FRED JOHNSON

EXTENDED GERGONNE SYLLOGISMS

ABSTRACT. Syllogisms with or without negative terms are studied by using Gergonne's ideas. Soundness, completeness, and decidability results are given.

1. BACKGROUND AND MOTIVATION

Gergonne [2] relates the familiar A, E, I, and O sentences without negative terms to five basic sentences that express the "Gergonne relations." These relations are: exclusion, identity, overlap, proper containment, and proper inclusion. What makes these relations especially interesting is that for any pair of non-empty class terms exactly one of them holds.

Faris [1] develops a formal system that takes the Gergonne relations as basic. His system takes advantage of Łukasiewicz's [4], which attempts to formalize the Aristotelian syllogistic. The following paper results from two ideas: 1) If Gergonne had been interested in studying A, E, I, and O sentences with negative terms, the count of Gergonne relations would be seven rather than five; and 2) The most Aristotelian way to develop a syllogistic system based on the these seven relations is by following Smiley's [5] rather than Łukasiewicz's [4].

After developing the Aristotelian "full syllogistic" based on seven relations, we will discuss a subsystem that is adequate for representing AEIO-syllogisms with or without negative terms.

2. The system

Sentences are defined by referring to:

terms: A,B,C,\dots simple quantifiers: =,=^-, $\subset^{++}, \subset^{+-}, \subset^{-+}, \subset^{--}, Z$ comma: ,

 Q_1, \ldots, Q_n is a quantifier provided i) each Q_i $(1 \le i \le n)$ is a simple quantifier, ii) Q_i precedes Q_j if i < j, where precedence among simple

quantifiers is indicated by the above ordering of simple quantifiers, and iii) at least one quantifier is not a Q_i . No expressions are quantifiers other than those generated by the above three conditions. So, for example, =, \subset^{++} is a quantifier but \subset^{++} , = is not. Qab is a sentence iff Q is a quantifier and a and b are distinct terms. So, for example, =, \subset ⁺⁺AB and = , \subset , ZAB are sentences, but = , \subset ++AA is not. Qab is a simple sentence iff Qab is a sentence and Q is a simple quantifier. Read simple sentences as follows: =ab as "The a are the b," $=^-ab$ as "The a are the non-b," $\subset^{++}ab$ as "The a are properly included in the b," $\subset^{+-}ab$ as "The a are properly included in the non-b," $\subset^{-+}ab$ as "The non-a are properly included in the b," $\subset^{--}ab$ as "The non-a are properly included in the non-b," and Zab as "Some a are b, some a are non-b, some non-aare b, and some non-a are non-b." Read $Q_1, \ldots, Q_n ab$ by putting "or" between sentences that correspond to Q_iab . So, read =, $\subset^{++}ab$ as "The a are the b, or the a are properly included in the b" (or "All a are b.") =⁻, \subset ⁺⁻, \subset ⁻⁺, \subset ⁻⁻, Zab may be read as "Some a are not b."

The deducibility relation (\vdash) , relating sets of sentences to sentences, is defined recursively. Read " $X \vdash y$ " as "y is deducible from X." Set brackets are omitted in the statement of the following definition. "X,y" is short for " $X \cup \{y\}$ " and "x,y" is short for " $\{x\} \cup \{y\}$." "a", "b", ... range over terms; and "p", "q", ... range over "+", and "-". p* is "+" iff p is "-". cd(Pab) = Qab iff every quantifier that does not occur in P occurs in Q. Read "cd" as "the contradictory of."

(B1)
$$=ab \vdash =ba$$

(B2)
$$=$$
 $-ab \vdash = -ba$

(B3)
$$\subset^{pq}ab \vdash \subset^{q^*p^*}ba$$

(B4)
$$Zab \vdash Zba$$

(B5)
$$=ab$$
, $Obc \vdash Oac$, where O is $=$, $=$ or \subset^{pq}

(B6)
$$= -ab, = -bc \vdash =ac$$

(B7)
$$= ab, \subset^{pq}bc \vdash \subset^{p^*q}ac$$

(B8)
$$\subset^{pq}ab, \subset^{qr}bc \vdash \subset^{pr}ac$$

(R1) If
$$X \vdash y$$
 and $y, z \vdash w$ then $X, z \vdash w$

(R2) If $X, y \vdash Pab$ then X, $Qab \vdash cd(y)$ if no quantifier in P is a quantifier in Q

- (R3) If X, $Pab \vdash y$ and X, $Qab \vdash y$ then X, $Rab \vdash y$ if each quantifier in R is in P or Q
- (L1) $X \vdash y \text{ iff } X \vdash y \text{ in virtue of B1-R3}.$

So, for example, = AB, \subset ++BC \vdash \subset -+AC (by B7) and \subset -+AC, \subset +-CD \vdash \subset --AD (by B8). So = AB, \subset ++BC, \subset +-CD \vdash \subset --AD (by R1). So = AB, \subset ++BC, \subset +-,ZAD \vdash =, = -, \subset ++, \subset --, ZCD (by R2).

THEOREM 1. (D1) If $X, y \vdash Pab$ then $X, y \vdash cd(Qab)$ if no simple quantifier occurs in both P and Q. (D2) If $X, y \vdash cd(Pab)$ and $X, y \vdash cd(Qab)$ then $X, y \vdash cd(Rab)$ if each quantifier in R is in P or Q. (D3) If $X, y \vdash z$ and $v, w \vdash y$ then $X, v, w \vdash z$.

Proof. Begin each proof by assuming the antecedent. (D1) Then X, $Qab \vdash cd(y)$ (by R2). Then X, $y \vdash cd(Qab)$ (by R2). (D2) Then X, $Pab \vdash cd(y)$ and X, $Qab \vdash cd(y)$ (by R2). Then X, $Rab \vdash cd(y)$ (by R3). Then X, $y \vdash cd(Rab)$ (by R2). (D3) Then X, $cd(z) \vdash cd(y)$ and $cd(y) \vdash cd(w)$ (by R2). Then X, $cd(z) \vdash cd(w)$ (by R1). Then X, $cd(z) \vdash cd(w)$ (by R2).

