
FRED JOHNSON

EXTENDED GERGONNE SYLLOGISMS

ABSTRACT. Syllogisms with or without negative terms are studied by using Gergonne’s
ideas. Soundness, completeness, and decidability results are given.

1. BACKGROUND AND MOTIVATION

Gergonne [2] relates the familiar A, E, I, and O sentences without nega-
tive terms to five basic sentences that express the “Gergonne relations.”
These relations are: exclusion, identity, overlap, proper containment, and
proper inclusion. What makes these relations especially interesting is that
for any pair of non-empty class terms exactly one of them holds.
Faris [1] develops a formal system that takes the Gergonne relations as

basic. His system takes advantage of Łukasiewicz’s [4], which attempts
to formalize the Aristotelian syllogistic. The following paper results from
two ideas: 1) If Gergonne had been interested in studying A, E, I, and O
sentences with negative terms, the count of Gergonne relations would
be seven rather than five; and 2) The most Aristotelian way to develop
a syllogistic system based on the these seven relations is by following
Smiley’s [5] rather than Łukasiewicz’s [4].
After developing the Aristotelian “full syllogistic” based on seven

relations, we will discuss a subsystem that is adequate for representing
AEIO-syllogisms with or without negative terms.

2. THE SYSTEM

Sentences are defined by referring to:

terms: A,B,C, . . .

simple quantifiers: =,=�
,⇢++

,⇢+�
,⇢�+

,⇢��
,Z

comma: ,

Q1, . . . ,Qn is a quantifier provided i) each Qi (1  i  n) is a simple
quantifier, ii) Qi precedes Qj if i < j, where precedence among simple
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quantifiers is indicated by the above ordering of simple quantifiers, and
iii) at least one quantifier is not a Qi. No expressions are quantifiers other
than those generated by the above three conditions. So, for example,
=,⇢++ is a quantifier but ⇢++

,= is not. Qab is a sentence iff Q is a
quantifier and a and b are distinct terms. So, for example, =,⇢++AB
and =�

,⇢��
,ZAB are sentences, but =,⇢++AA is not. Qab is a simple

sentence iff Qab is a sentence and Q is a simple quantifier. Read simple
sentences as follows: =ab as “The a are the b,” =�

ab as “The a are
the non-b,” ⇢++

ab as “The a are properly included in the b,” ⇢+�
ab as

“The a are properly included in the non-b,” ⇢�+
ab as “The non-a are

properly included in the b,” ⇢��
ab as “The non-a are properly included

in the non-b,” and Zab as “Some a are b, some a are non-b, some non-a
are b, and some non-a are non-b.” Read Q1, . . . ,Qnab by putting “or”
between sentences that correspond to Qiab. So, read =,⇢++

ab as “The
a are the b, or the a are properly included in the b” (or “All a are b.”)
=�

,⇢+�
,⇢�+

,⇢��
,Zab may be read as “Some a are not b.”

The deducibility relation (`), relating sets of sentences to sentences,
is defined recursively. Read “X ` y” as “y is deducible from X.” Set
brackets are omitted in the statement of the following definition. “X, y”
is short for “X [ {y}” and “x, y” is short for “{x} [ {y}.” “a”, “b”,. . .
range over terms; and “p”, “q”,. . . range over “+”, and “�”. p⇤ is “+”
iff p is “�”. cd(Pab) = Qab iff every quantifier that does not occur in P
occurs in Q. Read “cd” as “the contradictory of.”

=ab ` =ba(B1)

=�
ab ` =�

ba(B2)

⇢pq
ab ` ⇢q⇤p⇤

ba(B3)

Zab ` Zba(B4)

=ab,Qbc ` Qac, where Q is =,=�
, or ⇢pq(B5)

=�
ab,=�

bc ` =ac(B6)

=�
ab,⇢pq

bc ` ⇢p⇤q
ac(B7)

⇢pq
ab,⇢qr

bc ` ⇢pr
ac(B8)

If X ` y and y, z ` w then X, z ` w(R1)

If X, y ` Pab then X, Qab ` cd(y) if no quantifier in P is a
quantifier in Q(R2)
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If X, Pab ` y and X, Qab ` y then X, Rab ` y if each
quantifier in R is in P or Q(R3)

X ` y iff X ` y in virtue of B1–R3.(L1)

So, for example, =�AB, ⇢++BC ` ⇢�+AC (by B7) and ⇢�+AC,
⇢+�CD ` ⇢��AD (by B8). So =�AB, ⇢++BC, ⇢+�CD ` ⇢��AD
(by R1). So =�AB, ⇢++BC, ⇢+�

,ZAD ` =, =�
,⇢++

,⇢�+
,⇢��

,

ZCD (by R2).

THEOREM 1. (D1) If X, y ` Pab then X, y ` cd(Qab) if no simple
quantifier occurs in both P and Q. (D2) If X, y ` cd(Pab) and X, y `
cd(Qab) then X, y ` cd(Rab) if each quantifier in R is in P or Q. (D3)
If X, y ` z and v,w ` y then X, v, w ` z.

Proof. Begin each proof by assuming the antecedent. (D1) Then
X,Qab ` cd(y) (by R2). Then X, y ` cd(Qab) (by R2). (D2) Then
X,Pab ` cd(y) and X,Qab ` cd(y) (by R2). Then X,Rab ` cd(y)
(by R3). Then X, y ` cd(Rab) (by R2). (D3) Then X, cd(z) ` cd(y)
and v, cd(y) ` cd(w) (by R2). Then X, v, cd(z) ` cd(w) (by R1). Then
X, v, w ` z (by R2).

