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Recently several authors have argued that accuracy-first epistemology ends up
licensing problematic epistemic bribes. They charge that it is better, given the
accuracy-first approach, to deliberately form one false belief if this will lead to
forming many other true beliefs. We argue that this is not a consequence of the
accuracy-first view. If one forms one false belief and a number of other true be-
liefs, then one is committed to many other false propositions, e.g., the conjunction
of that false belief with any of the true beliefs. Once we properly account for all
the falsehoods that are adopted by the person who takes the bribe, it turns out that
the bribe does not increase accuracy.

1 Accuracy, Bribes and Scoring Rules

Belief aims at the truth. So at least in some sense, an agent is doing better at believing the
closer they are to the truth. When applied to individual beliefs, this generates epistemic
advice that is literally platitudinous: if you know that a change in your attitude towards
p will make your attitude towards p more accurate, make that change! When applied
to collective bodies of belief though, the advice turns out to be more contentious. Call
epistemic consequentialism the view that if an agent knows that a change in their
overall belief state will make their belief state more accurate, they should make that
change, if they have the power to do so.

Hilary Greaves (2013) has recently argued that epistemic consequentialism is false
because it licences certain epistemic ‘bribes’, and these should not be licenced. We’ll
argue that the best forms of epistemic consequentialism do not licence some of these
bribes after all.1 Here is the key case Greaves uses.2

Emily is taking a walk through the Garden of Epistemic Imps. A child
plays on the grass in front of her. In a nearby summerhouse are n further
children, each of whom may or may not come out to play in a minute.

∗Thanks to Alejandro Pérez Carballo, Richard Pettigrew, and the participants in the Arché Epistemology
Seminar for helpful comments.

1Though they do licence others; see section 2.4 for more discussion.
2Greaves has four other cases, but the Imps case is the only one that is a problem for all forms of conse-

quentialism she discusses. Similar cases have suggested by Selim Berker (2013a, 2013b) and C. S. Jenkins
(2007), but we’ll focus on Greaves’s discussion since she engages more fully with the literature on scoring
rules. We’ll return briefly to Berker’s discussion in section 2.
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They are able to read Emily’s mind, and their algorithm for deciding
whether to play outdoors is as follows. If she forms degree of belief 0
that there is now a child before her, they will come out to play. If she
forms degree of belief 1 that there is a child before her, they will roll a
fair die, and come out to play iff the outcome is an even number. More
generally, the summerhouse children will play with chance (1-q(C0)/2),
where q(C0) is the degree of belief Emily adopts in the proposition C0
that there is now a child before her. Emily’s epistemic decision is the
choice of credences in the proposition C0 that there is now a child before
her, and, for each j = 1, …, n the propositionCj that the jth summerhouse
child will be outdoors in a few minutes’ time.
… if Emily can just persuade herself to ignore her evidence for C0, and
adopt (at the other extreme) credence 0 in C0, then, by adopting degree
of belief 1 in each Cj (j = 1, … , 10), she can guarantee a perfect match to
the remaining truths. Is it epistemically rational to accept this ‘epistemic
bribe’? Greaves (2013, 918)

The epistemic consequentialist says that it is best to have credences that are as accurate
as possible. We will focus on believers who assign probabilistically coherent credences
(degrees of belief) to the propositions in some “target set” X , and we will think of the
“degree of fit” between her beliefs and the truth as being measured by a strictly proper
scoring rule. This is a function IX which associates each pair ⟨cred, @⟩ consisting of
a credence function cred whose domain includes X and a consistent truth-value as-
signment @ for elements of X with a non-negative real number I~X (@, cred). In-
tuitively, IX measures the inaccuracy of the credences that cred assigns to the proposi-
tions in X when their truth-values are as described by @. Note that higher IX -values
indicate higher levels of epistemic disutility, so that lower is better from a consequential-
ist perspective. One popular scoring rule is the Brier score, which identifies inaccuracy
with the average squared distance between credences and truth-values. (Greaves calls
this the ‘quadratic scoring rule’, which is a useful description too.) More formally, we
have:

BrierX (@, cred)  =   1
|X | ∑

𝛸∈X
(cred(𝛸) − @(𝛸))2

where |X | is the number of propositions in X and @(X ) is either zero or one de-
pending upon whether X is true or false.

Another common score is the logarithmic rule, which defines inaccuracy as:

Log
X
(@, cred)  =   1

|X | ∑
𝛸∈X

−log(cred(𝛸)) ⋅ @(𝛸)

For now we will follow Greaves in assuming that our epistemic consequentialist uses
the Brier score to measure epistemic disutility, but we will relax that assumption in a
little while.
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Now let’s think about the ‘bribe’ that Greaves offers, from the point of view of the
epistemic consequentialist. The choices are to have one of two credal states, which we’ll
call cred1 and cred2. We’ll say cred1 is the one that best tracks the initial evidence, so
cred1(C0) = 1, and cred1(Ci) = 0.5 for i ∈ {1, …, 10}. And cred2 is the credence Emily
adopts if she accepts the bribe, so cred2(C0) = 0, while cred2(Ci) = 1 for i ∈ {1, …, 10}.
Which state is better?

Thinking like an epistemic consequentialist, you might ask which state is more accu-
rate? It seems like that would be cred2. While cred1 getsC0 exactly right it does not do
very well on the other propositions. In contrast, while cred2 gets C0 exactly wrong, it
is perfect on the other ten propositions. So overall, cred2 looks to have better epistemic
consequences: when compared to being right about one proposition and off by 0.5 on
ten others, being right on ten is surely worth one false belief. The Brier score seems to
bear this out. If we let X , the target set, consist of C0, C1, …, C10, then we have

BrierX (cred1, @) =
1
11 [(1 − cred1(𝐶0))

2 +
10
∑
𝑖 = 1

(@(𝐶𝑖) −
1
2 )

2]  =   1044

BrierX (cred2, @) =
1
11 [(1 − cred2(𝐶0))

2 +
10
∑
𝑖 = 1

(@(𝐶𝑖) − cred2(𝐶𝑖))2]  =   111

So, it seems that a good epistemic consequentialist will take the bribe. But, doesn’t
that seem like the height of epistemic irresponsibility? It means choosing to believe
that C0 is certainly false when you have conclusive evidence for thinking that it is true.
If you see the child on the lawn in front of you, how can you sanction believing she is
not there?