A *model* is a quadruple $\langle W, \nu_+, \nu_-, \nu \rangle$, where i) W is a non-empty set, ii) ν_+ and ν_- are functions that assign non-empty subsets of W to terms such that $\nu_+(a) \cup \nu_-(a) = W$ and $\nu_+(a) \cap \nu_-(a) = \varnothing$, and iii) ν is a function that assigns t or f to sentences such that the following conditions are met:

- (i) $\nu(=ab) = t \text{ iff } \nu_{+}(a) = \nu_{+}(b)$
- (ii) $\nu(=ab) = t \text{ iff } \nu_{+}(a) = \nu_{-}(b)$
- (iii) $\nu(\subset^{pq}ab) = t \text{ iff } \nu_p(a) \subset \nu_q(b)$
- (iv) $\nu(\mathbf{Z}ab) = t \text{ iff } \nu_p(a) \cap \nu_q(b) \neq \emptyset \text{ for each } p \text{ and } q$
- (v) $\nu(Q_1, \dots, Q_n ab) = t$ iff for some $i \ (1 \le i \le n) \ \nu(Q_i ab) = t$

y is a semantic consequence of X ($X \models y$) iff there is no model $\langle W, \ldots, \nu \rangle$ such that ν assigns t to every member of X and ν assigns f to g. X is consistent iff there is a model $\langle W, \ldots, \nu \rangle$ such that ν assigns f to every member of f is inconsistent iff f is not consistent.

THEOREM 2 (Soundness). If $X \vdash y$ then $X \models y$.

Proof. Straightforward. (For B1, note that for any model $\langle W, \dots, \nu \rangle$, if $\nu_{+}(a) = \nu_{+}(b)$ then $\nu_{+}(b) = \nu_{+}(a)$. For R2, suppose no quantifier in P is a quantifier in Q, and suppose that X, $Qab \nvDash cd(y)$. Then there is a model $\langle W, \dots, \nu \rangle$ in which ν assigns t to every member of X, $\nu(Qab) = t$, and $\nu(cd(y)) = f$. Note that $\nu(cd(y)) = f$ iff $\nu(y) = t$. And note that since no quantifier in P is a quantifier in Q, $\nu(Pab) = f$. So X, $y \nvDash Pab$.)

A chain is a set of sentences whose members can be arranged as a sequence $\langle Q_1[a_1a_2], Q_2[a_2a_3], \dots, Q_n[a_na_1] \rangle$, where $Q_i[a_ia_i]$ is either $Q_i a_i a_j$ or $Q_i a_j a_i$ and where $a_i \neq a_j$ if $i \neq j$. So, for example, $\{=AB,$ =-, \subset ++CB, ZCA $\}$ is a chain. A pair $\langle X, y \rangle$ is a syllogism iff $X \cup \{y\}$ is a chain. So $\{=AB, =^-, \subset^{++}CB\}$, ZCA is a syllogism.

A normal chain is a set of sentences whose members can be arranged as a sequence $\langle Q_1 a_1 a_2, Q_2 a_2 a_3, \dots, Q_n a_n a_1 \rangle$, where $a_i \neq a_j$ if $i \neq a_i$ j. A simple normal chain is a normal chain in which each quantifier is simple. So, for example, $\{=,=^-AB,=BA\}$ is a normal chain. And $\{=AB, =BA\}$ is a simple normal chain.

By definition, e(=ab) is =ba, $e(=^-ab)$ is $=^-ba$, $e(\subset^{pq}ab)$ is $\subset^{q^*p^*}ba$, and e(Zab) is Zba.

 $\{Q_1ab, Q_2bc\}$ a-reduces to Q_3ac iff the triple $\langle Q_1ab, Q_2bc, Q_3ac \rangle$ is recorded on the following Table of Reductions:

 Q_2bc

		`	- -		
		=	=-	\subset^{qr}	
Q_1ab	=	=	=-	\subset^{qr}	Q ₃ ac
	=-		=	\subset^{q^*r}	
	\subset^{pq}	\subset^{pq}	\subset^{pq^*}	\subset^{pr}	

So, for example, $\{=AB, =BC\}$ a-reduces to =AC, and $\{\subset^{++}AB,$ \subset ⁺⁻BC} a-reduces to \subset ⁺⁻AC.

If X_1 is a simple chain then a sequence of chains X_1, \ldots, X_m (= Y_1), \dots, Y_n is a full reduction of X_1 to Y_n iff: i) X_m is a normal chain and if m > 1 then, for $1 \le i < m$, if X_i has form $\{Qab\} \cup Z$ then X_{i+1} has form $\{e(Qab)\} \cup Z$, and ii) there is no pair in Y_n that a-reduces to a sentence and if n > 1 then, for $1 \le i < n$, if Y_i has form $\{Q_1ab, Q_2bc\} \cup Z$ then Y_{i+1} has form $\{Q_3ac\} \cup Z$. X fully reduces to Y iff there is a full reduction of X to Y.

THEOREM 3. Every simple chain fully reduces to a simple normal chain. *Proof.* Assume X_1 is a simple chain. We construct a sequence of chains that is a full reduction of X_1 to Y_n . Step 1: If X_1 is a simple

normal chain let $X_1 = Y_1$ and go to Step 2. If X_1 is not a simple normal chain find the alphabetically first pair of sentences in X_1 of form $\langle Qab, Qcb \rangle$ and replace Qcb with e(Qcb), forming X_2 . Repeat Step 1 (with " X_j " in place of " X_1 "). Step 2: If no pair of sentences in Y_1 areduces to a sentence, then X_1 fully reduces to Y_1 . If a pair of sentences in Y_1 a-reduces to a sentence x find the alphabetically first pair that areduces to x and form Y_2 by replacing this pair with x. Repeat Step 2 (with " Y_i " in place of " Y_1 ").

So, for example, given the sequence $\langle \{=AB\}, \{=AB, =BA\} \rangle$, $\{=AB\}$ fully reduces to $\{=AB, =BA\}$. And, given the sequence $\langle \{\subset^{++}AB, \subset^{--}CB, \subset^{++}CA\}, \{\subset^{++}AB, \subset^{++}BC, \subset^{++}CA\}, \{\subset^{++}AC, \subset^{++}CA\} \rangle$, $\{\subset^{++}AB, \subset^{--}CB, \subset^{++}CA\}$ fully reduces to $\{\subset^{++}AC, \subset^{++}CA\}$. Some chains fully reduce to themselves. $\{\subset^{++}AB, \subset^{--}BC, ZCA\}$ is an example.

