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Abstract

Pluralist mathematical realism, the view that there exists more than one math-
ematical universe, has become an influential position in the philosophy of mathe-
matics. I argue that, if mathematical pluralism is true (and we have good reason
to believe that it is), then mathematical realism cannot (easily) be justified by ar-
guments from the indispensability of mathematics to science. This is because any
justificatory chain of inferences from mathematical applications in science to the
total body of mathematical theorems can cover at most one mathematical universe.
Indispensability arguments may thus lose their central role in the debate about
mathematical ontology.1
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Mathematical Pluralism and Indispensability

0 Introduction

Pluralist conceptions of mathematics, according to which the mathematical cosmos com-
prises more than one mathematical universe, have been around at least since the begin-
ning of the 19th century. The discovery of non-Euclidean geometries by Lobachevsky and
Bolyai in 1829 and 1831 respectively introduced the now firmly established distinction
between applied and pure mathematics, and over time overturned the monistic picture
of geometry that had been dominant since Antiquity. The introduction of intuitionistic
and other non-classical logics, of various constructive mathematics, of category theory
and homotopy type theory (HoTT) as potential alternative foundations for mathematics
besides set theory finally turned the idea of a plurality of mutually irreducible mathemat-
ical enterprises into a fact of mathematical practice.2 What is fairly new, however, is the
view I henceforth refer to as ‘pluralist mathematical realism,’ i.e. the idea that a pluralist
conception of mathematics can be squared with a realist commitment to mathematical
ontology. Versions of this view have been defended by Bernard Linsky and Edward N.
Zalta (1995), Mark Balaguer (1998b), and Joel David Hamkins (2012).

In section (1), I outline the key features and merits of pluralist mathematical realism,
and I respond to three central objections that have been mounted against the view. In
section (2), I show how the empiricist justification provided by indispensability arguments
for applied mathematics can be extended to pure mathematics, all the way up to higher
set theory, via an argument from transitivity. In section (3), I demonstrate that pluralism
obstructs the argument from transitivity, so that there is no obvious way to construct
an indispensability argument for pluralist mathematical realism. I conclude that going
pluralist undercuts the most prominent empiricist argument in favour of mathematical
realism. Thus, if pluralism is true, mathematical realism cannot (easily) be justified by ar-
guments from the indispensability of mathematics to science. Indispensability arguments
may thus lose their central role in the debate about mathematical ontology.

2Mathematical pluralism is the view that there is a plurality of equally legitimate sui generis, i.e.
mutually irreducible mathematical investigations such as set theory, category theory, intuitionistic, or
paraconsistent mathematics. The question where exactly to draw the line between legitimate and il-
legitimate mathematical investigations is a matter of debate (cf. Clarke-Doane (2022, Ch. 3.5) and
Priest (2019)), but unlikely to be decided by philosophers (rather than mathematicians). Recent de-
fences and cautiously nuanced sympathetic discussions of mathematical pluralism include Clarke-Doane
(2022); Davies (2005); Hellman und Bell (2006); Koellner (2009) and Priest (2013). For an introduction
to intuitionism, see Dummett (1977); to logical pluralism, see Beall und Restall (2006); to constructive
mathematics, see Bridges und Richman (1987); to category theory, see Marquis (1995, 2019) and Linnebo
und Pettigrew (2011), and to homotopy type theory (HoTT), see the Univalent Foundations Program
(2013). It should be noted that the relative standing of different set theories (e.g. ZF vs. NF), mutually
exclusive set-theoretic axioms (e.g. AD vs. Choice), of different logics (e.g. classical vs. intuitionistic),
as well as of set theory vs. category theory vs. HoTT as alternative foundations for mathematics are
all topics of research in their own right, which cannot be discussed in detail here. For an overview of
alternative axiomatic set theories, see Holmes (2021); for a discussion of the different ways in which set
theory, category theory, and univalent foundations might be regarded as playing a foundational role for
mathematics, see Maddy (2019). For an overview of logical pluralism, see Russell (2021). For a discussion
of the relationship between mathematical and logical pluralism, see Priest (2021).
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Mathematical Pluralism and Indispensability

1 Pluralist mathematical realism

Pluralist mathematical realism is the view that there exists a plurality of mathematical
universes, none of which can be said to be the ‘true’ or the ‘truest’ one. The discovery of
non-Euclidean geometries in the 19th century made it clear that space could be described
in more than one way, and introduced the idea that mathematics is not about finding the
best axiomatic expression for human intuitions about space—the one true mathematical
theory (Gray, 2019). Rather, the idea took root that mathematicians are free to study any
mathematical structure they like, regardless of their usefulness for scientific applications
beyond mathematics. As Georg Cantor put it, ‘the essence of mathematics lies precisely
in its freedom’ (Cantor, 1882, §8).

Undecidable statements discovered in the 20th century in higher-order arithmetic and
set theory cast additional doubt on the view that there is exactly one uniquely true
mathematical theory. Most famous among the undecidable statements is the Continuum
Hypothesis (CH), formulated by Cantor (1878) and presented by David Hilbert at the
conference of the International Congress of Mathematicians in Paris in 1900 as the first
of 23 hitherto unsolved problems. CH states that there are no sets whose cardinality is
strictly greater than that of the natural numbers, but strictly smaller than that of the
reals, and neither the efforts of Gödel (1938), who showed that CH is consistent with the
standard axioms of set theory, the Zermelo-Fraenkel axioms with the Choice axiom (ZFC),
nor Cohen (1963), who showed that ¬CH is consistent with ZFC, yielded an answer to
the question whether CH is true. Rather, the conjunction of their results showed that
CH is independent of ZFC, and consequently, that the question whether the reals are
the infinite set of second-smallest size cannot be settled in ZFC.3 At least three different
conclusions can be drawn from the fact that there exist mathematical statements whose
truth-value cannot be determined in ZFC:

‘Universe’ view: The ZFC axioms provide only an incomplete description of mathemat-
ical reality, so the mathematician’s task is to find well-justified extensions of ZFC
that will settle all open questions (‘Gödel’s Program’; cf. Gödel, 1990, p. 163 and
Woodin, 2017).

‘Vagueness’ view: Statements like CH are inherently vague4 and consequently of no
mathematical (if perhaps philosophical) interest; moreover, there is no evidence sug-
gesting that anything beyond ZFC is needed to settle open combinatorial questions
that are of genuine mathematical interest, such as those listed on the Millenium
Prize list (Feferman, 2000, p. 405-407).

‘Pluralist’ view: The hope of settling open questions like CH in a conventional way, i.e.
by finding new axioms that settle them, is misguided because there is no unique
absolute theory of mathematics. In particular, there is no absolute background

3Note that the above statements of CH and independence assume AC and consistency, respec-
tively.The Continuum Hypothesis is the most famous of the undecidable statements, but of course there
are many more, for example whether inaccessible cardinals exist, whether all Whitehead groups are free,
whether all projective point-sets are Lebesgue-measurable, etc.