As Greaves admits, intuitions are divided here. Some consequentialists might think
that “epistemic bribes” are at least sometimes worth taking, while those of a more deon-
tological bent will always find such trade-offs “beyond the pale” (Berker 2013a, 363).
We will largely sidestep these contentious issues here, though our argument will of-
fer comfort to epistemic consequentialists who feel queasy about accepting the bribe
offered in Imps. We contend that, when inaccuracy is measured properly, the conse-
quences of adopting the cred2 credences are strictly worse than the consequences of
adopting cred1.

The basic problem is that Imps cherry-picks propositions in a way no consequential-
ist should condone. Its persuasive force rests on the assumption that, for purposes of
epistemic evaluation, nothing matters except the accuracies of the credences assigned
to propositions in the target set X . But X is the wrong target! By confining attention
to it Greaves ignores the many other credences to which Emily becomes committed as
a consequence of adopting cred1 or cred2. Any (coherent) agent who invests credence
zero inC0 must also invest credence zero in any propositionC0 ∧Y, whereY is any con-
junction or disjunction of elements from X . Likewise, anyone who invests credence
one in Cn must invest credence one in any proposition Cn ∨ Y, where Y is any conjunc-
tion or disjunction from X . In the current context (where the probabilities of the var-
iousCi are independent), when Emily adopts a credence function over X she commits
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to having a credence for (i) every atomic proposition ±C0 ∧ ±C1 ∧ ±C2 ∧ … ∧ ±C10,
where ‘±’ can be either an affirmation or a negation, and (ii) every disjunction of these
atomic propositions. In short, she commits to having credences over the whole Boolean
algebra AX generated by X . Since each event of a child coming out is independent,
adopting cred1 will commit her to setting cred1(±C0 ∧ ±C1 ∧ ±C2 ∧ … ∧ ±C10) = 1

1024
when C0 is affirmed, and 0 when it is negated. While adopting cred2 commits her to
setting cred2(±C0 ∧ ±C1 ∧ ±C2 ∧ … ∧ ±C10) equal to 1 when C0 is negated and the
rest of the Ci are affirmed, and to 0 otherwise. In this way, each of these probability
assignments over the 2048 atoms determine a definite probability for every one of the
22048 propositions in AX .

It is our view that consequentialists should reject any assessment of epistemic utility
that fails to take the accuracies of all these credences into account. All are consequences
of adopting cred1 or cred2, and so all should be part of any consequentialist evaluation
of the quality of those credal states. The right “target set” to use when computing epis-
temic disutility is not X but AX . If we don’t do that, we ignore most of the ways
in which cred1 and cred2 differ in accuracy. If Emily takes the bribe, she goes from
having credence 0.5 in C0 ↔ C1 to having credence 0 in it. And that’s unfortunate,
because the chance of C0 ↔ C1 goes from 0.5 to 1. This is another proposition, as well
asC0, that Emily acquires a false belief in by taking the bribe. Of course, there are other
propositions not counted that go the other way. Originally, Emily has a credence of
0.25 in C1 ∧ C2, and its chance is also 0.25. After taking the bribe, this has a chance of
1, and her credence in it is 1. That’s an improvement in accuracy. So there are a host
of both improvements and deteriorations that are as yet unaccounted for. We should
account for them, and making the target set be AX does that.

When seen from this broader perspective, it turns out the seeming superiority of
cred2 over cred1 evaporates. The rest of this section (and the appendix) is dedicated
to demonstrating this. We’ll make the calculations a little easier on ourselves by relying
on a theorem concerning Brier scores for coherent agents. Assume, as is the case here,
that Emily’s credences are defined over an atomic Boolean algebra of propositions. The
atoms are the ‘worlds’, or states that are maximally specific with respect to the puzzle at
hand. In this case there are 2048 states, which we’ll label s0 through s2047. In sk, the first
child is on the lawn iff k ⩽ 1023, and summerhouse child i comes out iff the (i + 1)th
digit in the binary expansion of k is 1. Let SX be the set of all these states. That’s not a
terrible target set; as long as Emily is probabilistically coherent it is comprehensive. The
theorem in question says that for any credence function cred defined over a partition
of states S , and over the algebra A generated by those states,
Theorem-1 BrierA (cred, @) = |S |

4 BrierS (cred, @)
(The proof of this is in the appendix.) So whichever credence function is more accurate
with respect to SX will be more accurate with respect to AX . So let’s just work out
BrierSX

for cred1 and cred2 at the actual world.
First, cred1 will appropriately assign credence 0 to each sk (k ∈ {0, …, 1023}). Then it

assigns credence 1/1024 to every other sk. For 1023 of these, that is off by 1/1024, con-
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tributing 1/220 to the Brier score. And for 1 of them, namely @, it is off by 1023/1024,
contributing 10232

220 . So we get:

BrierSX
(cred1, @) =

1
2048 [1024 ⋅ 0 + 1023 ⋅

1
220 +

10232
220 ]

= 1
2048 ⋅ 1023 + 1023

2

220

= 1
2048 ⋅ 1023 ⋅ 1024220

= 1
2048 ⋅ 10231024

= 210 − 1
221

It’s a bit easier to work out BrierSX
(cred2, s2047). (We only need to work out the

Brier score for that state, because by the setup of the problem, Emily knows that’s the
state she’ll be in if she adopts cred2). There are 2048 elements in SX . And cred2
assigns the perfectly accurate credence to 2046 of them, and is perfectly inaccurate on
2, namely s1023, which it assigns credence 1, and s2047 which it assigns credence 0. So we
have

BrierSX
(cred2, 𝑠2047) =

1
2048 (2046 ⋅ 0 + 1 + 1)

= 1
1024

= 211
221

In fact, it isn’t even close. If Emily adopts cred2 she becomes a little more than twice
as inaccurate.