 $\{P_1[a_1a_2], \dots, P_n[a_na_1]\}$ is a strand of $\{Q_1[a_1a_2], \dots, Q_n[a_na_1]\}$ iff each P_i is a simple quantifier in Q_i and a_i is the first term in $P_i[a_ia_{i+1}]$ iff a_i is the first term in $Q_i[a_ia_{i+1}]$, where P[ab] is Pab or Pba. So, for example, $\{=AB, =^-AB\}$ is a strand of $\{=, \subset^{++}AB, =^-, \subset^{++}AB\}$.

A simple normal chain is a *cd-pair* iff it has one of the following forms:

$${=ab,=^-ba \text{ (or } \subset^{pq}ba \text{ or } Zba)}, {=^-ab, \subset^{pq}ba \text{ (or } Zba)},$$

or ${\subset^{pq}ab, \subset^{qr}ba \text{ (or } Zba)}.$

THEOREM 4 (Syntactic decision procedure). If $\langle X, y \rangle$ is a syllogism then $X \models y$ iff every strand of $X \cup \{cd(y)\}$ fully reduces to a cd-pair.

Proof. Assume $\langle X,y\rangle$ is a syllogism. We use Lemmas 1–3, below. (If) Suppose every strand of X, cd(y) fully reduces to a cd-pair. Then by Lemmas 1 and 2, X, cd(y) is inconsistent. Then $X \vDash y$. (Only if) Suppose some strand of X, cd(y) does not fully reduce to a cd-pair. Then, by Theorem 3, some strand of X, cd(y) fully reduces to a simple normal chain that is not a cd-pair. Then, by Lemmas 1 and 3, X, cd(y) is consistent. Then $X \nvDash y$.

LEMMA 1. A chain is inconsistent iff each of its strands is inconsistent. Proof. Note that a model satisfies $\{Q_1ab\} \cup X$ and $\{Q_2ab\} \cup X$ iff it satisfies $\{Q_3ab\} \cup X$, where the quantifiers in Q_3 are the quantifiers in Q_1 and Q_2 .

LEMMA 2. If a simple chain X fully reduces to a cd-pair, then X is inconsistent.

Proof. Use the following three lemmas, whose proofs will be omitted since they are easily given. \Box

LEMMA 2.1. Each cd-pair is inconsistent.

LEMMA 2.2. If a simple normal chain $\{Q_3ac\} \cup X$ is inconsistent and $\{Q_1ab, Q_2bc\}$ a-reduces to Q_3ac , then $\{Q_1ab, Q_2bc\} \cup X$ is inconsistent.

LEMMA 2.3. If a simple chain $\{Qab\} \cup X$ is inconsistent, then $\{e(Qab)\} \cup X$ is inconsistent.

LEMMA 3. If a simple chain X fully reduces to a simple normal chain that is not a cd-pair, then X is satisfied in an m-model, where $m \le n+2$ and n is the number of terms in X.

Proof. Use the following three lemmas.

LEMMA 3.1. If a simple chain fully reduces to a simple normal chain X that is not a cd-pair, then X is satisfied in an m-model, where $m \le n+2$ and n is the number of terms in X.

Proof. Assume the antecedent. We consider three cases determined by the number of occurrences of "Z" in X.

Case I: "Z" does not occur in X. If either "=" or "=-" occurs in X then X has form $\{=ab,=ba\}$ or $\{=^-ab,=^-ba\}$. Use $\langle\{1,2\},\dots,\nu\rangle$, where, for each term $x,\nu_+(x)=\{1\}$. If neither "=" or "=-" occurs in X then X has form $\{\subset^{p_1p_2}a_1a_2,\dots,\subset^{p_{2i-1}p_{2i}}a_ia_{i+1},\dots,\subset^{p_{2n-1}p_{2n}}a_na_1\}$, where $p_{2i}=p_{2i+1}^*$, for $1\leq i< n$, and $p_{2n}=p_1^*$. We use induction on the number n of terms in X to show that X is satisfied in a 3-model. Basis step: n=2. X has form $\{\subset^{p_1p_2}a_1a_2,\subset^{p_2^*p_1^*}a_2a_1\}$. Use $\langle\{1,2,3\},\dots,\nu\rangle$, where $\nu_{p_1}(a)=\{1\}$, and, for terms x other than a, $\nu_q(x)=\{1,2\}$. Induction step: n>2. By the induction hypothesis $\{\subset^{p_1p_4}a_1a_3,\dots,\subset^{p_{2i-1}p_{2i}}a_ia_{i+1},\dots,\subset^{p_{2n-1}p_{2n}}a_na_1\}$ is satisfied in a 3-model $\langle W,\dots,\nu\rangle$, where $p_{2i}=p_{2i+1}^*$, for $1\leq i\leq n$, and $1\leq i\leq n$, and $1\leq i\leq n$. Construct a model $1\leq i\leq n$. Where $1\leq i\leq n$ is satisfied in a 3-model $1\leq i\leq n$. Then $1\leq i\leq n$ is $1\leq i\leq n$. Then $1\leq i\leq n$ is $1\leq i\leq n$. Then $1\leq i\leq n$ is $1\leq i\leq n$. Then $1\leq i\leq n$ is $1\leq i\leq n$. Then $1\leq i\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then $1\leq n$ is $1\leq n$ is $1\leq n$. Then

Case 2: "Z" occurs exactly once in X. Then X has at least three members and has form $\{Zab\} \cup \{\subset^{pq}bc, \ldots, \subset^{rs}da\}$. We use induction on the number of terms in X to show that X is satisfied in a 4-model. Basis step: n=3. X has form $\{Zab\} \cup \{\subset^{pq}bc, \subset^{q^*r}ca\}$. Construct a model $\langle \{1,2,3,4\},\ldots,\nu\rangle$, where $\nu_r(a)=\{1,2\},\nu_p(b)=\{1,3\}$, and, for other terms $x,\nu_q(x)=\{1,3,4\}$. Induction step: n>3. Follow the model construction in the induction step in Case 1.

