strand of X U {cd(y)} fully reduces to a cd-pair.
Proof. Assume (X,y) is a syllogism. We use Lemmas 1-3, below.
(If) Suppose every strand of X, cd(y) fully reduces to a cd-pair. Then
by Lemmas 1 and 2, X, cd(y) is inconsistent. Then X F y. (Only if)
Suppose some strand of X, cd(y) does not fully reduce to a cd-pair.
Then, by Theorem 3, some strand of X, cd(y) fully reduces to a simple
normal chain that is not a cd-pair. Then, by Lemmas 1 and 3, X, cd(y)
is consistent. Then X ¥ y. |

LEMMA 1. A chain is inconsistent iff each of its strands is inconsistent.
Proof. Note that a model satisfies {Qab} U X and {Qaab} U X iff it
satisfies {Qsab} U X, where the quantifiers in Q3 are the quantifiers in

Q; and Q». ]

LEMMA 2. If a simple chain X fully reduces to a cd-pair, then X is
inconsistent.
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Proof. Use the following three lemmas, whose proofs will be omitted
since they are easily given. o

LEMMA 2.1. Each cd-pair is inconsistent.

LEMMA 2.2. If a simple normal chain {Qsac} U X is inconsistent and
{Qqab, Qabc} a-reduces to Qsac, then {Qab, Qxbc} UX is inconsistent.

LEMMA 23.If a simple chain {Qab} U X is inconsistent, then
{e(Qab)} U X is inconsistent.

LEMMA 3. If a simple chain X fully reduces to a simple normal chain
that is not a cd-pair, then X is satisfied in an m-model, where m < n+2
and n is the number of terms in X.

Proof. Use the following three lemmas. o

LEMMA 3.1. If a simple chain fully reduces to a simple normal chain X
that is not a cd-pair, then X is satisfied in an m-model, where m < n+2
and n is the number of terms in X.

Proof. Assume the antecedent. We consider three cases determined
by the number of occurrences of “Z” in X.

Case 1: “Z” does not occur in X. If either “=" or “="" occurs in
X then X has form {=ab,=ba} or {="ab,="ba}. Use ({1,2},...,v),
where, for each term x, v, (z) = {1}. If neither “=" or “="" occurs in
X then X has form {CP'P2aay, ..., CP2-1"Pkga;4, ..., CPn-1Png, g},

where py; = p3;,, for 1 < i < n, and py, = py. We use induction
on the number n of terms in X to show that X is satisfied in a 3-
model. Basis step: n = 2. X has form {Cp'malaz,cp;pl*agal}. Use
({1,2,3},...,v), where v, (a) = {1}, and, for terms x other than a,
vg(z) = {1,2}. Induction step: n > 2. By the induction hypothesis

{CPPiqqas, ..., CP2-1Phga;,q, ..., CPn=1Png, q } is satisfied in a 3-
model (W,...,v), where py; = p3; |, for 2 < i < n, and p2, = py.
Construct a model (W,...,v"), v, (a2) = vp,(a1) U vz (a3), and, for

other terms x,v/ (x) = vi(x). Then v/(CP'P2ajaz) = t. v-(az) =
vp,(a3) — vp, (a1) and p5 = p3. So V/(CP3P4aza3) = t.

Case 2: “Z” occurs exactly once in X. Then X has at least three
members and has form {Zab} U {CP%c, ..., C"*da}. We use induction
on the number of terms in X to show that X is satisfied in a 4-model.
Basis step: n = 3. X has form {Zab} U {CP%c, C? "ca}. Construct a
model ({1,2,3,4},...,v), where v,(a) = {1,2}, v,(b) = {1,3}, and,
for other terms x,v,(x) = {1,3,4}. Induction step: n > 3. Follow the
model construction in the induction step in Case 1.
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Case 3: “Z” occurs at least twice in X. Then X has form {Zab, ...,
Zcd,...}. We use induction on the number n of terms in X. Basis
step: n = 2. X has form {Zab,Zba}. Use ({1,2,3,4},...,v), where
vy(a) = {1,2} and, for other terms x, vy (z) = {1,3}. Induction step:
n > 2. X has form {Zab, Qbc, . .., Zde, . . . }. By the induction hypothesis,
{Zac, ... ,Zde} is satisfied in an m-model, where m < n-+2 and n is the
number of terms in X. Suppose Q is “=". Construct model (W,..., /),
where v/, (b) = v (c) and, for terms x other than b, v/, (z) = v (x). Sup-
pose Q is “="". Construct model (W, ..., 2'), where v/, (b) = v_(c) and,
for terms « other than b, v/ (x) = v (z). Suppose Q is “Z”. Construct a
model (W, ..., "), where v/, (b) = (vy(a) Nvi(c)) U (v—(a) Nv_(c)),
and, for other terms x, v/, (r) = v4 (). Finally, suppose that Q is “CP?”.
The strategy is to construct a model (W', ... v/) such that X is satisfied
in it, where W' = WU {M}, and v/, (a) N (c) has at least two members,
including M. Then we construct a second model (W', ... v"), such that
X is satisfied in it by letting v (b) = v,(c) — {M}, and, for terms x other
than b, v/} (x) = v/, (x). Then v (Zab) = t and v"'(CP9bc) = t.