A model is a quadruple hW, ⌫+, ⌫�, ⌫i, where i) W is a non-empty set,
ii) ⌫+ and ⌫� are functions that assign non-empty subsets of W to terms
such that ⌫+(a) [ ⌫�(a) = W and ⌫+(a) \ ⌫�(a) = ?, and iii) ⌫ is a
function that assigns t or f to sentences such that the following conditions
are met:

⌫(=ab) = t iff ⌫+(a) = ⌫+(b)(i)

⌫(=�
ab) = t iff ⌫+(a) = ⌫�(b)(ii)

⌫(⇢pq
ab) = t iff ⌫p(a) ⇢ ⌫q(b)(iii)

⌫(Zab) = t iff ⌫p(a) \ ⌫q(b) 6= ? for each p and q(iv)

⌫(Q1, . . . ,Qnab) = t iff for some i (1  i  n) ⌫(Qiab) = t(v)

y is a semantic consequence of X (X ✏ y) iff there is no model hW, . . . , ⌫i
such that ⌫ assigns t to every member of X and ⌫ assigns f to y. X is
consistent iff there is a model hW, . . . , ⌫i such that ⌫ assigns t to every
member of X. X is inconsistent iff X is not consistent.

THEOREM 2 (Soundness). If X ` y then X ✏ y.
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Proof. Straightforward. (For B1, note that for any model hW, . . . , ⌫i,
if ⌫+(a) = ⌫+(b) then ⌫+(b) = ⌫+(a). For R2, suppose no quantifier
in P is a quantifier in Q, and suppose that X, Qab 2 cd(y). Then there
is a model hW, . . . , ⌫i in which ⌫ assigns t to every member of X,
⌫(Qab) = t, and ⌫(cd(y)) = f . Note that ⌫(cd(y)) = f iff ⌫(y) = t.
And note that since no quantifier in P is a quantifier in Q, ⌫(Pab) = f .
So X, y 2 Pab.)

A chain is a set of sentences whose members can be arranged as
a sequence hQ1[a1a2],Q2[a2a3], . . . ,Qn[ana1]i, where Qi[aiaj ] is either
Qiaiaj or Qiajai and where ai 6= aj if i 6= j. So, for example, {=AB,
=�

,⇢++CB,ZCA} is a chain. A pair hX, yi is a syllogism iff X [ {y}
is a chain. So h{=AB,=�

,⇢++CB},ZCAi is a syllogism.
A normal chain is a set of sentences whose members can be arranged

as a sequence hQ1a1a2,Q2a2a3, . . . ,Qnana1i, where ai 6= aj if i 6=
j. A simple normal chain is a normal chain in which each quantifier
is simple. So, for example, {=,=�AB,=BA} is a normal chain. And
{=AB,=BA} is a simple normal chain.
By definition, e(=ab) is =ba, e(=�

ab) is =�
ba, e(⇢pq

ab) is ⇢q⇤p⇤
ba,

and e(Zab) is Zba.
{Q1ab,Q2bc} a-reduces to Q3ac iff the triple hQ1ab,Q2bc,Q3aci is

recorded on the following Table of Reductions:
Q2bc

Q1ab

= =� ⇢qr

= = =� ⇢qr

=� =� = ⇢q⇤r

⇢pq ⇢pq ⇢pq⇤ ⇢pr

Q3ac

So, for example, {=AB,=BC} a-reduces to =AC, and {⇢++AB,
⇢+�BC} a-reduces to ⇢+�AC.
If X1 is a simple chain then a sequence of chains X1, . . . ,Xm (=Y1),

. . . ,Yn is a full reduction of X1 to Yn iff: i) Xm is a normal chain and if
m > 1 then, for 1  i < m, if Xi has form {Qab}[Z then Xi+1 has form
{e(Qab)}[ Z, and ii) there is no pair in Yn that a-reduces to a sentence
and if n > 1 then, for 1  i < n, if Yi has form {Q1ab,Q2bc} [ Z
then Yi+1 has form {Q3ac} [ Z. X fully reduces to Y iff there is a full
reduction of X to Y.

THEOREM 3. Every simple chain fully reduces to a simple normal chain.
Proof. Assume X1 is a simple chain. We construct a sequence of

chains that is a full reduction of X1 to Yn. Step 1: If X1 is a simple
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normal chain let X1 = Y1 and go to Step 2. If X1 is not a simple
normal chain find the alphabetically first pair of sentences in X1 of form
hQab,Qcbi and replace Qcb with e(Qcb), forming X2. Repeat Step 1
(with “Xj” in place of “X1”). Step 2: If no pair of sentences in Y1 a-
reduces to a sentence, then X1 fully reduces to Y1. If a pair of sentences
in Y1 a-reduces to a sentence x find the alphabetically first pair that a-
reduces to x and form Y2 by replacing this pair with x. Repeat Step 2
(with “Yj” in place of “Y1”).

So, for example, given the sequence h{=AB}, {=AB,=BA}i,
{=AB} fully reduces to {=AB,=BA}. And, given the sequence
h{⇢++AB,⇢��CB,⇢++CA}, {⇢++AB,⇢++BC,⇢++CA}, {⇢++AC,
⇢++CA}i, {⇢++AB,⇢��CB,⇢++CA} fully reduces to {⇢++AC,
⇢++CA}. Some chains fully reduce to themselves. {⇢++AB,⇢��BC,
ZCA} is an example.