Case 3: "Z" occurs at least twice in X. Then X has form $\{Zab, \ldots, Zab, \ldots, Zab$ Zcd, \ldots . We use induction on the number n of terms in X. Basis step: n = 2. X has form $\{Zab, Zba\}$. Use $\{\{1, 2, 3, 4\}, \dots, \nu\}$, where $\nu_+(a) = \{1,2\}$ and, for other terms $x, \nu_+(x) = \{1,3\}$. Induction step: n > 2. X has form $\{Zab, Qbc, \dots, Zde, \dots\}$. By the induction hypothesis, $\{Zac, \ldots, Zde\}$ is satisfied in an m-model, where $m \le n+2$ and n is the number of terms in X. Suppose Q is "=". Construct model $\langle W, \dots, \nu' \rangle$, where $\nu'_{+}(b) = \nu_{+}(c)$ and, for terms x other than $b, \nu'_{+}(x) = \nu_{+}(x)$. Suppose Q is "=". Construct model $\langle W, \dots, \nu' \rangle$, where $\nu'_{+}(b) = \nu_{-}(c)$ and, for terms x other than b, $\nu'_{+}(x) = \nu_{+}(x)$. Suppose Q is "Z". Construct a model $\langle \mathbf{W}, \dots, \nu' \rangle$, where $\nu'_+(b) = (\nu_+(a) \cap \nu_+(c)) \cup (\nu_-(a) \cap \nu_-(c))$, and, for other terms $x, \nu'_{+}(x) = \nu_{+}(x)$. Finally, suppose that Q is " \subset^{pq} ". The strategy is to construct a model $\langle W', \ldots, \nu' \rangle$ such that X is satisfied in it, where $W' = W \cup \{M\}$, and $\nu'_{+}(a) \cap \nu'_{q}(c)$ has at least two members, including M. Then we construct a second model $\langle W', \dots, \nu'' \rangle$, such that X is satisfied in it by letting $\nu_p''(b) = \nu_q'(c) - \{M\}$, and, for terms x other than $b, \nu''_{+}(x) = \nu'_{+}(x)$. Then $\nu''(Zab) = t$ and $\nu''(C^{pq}bc) = t$.

We construct $\langle W', \dots, \nu' \rangle$. If a and c are the only terms in X, let $\alpha = \nu_+(a) \cap \nu_q(c)$ (and, thus, α has at least one member). If terms d_1, \ldots, d_n occur in X, where these terms are other than "a" or "c", pick $p_1 - p_n$ such that α has at least one member, where $\alpha = \nu_+(a) \cap$ $\nu_q(c) \cap \nu_{p_1}(d_1) \cap \cdots \cap \nu_{p_n}(d_n)$. Let $W' = W \cup \{M\}$, where $M \notin W$. Let $\nu'_+(x) = \nu_+(x) \cup \{M\}$ if $\alpha \subseteq \nu_+(x)$; otherwise, let $\nu'_+(x) = \nu_+(x)$. Then $\nu'_{-}(x) = \nu_{-}(x) \cup \{M\}$ if $\alpha \subseteq \nu_{-}(x)$; otherwise, $\nu'_{-}(x) = \nu_{-}(x)$. Note that $\nu'_{+}(a) \cap \nu'_{a}(c)$ has at least two members and $M \in \nu'_{+}(a) \cap \nu'_{a}(c)$. We show that X is satisfied in $\langle W', \dots, \nu' \rangle$. Suppose $\nu(Qde) = t$. Suppose Q is "=". Then $\nu'_{+}(d) = \nu_{+}(d) \cup \{M\}$ and $\nu'_{+}(e) = \nu_{+}(e) \cup \{M\}$ or $\nu'_{+}(d) = \nu_{+}(d)$ and $\nu'_{+}(e) = \nu_{+}(e)$. Then $\nu'(=de) = t$. Suppose Q is "="." Then $\nu'_{+}(d) = \nu_{+}(d) \cup \{M\}$ and $\nu'_{-}(e) = \nu_{-}(e)$ or $\nu'_{+}(d) = \nu_{-}(e)$ $\nu_{+}(d)$ and $\nu'_{-}(e) = \nu_{-}(e) \cup \{M\}$. Then $\nu'(=^{-}de) = t$. Suppose Q is " \subset^{pq} ". If $\alpha \subseteq \nu_p(d)$ then $\nu_p'(d) = \nu_p(d) \cup \{M\}$ and $\nu_q'(e) = \nu_q(e) \cup \{M\}$. If $\alpha \not\subseteq \nu_p(d)$ then $\nu_p'(d) = \nu_p(d)$ and either $\nu_q'(e) = \nu_q(e)$ or $\nu_q'(e) = \nu_q(e)$ $\nu_q(e) \cup \{M\}$. Then $\nu'(\subset^{pq} de) = t$. Finally, suppose Q is "Z". Then, for any p and q, $\nu_p(d) \cap \nu_q(e) \subseteq \nu_p'(d) \cap \nu_q'(e)$. Then $\nu'(\mathbf{Z}de) = t$.

LEMMA 3.2. If a simple chain $\{Q_3ac\} \cup X$ is satisfied in an n-model $\langle W, \ldots, \nu \rangle$, where n is the number of terms in $\{Q_3ac\} \cup X$, and if $\{Q_1ab, Q_2bc\}$ a-reduces to Q_3ac , then $\{Q_1ab, Q_2bc\} \cup X$ is satisfied in an m-model, where $m \leq n$ and n is the number of terms in $\{Q_1ab, Q_2bc\} \cup X$.

Proof. Assume the antecedent. Suppose Q_1 is "=". Construct $\langle W, \ldots, \nu' \rangle$, where $\nu'_+(b) = \nu_+(a)$, and, for terms x other than $b, \nu'_+(x) = \nu_+(x)$. Suppose Q_1 is "=". Construct $\langle W, \ldots, \nu' \rangle$, where $\nu'_+(b) = v_-(a)$, and,

for terms x other than b, $\nu'_+(x) = \nu_+(x)$. Use similar constructions if Q_2 is "=" or "=". So, the only a-reduction left is this: $\{ \subset^{pq} ab, \subset^{qr} bc \}$ a-reduces to $\subset^{pr} ac$. Construct a model $\langle W', \ldots, \nu' \rangle$ such that $W' = W \cup \{M\}$, $M \notin W$, and $\nu'_{p^*}(a) \cap \nu'_r(c)$ has at least two members, including M. To do this follow the procedure in Case 3 of Lemma 3.1. Then construct a model $\langle W', \ldots, \nu'' \rangle$ such that $\nu''(b) = \nu'_p(a) \cup \{M\}$ and, for other terms $x, \nu''_+(x) = \nu'_+(x)$.

