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SCIENCE FOR SOCIETY To mitigate climate change and safeguard ecosystems, we now more than ever
require drastic change in behavior patterns. An urgent challenge is for humans to collectively adopt pro-
environmental habits, including sustainable consumption and transport behaviors. However, there is
only so much that individuals can do if sufficient opportunities for behaving sustainably do not exist.
Therefore, we must understand how pro-environmental behaviors emerge systemically as a product
of infrastructural, social, and individual factors. Using an agent-based model—a computational method
for simulating interactions between individuals and environments—we illustrate how providing opportu-
nities for pro-environmental behaviors (such as cycling infrastructure) can lead to the rapid adoption of
sustainable habits (e.g., cycling). Our results are relevant for urban designers and policy makers given
that we illustrate how even minor changes in everyday environments can trigger longstanding behavioral
change.
SUMMARY

To reach sustainability transitions, we must learn
to leverage social systems into tipping points,
where societies exhibit positive-feedback loops in
the adoption of sustainable behavioral and cultural
traits. However, much less is known about the
most efficient ways to reach such transitions or
how self-reinforcing systemic transformations
might be instigated through policy. We employ an
agent-based model to study the emergence of
social tipping points through various feedback
loops that have been previously identified to
constitute an ecological approach to human
behavior. Our model suggests that even a linear
introduction of pro-environmental affordances (ac-
tion opportunities) to a social system can have
non-linear positive effects on the emergence of
collective pro-environmental behavior patterns.
We validate the model against data on the evolu-
tion of cycling and driving behaviors in Copenha-
gen. Our model gives further evidence and justifi-
cation for policies that make pro-environmental
behavior psychologically salient, easy, and the
path of least resistance.
One Earth 2, 85–97, Ja
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INTRODUCTION

From decades of research in social and ecological psychology,

cognitive science, ecology, and cultural evolution, we know

this much about human behavior: our niche affords varieties of

behaviors;1–4 behaviors modulate personal states, such as

habits, skills, or attitudes;3,5,6 personal states influence behav-

iors;6,7 behaviors alter environments;3,8,9 and behaviors are so-

cially learned and transmitted.10,11

However, what seems much less understood is how all these

processes work in tandem to shape the evolution of socio-cul-

tural and socio-ecological systems. Understanding this is impor-

tant given that we require systemic change in human behaviors,

cultures, and habits to reach the Sustainable Development

Goals, to mitigate climate change, and to guard biodiversity

and the ecosystems we inhabit.2,12 Given the widespread de-

mand for sustainable systemic change, particularly in the social

and political sciences, it is curious how little is understood about

how to instigate non-linear systemic change by means of envi-

ronmental or urban policy and design. If we wish to reach social

tipping points in the adoption of sustainable behaviors, we argu-

ably need to better understand the mechanisms of their emer-

gence. Formal models can be useful in exploring these

mechanisms.12

Reaching social tipping points is an elusive yet imperative

target. Often the assumption appears to be that whatever

instigates this transition should roughly follow an S-shaped
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curve:13 we should reach peak emissions as soon as possible,

follow this with an increasingly fast decarbonization or phase-

out, and then arrive at a new phase state bymid- to late 21st cen-

tury. Or alternatively, we should adopt new sustainable habits or

technologies at an accelerating rate until we reach a sustainable

state of behavior.

Recently, it has been proposed that the design of pro-environ-

mental affordances (action opportunities) could present us with

an efficient leverage point to reaching tipping points in social

systems and that affordances can induce positive-feedback

loops in the collective adoption of behaviors.2,14 We define affor-

dances here as the behavioral opportunities afforded by the

environment to an organism (e.g., bicycles and bicycle lanes

afford cycling; see Model Assumptions). Therefore, our motiva-

tion is to study how the introduction of pro-environmental affor-

dances to a social system can have non-linear effects on the col-

lective adoption of sustainable behavioral patterns. This is a

politically important objective because illustrating how the intro-

duction of environmentally friendly infrastructures can trigger so-

cial tipping points gives further justification for investing into the

design of urban and everyday environments that make pro-envi-

ronmental behavior psychologically salient, easy, and the ‘‘the

path of least resistance and the default form of life.’’2 Although

predicting where or when pro-environmental tipping points

emerge remains a difficult, if not impossible,15 task, if we ever

wish to reach them, it is important to understand the mecha-

nisms underlying their emergence.

