The Implication of the Precision of SPRs

Statistical Prediction Rules (SPRs) are, in the most basic sense, mathematical formulas for predicting the most likely outcome of any situation given the evidence at hand. In the article by Trout and Bishop, a few different SPRs are introduced and briefly discussed, however the focus is on Proper Linear Models. Proper Linear Models seek to predict the probability, or likelihood, of a specific possible outcome by taking a limited number cues (c), assigning each cue a value, then multiplying each cue by a weight(w). Finally the product of each cue/weight pair is added together to yield the Probability (P) of the outcome in question. A sample model would look like this:

P = W1(C1) + W2(C2) + W3(C3)

The cues for a proper linear model are instances of evidence chosen for their obvious relevance to the scenario, making them often seem redundant, but no less effective. For example, in cases of collegiate admissions, admissions officers often consider extra-curricular activities, interviews, personal essays, and possibly a few other factors in addition to grade point average (GPA) and scholastic aptitude test (SAT) scores as relevant factors in determining a candidate's probability of success. A Proper linear model would, however, only account for SAT scores and GPA as cues. 


The numerical value which is assigned to each cue reflects the strength, or lack of strength, either positive or negative, of the evidence being considered as it relates to possible alternative strengths. All of the cues in a single proper linear model must be dividable by a common denominator. In other words, a cue's value comes from the ratio of its actual strength to its possible strength relative to other cues' ratios. So in the example of the collegiate admissions officer, the candidate's GPA, let's say its 3.5 out of 4.0 (3.5/4.0), and SAT score, let's say its 1500 out of 2400 (2400/1500), would then be reduced to the lowest common denominator, which would be each of their values respectively. Since the lowest common denominator of 4 and 2400 is 4, we can do some quick division to find the value of the candidate's SAT score to be 2.5 out of 4.0.       (2400/600 = 4;  1500/600 = 2.5;  1500/2400=2.5/4.0)


The weights which get assigned to each cue gain their numerical value from their estimated, relative correlation to the outcome. These estimates are based on some prior data which speaks to the extent of the correlation between the cue and the outcome. Since the correlations between the cues and the outcome are already assumed by virtue of the cues being chosen in the first place, the weights serve to compare the value of each cue to each other, rather than independently. In the college admissions example, the weights assigned to the candidate's GPA and SAT scores would be based on both the success rates of previously admitted candidates with scores similar to this candidate's; and those of candidates with scores which were radically different from this candidate’s. Lets say that SAT scores turn out to be a bit less consistent a predictor than GPA at about 1:3 ratio (meaning that patterns of high scores-high success rate and low scores-low success rate showed up about three times as much for GPA than for SAT scores). The weight on the candidate's GPA would be three(3) and the SAT scores would be one(1). So the candidate's probable success rate would be:
13= 1(2.5) + 3(3.5)   =   3.25
4           4          4                


The astonishingly high probability in this example is due to super-simplification of the values and weights. Fueled by proper data and better mathematical skills, a similar, albeit far more complex, model would yield more precise and far more believable results. Yet even in this example we can see how the results of a single proper linear model can often be meaningless without a comparable probability. It generally requires two or more proper linear models to determine the most probable outcome. However, in spite of the redundancy of cues, the never-quite-perfect estimation of weights, and general relative nature of proper linear models Trout and Bishop claim, with no shortage of good evidence, that the proper linear model is, in fact, the most accurate way for determining the possibility of any given outcome based upon the evidence presented. This bring us to the primary argument presented by Trout and Bishop which is that, based on a litany of studies which show that proper linear models preform better than experts at predicting diagnosis and outcomes in their respective fields, proper linear models ought to be used in lieu of expert opinions and diagnosis. This is not to say that Trout and Bishop are proposing that experts are obsolete, only that SPRs, namely proper linear models, should be consulted and trusted over the opinions or “gut-feelings” of experts. Unfortunately, many experts in field of diagnostics would, I'm sure, disagree.  After-all, it does seem counter-intuitive that an expert psychologist would be less reliable in diagnosing psychological disorders than a mathematician. Additionally, the wide acceptance of the use of SPRs would likely result in experts being reduced to the  roles of information gatherers, rather than sources of wisdom. 