4Note that there is an interpretation of this view that entails that not only undecidable statements
like CH but also other statements in the language of third-order arithmetic must be considered vague as
well; cf. Steel 2000, p. 432 and Potter 2004, p. 275.
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concept of set, and consequently also no unique set-theoretic truths. Rather, there
are many different concepts of set, furnishing a ‘multiverse’, i.e. a plurality of set-
theoretic universes, each exhibiting its own set of set-theoretic truths, such that a
statement like CH can be true in one and false in another (Hamkins, 2012; Shelah,
2003).

Non-realist pluralists like Shelah do not believe in the actual existence of a multiverse.
To them, the plurality of set-theoretic universes is a simple phenomenon of mathematical
practice without ontological import (Shelah, 2003; Antos u. a., 2015, p. 2466). The realist
pluralism under discussion in this paper, on the other hand, pairs a radically pluralistic
view of mathematics with a realist commitment to mathematical ontology, focusing either
solely on the set-theoretic realms of mathematics (Hamkins, 2012), or including all logi-
cally possible (Balaguer, 1998b; Linsky und Zalta, 1995) or even impossible (Beall, 1999)
mathematical objects. In the remainder of this section, I outline the central features of
pluralist mathematical realism and a number of reasons for defending the view. I also
address three standard objections against it and respond to them.

1.1 Key features

Hamkins (2012) argues that the existence of a set-theoretic multiverse best explains our
‘experience’ with the large range of alternative set-theoretic models (‘universes’) that
can be constructed using set-theoretic tools like forcing, ultrapowers, and canonical inner
models. He writes:

‘A large part of set theory over the past half-century has been about construct-
ing as many different models of set theory as possible, often to exhibit precise
features or to have specific relationships with other models. . . As a result, the
fundamental objects of study in set theory have become the models of set
theory, and set theorists move with agility from one model to another. . . This
abundance of set-theoretic possibilities poses a serious difficulty for the uni-
verse view, for if one holds that there is a single absolute background concept
of set, then one must explain or explain away as imaginary all of the alternative
universes that set theorists seem to have constructed. This seems a difficult
task, for we have a robust experience in those worlds, and they appear fully
set theoretic to us. The multiverse view, in contrast, explains this experience
by embracing them as real, filling out the vision hinted at in our mathematical
experience, that there is an abundance of set-theoretic worlds into which our
mathematical tools have allowed us to glimpse.’ (Hamkins, 2012, p. 418)

Hamkins explicitly asserts the actual existence of all those set-theoretic universes, thus
committing himself to a realist—in fact, Platonist—view of the multiverse as opposed
to non-realist forms of mathematical pluralism, such as formalist ones (Hamkins, 2012,
pp. 417, 436). According to his view, there is no unique absolute background concept
of set, instantiated in one uniquely true set-theoretic universe. Rather, there are as
many different concepts of set as there are set-theoretic universes - multiple equally good
interpretations of the notion of set as it appears in first-order ZFC, which, however,
‘include’ more than the ZFC axioms or anything derivable from some algorithmically
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recognisable collection of axioms in the language of first order logic.5 Perhaps the most
unorthodox consequence of this position is that the truth-values of set-theoretic statements
like the Continuum Hypothesis can vary across the multiverse. However, instead of taking
this as a point against the multiverse view, Hamkins suggests that the multiverse view
settles CH:

‘The answer to CH consists of the expansive, detailed knowledge set theorists
have gained about the extent to which it holds and fails in the multiverse,
about how to achieve it or its negation in combination with other diverse
set-theoretic properties.’ (Hamkins, 2012, p. 429)

He emphasises that his view neither compromises the status of set theory as an epis-
temological and ontological foundation for mathematics (because identical ‘copies’ of all
familiar classical mathematical objects and structures, e.g. the natural numbers, can be
found in any universe; Hamkins, 2012, p. 419), nor does it reduce to a kind of formalism
according to which all universes of the multiverse are somehow equal, for there may be
good mathematical reasons for considering some universes more interesting than others
(Hamkins, 2012, p. 436).

Balaguer (1995, 1998a,b, 2017) argues, from a philosophical point of view, for ‘Full-
blooded Platonism’ (FBP), a view akin to Hamkins’ multiverse view, whose central tenet
is a ‘plenitude principle’ according to which all logically possible6 mathematical objects
exist (Balaguer, 1998b, p. 5).7 As he explains, the central advantage of FBP is that it
offers solutions to two notorious epistemological problems for mathematical realism.8

5Cf. Soysal (2020) for a discussion of different conceptions of set. It should be noted here that, as
Hamkins is well-aware, the question whether one can coherently describe the whole multiverse to state
multiverse theory is in need of further discussion, given that the perspective from which one articulates
the theory can seem to afford a privileged background set theory (Martin, 2001). Cf. also Clarke-Doane
(2022) and Studd (2019) for discussions of issues related to (the formalisation of) generality statements
in the foundations of mathematics.

6Beall (1999) is sympathetic to Balaguer’s account but suggests that FBP should be expanded into a
view he calls ‘Really Full-blooded Platonism’ (RFBP), according to which not only objects described by
consistent, but also those described by inconsistent mathematical theories exist. For an extensive discus-
sion of inconsistent mathematics and mathematical theories developed in the context of paraconsistent
logic, see Mortensen (1995) and Priest (1997).

7To be more precise, Balaguer’s argumentative goal in his (1998b) is to show that both mathematical
Platonism, understood in the full-blooded, pluralistic way, and mathematical anti-Platonism are perfectly
cogent philosophies of mathematics, and that there neither is nor could be a rational reason for us to
decide between those two opposing views.

8In-passing suggestions to the effect that some kind of plenitude principle can solve the problem of
epistemic access for mathematical realists can also be found in Anderson (1990) and Resnik (1989), and a
parallel move is suggested by Deutsch (1991) for fictional objects. It should be noted that also Linsky und
Zalta (1995) suggest an account of abstract objects intended to solve the two epistemological problems
for mathematical realists. According to their view, ‘Platonized naturalism’, there exist ‘as many abstract
objects as there could possibly be’ (p. 537)—numbers, sets, possible worlds, truth-values, extensions,
fictional objects, etc. It is based on three central principles (‘A!x’ asserts that x is abstract):

‘(1) For every condition on properties, there is an abstract individual that encodes exactly
the properties satisfying the condition. ∃x(A!x&∀F (xF ≡ φ)), where s is not free in φ.

(2) If x possibly encodes a property F, it does so necessarily. ♦xF → �xF .