{P1[a1a2], . . . ,Pn[ana1]} is a strand of {Q1[a1a2], . . . ,Qn[ana1]} iff
each Pi is a simple quantifier in Qi and ai is the first term in Pi[aiai+1]
iff ai is the first term in Qi[aiai+1], where P[ab] is Pab or Pba. So, for
example, {=AB,=�AB} is a strand of {=,⇢++AB,=�

,⇢++AB}.
A simple normal chain is a cd-pair iff it has one of the following

forms:

{=ab,=�
ba (or ⇢pq

ba or Zba)}, {=�
ab,⇢pq

ba (or Zba)},
or {⇢pq

ab,⇢qr
ba (or Zba)}.

THEOREM 4 (Syntactic decision procedure). If hX, yi is a syllogism
then X ✏ y iff every strand of X [ {cd(y)} fully reduces to a cd-pair.

Proof. Assume hX, yi is a syllogism. We use Lemmas 1–3, below.
(If) Suppose every strand of X, cd(y) fully reduces to a cd-pair. Then
by Lemmas 1 and 2, X, cd(y) is inconsistent. Then X ✏ y. (Only if)
Suppose some strand of X, cd(y) does not fully reduce to a cd-pair.
Then, by Theorem 3, some strand of X, cd(y) fully reduces to a simple
normal chain that is not a cd-pair. Then, by Lemmas 1 and 3, X, cd(y)
is consistent. Then X 2 y.

LEMMA 1. A chain is inconsistent iff each of its strands is inconsistent.
Proof. Note that a model satisfies {Q1ab} [X and {Q2ab} [X iff it

satisfies {Q3ab} [ X, where the quantifiers in Q3 are the quantifiers in
Q1 and Q2.

LEMMA 2. If a simple chain X fully reduces to a cd-pair, then X is
inconsistent.
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Proof. Use the following three lemmas, whose proofs will be omitted
since they are easily given.

LEMMA 2.1. Each cd-pair is inconsistent.

LEMMA 2.2. If a simple normal chain {Q3ac} [ X is inconsistent and
{Q1ab,Q2bc} a-reduces to Q3ac, then {Q1ab,Q2bc}[X is inconsistent.

LEMMA 2.3. If a simple chain {Qab} [ X is inconsistent, then
{e(Qab)} [ X is inconsistent.

LEMMA 3. If a simple chain X fully reduces to a simple normal chain
that is not a cd-pair, then X is satisfied in an m-model, where m  n+2
and n is the number of terms in X.

Proof. Use the following three lemmas.

LEMMA 3.1. If a simple chain fully reduces to a simple normal chain X
that is not a cd-pair, then X is satisfied in an m-model, wherem  n+2
and n is the number of terms in X.

Proof. Assume the antecedent. We consider three cases determined
by the number of occurrences of “Z” in X.

Case 1: “Z” does not occur in X. If either “=” or “=�” occurs in
X then X has form {=ab,=ba} or {=�

ab,=�
ba}. Use h{1, 2}, . . . , ⌫i,

where, for each term x, ⌫+(x) = {1}. If neither “=” or “=�” occurs in
X then X has form {⇢p1p2

a1a2, . . . ,⇢p2i�1p2i
aiai+1, . . . ,⇢p2n�1p2n

ana1},
where p2i = p

⇤
2i+1, for 1  i < n, and p2n = p

⇤
1. We use induction

on the number n of terms in X to show that X is satisfied in a 3-
model. Basis step: n = 2. X has form {⇢p1p2

a1a2,⇢p⇤2 p
⇤
1
a2a1}. Use

h{1, 2, 3}, . . . , ⌫i, where ⌫p1(a) = {1}, and, for terms x other than a,
⌫q(x) = {1, 2}. Induction step: n > 2. By the induction hypothesis
{⇢p1p4

a1a3, . . . ,⇢p2i�1p2i
aiai+1, . . . ,⇢p2n�1p2n

ana1} is satisfied in a 3-
model hW, . . . , ⌫i, where p2i = p

⇤
2i+1, for 2  i < n, and p2n = p

⇤
1.

Construct a model hW, . . . , ⌫

0i, ⌫ 0p2(a2) = ⌫p1(a1) [ ⌫p⇤4
(a3), and, for

other terms x, ⌫

0
+(x) = ⌫+(x). Then ⌫

0(⇢p1p2
a1a2) = t. ⌫ 0p⇤2 (a2) =

⌫p4(a3)� ⌫p1(a1) and p⇤2 = p3. So ⌫ 0(⇢p3p4
a2a3) = t.