The research questions of this article are, where do the (polit-

ically feasible) leverage points lie in tipping collective behavioral

patterns of a social system from one state to another, and more

specifically, how can the composition of the ‘‘landscape of affor-

dances’’4 of a socio-ecological niche affect the evolution and

emergence of collective behavioral patterns? The landscape of

affordances simply means the set of affordances available in

an ecological niche4 (see Environment Affords Behavior).

Our methodological approach is agent-based modeling. We

argue that agent-based modeling is particularly suitable for

dealing with our research questions given that agent-based

models (ABMs) by definition are used to model agent-agent

and agent-environment interactions and their evolution over

time.16 Our conceptual model also includes other characteristics

particularly suitable for ABMs, such as heterogeneous popula-

tions and emergent collective behaviors arising from simple in-

teractions.16,17 Agent-based modeling has become a standard

method for studying complex, dynamical, and adaptive sys-

tems,16,17 presenting social and behavioral scientists with new

avenues for studying human and social behavior from systems

perspectives. We use NetLogo, a ‘‘low-threshold and no-ceiling’’

modeling software,18 for modeling.

ABMs have previously been employed in studying the adop-

tion of various sustainable behaviors and attitudes,19 including

models of norm transmission and evolution,20,21 recycling,22

traffic and transport,23–25 farming,26 energy and risk manage-

ment,27,28 and psychology.29,30 Our contribution to this rapidly

developing field is in developing a holistic systemic approach

to the emergence of behavior as a subtle function of social, indi-

vidual, and environmental factors by focusing explicitly on the

emergent leverage points and tipping points. Our model illus-

trates both how system-level emergent phenomena constrain
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and enable individual and group behaviors and how individual

and group behaviors can shape these constraints and affordan-

ces. Our results are relevant for urban designers and other policy

makers interested in instigating collective pro-environmental

patterns of behavioral change.

Here, we propose a dynamical and complex systems

approach to the study of the cultural evolution of human behav-

iors. We develop an ABM to illustrate how self-reinforcing cul-

tures of behavior can emerge from five interconnected pro-

cesses, which together form an ‘‘ecology of human behavior,’’

as hypothesized by Kaaronen.2 First, ecological information in

a physical and socio-cultural environment specifies affordances

or psychologically salient opportunities for behavior. Second,

behavior modulates the personal states of humans through pro-

cesses of individual learning and habituation. Third, personal

states—such as habits, intentions, and attitudes—shape

behavior. Fourth, behavior alters the environment in non-random

ways through processes of cultural niche construction. Fifth and

finally, all behaviors occur in a social network and result in social

learning and transmission (through, e.g., teaching or copying).

Together, these five processes form a dynamical system, or ‘‘a

system whose behavior evolves or changes over time.’’31 We

expand Kurt Lewin’s equation (Equation 1),32 a classic heuristic

formula in social psychologywhere behavior (B) is a function (f) of

the person (P) and their environment (E), to include the aforemen-

tioned five feedback loops. See Figure 1 and Table 1 for our con-

ceptual model. Our approach allows us to study a social sys-

tem’s various leverage points, or ‘‘places in the system where

a small change could lead to large shift’’ in the system’s

behavior.33

Lewin
0
s equation : B = fðP; EÞ (Equation 1)

RESULTS

Overview
In this section, we present the results of our agent-based simu-

lations, where behavior is assumed to be an emergent function of

affordances, social learning, individual learning and habituation,

personal states, and niche construction (see Figure 1 and Table

1). In our model, agents move in a landscape of affordances

where they encounter either pro-environmental or non-environ-

mental affordances and act upon them (i.e., behave pro- or

non-environmentally; see Figure S17). Behaviors then lead to

the development of habits, social transmission (learning or

copying behaviors from others), and the modification of the

landscape of affordances (i.e., cultural niche construction). In

particular, we show how the composition of affordances in a

socio-ecological system, such as infrastructures that afford

pro-environmental behaviors, plays an essential role in shaping

collective behavioral patterns. Our model illustrates how even

linear increases in pro-environmental affordances can lead

to the non-linear adoption of collective pro-environmental

behavioral patterns. We refer the reader to the Experimental

Procedures for a thorough description of our model and its

multidisciplinary theoretical assumptions.