It is tedious to calculate BrierAX
(cred1, @) directly, but it is enlightening to work

through the calculation of BrierAX
(cred2, s2047). Note that there are two crucial states

out of the 2048: s2047, the actual state where all children come out, and state s1023 where
child 0 does not come out, but the other 10 children all do. There are 2211−2 propositions
in each of the following four sets:

1. {𝑝 ∶ 𝑠2047 ⊨ 𝑝 and 𝑠1023 ⊨ 𝑝}
2. {𝑝 ∶ 𝑠2047 ⊨ 𝑝 and 𝑠1023 ⊭ 𝑝}
3. {𝑝 ∶ 𝑠2047 ⊭ 𝑝 and 𝑠1023 ⊨ 𝑝}
4. {𝑝 ∶ 𝑠2047 ⊭ 𝑝 and 𝑠1023 ⊭ 𝑝}

If Emily takes the bribe, she will have perfect accuracy with respect to all the proposi-
tions in class 1 (which are correctly believed to be true), and all the propositions in class
4 (which are correctly believed to be false). But she will be perfectly inaccurate with re-
spect to all the propositions in class 2 (which are incorrectly believed to be false), and all
the propositions in class 3 (which are incorrectly believed to be true). So she is perfectly
accurate on half the propositions, and perfectly inaccurate on half of them, so one’s
average inaccuracy is 0.5 · 0 + 0.5 · 1 = 0.5. And that’s an enormous inaccuracy. It is, in
fact, as inaccurate as one can possibly be while maintaining probabilistic coherence.
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Theorem-2 When inaccuracy over A is measured using the Brier score, the least accu-
rate credal states are those which assign credence 1 to some false atom of A .

(The proof is in the appendix.) So taking the bribe is not a good deal, even by con-
sequentialist lights. And that isn’t too surprising; taking the bribe makes Emily have
maximally inaccurate credences on half of the possible propositions about the children.

So far we have followed Greaves in assuming that inaccuracy is measured by the
quadratic, or Brier, rule. It turns out that we can drop that assumption. We actually
only need some very weak conditions on accuracy rules to get the result that Greaves
style bribes are bad deals, though the proof of this becomes a trifle more complicated.

Let A be an algebra of propositions generated by a partition of 2N atoms a1, …, a2N .
Suppose a1 is the truth, and consider two probability functions, P andQ defined in A .
P assigns all its mass to the firstN atoms, so that 𝛲(𝑎𝑘) = 0 for all k >N. We also assume
that P assigns some positive probability to the true atom a1. Q assigns all its mass to
the false atom a2N . Note that this will be a good model of any case where an agent is
offered a bribe of the form: drop the positive confidence you have in proposition p0,
instead assign it credence 0, and you’ll be guaranteed a maximally accurate credence in j
other logically independent propositions p1, …, pj. The only other assumptions needed
to get the model to work are that p0 is actually true, and N = 2j .

Imagine that the accuracy of a probability function π over A is measured by a proper
scoring rule of the form

I(𝑎𝑛, 𝜋) = 2−2𝛮 ∑
𝛸∈A

i(𝑣𝑛(𝛸), 𝜋(𝛸))

where 𝑣𝑛(𝛸) is X s truth value when a_n is the true atom, and i is a score that gives
the accuracy of π(X ) in the event that X s truth value is 𝑣𝑛(𝛸). We shall assume that this
score has the following properties.
Truth Directedness The value of i(1, p) decreases monotonically as p increases. The

value of i(0, p) increases monotonically as p decreases.
Extensionality i(𝑣𝑛(𝛸), 𝜋(𝛸)) is a function only of the truth-value and the probability;

the identity of the proposition does not matter.
Negation Symmetry i(𝑣𝑛(¬𝛸), 𝜋(¬𝛸)) = i(𝑣𝑛(𝛸), 𝜋(𝛸)) for all x, n, π.
Theorem-3 Given these assumptions, P’s accuracy strictly exceeds Q’s.
Again, the proof is in the appendix.

Theorem-3 ensures that taking the deal that Greaves offers in Imps will reduce
Emily’s accuracy relative to any proper scoring rule satisfying Truth Directedness,
Extensionality and Negation Symmetry. To see why, think of Emily’s credences as
being defined over an algebra generated by the atoms ±C0 ∧ ±C1 ∧ ±C2 ∧ … ∧ ±C10,
where C0 is understood to be true. Since Emily is convinced of C0 and believes that
every other Cn has some chance of occurring, and since the various Cn are independent
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of one another, her credence function cred1 will assigns a positive probability to each
atom, including the true atom (whichever that might be). Now, let Q be a credence
function that places all its weight on some false atom ¬C0 ∧ ±C1 ∧ ±C2 ∧ … ∧ ±C10.
Theorem-3 tells us that Emily’s cred1 is more accurate than Q, and that this is true no
matter which C0 atom is true or which ¬C0 atom Q regards as certain. By taking the
bribe Emily will guarantee the truth of C0 ∧ C1 ∧ … ∧ C10, but the cost will be that
she must adopt the cred2 credences, which assign probability one to the false atom ¬
C0 ∧ C1 ∧ … ∧ C10. Extensionality ensures that any two credence functions that assign
probability one to a false atom will have the same inaccuracy score, and that this score
will not depend on which atom happens to be the true one. The upshot is that cred2
will have the same inaccuracy when Emily accepts the bribe as Q does when she rejects
it. Thus, since cred1 is more accurate than Q, it is also more accurate than cred2,
which means that Emily should reject the bribe in order to promote credal accuracy.