Case 2: “Z” occurs exactly once in X. Then X has at least three
members and has form {Zab} [ {⇢pq

bc, . . . ,⇢rs
da}. We use induction

on the number of terms in X to show that X is satisfied in a 4-model.
Basis step: n = 3. X has form {Zab} [ {⇢pq

bc,⇢q⇤r
ca}. Construct a

model h{1, 2, 3, 4}, . . . , ⌫i, where ⌫r(a) = {1, 2}, ⌫p(b) = {1, 3}, and,
for other terms x, ⌫q(x) = {1, 3, 4}. Induction step: n > 3. Follow the
model construction in the induction step in Case 1.
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Case 3: “Z” occurs at least twice in X. Then X has form {Zab, . . . ,
Zcd, . . .}. We use induction on the number n of terms in X. Basis
step: n = 2. X has form {Zab,Zba}. Use h{1, 2, 3, 4}, . . . , ⌫i, where
⌫+(a) = {1, 2} and, for other terms x, ⌫+(x) = {1, 3}. Induction step:
n > 2. X has form {Zab,Qbc, . . . ,Zde, . . .}. By the induction hypothesis,
{Zac, . . . ,Zde} is satisfied in an m-model, wherem  n+2 and n is the
number of terms in X. Suppose Q is “=”. Construct model hW, . . . , ⌫

0i,
where ⌫ 0+(b) = ⌫+(c) and, for terms x other than b, ⌫ 0+(x) = ⌫+(x). Sup-
pose Q is “=�”. Construct model hW, . . . , ⌫

0i, where ⌫ 0+(b) = ⌫�(c) and,
for terms x other than b, ⌫ 0+(x) = ⌫+(x). Suppose Q is “Z”. Construct a
model hW, . . . , ⌫

0i, where ⌫ 0+(b) = (⌫+(a) \ ⌫+(c)) [ (⌫�(a) \ ⌫�(c)),
and, for other terms x, ⌫ 0+(x) = ⌫+(x). Finally, suppose that Q is “⇢pq”.
The strategy is to construct a model hW0

, . . . , ⌫

0i such that X is satisfied
in it, where W0 = W[{M}, and ⌫ 0+(a)\⌫ 0q(c) has at least two members,
including M. Then we construct a second model hW0

, . . . , ⌫

00i, such that
X is satisfied in it by letting ⌫ 00p (b) = ⌫

0
q(c)�{M}, and, for terms x other

than b, ⌫ 00+(x) = ⌫

0
+(x). Then ⌫ 00(Zab) = t and ⌫ 00(⇢pq

bc) = t.
We construct hW0

, . . . , ⌫

0i. If a and c are the only terms in X, let
↵ = ⌫+(a) \ ⌫q(c) (and, thus, ↵ has at least one member). If terms
d1, . . . , dn occur in X, where these terms are other than “a” or “c”,
pick p1 � pn such that ↵ has at least one member, where ↵ = ⌫+(a) \
⌫q(c)\ ⌫p1(d1)\ · · ·\ ⌫pn(dn). Let W0 = W[ {M}, where M /2W. Let
⌫

0
+(x) = ⌫+(x)[{M} if ↵ ✓ ⌫+(x); otherwise, let ⌫ 0+(x) = ⌫+(x). Then
⌫

0
�(x) = ⌫�(x) [ {M} if ↵ ✓ ⌫�(x); otherwise, ⌫ 0�(x) = ⌫�(x). Note
that ⌫ 0+(a)\ ⌫ 0q(c) has at least two members and M 2 ⌫

0
+(a)\ ⌫ 0q(c). We

show that X is satisfied in hW0
, . . . , ⌫

0i. Suppose ⌫(Qde) = t. Suppose
Q is “=”. Then ⌫

0
+(d) = ⌫+(d) [ {M} and ⌫

0
+(e) = ⌫+(e) [ {M} or

⌫

0
+(d) = ⌫+(d) and ⌫

0
+(e) = ⌫+(e). Then ⌫

0(=de) = t. Suppose Q
is “=�”. Then ⌫ 0+(d) = ⌫+(d) [ {M} and ⌫ 0�(e) = ⌫�(e) or ⌫ 0+(d) =
⌫+(d) and ⌫

0
�(e) = ⌫�(e) [ {M}. Then ⌫

0(=�
de) = t. Suppose Q is

“⇢pq”. If ↵ ✓ ⌫p(d) then ⌫ 0p(d) = ⌫p(d)[{M} and ⌫ 0q(e) = ⌫q(e)[{M}.
If ↵ * ⌫p(d) then ⌫ 0p(d) = ⌫p(d) and either ⌫ 0q(e) = ⌫q(e) or ⌫ 0q(e) =
⌫q(e) [ {M}. Then ⌫ 0(⇢pq

de) = t. Finally, suppose Q is “Z”. Then, for
any p and q, ⌫p(d) \ ⌫q(e) ✓ ⌫

0
p(d) \ ⌫

0
q(e). Then ⌫ 0(Zde) = t.

LEMMA 3.2. If a simple chain {Q3ac} [ X is satisfied in an n-model
hW, . . . , ⌫i, where n is the number of terms in {Q3ac} [ X, and if
{Q1ab,Q2bc} a-reduces to Q3ac, then {Q1ab,Q2bc}[X is satisfied in an
m-model, wherem  n and n is the number of terms in {Q1ab,Q2bc}[X.

Proof. Assume the antecedent. Suppose Q1 is “=”. Construct hW, . . . ,

⌫

0i, where ⌫ 0+(b) = ⌫+(a), and, for terms x other than b, ⌫ 0+(x) = ⌫+(x).
Suppose Q1 is “=�”. Construct hW, . . . , ⌫

0i, where ⌫ 0+(b) = v�(a), and,
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for terms x other than b, ⌫ 0+(x) = ⌫+(x). Use similar constructions if
Q2 is “=” or “=�”. So, the only a-reduction left is this: {⇢pq

ab,⇢qr
bc}

a-reduces to ⇢pr
ac. Construct a model hW0

, . . . , ⌫

0i such that W0 = W[
{M}, M /2W, and ⌫ 0p⇤(a)\⌫ 0r(c) has at least two members, including M.
To do this follow the procedure in Case 3 of Lemma 3.1. Then construct
a model hW0

, . . . , ⌫

00i such that ⌫ 00(b) = ⌫

0
p(a) [ {M} and, for other

terms x, ⌫ 00+(x) = ⌫

0
+(x).