We proceed by first presenting an abstract version of the

model with parameter values set as defined in Table S3. These
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Figure 1. Conceptual Model

Elaboration on Lewin’s equation. The figure implements several known feedback loops. The couplings form a socio-ecological system of human behavior.
are arbitrary parameter values; most parameter values are set at

around halfway through the feasible parameter range, except

that the rates of social learning and individual learning are set

to values that reproduce macro-level output similarly to known

social-learning patterns (i.e., S-shaped curves11,45). The rate of

social learning is set slightly higher than that of individual learning

(see Social Learning andNetworks). Section Abstract Model Run

thus demonstrates the general characteristics and mechanisms

of the model by using abstract parameter values. In particular,

the abstract version of the model aids in understanding the

leverage points of the simulated system. We refer the reader to

the Experimental Procedures for a description of the ABM and

to the ODD Protocol and Sensitivity Analysis subsections (Fig-

ures S7–S16) of the Supplemental Experimental Procedures for

a more complete picture of how each parameter affects the

outcome of the model. See Table S2 for a list and definition of

the model’s parameters.

We then continue with empirical validation by fitting the

parameter values to reproduce real-world macro-level patterns.

We use the cultural evolution of cycling behaviors in Copenha-

gen as a case study. This empirical validation is intended to

ensure ‘‘that themodel generates data that can be demonstrated

to correspond to similar patterns of data in the real world.’’16

Abstract Model Run
We run themodel for 2,000 timesteps bymeasuring the variables

of interest (pro-environmental and non-environmental behaviors)

at the end of the model run (Figures 2 and 3) or producing time-

series data by following pro-environmental and non-environ-

mental behaviors at each timestep (Figure 4). We chose 2,000

timesteps as the arbitrary end of this model run given that this al-

lows for considerable changes in behavior with the chosen

parameter values (Table S3).

Figures 2A and 2B illustrate the end results of the model at

timestep 2,000. Here, the initial proportion of pro-environmental

affordances is varied from 0 to 1 with intervals of 0.01 and 30

simulation runs for each pro-amount value. This produces a total

of 3,030 simulation runs. To illustrate the effects of niche con-

struction (i.e., behavior altering the environment), Figure 2A plots

the results with both rates of niche construction set at 10 (which

corresponds to a 3% chance of niche construction following any
behavior), and Figure 2B plots the results without any niche

construction.

We can immediately notice that the system produces a tipping

point, or a phase transition, when the initial proportion of pro-

environmental affordances is around 0.5.When the initial propor-

tion of pro-environmental affordances is above 0.5, the propor-

tion of pro-environmental behaviors at the end of the model

run increases drastically and vice versa. It is quite intuitive to un-

derstand why this happens. When the affordances in the envi-

ronment bias the agents to behave in some way, this behavior

becomes more probable than the alternative. Because of social

learning and habituation, this bias in afforded behavior diffuses

through the social network, altering personal states of the

agents, modifying the environment through niche construction,

and thus triggering a positive-feedback loop. A linear increase

in affordances will have non-linear effects on the uptake of

pro-environmental behaviors.

This produces an S-shaped curve, where the initial composi-

tion of affordances has a non-linear effect on the outcome of

environmental behaviors (Figures 2A and 2B). Figure 3 produces

k-means clusters of the pro-environmental behaviors of Fig-

ure 2A. The cluster analysis illustrates how drastic the phase

transition from low to high proportions of pro-environmental

behavior is when the initial composition of affordances is altered.

The ellipses in Figure 3 contain roughly 95% of all data points.

Using global sensitivity analysis, Figure S15 illustrates how

robust this tipping point is. Here, 300 near-random samples of

parameter values are simulated (via Latin hypercube sam-

pling46), whereby each is run five times with varying random

seeds. Figure S15 thus illustrates that even when other parame-

ters are allowed to vary freely (within a predefined range; see

Table S1), the tipping point will emerge. This illustrates that in

the system of social behavior, the non-linear effect of affordan-

ces on behavioral patterns is robust.