We do not want to oversell this conclusion. Strictly speaking, we have only shown
that consequentialists should reject epistemic bribes when doing so requires them to go
from being confident in a truth to being certain of some maximally specific falsehood.
This is a rather special situation, and there are nearby cases to which our results do not
apply, and in which consequentialists may sanction bribe-taking. For example, if Emily
only has to cut her credence for C0 in half, say from ½ to ¼, to secure knowledge of
C1 ∧ … ∧ C10, then Theorem-3 offers us no useful advice. Indeed, depending on the
scoring rule and the nature of the bribe, we suspect that believers will often be able to
improve accuracy by changing their credences in ways not supported by their evidence,
especially when these changes affect the truth-values of believed propositions. The only
thing we insist upon is that, in all such cases, credal accuracy should be measured over
all relevant propositions, not just over a select salient few. But that’s something that is
independently plausible. Perhaps it might be pragmatically justified to become more
accurate on salient propositions at the expense of becoming very inaccurate over hard
to state compounds of those propositions, but it is never epistemically justified.

2 Four Caveats

2.1 Greaves’s Imps Argument May Work Against Some Forms of
Consequentialism

We said above that no consequentialist should accept Greaves’s setup of the Imps puz-
zle, since they should not accept an inaccuracy measure that ignores some kind of in-
troduced inaccuracy. That means that, for all we have said, Greaves’s argument works
against those consequentialists who do not agree with us over the suitability of target
sets that are neither algebras or partitions. And, at least outside philosophy, some the-
orists do seem to disagree with us.

For instance, it is common in meteorology to find theorists who measure the accu-
racy of rain forecasts over an n day period by just looking at the square of the distance
between the probability of rain and the truth about rain on each day. To pick an ex-
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ample almost literally at random, Mark Roulston (2007) defends the use of the Brier
score, calculated just this way, as a measure of forecast accuracy. So Greaves’s target,
while not including all consequentialists, does include many real theorists.

That said, it seems there are more mundane reasons to not like this approach to mea-
suring the accuracy of weather forecasts. Consider this simple case. Ankita and Bojan
are issuing forecasts for the week that include probabilities of rain. They each think
that there is a 0% chance of rain most days. But Ankita thinks there will be one short
storm come through during the week, while Bojan issues a 0% chance of rain forecast
for each day. Ankita thinks the storm is 75% likely to come on Wednesday, so there’s a
75% chance of rain that day, and 25% likely to come Thursday, so there’s a 25% chance
of rain that day.

As it happens, the storm comes on Thursday. So over the course of the week, Bo-
jan’s forecast is more accurate than Ankita’s. Bojan is perfectly accurate on 6 days, and
off by 1 on Thursday. Ankita is perfectly accurate on 5 days, and gets an inaccuracy
score of 0.752 = 0.5625 on Wednesday and Thursday, which adds up to more than Bo-
jan’s inaccuracy. But this feels wrong. There is a crucial question that Ankita was right
about and Bojan was wrong about, namely will there be a storm in the middle of the
week. Ankita’s forecast only looks less accurate because we aren’t measuring accuracy
with respect to this question. So even when we aren’t concerned with magical cases like
Greaves’s, there is a good reason to measure accuracy comprehensively, i.e., with respect
to an algebra or a partition.

2.2 Separateness of Propositions

There is a stronger version of the intuition behind the Imps case that we simply reject.
The intuition is well expressed by Selim Berker (2013a, 365, emphasis in original)

The more general point is this: when determining the epistemic status of
a belief in a given proposition, it is epistemically irrelevant whether or not
that belief conduces (either directly or indirectly) toward the promotion
of true belief and the avoidance of false belief in other propositions beyond
the one in question.

Let’s put that to the test by developing the Ankita and Bojan story a little further. They
have decided to include, in the next week’s forecast, a judgment on the credibility of
rain. Bojan thinks the evidence is rather patchy. And he has been reading Glenn Shafer
(1976), and thinks that when the evidence is patchy, credences in propositions and their
negations need not add to 1. So if p is the proposition It will rain next week, Bojan has
a credence of 0.4 in both p and ¬p.

Ankita thinks that’s crazy, and suggests that there must be something deeply wrong
with the Shafer-based theory that Bojan is using. But Bojan is able to easily show that
the common arguments against Shafer’s theory are blatantly question begging (Maher
1997; Weatherson 1999). So Ankita tries a new tack. She has been reading Joyce (1998),
from which she got the following idea. She argues that Bojan will be better off from the
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point of view of accuracy in having credence 0.5 in each of p and ¬ p than in having
credence 0.4 in each. As it stands, one of Bojan’s credences will be off by 0.4, and the
other by 0.6, for a Brier score of (0.42 + 0.62)/2 = 0.26, whereas switching would give
him a Brier score of (0.52 + 0.52)/2 = 0.25.

But Bojan resists. He offers two arguments in reply.
First, he says, for all Ankita knows, one of his credences might be best responsive to

the evidence. And it is wrong, always and everywhere, to change a credence away from
one that is best supported by the evidence in order to facilitate an improvement in global
accuracy. That, says Bojan, is a violation of the “separateness of propositions” (Berker
2013a).

Second, he says, even by Ankita’s accuracy-based lights, this is a bad idea. After all,
he will be making one of his credences less accurate in order to make an improvement
in global accuracy. And that’s again a violation of the separateness of propositions. It’s
true that he won’t be making himself more inaccurate in one respect so as to secure
accuracy in another, as in the bribes case. But he will be following advice that is mo-
tivated by the aim of becoming, in total, more accurate, at the expense of accuracy for
some beliefs.

We want to make two points in response. First, if the general point that Berker offers
is correct, then these are perfectly sound replies by Bojan. Although Bojan is not literally
in a bribe case, like Emily, he is being advised to change some credences because the
change will make his overall credal state better, even if it makes it locally worse in one
place. It does not seem to matter whether he can identify which credence gets made
worse. Berker argues that the trade offs that epistemic consequentialism makes the same
mistake ethical consequentialism makes; it authorises inappropriate trade-offs. But in
the ethical case, it doesn’t matter whether the agent can identify who is harmed by the
trade-off. If it is wrong to harm an identifiable person for the greater good, it is wrong
to harm whoever satisfies some description in order to produce the greater good.