LEMMA 3.3. If a simple chain {Qab} [ X is satisfied in an n-model,
where n is the number of terms in {Qab} [ X, then {e(Qab)} [ X is
satisfied in an n-model, where n is the number of terms in {e(Qab)}[X.

Proof. Straightforward.

THEOREM 5 (Semantic decision procedure). If hX, yi is a syllogism
then X ✏ y iff X, cd(y) is not satisfied in an m-model, where m  n+ 2
and n is the number of terms in X.

Proof. Assume hX, yi is a syllogism. (Only if) Immediate. (If) Assume
X, cd(y) is not satisfied in an m-model, where m  n + 2 and n is the
number of terms in X. Then every strand of X, cd(y) is not satisfied in
an m-model where m  n+2 and n is the number of terms in X, cd(y).
Then every strand of X, cd(y) fully reduces to a cd-pair (by Theorem 3
and Lemma 3 of Theorem 4). Then X ✏ y (by Theorem 4).

Given Theorem 5, it is natural to ask whether, for any n, there is
an n-termed syllogism that requires an n + 2 model to show that it is
invalid. The answer is Yes. If n = 2, use h{Za1a2}, cd(Za2a1)i. If n > 2,
use h{Za1a2,⇢++

a2a3, . . . ,⇢++
an�1an}, cd(Zana1)i. Consider a mod-

el hW, . . . , ⌫i in which {Za1a2,⇢++
a2a3, . . . ,⇢++

an�1an,Zana1} is
satisfied. Note that ⌫+(a1) has at least two members, since ⌫(Za1a2) = t.
So ⌫+(an) has at least nmembers. ⌫�(an) has at least two members since
v(Zana1) = t.

THEOREM 6 (Completeness). If hX, yi is a syllogism and X ✏ y then
X ` y.

Proof. Assume the antecedent. Then, by Theorem 4, every strand
of X, cd(y) fully reduces to a cd-pair. So, by Lemmas 1–4, below, X `
cd(cd(y)). That is X ` y.

LEMMA 1. If {x, y} is a cd-pair, then x ` cd(y).
Proof. 1) =ab ` =ba (by B1). So =ab ` cd(=�

ba) (and cd(⇢pq
ba)

and cd(Zba)) (by D1). 2) =�
ba ` =�

ab (by B2). So =�
ba ` cd(=ab)

(by D1). And =�
ab ` =�

ba (by B2). So =�
ab ` cd(⇢pq

ba) (and
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cd(Zba)) (by D1). 3) ⇢pq
ba ` ⇢q⇤p⇤

ab (by B3). So ⇢pq
ba ` cd(=ab)

(and cd(=�
ab)) (by D1).⇢pq

ab `⇢q⇤p⇤
ba (by B3). So⇢pq

ab `cd(⇢qr
ba)

(and cd(Zba)) (by D1). ⇢qr
ba ` ⇢r⇤q⇤

ab (by B3). So⇢qr
ba ` cd(⇢pq

ab)
(by D1). 4) Zba ` Zab (by B4). So Zba ` cd(=ab) (and cd(=�

ab) and
cd(⇢pq

ab)) (by D1).

LEMMA 2. If X = {Q3ac} [ Z, Y = {Q1ab,Q2bc} [ Z, {Q1ab,Q2bc}
a-reduces to Q3ac, and X� {x} ` cd(x), for every x such that x 2 X,
then Y� {y} ` cd(y), for every y such that y 2 Y.

Proof. Assume the antecedent. Case 1: y 2 Z. {Q3ac} [ Z � {y} `
cd(y). We use

LEMMA 2.1. If {Q1ab,Q2bc} a-reduces to Q3ac then Q1ab, Q2bc `
Q3ac.

Proof. Given B5–B8, we only need to show that: i) =�
ab, =bc `

=�
ac; ii) ⇢pq

ab, =bc ` ⇢pq
ac; and iii) ⇢pq

ab, =�
bc ` ⇢pq⇤

ac. For i),
=bc ` =cb (by B1) and =�

ab ` =�
ba (by B2). =cb, =�

ba ` =�
ca

(by B5). So =�
ab, =bc ` =�

ca (by D3). =�
ca ` =�

ac (by B2). So
=�

ab, =bc ` =�
ac (by R1). Use similar reasoning for ii) and iii).

So Q1ab,Q2bc ` Q3ac (by Lemma 2.1). So {Q1ab,Q2bc}[Z�{y} `
cd(y) (by D3).

Case 2: y = Q1ab. Z ` cd(Q3ac). Q2bc, cd(Q3ac) ` cd(Q1ab) (by
Lemma 2.1 and R2). So Z, Q2bc ` cd(Q1ab) (by R1).

Case 3: y = Q2bc. Use reasoning similar to that for Case 2.

LEMMA 3. If X = {Qab}[Z, Y = {e(Qab)}[Z, and X�{x} ` cd(c),
for every x such that x 2 X, then Y�{y} ` cd(y), for every y such that
y 2 Y.