(3) If x and y are abstract individuals, then they are identical if and only if they encode the
same properties. A!x&A!y → (x = y ≡ ∀F (xF ≡ yF )).’ (Linsky und Zalta, 1995, p. 536)
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The first one is the problem of reductive uniqueness, addressed by Benacerraf in his
(1965). As the group of French mathematicians working under the pen name ‘Bourbaki’
managed to demonstrate, all mathematical objects can be characterised, and all mathe-
matical theorems reformulated, in the language of set theory (Bourbaki, 1968). Set theory
thus constitutes a foundation for all mathematics. The problem Benacerraf addresses is
that there are infinitely many, equally effective ways to reduce numbers to sets.9 The
number three, for example, can be expressed as {{{∅}}} (as suggested by Zermelo) or
as {∅, {∅}, {∅, {∅}}} (as suggested by von Neumann), but given that von Neumann’s re-
duction does, and Zermelo’s reduction does not imply that the number one is a member
of the number three, these two reductions are not equivalent. The point is that there
are infinitely many sequences that satisfy the axioms of Peano Arithmetic (PA), whereas
traditional (monist) mathematical realism seems to imply that our mathematical theories
describe unique mathematical objects, and particularly a unique sequence that constitutes
the natural numbers.10

Balaguer solves this problem by arguing that nothing in the idea of mathematical
realism commits us to the belief that mathematical theories describe unique collections
of mathematical objects. Consequently, he argues, mathematical realists can simply em-
brace the idea that all consistent mathematical theories, while truly describing collec-
tions of mathematical objects, do not describe unique collections of mathematical objects
(Balaguer, 1998b, pp. 84-91). The problem of non-uniqueness thus turns out to be a
‘non-problem’ for pluralist mathematical realists.11

The second problem that receives an answer on the FBP-view is how to explain how
epistemic access to non-spatiotemporal abstract objects is possible. According to FBP,

Their idea is to reconcile scientific naturalism with realism about mathematics and other abstract
objects by introducing the general comprehension principle (1), which is characterised as being both
synthetic and a priori, and by arguing that knowledge of abstract objects is linked to knowledge of this
comprehension principle. A consequence of this view is that abstract objects (unlike concrete ones) are
not subject to an appearance/reality distinction, not sparse, and not complete (p. 532).

9Though one might add here that only von Neumann’s is extendible to the transfinite.
10Also structuralists like Resnik (1997) and Shapiro (1997) maintain that their view solves the prob-

lem of reductive uniqueness: they argue that mathematical theories pick out structural facts about the
relations between mathematical objects, not facts about the internal properties of mathematical objects,
so that the non-uniqueness problem does not arise for them. Balaguer points out that it is possible to
reformulate the problem in such a way that it also applies to structuralism:

‘(1’) If there are any parts of the mathematical realm that satisfy the axioms of PA, then there are
infinitely many such parts.

(2’) There is nothing “metaphysically special” about any of these parts of the mathematical realm that
makes it stand out from the others as the sequence of natural numbers (or natural-number positions or
whatever).

Therefore,
(3’) There is not a unique part of the mathematical realm that is the sequence of natural numbers (or

natural-number positions or whatever).
But
(4’) Platonism entails that there is a unique part of the mathematical realm that is the sequence of

the natural numbers (or natural-number positions or whatever).
Therefore, (5’) Platonism is false.’
He concludes: ‘So platonists cannot solve the non-uniqueness problem by merely adopting structuralism

and rejecting the thesis that mathematics is about objects, because the problem remains even after we
make the switch to a structuralistic platonism’ (Balaguer, 1998b, p. 81).

11Though Cheyne (1999) believes that there remains a worry about reference.
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all logically possible objects exist, so

“to acquire knowledge of mathematical objects, all we need to do is acquire
knowledge that some purely mathematical theory is consistent . . . But knowl-
edge of the consistency of a mathematical theory—or any other kind of theory,
for that matter—does not require any sort of contact with, or access to, the
objects that the theory is about. (Balaguer, 1998b, p. 48f; his italics)

In this way, the long-standing worry that mathematical realists may have no way to
explain how we gain knowledge of mind-independent abstract objects receives an answer:
all we need to do to acquire epistemic access to mathematical objects is to ‘dream up’ a
consistent mathematical theory that describes them (Balaguer, 1998b, p. 49). Note that
Balaguer’s solution applies both to Benacerraf’s original formulation of the access problem
in terms of causal contact (Benacerraf, 1973, p. 673), and to Field’s reformulation in terms
of an unexplained striking match between our mathematical beliefs and the mathematical
truths (Field, 1989, p. 26).12

Of course, many feel that some mathematical statements, for example arithmetical
statements like ‘5+7=12’, are true not only because their truth follows from the Peano
axioms, but somehow absolutely. In order to account for this widely perceived difference
between the truth of natural number statements and, say, statements like ‘The size of
the continuum is ℵ1’, Balaguer draws a distinction between ‘true in a structure’ and
‘true simpliciter.’ A mathematical statement m is true simpliciter iff there is an intended
structure (a unique ‘standard model’) of the given branch of mathematics and m is true
in the standard model. The natural numbers, for example, are the standard model of
arithmetic. Statements like ‘5+7=12’ are true in the structure of arithmetic as well as in
the particular model of that structure constituted by the natural numbers. ‘5+7=12’ is
therefore true simpliciter, i.e. absolutely true.

It is not at all clear, however, that there exists a standard model for every part of the
mathematical cosmos: for some mathematical objects, our full conception of the objects in
question may not be precise enough to pick out one unique structure. To give an example,
according to ZFC, sets are well-founded,13 but it is not necessary to define them in this
way (cf. Rieger, 2008, p. 175). In fact, there may be good mathematical reasons not to
restrict the notion of sets so strongly, for instance the need to investigate ‘exciting new
ideas and intuitions [notably in the contexts of process algebra and non-standard analysis]
that are in need of suitable mathematical expression’ (Aczel, 1988, p. xix; my insertion).
It may therefore be the case that there is not one uniquely true concept of set, but many
subtly different ones, each one furnishing a different part of the mathematical cosmos. If
this is the case, as both Balaguer and also Hamkins believe, then set-theoretic statements

12See Clarke-Doane (2019) for a critical discussion of set-theoretic pluralism and the access problem.
13The Axiom of Regularity ∀S(S 6= ∅ → (∃x ∈ S)S ∩ x = ∅) states that every non-empty set

contains an element that is disjoint from S, so that the relation ∈ on any family of sets is well-founded.
Among other things, this axiom postulates the impossibility of infinitely descending sequences (such as
x0 3 x1 3 x2 3 ...), sets that are members of themselves (x ∈ x), and cyclical chains of membership (such
as x0 ∈ x1 ∈ x2...xn ∈ x0). This restriction on the notion of set has no consequences for the development
of ordinary mathematical objects like natural numbers, real numbers, etc. However, it has important
consequences for the construction of set-theoretic models because it allows all sets to be assigned a rank
and thus, to be arranged in a cumulative hierarchy; cf. Jech (1997, Ch. 6)
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like CH are only ever ‘true in a structure’ (i.e. a particular set-theoretic model), never
‘true simpliciter’ (i.e. true in all set-theoretic models).14

To sum up: Pluralist mathematical realism is the view that there exists not only one
uniquely true mathematical universe, but a multitude of mathematical universes, some of
which are nested in one another, others mutually incompatible. Although mathematicians
may have good reasons to investigate some of those universes and ignore others, there is
no single mathematical universe that has a metaphysically privileged status.