Notice that the same cannot necessarily be said of the effect of

initial personal states on behavioral outcomes (Figure S16). For

instance, the red box in the lower right corner of Figure S16 high-

lights cases where the agents, despite initially having high pro-

environmental personal states, were mainly behaving non-envi-

ronmentally at the end of the model run. This is most likely due

to a lack of pro-environmental affordances, as well as the
One Earth 2, 85–97, January 24, 2020 87



Table 1. Model Assumptions

Description Causality Theories and Evidence (Non-exhaustive)

Ecological information specifies

a variety of opportunities for behavior,

or ‘‘affordances’’

E / B ecological psychology and affordance theory,1,4,34,35 behavior

field theory,35 and design theories36

Personal states affect behavior P / B theory of planned behavior,7 habituation,37 and capability

approach38

Behavior modulates personal states B / P habituation,37 individual (or asocial) learning,11,39 cognitive

dissonance and self-justification,5,40,41 and the foot-in-the-door

effect40

Behavior shapes the environment B / E niche construction and cultural niche construction9,10 and

cumulative cultural evolution42

Behavior occurs in a social network

with social learning, transmission,

and cognition

B(self) / P(others),

B(others) / P(self)

social learning,10,11,39 social cognition,43 spread of innovation in

social networks,44 group conformity and social norms,45 and

cumulative cultural evolution42

This table elaborates on Lewin’s equation (Equation 1), where behavior (B) is a function of person (P) and environment (E).
interference of other personal states on behavior. This is some-

what analogous to the attitude-action gap observed in environ-

mental behavior.2,47 Pro-environmental personal states do not

translate into pro-environmental behavior if there are no oppor-

tunities to do so, and environmental design might prove to be

a more reliable leverage point into pro-environmental behavioral

change than attempts at altering personal states.2

Figure 4 plots time-series data with the parameter values

specified in Table S3. Figures 4A and 4B plot the development

of pro-environmental behaviors when initial pro-environmental

affordances compose 50% of the affordance landscape. A total

of 300 simulations were run for each plot. Figure 4A plots the

data with niche construction, and Figure 4B plots them without

niche construction. With both plots, the mean proportion of

pro-environmental behavior remains stable over the model run.

However, notice how the standard deviations (shaded area) in-

crease with niche construction.

In Figures 4C and 4D the initial composition of pro-environ-

mental affordances is altered to 60%. The minor (10%) change

in the landscape of affordances has a drastic non-linear effect

on the adoption of pro-environmental behaviors. As described

above, this self-reinforcing process is mainly a product of social

learning and habituation induced by the alteration of the afford-

ance landscape.

Notice also how the curve in Figure 4C (with niche construc-

tion) is steeper than the curve in Figure 4D. Increases in niche

construction rates seem to hasten the self-reinforcing effect on

the adoption of behaviors.

Empirical Validation
Empirical validation (Figure 5), or testing that data produced by

an ABM correspond to ‘‘empirical data derived from the real-

world phenomenon,’’ is an important step in modeling.16 How-

ever, a common challenge with empirical validation is that ‘‘in-

puts and outputs in ‘the real world’ are often poorly defined or

nebulous.’’16 We acknowledge that this is the case with some

parameters of the present model: finding reliable empirically

grounded values for parameters such as the rates of social

learning, individual learning, and niche construction is difficult if

not impossible (see Discussion). However, regardless of this

important caveat, we maintain that illustrating that the model
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can produce macro-level patterns resemblant of real-world

data, with reasonable assumptions (see Experimental Proced-

ures), is an important step in assessing the validity of the model.