Proof. Assume the antecedent. Case 1: y 2 Z. {Qab} [ Z � {y} `
cd(y). e(Qab) ` Qab (by B1–B4). So {e(Qab)} [ Z � {y} ` cd(y)
(by D3). Case 2: y = e(Qab). Z ` cd(Qab). cd(Qab) ` cd(e(Qab)) (by
B1–B4 and R2). So Z ` cd(e(Qab)) (by R1).

LEMMA 4. If each strand Y [ {z} of X [ {y} is such that Y ` cd(z),
then X ` cd(y).

Proof. Use D2 and R3. (The proof is illustrated below.)

The proof of the above theorem provides a mechanical procedure for
showing that X ` y given that X ✏ y. We illustrate by showing that
=,⇢++AB,=BC ` cd(=�

,⇢+�AC). First, fully reduce the following
strands as indicated: i) {=AB,=BC,=�AC} to {=AB,=BC,=�CA}
to {=AC,=�CA}; ii) {=AB,=BC,⇢+�AC} to {=AB,=BC,⇢+�CA}
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to {=AC,⇢+�CA}; iii) {⇢++AB,=BC,=�AC} to {⇢++AB,=BC,
=�CA} to {⇢++AC,=�CA}; and iv) {⇢++AB,=BC,⇢+�AC} to
{⇢++AB,=BC,⇢+�CA} to {⇢++AC,⇢+�CA}. By the proof of Lem-
ma 1: =AC ` cd(=�CA); =AC ` cd(⇢+�CA); ⇢++AC ` cd(=�CA);
and ⇢++AC ` cd(⇢+�CA). By the proof of Lemma 2: =AB,=AC `
cd(=�CA); =AB,=AC ` cd(⇢+�CA); ⇢++AB,=BC ` cd(=�CA);
and ⇢++AB,=BC ` cd(⇢+�CA). By the proof of Lemma 3: =AB,
=AC ` cd(=�AC); =AB,=AC ` cd(⇢+�AC); ⇢++AB,=BC `
cd(=�AC); and ⇢++AB,=BC ` cd(⇢+�AC). By D2, =AB,=AC `
cd(=�

,⇢+�AC) and ⇢++AB,=BC ` cd(=�
,⇢+�AC). By R3, =,

⇢++AB,=AC ` cd(=�
,⇢+�AC).

3. GERGONNE SYLLOGISMS

Faris [1] is motivated by an interest in providing a decision procedure for
Gergonne syllogisms. Faris construes syllogisms as sentences, following
Łukasiewicz’s [4], rather than as inferences, as in Smiley’s [5]. For us,
a Gergonne syllogism is a syllogism consisting of Gergonne sentences,
which are defined as follows, using Gergonne’s symbols in [2]. The
Gergonne-quantifiers are: H =df =�

,⇢+�; X =df ⇢�+
,Z; |=df =;⇢

=df ⇢++, and� =df ⇢��. A Gergonne-sentence is any sentence of form
Q1, . . . ,Qmab, where Qi is a Gergonne-quantifier. So Theorem 4 above
gives an alternative solution to the problem that motivated Faris’ [1],
since every Gergonne syllogism may be expressed in our system. Note,
for example, that “H,XAB” is expressed as “=�

,⇢+�
,⇢�+

,ZAB”.

4. SYSTEM B

In this section we develop a subsystem B which expresses no sentences
other than those that may be expressed by using sentences of form “All. . .
are � � �”, “No. . . are � � �”, “Some. . . are � � �”, or “Some. . .
are not � � �”, where the blanks are filled by expressions of form x

or non-x (the “A, E, I, and O sentences, respectively, with or without
negative terms.”)
The B-quantifiers (“B” for “basic”) are: =,⇢++(A++); =�

,⇢+�

(A+�);=�
,⇢�+(A�+);=,⇢��(A��);=�

,⇢+�
,⇢�+

,⇢��
,Z(O++);

=,⇢++
,⇢�+

,⇢��
,Z(O+�); =,⇢++

,⇢+�
,⇢��

,Z(O�+); and =�,
⇢++

,⇢+�
,⇢�+

,Z(O��). Qab is a B-sentence iff Qab is a sentence
and Q is a B-quantifier. So, for example, A++AB is a B-sentence. And
a B-syllogism is a syllogism composed of B-sentences.
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We define y is B-deducible from X (X `B y), where X, y is a set of
B-sentences, and where ct(Apq

ab) = Apq⇤
ab, cd(Apq

ab) = Opq
ab, and

cd(Opq
ab) = Apq

ab:

Apq
ab `B Aq⇤p⇤

ba(B1)

Apq
ab,Aqr

bc `B Apr
ac(B2)

If X `B y and y, z `B w then X, z `B w(R1)

If X, y `B ct(z) or cd(z) then X, z `B cd(y)(R2)

If X ` y, then X ` y in virtue of B1–R2.(L1)

THEOREM 7. (D1) If X, y `B z and u, v `B y then X, u, v `B z.
Proof. Use the reasoning for the proof of Theorem 1.

THEOREM 8 (Soundness). If X `B y then X ✏ y.
Proof. Straightforward.