There are strong mathematical as well as philosophical reasons to adopt pluralist math-
ematical realism. First, the view comes with all the different advantages attributed to
more traditional, monist forms of mathematical realism, such as offering a uniform seman-
tics for mathematical and non-mathematical statements (Benacerraf, 1973, p. 661), being
able to account for the truth-aptitude (Dummett, 1978), objectivity (Putnam, 1979b),
and irreducibility (Maddy, 1990; Bigelow, 1988) of mathematical truths, for mathemat-
ics’ ‘unreasonable effectiveness’ in natural science (Wigner, 1960), its indispensability to
the formulation of (Quine, 1981; Putnam, 1979b), and its explanatory contribution to
(Baker, 2005, 2009; Colyvan, 2001, 2010), our best scientific theories. Second, pluralist
mathematical realism (unlike monist mathematical realism) accurately reflects the fact
that mathematicians have been exploring mutually incompatible mathematical theories
for decades. Third, the view also accommodates the fact that not all mathematics ‘fits’
(Priest, 2013) into ZF(C) or any other overarching mathematical theory. Fourth, pluralist
mathematical realism offers solutions to the problem of undecidable statements like CH
(Hamkins), to the problem of squaring mathematical realism with scientific naturalism
(Linsky and Zalta) and to the two most important epistemological problems for mathe-
matical realism, the problem of epistemic access and the problem of reductive uniqueness
(Balaguer). In short, the view features numerous merits traditional monist mathematical
realism lacks. In the next section, I address the three most important objections against
the view.

1.2 Central objections

Contradiction

One immediate worry is that pluralist mathematical realism might be contradictory. If
all definable mathematical theories truly describe mathematical reality, then (say) both
ZFC+CH and ZFC+¬CH truly describe mathematical reality. This is contradictory.

The pluralist’s answer to this worry is that contradiction would only arise if both
theories were taken to describe the same part of the mathematical realm. Yet that is not
the case because both theories describe different mathematical universes instantiating
different kinds of sets (setsCH vs. sets¬CH). Importantly, ‘CH and ¬CH’ will never be
a theorem of any consistent formal mathematical theory, but will always be false. This
forestalls the objection that ‘CH and ¬CH’ might truly describe mathematical reality
while not being satisfiable (Balaguer, 1998b, p. 58f.).

14Hamkins is committed to the idea that there is no uniquely true concept of set, whereas Balaguer
thinks it at least possible that mathematicians will one day agree on a standard model for set theory; cf.
Balaguer (1998b, p. 64).
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Truth

A second worry is that the notion of truth implicit in the characterisation of pluralist
mathematical realism does not correspond to that of mathematical practice. If, as the
pluralist holds, all definable mathematical theories truly describe mathematical reality,
then consistency is sufficient for truth. But practising mathematicians treat only some
consistent mathematical theories as true. So the pluralist’s interpretation of ‘true’ seems
to differ significantly from that of the practising mathematician.

Pluralists like Balaguer reject this concern as follows:

What mathematicians standardly mean when they say that a sentence is true
is that it is true in the standard model, or the intended structure. . . for the
given branch of mathematics. . . The claim that a model (or class of models)
is standard is a claim about us rather than the model; what is being claimed
is that this is the model (or class of models) that is intended, that is, that we
have in mind with respect to the given theory. Thus, for instance, a model
of set theory is standard if and only if it jibes with our notion of set ; and a
model of arithmetic is standard if and only if it jibes with our conception of
the natural numbers ; and so on. (Balaguer, 1998b, p. 60; his italics)

The idea is to introduce the above-mentioned distinction between truth simpliciter and
truth in a structure.15 The latter is analogous to the notion of truth in a language L, with
a language denoting an abstract object mapping sentence types onto truth conditions.
Hence, to say that every definable mathematical theory truly describes a collection of
mathematical objects is just a different way of saying that every such theory is true in
some language L that is a mathematical structure and defines part of the mathematical
realm.16

Objectivity

A third objection is that pluralist mathematical realism undermines the objectivity of
mathematics. Even though the view does entail that mathematical statements are ob-
jectively true in the sense of ‘true of a mind-independently existing mathematical realm,’
one might worry that it also entails that undecidable statements like CH do not have
determinate truth-values, and that this undermines the objective truth of mathematics
in the sense of ‘uniquely correct truth-values for every mathematical statement.’

However, pluralists can dismiss this objection by again pointing out that the notion
of objectivity we often associate with mathematics hinges on the previously introduced
notion of truth simpliciter. To say that a mathematical statement like ‘5+7=12’ is objec-
tively true in the sense of having a uniquely correct truth-value is just a different way of

15Note that the pluralist does not claim that every part of the mathematical realm has a standard
model. There is wide agreement that the natural numbers constitute the standard model for the structure
of arithmetic, but whether or not set theory has a standard model is a matter of debate (see, for example,
Feferman u. a., 2000). Pluralist mathematical realism is neutral with regard to the question whether
there exist, or will exist, standard models for every branch of mathematics.

16However, there are also multiversists who consider the main issue with multiversism to be the
question how to justify the selection of certain universes as better than others (see for example the
Hyperuniverse Program, discussed in Antos u. a. (2015)).
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saying that there exists a standard model of arithmetic, i.e. the natural numbers, and that
the statement ‘5+7=12’ is true in that standard model. Conversely, to say that a mathe-
matical statement like CH does not have a uniquely correct truth-value is just a different
way of saying that there does not (yet) exist a standard model of set theory.17 Thus,
pluralist mathematical realism is in fact in a better position to interpret mathematical
practice than traditional monist realism: the former, but not the latter, can account for
the de facto existence of undecidable mathematical questions without uniquely correct an-
swers (Balaguer, 1998b, p. 62ff). The view thus ‘reconciles the objectivity of mathematics
with the extreme freedom that mathematicians have’ (Balaguer, 1998b, p. 69).

To sum up: Pluralist mathematical realists have straightforward responses to objec-
tions from contradiction, truth, and objectivity.18 Together with the merits discussed
above, this makes pluralist mathematical realism a plausible and attractive philosophy of
mathematics.

Note, however, that none of the accounts discussed offers a reason to believe in mathe-
matical realism in the first place; they merely show that pluralist mathematical realism is
an internally coherent view. External justifications of realist commitments to mathemat-
ical ontology have long been rooted in empiricist considerations about the indispensable
role mathematics plays in scientific practice. In the next section, I argue that no such
empiricist justification is available for pluralist mathematical realism.

2 Indispensability: applied vs. unapplied mathemat-

ics

Empiricist justifications of mathematics go back at least to Mill, who considered the laws
of arithmetic to be highly general laws of nature (Mill, 1947). Frege criticised Mill for
confusing applications of arithmetic with arithmetic itself (Frege, 1988, § 23), but agreed
that ‘it is applicability alone that elevates arithmetic from a game to the rank of a science’
(Frege, 1962, § 91). Several decades later, empiricist justifications of mathematics took a
more precise form in the works of Quine and Putnam, who argued that, since scientific
theories get empirically confirmed as wholes, we ought to be ontologically committed to all
entities quantification over which is indispensable to our best empirical theories (Quine,
1981; Putnam, 1979a). Moreover, they argued, since we do assume, by inference to the
best explanation,19 the existence of scientific unobservables like quarks and electrons,
rejecting ontological commitment to mathematical entities would amount to ‘intellectual
dishonesty’ (Putnam, 1979a, p. 347). According to this argument, now known as (Quine’s
and Putnam’s20 version of) the ‘indispensability argument,’ mathematical statements are

17Remember that there is nothing metaphysically special about standard models—the question
whether or not there exists a standard model for a given branch of mathematics calls for a sociologi-
cal or psychological answer, not a metaphysical one (Balaguer, 1998b, p. 64f).