We construct (W',...,v/). If a and ¢ are the only terms in X, let
a = vi(a) Nyy(c) (and, thus, o has at least one member). If terms
di,...,d, occur in X, where these terms are other than “a” or “c”,

pick p; — p,, such that « has at least one member, where o = v (a) N
vg(c) N, (di) N+ Nup, (dy). Let W = WU {M}, where M ¢ W. Let
Vi (x) = vy (x)U{M} if o C vy (x); otherwise, let v/, (x) = v, (). Then
Vo (x) = v_(x) U{M} if o C v_(x); otherwise, v/ () = v_(x). Note
that v/} (a) Nv(c) has at least two members and M € v/, (a) N, (c). We
show that X is satisfied in (W', ... v/). Suppose v(Qde) = t. Suppose

Q is “=". Then v/, (d) = v4(d) U {M} and v/ (e) = v4(e) U{M} or
Vi (d) = vi(d) and v/, (e) = v4(e). Then /(=de) = t. Suppose Q
is “="". Then v/, (d) = v4(d) U{M} and v/ (e) = v_(e) or v/ (d) =

vy(d) and v (e) = v_(e) U {M}. Then v/(="de) = t. Suppose Q is
“CP? If a C vy(d) then v (d) = v,(d) U{M} and v, (e) = vy(e) U{M}.
If a ¢ vpy(d) then v,(d) = vp(d) and either vy(e) = vy(e) or vy(e) =
vq(e) U{M}. Then v/(CP%de) = ¢. Finally, suppose Q is “Z”. Then, for

any p and ¢, v,(d) Nyy(e) C V];(d) N V{](e). Then v/(Zde) = t. O

LEMMA 3.2. If a simple chain {Qsac} UX is satisfied in an n-model
(W,...,v), where n is the number of terms in {Qszac} U X, and if
{Qqab, Qabc} a-reduces to Qsac, then {Qab, Qabc}UX is satisfied in an
m-model, where m < n and n is the number of terms in {Qab, Q2bc}UX.

Proof. Assume the antecedent. Suppose Q; is “=". Construct (W, ...,
V"), where v/ (b) = v (a), and, for terms x other than b, v/, (z) = vy (x).
Suppose Q; is “="". Construct (W, ... ,v'), where v/ (b) = v_(a), and,
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for terms x other than b, v/, (x) = v (x). Use similar constructions if
Q2 is “=" or “="". So, the only a-reduction left is this: {CP%ab, C?"bc}
a-reduces to CP"ac. Construct a model (W', ... v/) such that W = WU
{M},M ¢ W, and v, (a) N, (c) has at least two members, including M.
To do this follow the procedure in Case 3 of Lemma 3.1. Then construct
a model (W',...,v") such that v"(b) = v,(a) U {M} and, for other
terms x, v} (z) = v/, (x). O

LEMMA 3.3. If a simple chain {Qab} U X is satisfied in an n-model,
where n is the number of terms in {Qab} U X, then {e(Qab)} U X is
satisfied in an n-model, where n is the number of terms in {e(Qab)} UX.

Proof. Straightforward. o

THEOREM 5 (Semantic decision procedure). If (X,y) is a syllogism
then X E y iff X, cd(y) is not satisfied in an m-model, where m < n+ 2
and n is the number of terms in X.

Proof. Assume (X, y) is a syllogism. (Only if) Immediate. (If) Assume
X, ed(y) is not satisfied in an m-model, where m < n 4 2 and n is the
number of terms in X. Then every strand of X, cd(y) is not satisfied in
an m-model where m < n+2 and n is the number of terms in X, cd(y).
Then every strand of X, cd(y) fully reduces to a cd-pair (by Theorem 3
and Lemma 3 of Theorem 4). Then X F y (by Theorem 4).