Trout and Bishop answer this intuitive criticism by arguing that many experts fall victim to their own expertise. In other words, many experts' opinions are guilty of the overconfidence bias. This is not just a problem amongst experts though, in fact most people are guilty of overconfidence bias everyday. The overconfidence bias is just what is sounds like; humans natural tendency to exaggerate the powers of our subjective faculties. The overconfidence bias gives us the impression that we are very accurate in  selecting and in assigning values to cues and weights. This false sense of accuracy is not necessarily irrational since even experts can not know for sure the extent to which they are ignorant about a topic, and so we generally operate under the assumption that we are perceiving everything there is to perceive. This sort of bias is especially prevalent in fields that require experts “read” people, such as investigators, therapists, and of course, admissions officers. Experts in these sorts of subjective fields combine different sensory information about a subject, such as things they say or do, or how they appear, and then compare that information with similar cases and outcomes that they have experienced in the past. In short, many experts in these sorts of subjective fields rely on a kind of sub-conscience “improper non-linear models” that essentially works the same as proper linear models, though far less effective. 


One of the key flaws with using these kinds of sub-conscience, improper non-linear models and also one of the main causes for the overconfidence bias is the availability bias. The availability bias is another one humans' natural tendencies to be less-than-completely rational. It holds that people tend to base statistics on the ease with which they can recall similar outcomes, rather than accounting for the actual number of instances experienced. Basically, statistics account for quantities, people often mistake quality of memory for quantity of memory. This can actually become an even greater problem amongst experts who have the most experiences to recall. In the case of the college admissions officer, the admissions officer can probably recall quite a few cases in which his intuition about a student proved correct, but likely very few cases when it did not. This is not because the officer's memory is failing or because they are just-so-darned-good at picking winners, but rather because when the officer considers their own intuition they are actively seeking to rationalize their belief. They are actually trying to remember cases when their intuition turned out to be correct, and simply not trying to recall cases in which it did not. The same is true about more specific cases of subjective observation, which largely account for overconfidence bias in expert opinion. When an investigator sees a suspects foot tapping during interrogation, they immediately try to recall past experiences in which a suspects foot tapping correlated with their guild. The investigator probably doesn't spend much time trying recall all the instances of innocent people tapping their foot. These types of common biases, which can be even more common amongst experts, greatly skew people's abilities to perceive statistics and judge probabilities.


I do not think replacing expert opinion is a necessary or wise move towards increasing the accuracy of diagnosis. There is certainly good evidence supporting Proper Linear models as being currently the most accurate means of identifying probabilities. However, until we models which can yield one-hundred percent (100%), or at least in the ninety-ninth percentile, probabilities, we will still need experts to fill in the missing cues and to gather the information to base values upon. The two main reasons for not throwing expert opinion 'out-the-window' all together is because, one, SPRs only give the probability of a single outcome at a time; and two, the general inability of SPRs to account for completely new scenarios. Although new cues can be added and subtracted, and their values and the values of their weights can change as necessary, proper linear models do require some presumed, theorized outcome to suppose probability of. In the admissions officer example, the proper linear model is supposing the probability of the candidate being successful in college. However in cases where the diagnosis could be more than just a degree of success, such as a medical or psychological diagnosis, a single proper linear model would likely be of little use. Without experts' off-the-cuff opinions, medical diagnosis would require us to plug-in values for proper linear models testing the probabilities of pretty much all known ailments, and compare the results across-the-board. Accounting for all the data and estimating all of the values can take a lot of time, which is not something that people waiting for medical diagnosis generally have a lot of. This is the first problem SPRs face in replacing expert opinions, especially in  fields medical diagnostics. 


The second problem facing SPRs successful replacement over expert opinions is their inability to account for new, as in not-previously encountered, outcomes. This problem is similar in nature to the first problem in that both stem from SPRs inherent need of a presumed outcome to give probability too.  This problem, again like the first one, is especially prevalent in medical diagnostics, where new diseases and ailments are not uncommon. While SPRs would be much better at detecting subtle differences between diseases we already know the symptoms for, no proper linear model would ever be able to account for the possibility of an unidentified outcome. Even if we plug in values to proper linear models for every known human ailment, the results would only tell us how likely it is that the patient has any particular identifiable disease. If the patient has an ailment which has yet to be identified or that is so rare there does not exist sufficient data to create a proper linear model, then no SPR will ever be able to correctly diagnose them.


Despite the proper linear model's reliance on a presumed outcome upon which to gauge probability, I still find myself agreeing, though not entirely, with Trout's and Bishop's proposal of relying on SPRs in lieu of expert opinions. As I previously stated, I do not believe in disregarding experts' opinions entirely, especially in fields of medical diagnostics where time constraints and the occasional discovery of new ailments cast heavy limitations on the usefulness of SPRs. However, if  accuracy is an important aspect in a prediction, then SPRs aught to be consulted in just about every case. Even in medical fields, to not utilize to predictive capabilities of a proper linear model once the possible diagnosis have been limited by expert opinion, would be both dangerous and arrogant.