18For more detailed discussions of the three objections discussed here, as well as of some additional
objections, see Balaguer (1998b, Chs. 3 and 4), as well as Cheyne (1999); Davies (2005); Colyvan und
Zalta (1999); Hellman und Bell (2006), and Priest (2013).

19For discussions on the relation between indispensability arguments and inference to the best expla-
nation, cf. the special issue of Synthese on ‘Indispensability and Explanation’ (2016).

20Although it has become customary in discussions of indispensability arguments, lumping together
Quine’s and Putnam’s views on the matter is controversial, given that, beyond the basic idea of the
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literal statements about entities like numbers or sets, whose existence we are justified in
assuming because of the indispensable role they play in our best scientific theories.

2.1 The indispensability argument

Quine’s and Putnam’s indispensability argument has been criticised for a variety of rea-
sons. Field (1980) contends that it is the ‘one and only one serious argument for the
existence of mathematical entities’ (p. 5), but then argues that mathematics is merely
conservative over science, and mathematical entities consequently not necessary for draw-
ing inferences about the physical world. Maddy (1992) points out that scientists accept
only some parts of well-confirmed scientific theories as literally true, whereas other parts
(e.g. idealisations like frictionless planes, infinitely deep oceans, or continuous space-time)
are considered useful but false—yet it is precisely in those parts that the mathematics
used in science typically appears. Sober (1993) points out that a hypothesis is support-
able by observations iff there are observations that would count against it, but of course,
mathematics features in all competing empirical theories, hence empirical evidence cannot
confirm or disconfirm mathematical theories. Melia (2000, 2002) concedes that quantify-
ing over mathematical entities in scientific theories may allow us to express possibilities
about the concrete world that are inexpressible otherwise, but then argues that mathemat-
ical contributions to the formulation of empirical theories serve merely to index causally
efficacious physical properties, and thus, have no ontological bearing on our ‘picture of the
world’ (Melia, 2000, p. 474). There have also been worries that the indispensability argu-
ment can neither account for the self-evidence of basic mathematical statements (Parsons,
1980), nor explain why mathematics is indispensable to science (Kitcher, 1984), and that
it may in fact be impossible for us to decide whether Quine’s and Putnam’s indispens-
ability argument holds because there is no principled way to choose among competing
criteria for evaluating the ontological commitments of a discourse (Azzouni, 1998).

In light of these criticisms, a new form of the indispensability argument for mathemat-
ical realism has emerged. The ‘confirmational holism’ (allegedly21) implicit in Quine’s and
Putnam’s original argument, according to which all parts of a scientific theory get con-
firmed when the theory as a whole is confirmed, has been dropped. Instead, the new, ‘en-
hanced’ version of the indispensability argument assumes that we should be ontologically
committed only to those parts of a scientific theory that are explanatorily indispensable,
i.e. that contribute to the explanation of the physical phenomenon the scientific theory
aims to explain. The crucial question for mathematical realists thus becomes whether
there exist empirical phenomena that can be explained only with the contribution of
mathematics, and it turns out that there are a number of examples that seem to fit the
bill. The most widely discussed case is the Magicicada, a special type of North American
cicada with a prime-numbered life cycle (Baker, 2005, 2009). Magicicadas emerge from
the ground only every 13 and 17 years, most likely in order to avoid intersection with pe-
riodic predators (Goles u. a., 2001) and/or hybridisation with similar subspecies (Cox und
Carlton, 1988; Yoshimura, 1997). Indispensable to both explanations are not only certain
ecological facts and general biological laws, but also the number-theoretic fact that prime

argument, they disagree on a number of assumptions (cf. e.g. Putnam, 2012).
21See also previous footnote. It has been noted by many that confirmational holism is neither held by

Putnam, nor necessary for formulating his argument; cf. e.g. Liggins (2008); Panza und Sereni (2015).
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numbers maximise their lowest common multiple relative to all lower numbers (Landau,
1958). Since numbers are thus indispensable to explaining the life cycles of Magicicadas,22

Baker (2005, p. 236) argues, we ought to conclude that numbers exist. More generally,

If mathematics is contributing directly to explanations, it is hard to see how
anyone who accepts inference to the best explanation can accept the explana-
tions yet deny the truth of mathematics. (Colyvan, 2007, p. 120)

The debate about the role of mathematics in scientific explanations and the implica-
tions of that role for mathematical ontology is thus in full swing, and though the status
of the indispensability argument is far from decided, two things have become clear. First,
arguments for mathematical antirealism must address the question where, if at all, in-
dispensability arguments go wrong (Baker, 2003; Field, 1980, 1989; Fine, 1984). Second,
there seems to be wide agreement (between mathematical realists and antirealists alike)
that questions concerning mathematical ontology, and consequently, the success of math-
ematical realism, are directly dependent on the role of mathematics in science.

2.2 Mathematics beyond scientific application: the transitivity
argument

The plausibility of mathematical realism is thus widely believed to hang on an empiricist
justification involving applications in science. However, only some parts of mathematics
actually are ‘applied’; other parts, often labelled ‘pure’ or ‘recreational’ (Quine) mathe-
matics, investigate ‘speculative and daring extensions of the basic mathematical apparatus
of science’ (Putnam, 1979a, p. 56)—mathematical objects, structures, and questions that
have no bearing on scientific applications whatsoever. Do indispensability arguments
justify ontological commitment to those parts of mathematics as well?

It is of course true that some theorems from pure mathematics once thought to be
without physical relevance were later shown to be (indirectly) useful to scientific reason-
ing. However, it is also true that some parts of the mathematical cosmos, notably in the
higher reaches of set theory, exhibit mathematical structures whose physical representa-
tion is categorically impossible. To see why, consider that space-time is usually construed
as a continuum-sized set of 2ℵ0 points (=cardinality of the real numbers 2ω). The num-
ber of physically possible objects—objects representable in space-time—can therefore not
exceed 22ℵ0 (=cardinality of the power set of real numbers 22ω). And in fact, there are
good reasons to believe that the requirements of physically applied mathematics are well-
covered by second-order real analysis (equivalently third-order number theory), the branch

22Other cases of allegedly indispensable mathematical explanations in science include the falling pat-
tern of sticks thrown into the air (Lipton, 2004); the crossing of bridges at Königsberg (Pincock, 2007);
the geometrical properties of curved vacuum space-times that manifest themselves in the bending of light
rays (Colyvan, 2001, 2002); the Lorentz–Fitzgerald contraction of moving bodies in special relativity
induced by the geometrical properties of the Minkowski metric (Colyvan, 2001, 2002); the location of
the Kirkwood gaps (Colyvan, 2010); the hexagonal shape of honeycomb cells (Lyon und Colyvan, 2008;
Lyon, 2012); the spiral arrangement of sunflower seeds (Lyon, 2012); and Plateau’s laws for soap films
(Lyon, 2012; Pincock, 2015).
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of mathematics that studies the behaviour of sets of real numbers (RA2).23 Yet there are
numerous set-theoretic structures whose existence is uncontroversial among mathemati-
cians but whose cardinality exceeds 22ℵ0 , and if the physical representation of such entities
in scientific applications is impossible, then we have no empirical justification to believe
in their existence.24