LEMMA 3.3. If a simple chain $\{Qab\} \cup X$ is satisfied in an n-model, where n is the number of terms in $\{Qab\} \cup X$, then $\{e(Qab)\} \cup X$ is satisfied in an n-model, where n is the number of terms in $\{e(Qab)\} \cup X$. Proof. Straightforward.

THEOREM 5 (Semantic decision procedure). If $\langle X, y \rangle$ is a syllogism then $X \vDash y$ iff X, cd(y) is not satisfied in an m-model, where $m \le n+2$ and n is the number of terms in X.

Proof. Assume $\langle X,y \rangle$ is a syllogism. (Only if) Immediate. (If) Assume X, cd(y) is not satisfied in an m-model, where $m \leq n+2$ and n is the number of terms in X. Then every strand of X, cd(y) is not satisfied in an m-model where $m \leq n+2$ and n is the number of terms in X, cd(y). Then every strand of X, cd(y) fully reduces to a cd-pair (by Theorem 3 and Lemma 3 of Theorem 4). Then $X \models y$ (by Theorem 4).

Given Theorem 5, it is natural to ask whether, for any n, there is an n-termed syllogism that requires an n+2 model to show that it is invalid. The answer is Yes. If n=2, use $\langle \{Za_1a_2\}, cd(Za_2a_1) \rangle$. If n>2, use $\langle \{Za_1a_2, \subset^{++}a_2a_3, \ldots, \subset^{++}a_{n-1}a_n\}, cd(Za_na_1) \rangle$. Consider a model $\langle W, \ldots, \nu \rangle$ in which $\{Za_1a_2, \subset^{++}a_2a_3, \ldots, \subset^{++}a_{n-1}a_n, Za_na_1\}$ is satisfied. Note that $\nu_+(a_1)$ has at least two members, since $\nu(Za_1a_2)=t$. So $\nu_+(a_n)$ has at least n members. $\nu_-(a_n)$ has at least two members since $\nu(Za_na_1)=t$.

THEOREM 6 (Completeness). If $\langle X, y \rangle$ is a syllogism and $X \models y$ then $X \vdash y$.

Proof. Assume the antecedent. Then, by Theorem 4, every strand of X, cd(y) fully reduces to a cd-pair. So, by Lemmas 1–4, below, X $\vdash cd(cd(y))$. That is X $\vdash y$.

LEMMA 1. If $\{x,y\}$ is a cd-pair, then $x \vdash cd(y)$.

Proof. 1) = $ab \vdash =ba$ (by B1). So = $ab \vdash cd(=^{-}ba)$ (and $cd(\subset^{pq}ba)$ and $cd(\mathsf{Z}ba)$) (by D1). 2) = $^{-}ba \vdash =^{-}ab$ (by B2). So = $^{-}ba \vdash cd(=ab)$ (by D1). And = $^{-}ab \vdash =^{-}ba$ (by B2). So = $^{-}ab \vdash cd(\subset^{pq}ba)$ (and

 $cd(\mathsf{Z}ba)$) (by D1). 3) $\subset^{pq}ba \vdash \subset^{q^*p^*}ab$ (by B3). So $\subset^{pq}ba \vdash cd(=ab)$ (and $cd(=^-ab)$) (by D1). $\subset^{pq}ab \vdash \subset^{q^*p^*}ba$ (by B3). So $\subset^{pq}ab \vdash cd(\subset^{qr}ba)$ (and $cd(\mathsf{Z}ba)$) (by D1). $\subset^{qr}ba \vdash \subset^{r^*q^*}ab$ (by B3). So $\subset^{qr}ba \vdash cd(\subset^{pq}ab)$ (by D1). 4) $\mathsf{Z}ba \vdash \mathsf{Z}ab$ (by B4). So $\mathsf{Z}ba \vdash cd(=ab)$ (and $cd(=^-ab)$ and $cd(\subset^{pq}ab)$) (by D1).

LEMMA 2. If $X = \{Q_3ac\} \cup Z$, $Y = \{Q_1ab, Q_2bc\} \cup Z$, $\{Q_1ab, Q_2bc\}$ a-reduces to Q_3ac , and $X - \{x\} \vdash cd(x)$, for every x such that $x \in X$, then $Y - \{y\} \vdash cd(y)$, for every y such that $y \in Y$.

Proof. Assume the antecedent. Case 1: $y \in \mathbb{Z}$. $\{Q_3ac\} \cup \mathbb{Z} - \{y\} \vdash cd(y)$. We use

LEMMA 2.1. If $\{Q_1ab, Q_2bc\}$ a-reduces to Q_3ac then Q_1ab , $Q_2bc \vdash Q_3ac$.

Proof. Given B5–B8, we only need to show that: i) = ^-ab , = $bc \vdash$ = ^-ac ; ii) \subset ^{pq}ab , = $bc \vdash \subset$ ^{pq}ac ; and iii) \subset ^{pq}ab , = $^-bc \vdash \subset$ $^{pq^*}ac$. For i), = $bc \vdash$ =cb (by B1) and = $^-ab \vdash$ = ^-ba (by B2). =cb, = $^-ba \vdash$ = ^-ca (by B5). So = ^-ab , = $bc \vdash$ = ^-ca (by D3). = $^-ca \vdash$ = ^-ac (by B2). So = ^-ab , = $bc \vdash$ = ^-ac (by R1). Use similar reasoning for ii) and iii).

So $Q_1ab, Q_2bc \vdash Q_3ac$ (by Lemma 2.1). So $\{Q_1ab, Q_2bc\} \cup Z - \{y\} \vdash cd(y)$ (by D3).

Case 2: $y = Q_1ab$. $Z \vdash cd(Q_3ac)$. Q_2bc , $cd(Q_3ac) \vdash cd(Q_1ab)$ (by Lemma 2.1 and R2). So Z, $Q_2bc \vdash cd(Q_1ab)$ (by R1).

Case 3: $y = Q_2bc$. Use reasoning similar to that for Case 2.

LEMMA 3. If $X = \{Qab\} \cup Z$, $Y = \{e(Qab)\} \cup Z$, and $X - \{x\} \vdash cd(c)$, for every x such that $x \in X$, then $Y - \{y\} \vdash cd(y)$, for every y such that $y \in Y$.