Given Theorem 5, it is natural to ask whether, for any n, there is
an n-termed syllogism that requires an n 4+ 2 model to show that it is
invalid. The answer is Yes. If n = 2, use ({Za a,}, cd(Zaza,)). If n > 2,
use ({Zajay, C* T agaz,...,C T ay_1a,}, cd(Zayay)). Consider a mod-
el (W,...,v) in which {Zajay, CT " azas,...,C  ay_1a,,Zana} is
satisfied. Note that v; (a;) has at least two members, since v(Zaja,) = t.
So v (ay) has at least n members. v_(a,, ) has at least two members since
v(Zanay) =t. O

THEOREM 6 (Completeness). If (X,y) is a syllogism and X F y then
X k.

Proof. Assume the antecedent. Then, by Theorem 4, every strand
of X, cd(y) fully reduces to a cd-pair. So, by Lemmas 1-4, below, X -
cd(cd(y)). That is X - y. O

LEMMA 1. If {x,y} is a cd-pair, then x & cd(y).

Proof. 1) =ab F =ba (by B1). So =ab F c¢d(="ba) (and cd(CP%ba)
and cd(Zba)) (by D1). 2) ="ba - ="ab (by B2). So ="ba - cd(=ab)
(by D1). And ="ab F ="ba (by B2). So ="ab F cd(CP%a) (and
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cd(Zba)) (by D1). 3) CPiba - C? P ab (by B3). So CPiba + cd(=ab)
(and cd(="ab)) (by D1). CP9ab - C9P" ba (by B3). So CP%ab Fcd(Cba)
(and cd(Zba)) (by D1). C?ba - C"" 7 ab (by B3). So Cba - cd(CPlab)
(by D1). 4) Zba - Zab (by B4). So Zba + cd(=ab) (and cd(="ab) and
cd(CPlab)) (by D1). 0

LEMMA 2. If X = {Q3ac} Uz, Y = {Q]Gb, szc} uZz, {Q]Gb,QQbC}
a-reduces to Qsac, and X — {z} & cd(x), for every x such that x € X,
then Y — {y} F cd(y), for every y such that y € Y.

Proof. Assume the antecedent. Case 1: y € Z. {Qzac} UZ — {y} F
cd(y). We use

LEMMA 2.1. If {Qqab,Qabc} a-reduces to Qszac then Qab, Qxbc +
Qsac.

Proof. Given B5-B8, we only need to show that: i) ="ab, =bc -
="ac; ii) CP4ab, =bc + CPlac; and iii) CP4ab, = be b CP4 ac. For 1),
=bc - =cb (by B1) and ="ab F ="ba (by B2). =cb, ="ba - ="ca
(by B5). So ="ab, =bc - ="ca (by D3). ="ca - ="ac (by B2). So
="ab, =bc - ="ac (by R1). Use similar reasoning for ii) and iii).

So Qjab, Qxbc F Qsac (by Lemma 2.1). So {Qqab, Qubc} UZ—{y}
cd(y) (by D3).

Case 2: y = Qqab. Z F cd(Qszac). Qabe, cd(Qzac) + cd(Qqab) (by
Lemma 2.1 and R2). So Z, Qabc F ¢d(Q;ab) (by R1).

Case 3: y = Qybc. Use reasoning similar to that for Case 2. |

LEMMA 3. If X = {Qab} UZ, Y = {e(Qab) } UZ, and X — {z} I~ cd(c),
for every x such that x € X, then Y — {y} - cd(y), for every y such that
yey.

Proof. Assume the antecedent. Case 1: y € Z. {Qab} UZ — {y} F
cd(y). e(Qab) F Qab (by B1-B4). So {e(Qab)} UZ — {y} F cd(y)
(by D3). Case 2: y = e(Qab). Z F ¢d(Qab). cd(Qab) - cd(e(Qab)) (by
B1-B4 and R2). So Z I~ cd(e(Qab)) (by R1). O

LEMMA 4. If each strand Y U {z} of X U{y} is such that Y + cd(z),
then X+ cd(y).
Proof. Use D2 and R3. (The proof is illustrated below.) ]