Quine’s answer to this worry is as follows:

Pure mathematics, in my view, is firmly imbedded as an integral part of our
system of the world. Thus my view of pure mathematics is oriented strictly
to application in empirical science. Parsons has remarked, against this atti-
tude, that pure mathematics extravagantly exceeds the needs of application.
It does indeed, but I see these excesses as a simplistic matter of rounding
out. . . I recognize indenumerable infinites only because they are forced on me
by the simplest known systematizations of more welcome matters. Magnitudes
in excess of such demands, e.g., iω or inaccessible numbers, I look upon only
as mathematical recreation and without ontological rights. Sets that are com-
patible with ‘V = L’ in the sense of Gödel’s monograph afford a convenient
cut-off. (Quine, 1986a, p. 400)

Maddy (1992) criticises this response by pointing out that mathematicians don’t de-
cide questions of, say, new axioms for set theory, by checking if the axiom candidates
are appropriately applicable to scientific theory. Rather, mathematics follows its own
methodology, and if we are to respect mathematical practice and its inherent methods,
then we ought to accept that applicability simply plays no role for the acceptance or re-
jection of new mathematical entities. Maddy then suggests a ‘modified’ indispensability
argument, which

first guarantees that mathematics has a proper ontology, then endorses (in a
tentative, naturalistic spirit) its actual methods for investigating that ontology.
For example, the calculus is indispensable in physics; the set-theoretic contin-
uum provides our best account of the calculus; indispensability thus justifies
our belief in the set-theoretic continuum, and so, in the set-theoretic methods
that generate it; examined and extended in mathematically justifiable ways,
this yields Zermelo-Fraenkel set theory. (Maddy, 1992, p. 280)

In a similar spirit, Colyvan (2007) argues for the ‘transitivity of indispensability’:

If a nail gun is indispensable to building houses and building houses is in-
dispensable to building suburbs, then a nail gun is indispensable to building
suburbs. Similarly for mathematics. If transfinite set theory is indispensable

23Burgess (1984, p. 386) argues that it is ‘probably sufficient to develop, making much use of coding
devices, all the mathematics that has found scientific applications up to the present.’ Also Hellman
(1989, p. 105) grants that ‘it defines. . . a limit to the mathematical richness of what can be conceived of
as “concrete structures”.’

24Parsons (1983) discusses this and other implications of higher set theory for Quine’s philosophy of
mathematics, specifically for his empiricist claim that there is no philosophically interesting distinction
between mathematics and natural science, mathematical and natural necessity, and mathematical and
physical existence (cf. Quine, 1969, 1986b).
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for analysis and analysis is indispensable for physics, then I say transfinite
set theory is indispensable for physics. Perhaps this is what Quine had in
mind with his notion of ‘simplificatory rounding out’. In any case, this is the
justification for the higher reaches of set theory that I endorse. Understood
this way, there is only one mode of justification: playing an indispensable role
(either directly or indirectly) in our best scientific theories. (Colyvan, 2007,
p. 113)

One might object here that the idea of transitivity invoked in Maddy’s and Colyvan’s
arguments involves an unjustified change in the meaning of ‘indispensable’. The initial
step of (enhanced) indispensability arguments justifies belief in the existence of mathe-
matical entities via the indispensable role those entities play in scientific explanations.
The second step suggested by Maddy and Colyvan then justifies belief in the existence
of mathematical entities beyond RA2 via the the indispensable role those entities play
in intra-mathematical proofs and explanations. However, it is not clear that our pre-
philosophical commitment to science (i.e. its methods, inference patterns, objectivity,
etc.), on which indispensability arguments are based, extends also to mathematics itself.
Indeed, there is reason to believe that it doesn’t—otherwise any justification of mathe-
matics via science would be superfluous. As a consequence, it is not clear that we can
‘bootstrap’ our way from individual mathematical explanantia (like the prime numbers
in the Magicicada case) all the way up and beyond physically applied mathematics.

However, there is a more charitable interpretation of the notion of ‘transitivity of
indispensability’ that builds on examples in which mathematics transcending RA2 can
be shown to be indirectly physically significant. One such example is Gleason’s theo-
rem (Gleason, 1957). The most general version of this theorem uses mathematics well
beyond RA2. Nevertheless, it has indirect physical significance insofar as it entails that
there can be no dispersion-free measures on the sub-spaces of Hilbert space (equivalently,
that under minimal, physically significant assumptions, the standard probability measure
used in quantum theory to calculate the probabilities of experimental outcomes—the one
defining the Born Rule—is the only one possible; Piron, 1976, pp. 73-81). The moral
of such examples is that understanding physical theory properly will, at least in some
cases, necessarily involve entertaining mathematical structures that take us beyond the
physically representable structures of RA2. The use of mathematics that is not physically
representable is thus indispensable to our understanding of at least some parts of physics.

Now, this much ‘non-representable’ mathematics might be easy to accept. But what
about those parts of mathematics, found, for example, in higher set theory, that have
no obvious connection to physical theory whatsoever, that appear nowhere in a chain of
applications that bottoms out in a scientific theory, and of which it is consequently utterly
doubtful that they will ever be needed to formulate or understand scientific theory? Does
the ‘transitivity of indispensability’ justify ontological commitment even to those parts of
the mathematical realm?

In order to see that it does, we need to consider a second, slightly more speculative class
of examples that can be derived from the fact that higher-order mathematical theories
are non-conservative over lower-order ones. Gödel’s incompleteness theorems famously
demonstrate that mathematical theories involving strong existence axioms can deductively
entail sentences expressible in a lower-level mathematical language that are undecidable
at that level. For example, if first-order Peano arithmetic (PA1) is consistent, then the

Page 14



Mathematical Pluralism and Indispensability

number-theoretic assertion that this is the case is undecidable in PA1 (though it is, of
course, decidable in any set theory that proves the existence of a model of the natural
numbers). More generally, mathematical systems featuring objects of higher type have
consequences on lower levels, consequences that are not demonstrable (or refutable) in
the formalism of the lower level. As Hellman puts it, ”[b]ecause of this phenomenon of
non-conservativeness of richer mathematical theories with respect to lower-level theories,
there arises the prospect of justifying the richer theories indirectly in virtue of their power
to decide questions at the lower (more ”observational”) level that otherwise would remain
undecided (except, perhaps, in ad hoc extensions)” (Hellman, 1989, p. 121).

While most examples demonstrating this feature meta-mathematical rather than math-
ematical statements (and are thus of limited value for the project of providing an em-
piricist underpinning to realism about unapplied mathematics), there are a number of
undecidable statements that are of direct mathematical concern. One such example is
the Paris-Harrington theorem (Paris und Harrington, 1977), which proves that a number-
theoretic statement of a cleverly-modified finite version of Ramsey’s partition theorem is
unprovable in Peano arithmetic. Friedman (1981) discusses a number of other cases, for
example intuitive mathematical statements whose proof requires uncountable iterations
of the power set operation (e.g. for statements like ‘Every symmetric Borel subset of the
unit square contains or is disjoint from the graph of a Borel function’), or statements that
are provable in ZFC plus a large cardinal axiom, but not in ZFC. ‘Thus,’ Hellman sum-
marises, ‘even at the level of “large, large cardinals”. . . it is necessary to go even further to
prove certain “natural mathematical statements”’ (Hellman, 1989, p. 122, footnote 118).