So if the analogy with anti-consequentialism in ethics goes through, Bojan is justified
in rejecting Ankita’s advice. After all there is, according to Berker, a rule against making
oneself doxastically worse in one spot for the gain of an overall improvement. And that’s
what Bojan would do if he took Ankita’s advice. But, we say, Bojan is not justified in
rejecting Ankita’s advice. In fact, Ankita’s advice is sound advice, and Bojan would do
well to take it. So Berker’s general point is wrong.

Our second point is a little more contentious. We suspect that if Bojan has a good
reason to resist this move of Ankita’s, he has good reason to resist all attacks on his
Shafer-based position. So if Berker’s general point is right, it means there is nothing
wrong with Bojan’s anti-probabilist position. Now we haven’t argued for this; to do so
would require going through all the arguments for probabilism and seeing whether they
can be made consistent with Berker’s general point. But our suspicion is that none of
them can be, since they are all arguments that turn on undesirable properties of global
features of non-probabilistic credal states. So if Berker is right, probabilism is wrong,
and we think it is not wrong.
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2.3 Is this Consequentialism?

So far we’ve acquiesed with the general idea that Greaves’s and Berker’s target should be
called consequentialism. But there are reasons to be unhappy with this label. In general,
a consequentialist theory allows agents to make things worse in the here and now, in
return for future gains. A consequentialist about prudential decision making, in the
sense of Hammond (1988), will recommend exercise and medicine taking. And they
won’t be moved by the fact that the exercise hurts and the medicine is foul-tasting. It is
worth sacrificing the welfare of the present self for the greater welfare of later selves.

Nothing like that is endorsed, as far as we can tell, by any of the existing ‘epistemic
consequentialists’. Certainly the argument that Ankita offers Bojan does not rely on
this kind of reasoning. In particular, epistemic consequentialists do not say that it is
better to make oneself doxastically worse off now in exchange for greater goods later.
Something like that deal is offered to the reader of Descartes (1641/1996), but it isn’t
as popular nowadays.

Rather, the rule that is endorsed is Right now, have the credences that best track the
truth! This isn’t clearly a form of consequentialism, since it really doesn’t care about
the consequences of one’s beliefs. It does say that it is fine to make parts of one’s doxas-
tic state worse in order to make the whole better. That’s what would happen if Bojan
accepted Ankita’s advice. But that’s very different from doing painful exercise, or drink-
ing unpleasant medicine. (Or, for that matter, to withdrawing belief in any number of
truths.)

When Greaves tries to flesh out epistemic consequentialism, she compares it to ev-
idential and causal versions of prudential decision theory. But it seems like the right
comparison might be to something we could call constitutive decision theory. The core
rule, remember, is that agents should form credences that constitute being maximally
accurate, not that cause them to be maximally accurate.

The key point here is not the terminological one about who should be called conse-
quentialist. Rather, it is that the distinction between causation and constitution is very
significant here, and comparing epistemic utility theory to prudential utility theory can
easily cause it to be lost. Put another way, we have no interest in defending someone
who wants to defend a causal version of epistemic utility theory, and hence thinks it
could be epistemically rational to be deliberately inaccurate now in order to be much
more accurate tomorrow. We do want to defend the view that overall accuracy right
now is a prime epistemic goal.

2.4 Other Bribes

As already noted, we have not offered a general purpose response to bribery based ob-
jections to epistemic consequentialism. All we’ve shown is that some popular examples
of this form of objection misfire, because they offer bribes that are bad by the conse-
quentialists’ own lights. But there could be bribes that are immune to our objection.

For example, imagine that Ankita has, right now, with credence 0.9 inD0, and 0.5 in
D1. These are good credences to have, since she knows those are the chances of D0 and
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D1. She’s then offered an epistemic bribe. If she changes her credence in D0 to 0.91,
the chance of D1 will become 1, and she can have credence 1 in D1. Taking this bribe
will increase her accuracy.

We could imagine the anti-consequentialist arguing as follows.
1. If epistemic consequentialism is true, Ankita is epistemically justified in accept-

ing this bribe.
2. Ankita is not epistemically justified in accepting this bribe.
3. So, epistemic consequentialism is not true.

We’re not going to offer a reply to this argument here; that is a task for a much longer
paper. There are some reasons to resist premise one. It isn’t clear that it is conceptu-
ally possible to accept the bribe. (It really isn’t clear that it is practically possible, but
we’re not sure whether that’s a good reply on the part of the consequentialist.) And it
isn’t clear that the argument for premise one properly respects the distinction between
causation and constitution we described in the last section.

Even if those arguments fail, the intuitive force of premise two is not as strong as the
intuition behind Greaves’s, or Berker’s, anti-bribery intuitions. And that’s one of the
main upshots of this paper. It’s commonly thought that for the consequentialist, in
any field, everything has its price. The result we proved at the end of section one shows
this isn’t true. It turns out that no good epistemic consequentialist should accept a
bribe that leads them to believing an atomic proposition they have conclusive evidence
is false, no matter how strong the inducements. Maybe one day there will be a convinc-
ing bribery based case that epistemic consequentialism is unacceptably corrupting of
the epistemic soul. But that case hasn’t been made yet, because we’ve shown a limit on
how corrupt the consequentialist can be.