The proof of the above theorem provides a mechanical procedure for
showing that X F y given that X F y. We illustrate by showing that
=, CTTAB,=BC I cd(=",C"~AC). First, fully reduce the following
strands as indicated: i) {=AB,=BC,="AC} to {=AB,=BC,="CA}
to {=AC,="CA}; ii) {=AB,=BC,C"~AC} to {=AB,=BC,C* CA}
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to {=AC,Ct CA}; iii) {CTTAB,=BC,="AC} to {C*TAB,=BC,
="CA} to {CTTAC,="CA}; and iv) {CTTAB,=BC,C""AC} to
{C*TAB,=BC,CT"CA} to {CTTAC,C"~CA}. By the proof of Lem-
ma 1: =AC I cd(="CA); =AC I cd(CT~CA); CTTAC+ cd(="CA);
and CTTAC F c¢d(Ct~CA). By the proof of Lemma 2: =AB,=AC
cd(=—CA); =AB,=AC I cd(C*t~CA); C**AB,=BC F cd(=—CA);
and CTTAB,=BC I cd(CT CA). By the proof of Lemma 3: =AB,
—AC + cd(="AC); =AB,=AC + cd(C*~AC); C**AB,=BC F
cd(="AC); and T+ AB,=BC F cd(C*~AC). By D2, =AB, =AC F
cd(==,C"~AC) and Ct*AB,=BC F cd(=",C"~AC). By R3, =,
CHTAB, =AC F ed(=", C*~AC).

3. GERGONNE SYLLOGISMS

Faris [1] is motivated by an interest in providing a decision procedure for
Gergonne syllogisms. Faris construes syllogisms as sentences, following
Lukasiewicz’s [4], rather than as inferences, as in Smiley’s [5]. For us,
a Gergonne syllogism is a syllogism consisting of Gergonne sentences,
which are defined as follows, using Gergonne’s symbols in [2]. The
Gergonne-quantifiers are: H =g ==, Ct 7, X =¢¢ C 1, Z; |=¢f =;C
=4 CT1,and D =4 C~~. A Gergonne-sentence is any sentence of form
Qi,...,Qnab, where Q; is a Gergonne-quantifier. So Theorem 4 above
gives an alternative solution to the problem that motivated Faris’ [1],
since every Gergonne syllogism may be expressed in our system. Note,
for example, that “H, XAB” is expressed as “=—,CT—,Cc~ 1, ZAB”.

4. SYSTEM B

In this section we develop a subsystem B which expresses no sentences
other than those that may be expressed by using sentences of form “All. ..
are — — —”, “No... are — — —”, “Some. .. are — — —”, or “Some. ..
are not — — —”, where the blanks are filled by expressions of form z
or non-z (the “A, E, I, and O sentences, respectively, with or without
negative terms.”)

The B-quantifiers (“B” for “basic”) are: =, CTH(ATT); == T~
(AT ), =", c (A ), = Cc (A );=",ct~,cF,c,Z(0"),
= Cctt,ct,c,Z2(0"t"); =,ctt,ct~,c,Z(0""); and =",
ctt ct=,c ,Z(077). Qab is a B-sentence iff Qab is a sentence
and Q is a B-quantifier. So, for example, A*TAB is a B-sentence. And
a B-syllogism is a syllogism composed of B-sentences.
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We define y is B-deducible from X (X Fp y), where X,y is a set of
B-sentences, and where ct(AP%ab) = AP? ab, cd(APlab) = OPlab, and
cd(OP4ab) = APlab:

(B1) APbtg AP ba

(By) AP%b, AT bc kg AP ac

Ry) IfXFgyandy,ztpg wthen X,z Fgw
Ry) IfX,yhtgct(z) or cd(z) then X, z Fp cd(y)
(L) If XFy,then X+ g in virtue of B;—R;.

THEOREM 7. (Dy) If X,y b 2z and w,v Fg y then X, u,v g z.
Proof. Use the reasoning for the proof of Theorem 1. |

THEOREM 8 (Soundness). If X g y then X F y.
Proof. Straightforward. |

By definition, e(AP9ab) is AY P ba and e(OPab) is O P ba. And, by
definition, a set X of sentences b-reduces to a sentence y iff (X,y) has
form ({AP%ab, A?"bc}, AP ac).

If X is a chain of B-sentences then a sequence of chains X, ..., X,,
(=Y1),..., Yy, is a full B-reduction of X; to Y, iff: i) X,, is a normal
chain and if m > 1, then, for 1 < ¢ < m, if X; has form {Qab} UY,
then X;4 has form {e(Qab)} UY; and ii) there is no pair of sentences
in Y,, that b-reduces to a sentence and if n > 1 then, for 1 <i<n,Y;
has form {AP%ab, A7 bc} UX and Y;4; has form {AP"ac} U X. X fully
B-reduces to Y iff there is a full B-reduction of X to Y.