To sum up: If the notion of ‘transitivity of indispensability’ is interpreted along the
lines of the examples just discussed, then it becomes clear how the ‘bootstrapping’ from
individual mathematical explanantia featuring in scientific explanations all the way up
to physically unapplied mathematics and even higher set theory is supposed to work:
higher-level theories are justified in virtue of the indispensable role they play in deciding,
at the lower level, natural mathematical questions, which may, in turn, have some bear-
ing on applied mathematics.25 Call this combination of the (enhanced) indispensability
argument and the argument from the transitivity of indispensability the transitivity ar-
gument. The transitivity argument thus justifies realist ontological commitment to (a)
individual mathematical entities that contribute indispensably to scientific explanations
of empirical phenomena (e.g. natural numbers), but also to (b) all entities that contribute
indispensably to the mathematical explanations (proofs) of mathematical theorems that
feature in scientific explanations, as well as to (c) all entities featuring in mathemati-
cal explanations of mathematical theorems, which in turn contribute indispensably to
the mathematical explanation of mathematical theorems that contribute indispensably
to scientific explanations of empirical phenomena, and so forth. In the next section, I
argue that the transitivity argument fails to justify mathematical realism if mathematical
pluralism is true, i.e. if there exists more than one mathematical universe.

25Gödel based some of his deliberations concerning the justification of strong axioms of infinity for
set theory on this potential (cf. Gödel, 1990). Hellman (1989, Ch. 3) offers an extensive discussion of
the question how much mathematics is needed for physics, which includes of all the examples mentioned
above.
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3 The transitivity argument and pluralist mathemat-

ical realism

We have seen that, according to the transitivity argument, justification of ontological com-
mitment to unapplied mathematics follows abductively from the justification to believe
in the existence of all mathematical explanantia featuring in confirmed scientific theories.
The question now becomes whether there are conditions under which the transitivity
argument does not work.

3.1 Pluralism obstructs transitivity

Recall that what guarantees that our justification of ontological commitment covers all
of mathematics are the explanatory links between the entities of applied and unapplied
mathematics. However, there is an additional assumption that needs to be made, namely
that every part, or branch, of mathematics is connected by an explanatory link to some
other part. In other words, for the transitivity argument to work, we need to assume
that there are no parts of the mathematical realm that are explanatorily isolated from all
other parts. And indeed, for the mathematical monist who believes that the mathematical
cosmos consists of exactly one mathematical universe, it is reasonable to assume that all
parts of contemporary applied and unapplied mathematics are thus connected.

To see why, consider that set theory constitutes a foundation for all mathematics.
Every mathematical object can be expressed in its language: the natural numbers can
be defined as the finite ordinal numbers such that N = ω, the integers Z as the set of
equivalence classes of pairs of natural numbers such that (n,m) ≡ (n′,m′) iff n+m′ = n′+
m, the rationals Q as the set of equivalence classes of pairs of integers (p, q) such that p 6= 0
and (p, q) ≡ (p′, q′) iff p·q′ = p′ ·q, the reals as Dedekind cuts of Q, algebraic structures like
groups, rings, or lattices as sets of n-tuples of elements of a set, and so on. Consequently,
every mathematical statement can be reformulated in the language of set theory, and
every mathematical theorem derived from ZFC (or some extension thereof) using the
calculus of first-order logic (cf. Bourbaki, 1968; Bagaria, 2020, Section 5). All parts of
contemporary mathematics are thus connected by their common set-theoretic foundation,
which in turn justifies the assumption that there are no parts of the mathematical realm
that are entirely isolated from all other parts.

However, things look different for the mathematical pluralist. On her view, the math-
ematical cosmos consists of a plenitude of mathematical universes, none of which enjoys a
privileged metaphysical status, some of which are nested in others, others of which exist
‘side by side’ such that the truth-value of a mathematical statement like CH can differ
from universe to universe. We noted that the pluralist’s idea of a mathematical multiverse
neither thwarts the meaning of ‘truth,’ nor the objectivity of mathematics (provided that
we distinguish between truth simpliciter and truth in any definable model), and it also
doesn’t imply a contradiction because each mathematical universe is taken to exist in
complete isolation from all other universes.

However, it is precisely this premise from isolation that simultaneously obstructs the
transitivity argument. Of course, as demonstrated above, within each individual universe,
there exist explanatory links between all individual mathematical entities contributing
indispensably to scientific explanations up to higher set theory. However, there exist no
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‘horizontal’ explanatory links between strictly independent mathematical universes, such
as VCH and V¬CH . As a consequence, proponents of pluralist mathematical realism cannot
appeal to the indispensability of mathematics to science in order to support mathematical
realism. The view thus loses its empiricist justification.

3.2 Monist justification, pluralist ontology?

The most straightforward way to resist the conclusion that belief in the existence of a
mathematical multiverse cannot be empirically justified is to bite one bullet and spit out
another. Pluralist mathematical realists could admit that an empiricist justification of
realist belief through arguments from indispensability and transitivity can only ever cover
one out of the many mathematical universes that constitute the mathematical cosmos.
This is the biting part. They could then try to come up with some argument as to why
the absence of empirical justification for realist belief in all mathematical universes does
not harm the pluralist’s overall ontological project. This is the spitting part. In other
words, pluralists could try to argue that it is perfectly consistent to embrace a monist
justification of realist belief while hanging on to a pluralist ontology.

No horizontal transitivity

There are at least two problems with this approach. One is that it is not clear what
such an argument would look like. Ontological commitments require full, not merely
partial justification, and nothing will serve to justify belief in a pluralist mathematical
cosmos except an argument that covers all mathematical universes. One idea might
be to try constructing a ‘horizontal’ transitivity argument that establishes explanatory
links between mutually independent mathematical universes. However, given the very
definition of these universes as strictly isolated from one another, such an argument would
be hard pressed to defend itself against the charge of being ad hoc.

Another idea is to appeal to Maddy’s line of reasoning: establish that ‘mathematics
has a proper ontology’ (Maddy, 1992, p. 280), for example by arguing for the existence
of natural numbers via an enhanced indispensability argument, and then let practising
mathematicians fill us in on the details of this ontology. But, as was argued above, this line
of reasoning either involves a change in the meaning of ‘indispensable’ (from ‘indispensable
to scientific explanations’ to ‘indispensable to intra-mathematical explanations’), which
is unhelpful if the goal is to offer a science-based justification of ontological commitment.
Or it must be interpreted along the lines sketched in section 2.2, i.e. as an argument for
the (potential) rootedness of all mathematics in scientific theory, which, as was argued,
covers one universe at most.