Proof. Assume the antecedent. Case 1: $y \in Z$. $\{Qab\} \cup Z - \{y\} \vdash cd(y)$. $e(Qab) \vdash Qab$ (by B1–B4). So $\{e(Qab)\} \cup Z - \{y\} \vdash cd(y)$ (by D3). Case 2: y = e(Qab). $Z \vdash cd(Qab)$. $cd(Qab) \vdash cd(e(Qab))$ (by B1–B4 and R2). So $Z \vdash cd(e(Qab))$ (by R1).

LEMMA 4. If each strand $Y \cup \{z\}$ of $X \cup \{y\}$ is such that $Y \vdash cd(z)$, then $X \vdash cd(y)$.

Proof. Use D2 and R3. (The proof is illustrated below.)

The proof of the above theorem provides a mechanical procedure for showing that $X \vdash y$ given that $X \models y$. We illustrate by showing that $=, \subset^{++}AB, =BC \vdash cd(=^-, \subset^{+-}AC)$. First, fully reduce the following strands as indicated: i) $\{=AB, =BC, =^-AC\}$ to $\{=AB, =BC, =^-CA\}$ to $\{=AB, =BC, \subset^{+-}AC\}$ to $\{=AB, =BC, \subset^{+-}CA\}$

to $\{=AC, \subset^{+-}CA\}$; iii) $\{\subset^{++}AB, =BC, =^{-}AC\}$ to $\{\subset^{++}AB, =BC, =^{-}CA\}$ to $\{\subset^{++}AC, =^{-}CA\}$; and iv) $\{\subset^{++}AB, =BC, \subset^{+-}AC\}$ to $\{\subset^{++}AB, =BC, \subset^{+-}CA\}$ to $\{\subset^{++}AB, =BC, \subset^{+-}CA\}$ to $\{\subset^{++}AC, \subset^{+-}CA\}$. By the proof of Lemma 1: $=AC \vdash cd(=^{-}CA)$; $=AC \vdash cd(\subset^{+-}CA)$; $=AC \vdash cd(=^{-}CA)$; and $=AC \vdash cd(\subset^{+-}CA)$. By the proof of Lemma 2: $=AB, =AC \vdash cd(=^{-}CA)$; and $=AB, =AC \vdash cd(=^{-}CA)$. By the proof of Lemma 3: $=AB, =AC \vdash cd(=^{-}AC)$; $=AB, =AC \vdash cd(\subset^{+-}CA)$. By the proof of Lemma 3: $=AB, =AC \vdash cd(=^{-}AC)$; $=AB, =AC \vdash cd(\subset^{+-}AC)$; $=AB, =AC \vdash cd(\subset^{+-}AC)$. By D2, $=AB, =AC \vdash cd(=^{-}, C^{+-}AC)$ and $=AB, =AC \vdash cd(=^{-}, C^{+-}AC)$. By R3, $=AC, C^{+-}AC, C^{+-}AC,$

3. GERGONNE SYLLOGISMS

4. System B

In this section we develop a subsystem B which expresses no sentences other than those that may be expressed by using sentences of form "All... are --", "No... are --", "Some... are --", or "Some... are not --", where the blanks are filled by expressions of form x or non-x (the "A, E, I, and O sentences, respectively, with or without negative terms.")

The *B-quantifiers* ("B" for "basic") are: $=, \subset^{++}(A^{++}); =^-, \subset^{+-}(A^{+-}); =^-, \subset^{-+}(A^{-+}); =^-, \subset^{-+}(A^{-+}); =^-, \subset^{-+}(A^{--}); =^-, \subset^{+-}, \subset^{-+}, \subset^{--}, Z(O^{++}); =, \subset^{++}, \subset^{-+}, \subset^{--}, Z(O^{+-}); =, \subset^{++}, \subset^{+-}, \subset^{--}, Z(O^{-+}); and =^-, \subset^{++}, \subset^{+-}, \subset^{-+}, Z(O^{--}).$ Qab is a *B-sentence* iff Qab is a sentence and Q is a B-quantifier. So, for example, $A^{++}AB$ is a B-sentence. And a *B-syllogism* is a syllogism composed of B-sentences.

We define y is B-deducible from X $(X \vdash_B y)$, where X, y is a set of B-sentences, and where $ct(A^{pq}ab) = A^{pq^*}ab$, $cd(A^{pq}ab) = O^{pq}ab$, and $cd(O^{pq}ab) = A^{pq}ab$:

- (B_1) $A^{pq}ab \vdash_B A^{q^*p^*}ba$
- (B_2) $A^{pq}ab, A^{qr}bc \vdash_B A^{pr}ac$
- (R₁) If $X \vdash_B y$ and $y, z \vdash_B w$ then $X, z \vdash_B w$
- (R₂) If $X, y \vdash_B ct(z)$ or cd(z) then $X, z \vdash_B cd(y)$
- (L₁) If $X \vdash y$, then $X \vdash y$ in virtue of $B_1 R_2$.

THEOREM 7. (D₁) If $X, y \vdash_B z$ and $u, v \vdash_B y$ then $X, u, v \vdash_B z$.

Proof. Use the reasoning for the proof of Theorem 1.

THEOREM 8 (Soundness). If $X \vdash_B y$ then $X \vDash y$.

Proof. Straightforward.

By definition, $e(A^{pq}ab)$ is $A^{q^*p^*}ba$ and $e(O^{pq}ab)$ is $O^{q^*p^*}ba$. And, by definition, a set X of sentences *b-reduces to* a sentence y iff $\langle X, y \rangle$ has form $\langle \{A^{pq}ab, A^{qr}bc\}, A^{pr}ac \rangle$.

If X_1 is a chain of B-sentences then a sequence of chains X_1,\ldots,X_m $(=Y_1),\ldots,Y_n$ is a full B-reduction of X_1 to Y_n iff: i) X_m is a normal chain and if m>1, then, for $1\leq i< m$, if X_i has form $\{Qab\}\cup Y$, then X_{i+1} has form $\{e(Qab)\}\cup Y$; and ii) there is no pair of sentences in Y_n that b-reduces to a sentence and if n>1 then, for $1\leq i< n$, Y_i has form $\{A^{pq}ab,A^{qr}bc\}\cup X$ and Y_{i+1} has form $\{A^{pr}ac\}\cup X$. X fully B-reduces to Y iff there is a full B-reduction of X to Y.