THEOREM 9. Every chain of B-sentences fully B-reduces to a normal
chain of B-sentences.
Proof. Imitate the proof of Theorem 3. m|

A normal chain of B-sentences is a cd-B-pair iff it has one of the fol-
lowing forms: {AP%ab, A% ba} or {APiab,09 P ba}.

THEOREM 10 (Syntactic decision procedure). If (X, y) is a B-syllogism
then X Ey iff X, cd(y) fully B-reduces to a cd-B-pair.

Proof. Assume (X,y) is a B-syllogism. We use Lemmas 1 and 2,
below. (If) Suppose X, cd(y) fully B-reduces to a cd-B-pair. Then, by
Lemma 1, X, cd(y) is consistent. Then X ¥ y. (Only if) Suppose X F y.
Then X, cd(y) is inconsistent. Then X, cd(y) fully B-reduces to a cd-B-
pair (by Lemma 2 and Theorem 9). O
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LEMMA 1. If a chain X of B-sentences fully B-reduces to a cd-B-pair
then X is inconsistent.
Proof. Imitate the proof of Lemma 2 of Theorem 4. o

LEMMA 2. If a chain X of B-sentences fully B-reduces to a normal
chain of B-sentences that is not a cd-B-pair, then X is satisfied in a
3-model.

LEMMA 2.1. If a chain of B-sentences fully B-reduces to a normal chain
of B-sentences X that is not a cd-B-pair, then X is satisfied in a 3-model.

Proof. Assume the antecedent. We consider three cases determined
by the number of occurrences of “O” in X.

Case 1: “O” does not occur in X. We use induction on the number n of
terms in X. Basis step: n = 2. Then X has form {AP%ab, A%ba} or form
{APiab, ATP ba}. If p = g, use ({1,2,3},...,v), where v, (z) = {1}.
If p # q,use ({1,2,3},...,v), where v;(a) = {1}, and, for terms
x other than a, vy (z) = {2,3}. Induction step: n > 2. Then X has
form {AP'"P2q ay, ..., AP2-1Pxiga, ... APn=1Png a,}, where py; =
Pyir1- By Case 1 of Lemma 3.1 {CP'Pqjay,...,CP7""Puaa,41,. ..,
CPn—1Png ay}, where py; = p5;, 4, for 1 < i < n, and p, = pj, is
satisfied in a 3-model. So X is satisfied in a 3-model.

Case 2: “O” occurs exactly once in X. Suppose there are exactly
two terms in X. Then X has form AP%ab, 07 Pba (or O%ab or O ba).
3-models are easily constructed to show that X is consistent. Suppose
there are more than two terms in X. We use induction on the num-
ber n of terms in X to show that X is satisfied in a 3-model. Basis
step: n = 3. Then X has form {OP%ab, A"*bc, A* “ca}. So there is a
strand of X with one of the following forms: {CP? ab, C™*bc, C* “ca},
{CP 9ab, C"*bc, ¥ "ca}, and {CP T ab, C"*be, C* “ca}. So, by Case 1
of Lemma 3.1 of Theorem 4, X is consistent if p = u or ¢ = r. Sup-
pose p # u and ¢ # r. Then X has form {OP%ab, A7 *bc, A>'P" ca)}.
If p = ¢, there is a strand of X with form {="ab,=bc,="ca} or
form {="ab,="bc,=ca}. If p # q, there is a strand of X with form
{=ab, =bc,=ca} or form {=ab,="bc,="ca}. Each of these four chains
can easily be shown to be satisfied in a 3-model. Induction step: n >
3. X has form OP%ab, A"*bc, A% “cd,... . By the induction hypothe-
sis, OP9ab, A" "bd, . .. is satisfied in a 3-model (W, ...,v). Construct
(W,...,V), where v}(c) = v,(b), and, for terms z other than ¢, v/ (z) =
v, (z). Note that v/(A"*bc) = t, since v/.(b) = v/.(c), and v/(A* “cd) = t,
since V. (c) = v).-(b).