Someone might try to salvage indispensability for multiversists by arguing that instead
of a single universe V, the realist could analogously adopt a single multiverse MV, which
is built in stages, much like V arises as the union of the Vα’s through iteration of the
powerset operation. MV arises as the union of the MVα’s, the multiverse of possible Vα’s
(MVω has just the single Vω, but MVω+1 already has many different Vω+1’s, arising from
different powerset operations applied to Vω). And as in the single universe view, where
the higher Vα’s are justified by their need to explain the lower Vα’s, so too can the higher
MVα’s be justified by their use in explaining the lower MVα’s.
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The problem I see with this approach is that according to pluralists like Hamkins,
each universe’s ‘notion of omega’ turns out to be a nonstandard model from the point
of view of some other universe. Furthermore, it is not clear that we can quantify over
multiverses in the way suggested by this example. Thus, implementing this analogous
indispensability approach to the multiverse seems problematic. One way for pluralists to
salvage the indispensability argument would be to adopt a more restrictive multiverse, for
example by imposing well-foundedness (and thus obtaining the same copy of the natural
numbers in every universe) or by considering only a privileged sub-multiverse consisting
of the ‘better’ universes (for example those characterised by the maximality criteria of the
Hyperuniverse Programme). However, radical pluralists like Hamkins or Balaguer would
probably see no compelling reason to restrict ‘mathematical freedom’ in this way.

Another way to salvage indispensability for multiversists might be to argue that there
are in fact ‘connections’ between the different universes of the multiverse, which are the
object of investigation of set-theoretic geology as conceived by Fuchs u. a. (2015). We
standardly think of forcing as the technique used to construct outer models of set theory
by taking a a model of set theory V and constructing a larger forcing extension V[G]
through a V-generic filter G over some partial order P ∈ V. Set-theoretic geology takes
the opposite perspective by asking how the model V might have come about through
forcing. The idea is to study the grounds of V (i.e. the transitive proper classes W ⊆ V,
such that W |= ZFC and V is obtained by set forcing over W, so that V = W[G] for some
W-generic filter G ⊆ P ∈W) by investigating the classes over which V can be realised as a
forcing extension (Fuchs u. a., 2015, p. 464f). Among the questions asked in set theoretic
geology are whether the ground models of V are downward directed (p. 469f), whether
the intersection of all grounds of V (the ‘mantle’ of V) necessarily satisfies ZF or ZFC (p.
475), and under what circumstances the mantle is also a ground model of V (p. 476).

Discussing these questions in detail here is well beyond the scope of this paper, but
two things are worth noting. First, there is a difference between a mere connection and an
explanatory connection. I have argued above that if a non-applied mathematical theory
T can be used to prove anything about applied mathematics that cannot otherwise be
proved, then the empirical justification for applied mathematics can be extended to T.
I have not argued that any kind of connection between two theories suffices. Now, the
motivations given by multiversists for positing a multiverse and studying the relations
between given ground models do not involve a desire to better explain facts about one
favoured and directly physically useful hierarchy of sets. For example, Hamkins argues
that the phenomenology of forcing is such that it seems to afford contact with something
real; he does not argue that it better explains some intrinsic feature of a universe of sets
one is currently working in.

Second, and despite what was just said, it is of course possible that studying the
connections between different universes might at some point be used to prove a theo-
rem about applied mathematics that cannot otherwise be proved. However, the idea
that set-theoretic geology might provide the relevant explanatory connections among dif-
ferent models that inhabit the multiverse is a very general and substantive thesis that
would require an accordingly general and substantive argument to stand. Set-theoretic
geology studies the relationship between a universe and its grounds and extensions ob-
tained via set-forcing, but only very few universes are connected to each other in this way.
Salvaging the indispensability argument would require connections between arbitrary uni-
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verses. Again, it might be possible to show (perhaps using class-forcing and elementary
embeddings) that such connections exist - but the burden is on the indispensability the-
orist to show this.

Indeterminacy of identity

A second problem with the attempt to combine a monist justification with a pluralist
ontology concerns the identity of individual mathematical entities: far from being able to
justify ontological commitment to the mathematical multiverse, pluralist realists cannot
even justify ontological commitment to single mathematical entities. This is because,
according to their view, there exist as many copies of mathematical entities featuring in
standard models as there exist mathematical universes.

Consider the natural numbers, the standard model of that part of the mathematical
cosmos referred to as ‘arithmetic.’ A monist realist can justify her belief in the existence
of natural numbers via an enhanced indispensability argument, for instance citing the
case of Magicicadas. The reason enhanced indispensability arguments are justification-
conferring for monist realist belief is, first, that prime numbers figure indispensably in the
explanation of the empirical phenomenon to be explained, and second, that the identity
of the mathematical entities in question is determinate: it is ‘the’ number 13 and ‘the’
number 17 that explain the life cycles of Magicicadas. One might worry here that also on a
monistic picture of mathematics, there are infinitely many omega-sequences to choose from
when modelling N, and that consequently the problem of indeterminacy is a problem for
monists and pluralists alike. However, a monist can invoke ‘Frege-arithmetic’ as conceived
of by Boolos (1987) to offer a way to conceive of numbers as metaphysically distinguished
objects (cf. also Colyvan und Zalta (1999, p. 345) and Anderson und Zalta (2004)).

On the radically pluralist picture, on the other hand, it is entirely unclear which one
of the countless copies of the numbers 13 and 17 are involved in the scientific explana-
tion: those that exist in, and whose identities are determined by, VCH? V¬CH? HOD?
L(R)? Of course the different copies of the natural numbers that are instantiated in sepa-
rate mathematical universes all ‘behave’ the same, i.e. they are characterised by the same
mathematical axioms (i.e, the Peano-Dedekind axioms) and follow the same mathematical
laws (i.e. the commutative, associative, and distributive laws). Metaphysically speaking,
however, they are different entities: their identities are determined by the universes that
instantiate them, and they are embedded in different universes. And the scientific appli-
cations of number theory only justify belief in one out of the many universes that contain
a copy of the natural numbers.

One might think that the pluralist can solve this indeterminacy problem just as non-
chalantly as she can solve Benacerraf’s problem of non-uniqueness (discussed in section
1.1), i.e. by arguing that nothing in the idea of mathematical realism commits us to the
belief that mathematical theories describe unique collections of mathematical objects.
However, the function of mathematical entities in enhanced indispensability arguments
is akin to that of physical unobservables like quarks and electrons in physical theories:
they are individual entities, rather than structures or laws, that contribute to the expla-
nation of a particular empirical phenomenon. Consequently, being able to pin down, in
the metaphysical sense, exactly which mathematical entity is contributing to the explana-
tion is crucial for the success of enhanced indispensability arguments. A pluralist realist,
however, cannot do that.
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4 Conclusion

If mathematical pluralism is true—and we have good reasons to believe that it is—, then
there are very serious difficulties applying indispensability arguments to justify mathe-
matical realism. This does not mean that we must reject either pluralism or mathematical
realism, but that justifying their combination might require a shift from empiricist to-
wards rationalist argumentation. An empiricist justification via indispensability may still
be possible, but it would require substantial further work. I take the wider implication
of my argument to be that, just like ‘we should no longer expect science to provide the
sort of methodological guidance for mathematics that it once did’ (Maddy, 2011, p. 37),
we should no longer expect it to guide our philosophy of mathematics.
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