We use the case of bicycling and driving habits in the city cen-

ter of Copenhagen as a case study. Particularly since the 1990s,

Copenhagen has seen a rapid increase in the proportion of cy-

clists. This change in transport habits has earned Copenhagen

the title ‘‘City of Cyclists.’’48 This change has not come for free,

and it has been attributed not only to the emergence of a cycling

culture but also to heavy investment into cycling infrastructure,

such as cycling tracks, bridges, and a public bicycle scheme

introduced in 1995.48–50 Overall, Copenhagen has witnessed a

considerable increase in affordances for cycling: people are

increasingly satisfied with Copenhagen as a cycling city and

with bicycle parking opportunities, and the amount of cycling

tracks has increased considerably since the 1990s (Figure 6A).49

There have also been decreasing amounts of seriously injured or

killed cyclists, and in 2018, 77% of Copenhageners stated that

they felt safe while cycling in traffic.49

We use the case of cycling in Copenhagen to illustrate how our

model can produce realistic macro-level patterns of the evolu-

tion of pro-environmental behavior (cycling) and non-environ-

mental behavior (driving). Although, as noted, parametrization

is difficult, we know from available data that in 1970 driving

was about four times more common than bicycling, and in

2018 the number of cyclists seemed close to overtaking the

number of drivers (Figure 5A; data acquired from the City of Co-

penhagen through personal communication). The development

of cycling also seems to resemble a cumulative distribution

curve, which could indicate a strong presence of social learning

(which is entirely expected of a human society; see Social

Learning and Networks). We also know that affordances for

cycling in Copenhagen have increased nearly linearly over time

(see Figure 6A) and that the policy emphasis has been on con-

structing the environment to be cycle friendly.49,50

Using a genetic algorithm and manual tuning, we set the initial

parameter values of themodel as described in Table S4.We take

one timestep of the model to represent 1 day and set the total

model run to span 56 years or 20,440 timesteps (by assuming

365-day years). Although the model spans 56 years, it involves

only one generation of agents. This is a simplifying modeling



Figure 2. Pro- and Non-environmental

Behavior as a Function of Initial Affordances

Results at the end of the model run from a total of

3,030 simulations (for each plot) with varying

random seeds. The lines are smoothed condi-

tional means or LOESS (locally estimated scat-

terplot smoothing) regressions with (A) niche

construction and (B) without. Notice how the

curves of (A) are steeper than those of (B): niche

construction can amplify the positive-feed-

back loop.
choice that allows us not to deal with the thorny issue of how

cycling behaviors (or personal states) would be inherited through

generations. However, the model does include random muta-

tions of personal states, which could be interpreted to simulate

the random effects of intergenerational knowledge transfer (ver-

tical cultural transmission).

Figure 5B presents the results of 300 runs of the simulation. As

in real-world data (Figure 5A), at timestep 1 of the model run, the

proportion of cyclists is roughly one-fourth of the proportion of

drivers. However, as a result of feedback loops among pro-envi-

ronmental niche construction, social learning, and individual

learning, the proportion of cyclists rises at an accelerating rate,

eventually almost overtaking the number of vehicle drivers by

the year 2018 (or timestep 17,885). Although there is consider-

able variance between the model runs, the mean numbers of cy-

clists and drivers seem markedly similar to real-world patterns

from Copenhagen, even when the model is left unsupervised af-

ter initial configuration (as is done with each run).

To illustrate what a single model run might look like, we

manually selected a representative model run, illustrated in Fig-

ure 5C. Note, however, that many of the 300 model runs will

see either a faster or slower adoption of cycling and driving

habits (as indicated in Figure 5B). We allowed the simulations

of Figure 5B to project to the future, illustrating an ever-

increasing number of cyclists. However, we caution that this

is not a prediction for the development real-world patterns in

Copenhagen because obviously other major factors (many of

which are inherently unpredictable) might influence or hinder

this development. For instance, it has been speculated that

the extension of the metro line in Copenhagen might reduce

the number of daily cyclists.

Figure 5D depicts one factor that triggers the tipping point in

the Copenhagen simulation: the rate of pro-environmental niche

construction. It could be interpreted as suggesting that if the city

had invested less into the development of cycling infrastructure,

the accelerating rate of cyclists witnessed in the real-world data

might not have taken off nearly at the rate that it did. That is, the

composition of affordances over time, even if the development of

affordances is close to linear (see Figure 6A for real-world data

and Figure 6B for simulated data), can have non-linear self-rein-

forcing effects on the adoption of cycling behaviors.
DISCUSSION

If the assumptions of our model hold and

systems of human behavior portray all

five feedback processes defined in
the Introduction and Experimental Procedures, our model gives

further evidence for locating leverage points for collective pro-

environmental behavioral change.