Appendix: Proofs of Theorems 1, 2, 3

Theorem-1 BrierA (c, @) = 𝛮
4 BrierS (c, @) where

BrierS (c, @) = ∑𝑠∈S (@(𝑠) − 𝑐(𝑠))2
𝛮

To prove this we rely on a series of lemmas.
Let A be the algebra generated by a finite partition of states S = {𝑠1, 𝑠2, … , 𝑠𝛮}. @

is a truth-value assignment for propositions in A . For simplicity, assume 𝑠1 is the true
state, so that @(𝑠1) = 1 and @(𝑠𝑛) = 0 for 𝑛 > 1. The credence function c assigns values
of 𝑐1, 𝑐2, … , 𝑐𝛮−1, 𝑐𝛮 to the elements of S , where ∑𝛮

𝑛=1 𝑐𝑛 = 1 in virtue of coherence.
It will be convenient to start by partitioning A into four “quadrants”. Let 𝛣 range

over all disjunctions with disjunctions drawn from B = {𝑠2, 𝑠3, … , 𝑠𝛮−1} (including the
empty disjunction, i.e., the logical contradition ⊥). Then, A can be split into four dis-
joint parts:

• A1 = {𝛣 ∨ 𝑠1 ∨ 𝑠𝛮 ∶ 𝛣 a disjunction of the elements of B}
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• A2 = {𝛣 ∨ 𝑠1 ∶ 𝛣 a disjunction of the elements of B}
• A3 = {𝛣 ∨ 𝑠𝛮 ∶ 𝛣 a disjunction of the elements of B}
• A4 = {𝛣 ∶ 𝛣 a disjunction of the elements of B}

Notice that:
• A1 ∪A2 contains all and only the true propositions in A .
• A3 ∪A4 contains all and only the false propositions in A .
• A1 and A4 are complementary sets, i.e., all elements of A4 are negations of

elements of A1, and conversely.

• A2 and A3 are also complementary.
• A1 ∪A4 is the subalgebra of A generated by {𝑠1 ∨ 𝑠𝛮, 𝑠2, 𝑠3, … , 𝑠𝛮−1}.

All four quadrants have the same cardinality of 2𝛮−2.
For an additive scoring rule I(c, @) = ∑𝛢∈A i(c(𝛢), @(𝛢)) and 𝑗 = 1, 2, 3, 4, define

I𝑗 = ∑𝛢∈A𝑗
i(c(𝛢), @(𝛢)), and note that I(c, @) = 2−𝛮(I1 + I2 + I3 + I4).

Lemma-1.1 If I is negation symmetric, i.e., if i(c(¬𝛢),@(¬𝛢)) = i(c(𝛢), @(𝛢)) for all 𝛢,
then I1 = I4 and I2 = I3, and I(c, @) = 21−𝛮(I2 + I4).

Proof
This is a direct consequence of the fact that A1 is complementary to A4 and that A2 is
complementary to A3 since this allows us to write

I1(c, @) = ∑
𝛢∈A1

i(c(𝛢), @(𝛢)) = ∑
𝛢∈A1

i(c(¬𝛢),@(¬𝛢)) = I4(c, @).

I3(c, @) = ∑
𝛢∈A3

i(c(𝛢), @(𝛢)) = ∑
𝛢∈A3

i(c(¬𝛢),@(¬𝛢)) = I2(c, @). QED

Applying Lemma 1.1 with I = Brier we get
(#) BrierA (c, @) = 21−𝛮 ∑

𝛢∈A
(@(𝛢) − 𝑐(𝛢))2

= 21−𝛮∑
𝛣
[(1 − 𝑐1)2 − 2(1 − 𝑐1)c(𝛣) + c(𝛣)2]

since
Brier2 = ∑

𝛣
[1 − c(𝛣 ∨ 𝑠1)]2 = ∑

𝛣
[(1 − 𝑐1) − c(𝛣)]2

= ∑
𝛣
[(1 − 𝑐1)2 − 2(1 − 𝑐1)c(𝛣) + c(𝛣)2]

Brier4 = ∑
𝛣
c(𝛣)2

Lemma-1.2

(
𝛮−1
∑
𝑛=2

𝑐𝑛)2 =
𝛮−1
∑
𝑛=2

𝑐𝑛2 + 2
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗
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Proof by induction. Easy.

Lemma-1.3

BrierS (c, @) = 2
𝛮[(1 − 𝑐1)2 +

𝛮−1
∑
𝑛=2

𝑐𝑛2 − (1 − 𝑐1)(
𝛮−1
∑
𝑛=2

𝑐𝑛) +
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗]

Proof
Using the definition of the Brier score and the fact that 𝑠1 is true, we have

BrierS (c, @) = 1
𝛮[(1 − 𝑐1)2 +

𝛮−1
∑
𝑛=2

𝑐𝑛2 + (1 −
𝛮−1
∑
𝑛=1

𝑐𝑛)2]

= 1
𝛮[(1 − 𝑐1)2 +

𝛮−1
∑
𝑛=2

𝑐𝑛2 + ((1 − 𝑐1) −
𝛮−1
∑
𝑛=2

𝑐𝑛)2]

= 1
𝛮[(1 − 𝑐1)2 +

𝛮−1
∑
𝑛=2

𝑐𝑛2 + (1 − 𝑐1)2 − 2(1 − 𝑐1)
𝛮−1
∑
𝑛=2

𝑐𝑛 + (
𝛮−1
∑
𝑛=2

𝑐𝑛)2]

= 1
𝛮[(1 − 𝑐1)2 +

𝛮−1
∑
𝑛=2

𝑐𝑛2 + (1 − 𝑐1)2 − 2(1 − 𝑐1)
𝛮−1
∑
𝑛=2

𝑐𝑛

+
𝛮−1
∑
𝑛=2

𝑐𝑛2 + 2
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗] (Lemma-1.2)

Then grouping like terms and factoring out 2 yields the desired result. QED

Lemma-1.4
𝛮−1
∑
𝑛=2

𝑐𝑛 = 23−𝛮 ∑
𝛣∈B

c(𝛣)

Proof
For each 𝑛 = 2, 3, … ,𝛮−1, each 𝑠𝑛 appears in half of the 2𝛮−2 disjunctions with disjuncts
drawn from B. As a result, each 𝑐𝑛 appears as a summand 2𝛮−3 times among the sums
that express the various c(𝛣). So ∑𝛣∈B c(𝛣) = 2𝛮−3∑𝛮−1