By definition, e(Apq
ab) is Aq⇤p⇤

ba and e(Opq
ab) is Oq⇤p⇤

ba. And, by
definition, a set X of sentences b-reduces to a sentence y iff hX, yi has
form h{Apq

ab,Aqr
bc},Apr

aci.
If X1 is a chain of B-sentences then a sequence of chains X1, . . . ,Xm

(=Y1), . . . ,Yn is a full B-reduction of X1 to Yn iff: i) Xm is a normal
chain and if m > 1, then, for 1  i < m, if Xi has form {Qab} [ Y,
then Xi+1 has form {e(Qab)} [ Y; and ii) there is no pair of sentences
in Yn that b-reduces to a sentence and if n > 1 then, for 1  i < n, Yi

has form {Apq
ab,Aqr

bc} [ X and Yi+1 has form {Apr
ac} [ X. X fully

B-reduces to Y iff there is a full B-reduction of X to Y.

THEOREM 9. Every chain of B-sentences fully B-reduces to a normal
chain of B-sentences.

Proof. Imitate the proof of Theorem 3.

A normal chain of B-sentences is a cd-B-pair iff it has one of the fol-
lowing forms: {Apq

ab,Aqp⇤
ba} or {Apq

ab,Oq⇤p⇤
ba}.

THEOREM 10 (Syntactic decision procedure). If hX, yi is a B-syllogism
then X ✏ y iff X, cd(y) fully B-reduces to a cd-B-pair.

Proof. Assume hX, yi is a B-syllogism. We use Lemmas 1 and 2,
below. (If) Suppose X, cd(y) fully B-reduces to a cd-B-pair. Then, by
Lemma 1, X, cd(y) is consistent. Then X 2 y. (Only if) Suppose X ✏ y.
Then X, cd(y) is inconsistent. Then X, cd(y) fully B-reduces to a cd-B-
pair (by Lemma 2 and Theorem 9).
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LEMMA 1. If a chain X of B-sentences fully B-reduces to a cd-B-pair
then X is inconsistent.

Proof. Imitate the proof of Lemma 2 of Theorem 4.

LEMMA 2. If a chain X of B-sentences fully B-reduces to a normal
chain of B-sentences that is not a cd-B-pair, then X is satisfied in a
3-model.

LEMMA 2.1. If a chain of B-sentences fully B-reduces to a normal chain
of B-sentences X that is not a cd-B-pair, then X is satisfied in a 3-model.

Proof. Assume the antecedent. We consider three cases determined
by the number of occurrences of “O” in X.

Case 1: “O” does not occur in X. We use induction on the number n of
terms in X. Basis step: n = 2. Then X has form {Apq

ab,Aqp
ba} or form

{Apq
ab,Aq⇤p⇤

ba}. If p = q, use h{1, 2, 3}, . . . , ⌫i, where ⌫+(x) = {1}.
If p 6= q, use h{1, 2, 3}, . . . , ⌫i, where ⌫+(a) = {1}, and, for terms
x other than a, ⌫+(x) = {2, 3}. Induction step: n > 2. Then X has
form {Ap1p2

a1a2, . . . ,Ap2i�1p2i
aiai+1, . . . ,Ap2n�1p2n

ana1}, where p2i =
p

⇤
2i+1. By Case 1 of Lemma 3.1 {⇢p1p2

a1a2, . . . ,⇢p2i�1p2i
aiai+1, . . . ,

⇢p2n�1p2n
ana1}, where p2i = p

⇤
2i+1, for 1  i < n, and p2n = p

⇤
1, is

satisfied in a 3-model. So X is satisfied in a 3-model.
Case 2: “O” occurs exactly once in X. Suppose there are exactly

two terms in X. Then X has form Apq
ab, Oq⇤p

ba (or Oqp
ab or Oqp⇤

ba).
3-models are easily constructed to show that X is consistent. Suppose
there are more than two terms in X. We use induction on the num-
ber n of terms in X to show that X is satisfied in a 3-model. Basis
step: n = 3. Then X has form {Opq

ab,Ars
bc,As⇤u

ca}. So there is a
strand of X with one of the following forms: {⇢pq⇤

ab,⇢rs
bc,⇢s⇤u

ca},
{⇢p⇤q

ab,⇢rs
bc,⇢s⇤u

ca}, and {⇢p⇤q⇤
ab,⇢rs

bc,⇢s⇤u
ca}. So, by Case 1

of Lemma 3.1 of Theorem 4, X is consistent if p = u or q = r. Sup-
pose p 6= u and q 6= r. Then X has form {Opq

ab,Aq⇤s
bc,As⇤p⇤

ca}.
If p = q, there is a strand of X with form {=�

ab,=bc,=�
ca} or

form {=�
ab,=�

bc,=ca}. If p 6= q, there is a strand of X with form
{=ab,=bc,=ca} or form {=ab,=�

bc,=�
ca}. Each of these four chains

can easily be shown to be satisfied in a 3-model. Induction step: n >

3. X has form Opq
ab,Ars

bc,As⇤u
cd, . . . . By the induction hypothe-

sis, Opq
ab,Ar⇤u

bd, . . . is satisfied in a 3-model hW, . . . , ⌫i. Construct
hW, . . . , ⌫

0i, where ⌫ 0s(c) = ⌫r(b), and, for terms x other than c, ⌫ 0+(x) =
⌫+(x). Note that ⌫ 0(Ars

bc) = t, since ⌫ 0r(b) = ⌫

0
s(c), and ⌫ 0(As⇤u

cd) = t,
since ⌫ 0s⇤(c) = ⌫

0
r⇤(b).