THEOREM 9. Every chain of B-sentences fully B-reduces to a normal chain of B-sentences.

Proof. Imitate the proof of Theorem 3.

A normal chain of B-sentences is a cd-B-pair iff it has one of the following forms: $\{A^{pq}ab, A^{qp^*}ba\}$ or $\{A^{pq}ab, O^{q^*p^*}ba\}$.

THEOREM 10 (Syntactic decision procedure). If $\langle X, y \rangle$ is a B-syllogism then $X \models y$ iff X, cd(y) fully B-reduces to a cd-B-pair.

Proof. Assume $\langle X,y\rangle$ is a B-syllogism. We use Lemmas 1 and 2, below. (If) Suppose X,cd(y) fully B-reduces to a cd-B-pair. Then, by Lemma 1, X,cd(y) is consistent. Then $X \nvDash y$. (Only if) Suppose $X \vDash y$. Then X,cd(y) is inconsistent. Then X,cd(y) fully B-reduces to a cd-B-pair (by Lemma 2 and Theorem 9).

LEMMA 1. If a chain X of B-sentences fully B-reduces to a cd-B-pair then X is inconsistent.

Proof. Imitate the proof of Lemma 2 of Theorem 4.

LEMMA 2. If a chain X of B-sentences fully B-reduces to a normal chain of B-sentences that is not a cd-B-pair, then X is satisfied in a 3-model.

LEMMA 2.1. If a chain of B-sentences fully B-reduces to a normal chain of B-sentences X that is not a cd-B-pair, then X is satisfied in a 3-model. Proof. Assume the antecedent. We consider three cases determined by the number of occurrences of "O" in X.

Case 1: "O" does not occur in X. We use induction on the number n of terms in X. Basis step: n=2. Then X has form $\{A^{pq}ab, A^{qp}ba\}$ or form $\{A^{pq}ab, A^{q^*p^*}ba\}$. If p=q, use $\langle \{1,2,3\},\ldots,\nu\rangle$, where $\nu_+(x)=\{1\}$. If $p\neq q$, use $\langle \{1,2,3\},\ldots,\nu\rangle$, where $\nu_+(a)=\{1\}$, and, for terms x other than $a, \nu_+(x)=\{2,3\}$. Induction step: n>2. Then X has form $\{A^{p_1p_2}a_1a_2,\ldots,A^{p_{2i-1}p_{2i}}a_ia_{i+1},\ldots,A^{p_{2n-1}p_{2n}}a_na_1\}$, where $p_{2i}=p_{2i+1}^*$. By Case 1 of Lemma 3.1 $\{\subset^{p_1p_2}a_1a_2,\ldots,\subset^{p_{2i-1}p_{2i}}a_ia_{i+1},\ldots,\subset^{p_{2n-1}p_{2n}}a_na_1\}$, where $p_{2i}=p_{2i+1}^*$, for $1\leq i< n$, and $p_{2n}=p_1^*$, is satisfied in a 3-model. So X is satisfied in a 3-model.

Case 2: "O" occurs exactly once in X. Suppose there are exactly two terms in X. Then X has form $A^{pq}ab$, $O^{q^*p}ba$ (or $O^{qp}ab$ or $O^{qp^*}ba$). 3-models are easily constructed to show that X is consistent. Suppose there are more than two terms in X. We use induction on the number n of terms in X to show that X is satisfied in a 3-model. Basis step: n = 3. Then X has form $\{O^{pq}ab, A^{rs}bc, A^{s^*u}ca\}$. So there is a strand of X with one of the following forms: $\{ \subset^{pq^*} ab, \subset^{rs} bc, \subset^{s^* u} ca \}$, $\{\subset^{p^*q}ab,\subset^{rs}bc,\subset^{s^*u}ca\}$, and $\{\subset^{p^*q^*}ab,\subset^{rs}bc,\subset^{s^*u}ca\}$. So, by Case 1 of Lemma 3.1 of Theorem 4, X is consistent if p = u or q = r. Suppose $p \neq u$ and $q \neq r$. Then X has form $\{O^{pq}ab, A^{q^*s}bc, A^{s^*p^*}ca\}$. If p = q, there is a strand of X with form $\{=-ab, =bc, =-ca\}$ or form $\{=-ab, =-bc, =ca\}$. If $p \neq q$, there is a strand of X with form $\{=ab, =bc, =ca\}$ or form $\{=ab, =^-bc, =^-ca\}$. Each of these four chains can easily be shown to be satisfied in a 3-model. Induction step: n >3. X has form $O^{pq}ab$, $A^{rs}bc$, $A^{s*u}cd$,.... By the induction hypothesis, $O^{pq}ab$, $A^{r^*u}bd$,... is satisfied in a 3-model $\langle W, \ldots, \nu \rangle$. Construct $\langle W, \dots, \nu' \rangle$, where $\nu'_s(c) = \nu_r(b)$, and, for terms x other than $c, \nu'_+(x) =$ $\nu_+(x)$. Note that $\nu'(A^{rs}bc) = t$, since $\nu'_r(b) = \nu'_s(c)$, and $\nu'(A^{s^*u}cd) = t$, since $\nu'_{s^*}(c) = \nu'_{r^*}(b)$.

Case 3: "O" occurs at least twice in X. We use induction on the number of terms n in X. Basis step: n = 2. X has form $\{O^{pq}ab, O^{rs}ba\}$. It is

easy to show that X is satisfied in a 3-model. Induction step: n>2. X has form $\{O^{pq}ab, Q^{rs}bc, \ldots, O^{uv}de, \ldots\}$. Suppose Q is "A" and r=s or Q is "O" and $r\neq s$. By the induction hypothesis, $\{O^{pq}ac, \ldots, O^{uv}de, \ldots\}$ is satisfied in a 3-model $\langle W, \ldots, \nu \rangle$. Construct 3-model $\langle W, \ldots, \nu' \rangle$, where $\nu'_q(b) = \nu_q(c)$, and, for terms x other than $c, \nu'_+(x) = \nu_+(x)$. Suppose Q is "A" and $r\neq s$ or Q is "O" and r=s. By the induction hypothesis, $\{O^{pq^*}ac, \ldots, O^{uv}de, \ldots\}$ is satisfied in a 3-model $\langle W, \ldots, \nu \rangle$. Construct 3-model $\langle W, \ldots, \nu' \rangle$, where $\nu'_q(b) = \nu_{q^*}(c)$, and, for terms x other than $c, \nu'_+(x) = \nu_+(x)$.