In particular, our model illustrates how (evenminor) changes in

the landscape of affordances can trigger non-linear (S-shaped)

changes in collective behavioral patterns as a result of increased

action opportunities, habituation, and social learning. This

S-shape, or cumulative distribution curve, is known to signify

social-learning patterns: ‘‘Hundreds of studies conducted by

sociologists have repeatedly found that the spread of new tech-

nologies, practices, and beliefs follows an S-shaped cumulative

distribution curve.’’45

Giving people increased opportunities to behave pro-environ-

mentally can trigger a self-reinforcing feedback loop (recall Fig-

ure 1). Here, an increase in pro-environmental affordances leads

to increased pro-environmental behavior, whereby people

develop stronger pro-environmental habits, which in turn leads

to social learning and transmission of behaviors through social

networks, which might result in increased pro-environmental

niche construction (i.e., construction of pro-environmental affor-

dances), eventually reinforcing any existing habits and so on.

As illustrated by the case presented in our empirical validation,

a responsive government can greatly facilitate this process.

Designing urban environments to facilitate pro-environmental

behavior patterns can play a central part in triggering tipping

points in the adoption of pro-environmental behaviors, as has

arguably been the case with the evolution of cycling cultures in

Copenhagen (see Figures 5 and 6). Furthermore, our results sug-

gest that as a result of potential tipping points, the design of ur-

ban environments to facilitate pro-environmental behaviors

should continue even if the effects (i.e., adoption of pro-environ-

mental behaviors) are not initially obvious. This is because it

might only be after a certain threshold of affordances that the

accelerating adoption of behaviors takes place (Figure 2).

Because other potential leverage points, such as changes in

personal states, are less robust (Figure S16), ourmodel suggests

that tipping points in collective pro-environmental behaviors

might be most efficiently triggered by changes in the physical

form of environments. This is an interesting result because it is

arguably also the physical environment that urban designers,

policy makers, and other decision makers have most control
One Earth 2, 85–97, January 24, 2020 89



Figure 3. The Phase Transition

A k-means cluster plot of the pro-environmental behaviors of Figure 2A. El-

lipses contain roughly 95% of all data points. The axes are standardized

(standard deviations from the mean).
over, and leveraging environmentally significant behaviors by

means of communication or information campaigning has

proved to be notoriously difficult.2,51,52 Perhaps a more reason-

able information-oriented approach to collective behavioral

change would be through the redesign of ‘‘general ecological in-

formation’’34 or the information in our everyday environments

that specify the affordances within our niche (see Environment

Affords Behavior). Through habituation, social learning, and so-

cial transmission of behaviors, the form of the physical environ-

ment can have more definitive, long-lasting, and widespread ef-

fects on our behavior than might generally be assumed.

The results also highlight the role of cultural niche construction

in sustainability transitions. Whereas urban theorists such as

Christopher Alexander53 and Jane Jacobs54 have for long noted

the importance of self-organizing communities in the develop-

ment of lively and resilient cities, our model shows how

increasing the capacity of a society to construct its own niche

can hasten the adoption of pro-environmental behaviors. Thus,

letting communities evolve and self-organize can result in self-

reinforcing sustainable behavioral patterns if such a community

has pro-environmental personal states (note, however, that the

converse is true if the community does not have pro-environ-

mental personal states).

Overall, our model gives further justification for investment into

the design of pro-environmental affordances. This is important

given that many cities are currently considering investment into

infrastructures that facilitate pro-environmental behavior. Our

model suggests that making pro-environmental behavior as

easy as possible, the default option for behavior, and the path

of least resistancemight have long-lasting and non-linear effects

on the adoption of pro-environmental habits and effectively

trigger tipping points in the sustainable cultural evolution of a so-

cial system.
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Because of the large number of interconnected processes,

each aspect of the present model was intentionally kept at a

moderate level of complexity. This, we argue, keeps the model

in the so-called ‘‘Medawar zone’’17 of complexity: not too simple

(and thus neglecting essential mechanisms of the modeled sys-

tem) but not too complex (and so becoming cumbersome and

‘‘bogged down in detail’’). However, themodel is open for further

development and additions of more complex layers. These

could, for instance, include more elaborate psychological deci-

sion-making processes (including social cooperation or compe-

tition21) and a higher variety of affordances and behaviors.