Case 3: “O” occurs at least twice in X. We use induction on the num-
ber of terms n in X. Basis step: n = 2. X has form {Opq

ab,Ors
ba}. It is
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easy to show that X is satisfied in a 3-model. Induction step: n > 2. X has
form {Opq

ab,Qrs
bc, . . . ,Ouv

de, . . .}. Suppose Q is “A” and r = s or Q is
“O” and r 6= s. By the induction hypothesis, {Opq

ac, . . . ,Ouv
de, . . .} is

satisfied in a 3-model hW, . . . , ⌫i. Construct 3-model hW, . . . , ⌫

0i, where
⌫

0
q(b) = ⌫q(c), and, for terms x other than c, ⌫ 0+(x) = ⌫+(x). Suppose Q
is “A” and r 6= s or Q is “O” and r = s. By the induction hypothesis,
{Opq⇤

ac, . . . ,Ouv
de, . . .} is satisfied in a 3-model hW, . . . , ⌫i. Construct

3-model hW, . . . , ⌫

0i, where ⌫ 0q(b) = ⌫q⇤(c), and, for terms x other than
c, ⌫ 0+(x) = ⌫+(x).

LEMMA 2.2. If {Apr
ac}[Y is satisfied in a 3-model and if term b does

not occur in a member of Y, then {Apq
ab,Aqr

bc} [ Y is satisfied in a
3-model.

Proof. Assume that {Apr
ac}[Y is satisfied in a 3-model hW, . . . , ⌫i.

Construct hW, . . . , ⌫

0i, where ⌫ 0p(b) = ⌫q(a), and, for terms x other than
b, ⌫ 0+(x) = ⌫+(x).

LEMMA 2.3. If {Qab}[Y is satisfied in a 3-model, then {e(Qab)}[Y
is satisfied in a 3-model.

Proof. Straightforward.

THEOREM 11 (Semantic decision procedure). If hX, yi is a B-syllogism
then X ✏ y iff X, cd(y) is not satisfied in a 3-model.

Proof. Assume hX, yi is a B-syllogism. (Only if) Immediate. (If) Sup-
pose X, cd(y) is not satisfied in a 3-model. Then, by Theorem 9 and
Lemma 2 of Theorem 10, X, cd(y) fully B-reduces to a cd-B-pair. So,
by Theorem 10, X ✏ y.

Theorem 11 extends the result in Johnson’s [3]. There it is shown, in
effect, that any invalid syllogism constructed by using B-sentences other
than those of form A�+

ab or O�+
ab is satisfied in a 3-model. There are

invalid B-syllogisms that require a domain with at least three members to
show their invalidity. This is an example: h{A+�AB,A+�BC},O+�ACi.

THEOREM 12 (Completeness). If hX, yi is a B-syllogism and X ✏ y

then X `B y.
Proof. Assume the antecedent. Then, by Theorem 10, X [ {cd(y)}

fully B-reduces to a cd-B-pair. Use the following three lemmas.

LEMMA 1. If {x, y} is a cd-B-pair, then x `B cd(y) and y `B cd(x).
Proof. (1) Aqp⇤

ba `B Apq⇤
ab, that is, ct(Apq

ab) (by B1). So Apq
ab `B

cd(Aqp⇤
ba) (by R2). So Aqp⇤

ba `B cd(Apq
ab) (by R2). (2) Apq

ab `B
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Aq⇤p⇤
ba, that is, cd(Oq⇤p⇤

ba) (by B1). So Oq⇤p⇤
ba `B cd(Apq

ab) (by
R2).

LEMMA 2. If X = {Apr
ac} [ Z, Y = {Apq

ab,Aqr
bc} [ Z, and X �

{x} `B cd(x), for each sentence x in X, then Y � {y} `B cd(y), for
each sentence y in Y.

Proof. Imitate the proof of Lemma 2 of Theorem 6.

LEMMA 3. If X = {Qab}[Z, Y = {e(Qab)}[Z, and X�{x} `B cd(x),
for each sentence x in X, then Y � {y} `B cd(y), for each sentence y
in Y.

Proof. Imitate the proof of Lemma 3 of Theorem 6.

5. CONCLUSION

Our interest has been in extending the Aristotelian syllogistic. But, in con-
clusion, we mention Smiley’s classic result in [5] about the Aristotelian
syllogistic, which follows from the results obtained above. First, delete
sentences of form A�+

ab and O�+
ab from system B. Let Aa � b = ?

if a = b; otherwise, let Aa� b be a set of sentences that can be arranged
as follows: hA++

a1a2 (or A��
a2a1), . . . ,A++

anan+1 (or A��
an+1ani,

where a1 = a and an+1 = b. Then, by Theorem 10, a chain of sen-
tences in this subsystem is inconsistent iff it has one of the following
forms: i) Aa � b, O++

ab (O��
ab); ii) Aa � b, A+�

bc, Ac � a; or iii)
Aa � b, A+�

bc, Ad � c, O+�
da (or O+�

ad). Next, delete sentences
of form A��

ab and O��
ab from this system. The resulting system can

express all of the Aristotelian syllogisms. So, as Smiley [5] says, an
Aristotelian syllogism hX, yi is valid iff X, cd(y) has one of the fol-
lowing forms: i0) Aa � b, O++

ab, ii), or iii). (Smiley uses A, E, I, and
O instead of our A++

,A+�
,O+�

,O++, respectively.) So, for exam-
ple, “A++BC, A++BA; so O+�AC” (Darapti) is valid since “A++BC,
A++BA, A+�AC” has form ii).
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