LEMMA 2.2. If $\{A^{pr}ac\} \cup Y$ is satisfied in a 3-model and if term b does not occur in a member of Y, then $\{A^{pq}ab, A^{qr}bc\} \cup Y$ is satisfied in a 3-model.

Proof. Assume that $\{A^{pr}ac\} \cup Y$ is satisfied in a 3-model $\langle W, \dots, \nu \rangle$. Construct $\langle W, \dots, \nu' \rangle$, where $\nu'_p(b) = \nu_q(a)$, and, for terms x other than $b, \nu'_+(x) = \nu_+(x)$.

LEMMA 2.3. If $\{Qab\} \cup Y$ is satisfied in a 3-model, then $\{e(Qab)\} \cup Y$ is satisfied in a 3-model.

Proof. Straightforward.

THEOREM 11 (Semantic decision procedure). If $\langle X, y \rangle$ is a B-syllogism then $X \models y$ iff X, cd(y) is not satisfied in a 3-model.

Proof. Assume $\langle X,y\rangle$ is a B-syllogism. (Only if) Immediate. (If) Suppose X,cd(y) is not satisfied in a 3-model. Then, by Theorem 9 and Lemma 2 of Theorem 10, X,cd(y) fully B-reduces to a cd-B-pair. So, by Theorem 10, $X \models y$.

Theorem 11 extends the result in Johnson's [3]. There it is shown, in effect, that any invalid syllogism constructed by using B-sentences other than those of form $A^{-+}ab$ or $O^{-+}ab$ is satisfied in a 3-model. There are invalid B-syllogisms that require a domain with at least three members to show their invalidity. This is an example: $\langle \{A^{+-}AB, A^{+-}BC\}, O^{+-}AC \rangle$.

THEOREM 12 (Completeness). If $\langle X, y \rangle$ is a B-syllogism and $X \models y$ then $X \vdash_B y$.

Proof. Assume the antecedent. Then, by Theorem 10, $X \cup \{cd(y)\}$ fully B-reduces to a cd-B-pair. Use the following three lemmas. \Box

LEMMA 1. If $\{x,y\}$ is a cd-B-pair, then $x \vdash_{\mathbf{B}} cd(y)$ and $y \vdash_{\mathbf{B}} cd(x)$. Proof. (1) $A^{qp^*}ba \vdash_{\mathbf{B}} A^{pq^*}ab$, that is, $ct(A^{pq}ab)$ (by B_1). So $A^{pq}ab \vdash_{\mathbf{B}} cd(A^{qp^*}ba)$ (by R_2). So $A^{qp^*}ba \vdash_{\mathbf{B}} cd(A^{pq}ab)$ (by R_2). (2) $A^{pq}ab \vdash_{\mathbf{B}} cd(A^{pq}ab)$ $A^{q^*p^*}ba$, that is, $cd(O^{q^*p^*}ba)$ (by B_1). So $O^{q^*p^*}ba \vdash_B cd(A^{pq}ab)$ (by R_2).

LEMMA 2. If $X = \{A^{pr}ac\} \cup Z$, $Y = \{A^{pq}ab, A^{qr}bc\} \cup Z$, and $X - \{x\} \vdash_B cd(x)$, for each sentence x in X, then $Y - \{y\} \vdash_B cd(y)$, for each sentence y in Y.

Proof. Imitate the proof of Lemma 2 of Theorem 6.

LEMMA 3. If $X = \{Qab\} \cup Z$, $Y = \{e(Qab)\} \cup Z$, and $X - \{x\} \vdash_B cd(x)$, for each sentence x in X, then $Y - \{y\} \vdash_B cd(y)$, for each sentence y in Y.

Proof. Imitate the proof of Lemma 3 of Theorem 6.

5. CONCLUSION

Our interest has been in extending the Aristotelian syllogistic. But, in conclusion, we mention Smiley's classic result in [5] about the Aristotelian syllogistic, which follows from the results obtained above. First, delete sentences of form $A^{-+}ab$ and $O^{-+}ab$ from system B. Let $Aa - b = \emptyset$ if a = b; otherwise, let Aa - b be a set of sentences that can be arranged as follows: $(A^{++}a_1a_2 \text{ (or } A^{--}a_2a_1), \dots, A^{++}a_na_{n+1} \text{ (or } A^{--}a_{n+1}a_n),$ where $a_1 = a$ and $a_{n+1} = b$. Then, by Theorem 10, a chain of sentences in this subsystem is inconsistent iff it has one of the following forms: i) Aa - b, $O^{++}ab$ ($O^{--}ab$); ii) Aa - b, $A^{+-}bc$, Ac - a; or iii) Aa - b, $A^{+-}bc$, Ad - c, $O^{+-}da$ (or $O^{+-}ad$). Next, delete sentences of form $A^{--}ab$ and $O^{--}ab$ from this system. The resulting system can express all of the Aristotelian syllogisms. So, as Smiley [5] says, an Aristotelian syllogism $\langle X, y \rangle$ is valid iff X, cd(y) has one of the following forms: i') Aa - b, $O^{++}ab$, ii), or iii). (Smiley uses A, E, I, and O instead of our A^{++} , A^{+-} , O^{+-} , O^{++} , respectively.) So, for example, "A⁺⁺BC, A⁺⁺BA; so O⁺⁻AC" (Darapti) is valid since "A⁺⁺BC, $A^{++}BA$, $A^{+-}AC$ " has form ii).

REFERENCES

- 1. Faris, J.A., "The Gergonne relations", *The Journal of Symbolic Logic*, Vol. 20 (1955), pp. 207–231.
- Gergonne, J.D., "Essai de dialectique rationnelle", Annales de Mathématique, Vol. 7 (1816–17), pp. 189–228.

- 3. Johnson, F., "Three-membered domains for Aristotle's syllogistic", *Studia Logica*, Vol. 50 (1991), pp. 181–187.
- 4. Łukasiewicz, J., Aristotle's Syllogistic, 2nd ed., Clarendon Press, Oxford, 1957.
- 5. Smiley, T.J., "What is a syllogism?", *Journal of Philosophical Logic*, Vol. 2 (1973), pp. 136–154.

Department of Philosophy, Colorado State University, Fort Collins, Colorado 80523, U.S.A.