𝑛=2 𝑐𝑛. QED

Lemma-1.5

∑
𝛣∈B

c(𝛣)2 = 2𝛮−3[
𝛮−1
∑
𝑛=2

𝑐𝑛2 +
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗]

Proof
We proceed by induction starting with the first meaningful case of 𝛮 = 4, where calcu-
lation shows∑𝛣 c(𝛣)2 = (𝑐2+𝑐3)2+𝑐22+𝑐32 = 2[𝑐22+𝑐32+𝑐2𝑐3]. Now, assume the identity
holds for disjunctions 𝛣 of elements of B and show that it holds for disjunctions 𝛢 of
elements of B ∪ {𝑠𝛮}.
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∑
𝛢
c(𝛢)2 = ∑

𝛣
c(𝛣)2 +∑

𝛣
c(𝛣 ∨ 𝑠𝛮)2

= ∑
𝛣
c(𝛣)2 +∑

𝛣
(c(𝛣)2 + 2𝑐𝛮c(𝛣) + 𝑐𝛮2)

= 2∑
𝛣
c(𝛣)2 + 2𝑐𝛮∑

𝛣
c(𝛣) +∑

𝛣
𝑐𝛮2

= 2 ⋅ 2𝛮−3[
𝛮−1
∑
𝑛=2

𝑐𝑛2 +
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗] + 2𝑐𝛮∑
𝛣
c(𝛣) +∑

𝛣
𝑐𝛮2 (Induction Hypothesis)

= 2𝛮−2[
𝛮−1
∑
𝑛=2

𝑐𝑛2 +
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗] + 2𝛮−2𝑐𝛮
𝛮−1
∑
𝑛=2

𝑐𝑛 +∑
𝛣
𝑐𝛮2 (Lemma-1.4)

= 2𝛮−2[
𝛮−1
∑
𝑛=2

𝑐𝑛2 +
𝛮−2
∑
𝑛=2

𝛮−1
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗] + 2𝛮−2𝑐𝛮
𝛮−1
∑
𝑛=2

𝑐𝑛 + 2𝛮−2𝑐𝛮2 Since |B| = 2𝛮−2

= 2𝛮−2[
𝛮
∑
𝑛=2

𝑐𝑛2 +
𝛮−1
∑
𝑛=2

𝛮
∑
𝑗>𝑛

𝑐𝑛𝑐𝑗] QED

Plugging the results of the last two lemmas into Lemma-1.3 produces a result of

BrierS (c, @) = 2
𝛮[(1 − 𝑐1)2 + 23−𝛮 ∑

𝛣∈B
c(𝛣)2 − 23−𝛮(1 − 𝑐1) ∑

𝛣∈B
c(𝛣)]

= 2
𝛮 ∑

𝛣∈B
[22−𝛮(1 − 𝑐1)2 + 23−𝛮c(𝛣)2 − 23−𝛮(1 − 𝑐1)c(𝛣)]

= 23−𝛮
𝛮 ∑

𝛣∈B
[(1 − 𝑐1)2 + 2c(𝛣)2 − 2(1 − 𝑐1)c(𝛣)]

Comparing this to (#) we see that it is just 𝛮
4 times BrierS (c, @), as we aimed to prove.

QED.

Theorem-2 When inaccuracy over A is measured using the Brier score, the least accu-
rate credal states are those which assign credence 1 to some false atom of A .

Proof
As before, suppose that@(𝑠1) = 1, and let c be a credence function that assigns credence
1 to some false atom 𝑠2, 𝑠3, ..., 𝑠𝛮 of A . In light of Theorem-1 it suffices to show that
BrierS (c, @) > BrierS (b, @) where b does not assign credence 1 to any false atom.
Start by noting that for any credence function 𝜋 defined on the atoms of A one has

BrierS (𝜋, @) = 1
𝛮[(1 − 𝜋1)2 +

𝛮−1
∑
𝑛=2

𝜋𝑛2 + (1 −
𝛮−1
∑
𝑛=1

𝜋𝑛)2]

= 1
𝛮[1 − 2𝜋1 +

𝛮−1
∑
𝑛=1

𝜋𝑛2 + (1 −
𝛮−1
∑
𝑛=1

𝜋𝑛)2]

But, since each 𝜋𝑛 ∈ [0, 1] is non-negative, it follows that 𝜋1 ≥ 𝜋12, 𝜋2 ≥ 𝜋22, … , 𝜋𝛮 ≥ 𝜋𝛮2

with the inequality strict in each case unless 𝜋𝑛 is either 1 or 0.
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This means that the sum ∑𝛮−1
𝑛=1 𝜋𝑛2 + (1 − ∑𝛮−1

𝑛=1 𝜋𝑛)2 is less than or equal to 1, with
equality if and only if exactly one of the atoms 𝑠𝑛 is assigned probability 1 (and the rest
have probability zero). As a result, BrierS (𝜋, @) ≤ 2

𝛮 (1 − 𝜋1) with equality if and only
if exactly one of the atoms 𝑠𝑛 is assigned probability 1. So, there are three relevant cases:

• If 𝜋 assigns some false atom probability 1, BrierS (𝜋, @) = 2
𝛮 ⋅ (1 − 0) = 2

𝛮 .
• If 𝜋 assigns the true atom probability 1, BrierS (𝜋, @) = 2

𝛮 ⋅ (1 − 1) = 0.
• If 𝜋 does not assign any atom probability 1, BrierS (𝜋, @) < 2

𝛮 ⋅ (1 − 𝑐1) ≤ 2
𝛮 .