Case 3: “O” occurs at least twice in X. We use induction on the num-
ber of terms n in X. Basis step: n = 2. X has form {OP%ab,0"*ba}. It is
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easy to show that X is satisfied in a 3-model. Induction step: n > 2. X has
form {OP?ab, Q"be, ..., 0" de,...}.Suppose Qis “A” and r = sorQ is
“O” and r # s. By the induction hypothesis, {OP4ac, ...,0"de, ...} is
satisfied in a 3-model (W, ..., v). Construct 3-model (W, ..., v’), where
vy (b) = v4(c), and, for terms z other than ¢, v/, () = vy (). Suppose Q
is “A” and r # s or Q is “O” and r = s. By the induction hypothesis,
{OPT ac,...,0%de, ...} is satisfied in a 3-model (W, ..., v). Construct

3-model (W, ..., V'), where v, (b) = vy (c), and, for terms x other than

c, vV (x) = vy(z). O

LEMMA 22. If {AP"ac} UY is satisfied in a 3-model and if term b does
not occur in a member of Y, then {APlab, A?"bc} UY is satisfied in a
3-model.

Proof. Assume that {AP"ac}UY is satisfied in a 3-model (W, ..., v).
Construct (W, ..., /), where 1,(b) = v4(a), and, for terms x other than

b,V (z) = vi(z). i

LEMMA 2.3. If {Qab} UY is satisfied in a 3-model, then {e(Qab)} UY
is satisfied in a 3-model.
Proof. Straightforward. |

THEOREM 11 (Semantic decision procedure). If (X, y) is a B-syllogism
then X E y iff X, cd(y) is not satisfied in a 3-model.

Proof. Assume (X, y) is a B-syllogism. (Only if) Immediate. (If) Sup-
pose X, cd(y) is not satisfied in a 3-model. Then, by Theorem 9 and
Lemma 2 of Theorem 10, X, cd(y) fully B-reduces to a cd-B-pair. So,
by Theorem 10, X F y. O

Theorem 11 extends the result in Johnson’s [3]. There it is shown, in
effect, that any invalid syllogism constructed by using B-sentences other
than those of form A~ "ab or O~ "ab is satisfied in a 3-model. There are
invalid B-syllogisms that require a domain with at least three members to
show their invalidity. This is an example: ({A*~AB,AT"BC},O0"~AC).

THEOREM 12 (Completeness). If (X,y) is a B-syllogism and X F y
then X Fg y.

Proof. Assume the antecedent. Then, by Theorem 10, X U {cd(y)}
fully B-reduces to a cd-B-pair. Use the following three lemmas. |

LEMMA 1. If {x,y} is a cd-B-pair, then x by cd(y) and y Fp cd(x).
Proof. (1) A% ba g AP ab, that is, ct(AP%ab) (by By). So APab by
cd(A%" ba) (by Ry). So A% ba Fg cd(AP9ab) (by Ry). (2) AP9ab +p
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A9P"ba, that is, cd(O7 P ba) (by By). So O P ba g cd(AP9ab) (by
Ry). O

LEMMA 2. If X = {AP"ac} UZ, Y = {AP%b,ATbc} UZ, and X —
{z} Fp cd(z), for each sentence = in X, then Y — {y} Fp cd(y), for
each sentence y in Y.

Proof. Imitate the proof of Lemma 2 of Theorem 6. o

LEMMA 3. If X = {Qab}UZ, Y = {e(Qab) }UZ, and X—{x} I cd(x),
for each sentence = in X, then Y — {y} Fp cd(y), for each sentence y
inY.

Proof. Imitate the proof of Lemma 3 of Theorem 6. o

5. CONCLUSION

Our interest has been in extending the Aristotelian syllogistic. But, in con-
clusion, we mention Smiley’s classic result in [5] about the Aristotelian
syllogistic, which follows from the results obtained above. First, delete
sentences of form A~ tab and O~ Tab from system B. Let Aa — b = @
if a = b; otherwise, let Aa — b be a set of sentences that can be arranged
as follows: (AT aja; (or A=~ azay),..., AT ayan1 (or A~ any1ay),
where a; = a and an4+; = b. Then, by Theorem 10, a chain of sen-
tences in this subsystem is inconsistent iff it has one of the following
forms: i) Aa — b, O"tab (O~ ~ab); ii) Aa — b, AT bc, Ac — a; or iii)
Aa — b, At be, Ad — ¢, Ot ~da (or OT~ad). Next, delete sentences
of form A~ ab and O~ ~ab from this system. The resulting system can
express all of the Aristotelian syllogisms. So, as Smiley [5] says, an
Aristotelian syllogism (X, y) is valid iff X, cd(y) has one of the fol-
lowing forms: i') Aa — b, O "ab, ii), or iii). (Smiley uses A, E, I, and
O instead of our AT™T, AT~ OT~, 0", respectively.) So, for exam-
ple, “ATTBC, ATTBA; so Ot~ AC” (Darapti) is valid since “ATTBC,
ATTBA, AT~AC” has form ii).
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