So, since c fits case (i) and b fits case (ii) or (iii) we have the desired result. QED
Theorem-3 Let A be an algebra of propositions generated by atoms 𝑎1, ..., 𝑎2𝛮, where

𝑎1 is the truth. Let p and 𝑄 be probability functions defined on A . p assigns
all its mass to the first 𝛮 atoms, so that 𝛲(𝑎1 ∨ ⋯ ∨ 𝑎𝛮) = 1, and it also assigns
some positive probability to 𝑎1. 𝑄 assigns all its mass to the false atom 𝑎2𝛮, so
that 𝑄(𝑎2𝛮) = 1. Then, for any proper score I satisfying Truth-directedness, Ex-
tensionality and Negation Symmetry we have I(𝑣1, 𝛲) < I(𝑣1, 𝑄) where 𝑣1 is the
truth-value assignment associated with 𝑎1 (i.e., where 𝑣1(𝛸) = 1 if and only if 𝑎1
entails x).

Proof
We can divide the algebra A into four quadrants

A 1 = {𝛸 ∈ A ∶ 𝑎1 ⊨ 𝛸 and 𝑎2𝛮 ⊨ 𝛸}
A 2 = {𝛸 ∈ A ∶ 𝑎1 ⊨ 𝛸 and 𝑎2𝛮 ⊭ 𝛸}
A 3 = {𝛸 ∈ A ∶ 𝑎1 ⊭ 𝛸 and 𝑎2𝛮 ⊨ 𝛸}
A 4 = {𝛸 ∈ A ∶ 𝑎1 ⊭ 𝛸 and 𝑎2𝛮 ⊭ 𝛸}

We know the following:
• 𝑄 is maximally accurate on A 1 ∪ A 4. Every proposition in A 1 is true, and 𝑄

assigns it a probability of 1. Every proposition in A 4 is false, and 𝑄 assigns it a
probability of 0.

• 𝑄 is maximally inaccurate on A 2 ∪A 3. Every proposition in A 2 is true, and 𝑄
assigns it a probability of 0. Every proposition in A 3 is false, and 𝑄 assigns it a
probability of 1.

• p is maximally accurate on A 3 ∪A 4. Every proposition in A 3 ∪A 4 is false, and
p assigns it a probability of 0.

• Each quadrant has 22𝛮−2 elements.
Lemma-3.1 When 𝑎1 is true, the accuracy score of p over the propositions in A 1 is iden-

tical to the accuracy score of p over the propositions in A 2.
Proof
Note first that the function 𝐹 ∶ A 1 → A 2 that takes x to 𝛸 ∧ ¬𝑎2𝛮 is a bijection of A 1
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onto A 2. Since every proposition in A 1 ∪A 2 is true, we can then write the respective
accuracy scores of A 1 and A 2 as

IA 1 (𝑎1, 𝛲) = 22−2𝛮 ⋅ ∑
𝛸∈A 1

I(1, 𝛲(𝛸))

IA 2 (𝑎1, 𝛲) = 22−2𝛮 ⋅ ∑
𝛸∈A 1

I(1, 𝛲(𝛸 ∧ ¬𝑎2𝛮))

Note: x ranges over A 1 in both summations. But since 𝛲(𝑎2𝛮) = 0 we have 𝛲(𝛸) =
𝛲(𝛸∧𝑎2𝛮) for each x in A 1. Since I is extensional, this means that I(1, 𝛲(𝛸)) = I(1, 𝛲(𝛸∧
𝑎2𝛮)) for each x in A 1. And, it follows that IA 1 (𝑎1, 𝛲) and IA 2 (𝑎1, 𝛲) are identical.
(Note that even if 𝛲(𝑎2𝛮) > 0, Truth-directedness entails that IA 1 (𝑎1, 𝛲) < IA 2 (𝑎1, 𝛲).)

Lemma-3.2 When 𝑎1 is true, the accuracy score of𝑄 over A 2 is identical to the accuracy
score of 𝑄 over A 3.

Proof
To see this, note first that the function 𝐺 ∶ A 2 → A 3 that takes x to 𝐺(𝛸) = ¬𝛸 is a
bijection (i.e., the negation of everything in A 2 is in A 3 and vice-versa). This, together
with the fact that A 2 contains only truths and A 3 contains only falsehoods, lets us
write

IA 2 (𝑎1, 𝑄) = 22−2𝛮 ⋅ ∑
𝛸∈A 2

I(1, 𝑄(𝛸))

IA 3 (𝑎1, 𝑄) = 22−2𝛮 ⋅ ∑
𝛸∈A 2

I(0, 𝑄(¬𝛸))

But since I is negation symmetric, I(1, 𝑄(𝛸)) = I(0, 𝑄(¬𝛸)) for every x, which means
that IA 2 (𝑎1, 𝑄) = IA 3 (𝑎1, 𝑄). (Note that this proof made no assumptions about 𝑄
except that it was a probability.)

Lemma-3.3 If𝛲(𝑎1) > 0, the accuracy score of p over A 2 is strictly less than the accuracy
score of 𝑄 over A 2.

Proof
Since 𝑄(𝛸) = 0 everywhere on A 2 we have

IA 2 (𝑎1, 𝛲) = 22−2𝛮 ⋅ ∑
𝛸∈A 2

I(1, 𝛲(𝛸))

IA 2 (𝑎1, 𝑄) = 22−2𝛮 ⋅ ∑
𝛸∈A 2

I(1, 0)

But, by Truth Directedness I(1, 0) > I(1, 𝛲(𝛸)) since 𝛲(𝑎1) > 0 implies that 𝛲(𝛸) > 0 for
all 𝛸 ∈ A 2. Thus IA 2 (𝑎1, 𝑄) > IA 2 (𝑎1, 𝛲).

To complete the proof of the theorem we need only note that
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IA (𝑎1, 𝛲) =
IA 1 (𝑎1, 𝛲)

4 + IA 2 (𝑎1, 𝛲)
4 (since 𝛲 is perfect on A 3 ∪A 4)

= IA 2 (𝑎1, 𝛲)
2 Lemma-3.1

< IA 2 (𝑎1, 𝑄)
2 Lemma-3.3

= IA 2 (𝑎1, 𝑄)
4 + IA 3 (𝑎1, 𝑄)

4 Lemma-3.2
= IA (𝑎1, 𝑄) (since 𝑄 is perfect on A 1 ∪A 4)
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