However, aswe have stated above and as has been discussed

by many others,55–57 social scientific, cognitive, and psycholog-

ical theories often do not provide enough detail to unambigu-

ously specify algorithms to implement them. Even the same the-

ories can produce different modeling outcomes as a result of

variability in model architecture, choice of (numerical) represen-

tations, and empirical data or goals of the modeler, and minor

differences in decision making can be amplified in the interac-

tions of thousands of agents.56,57 As is generally the case with

complex systems, small changes in initial conditions can cause

large variance in emergent end results.57,58

Moreover, social and psychological theories might

altogether lack formal descriptions of mechanisms essential for

modeling.55 In the case of our model, precisely defining param-

eters such as the rate of niche construction poses particular

challenges—not the least because complexity scientists such

as Stuart Kauffman have suggested that the creative processes

through which human cultures alter their material and technolog-

ical world are fundamentally unpredictable and indescribable by

law-like algorithms.59 We acknowledge the need, where

possible, for collaboration in the development of formal struc-

tures for implementing social scientific and psychological the-

ories for ABMs, including systematic comparisons of models,55

and believe the present model could be refined in particular

through such interdisciplinary collaboration.

The model is also easily modified to include interactive ele-

ments, such as ‘‘policy buttons,’’ which could trigger discrete

changes in the landscape of affordances and personal states.

This could, we imagine, also be used for educational purposes

or co-creation with, e.g., policy makers or urban designers. We

also acknowledge that the model could be further developed

by the inclusion of other forms of empirical data, such as psycho-

logical data measured with surveys or geographical data60 (or

indeed both, e.g., with PPGIS61 approaches).

Conclusion
In conclusion, our ABM illustrates how changes in the composi-

tion of affordances (action opportunities) in our everyday envi-

ronments can trigger tipping points in the collective adoption

of pro-environmental behaviors. Even near-linear increases in

pro-environmental affordances can trigger the non-linear, self-

reinforcing adoption of pro-environmental behaviors. These

feedback loops emerge from the interconnected processes of

habituation, social learning, and niche construction. We interpret

this as giving further justification for the design and funding of

everyday environments where the affordances for pro-environ-

mental behavior are knowingly increased and thus make pro-

environmental behavior the path of least resistance.



Figure 4. Time-Series Data

Mean time-series data of 300 model runs (for each

plot) track the proportion of pro-environmental

behavior over time. In (A) and (B), initial pro-envi-

ronmental affordances are set at 50%. In (C) and (D),

initial pro-environmental affordances are set at

60%. Niche construction is shown in (A) and (C)

but not in (B) or (D). Shaded areas signify ±1 stan-

dard deviation. Lines are smoothed conditional

means (generalized additive model [GAM]).
EXPERIMENTAL PROCEDURES

Model Assumptions

In psychology one can begin to describe the whole situation [from

which behavior emerges] by roughly distinguishing the person (P)

and his environment (E). Every psychological event depends upon

the state of the person and at the same time on the environment,

although their relative importance is different in different cases. Thus

we can state our formula [...] asB = f(P, E). [...] Every scientific psychol-

ogy must take into account whole situations, i.e., the state of both per-

son and environment. This implies that it is necessary to find methods

of representing person and environment in common terms as parts of

one situation.32

The design of the model presented in the present paper expands on Kurt

Lewin’s equation (Equation 1).32 Therefore, it proposes a systems approach

to studying the emergence of behaviors by suggesting that, to explain

behavior, we must account for the whole situations from which behaviors

emerge.

Although it is a useful heuristic, Lewin’s conceptual model alone does not

provide enough detail for designing a reproducible formal computational

model. Therefore, our model draws on a variety of fields, ranging from evolu-

tionary ecology to cultural evolution to (social) psychology and cognitive sci-

ence, to introduce various levels of detail to Lewin’s equation. Namely, our

model elaborates Lewin’s model from a complex and dynamical systems

perspective, where the cultural evolution of behavior within a society is under-

stood as a product of several interconnected feedback loops. Thus, our model

adds several causal links to elaborate on Lewin’s formula (Table 1).

Thismodel design is influenced by dynamical systems approaches to cogni-

tion and behavior.3,31 That is, its focus is on studying how the human-environ-

ment system evolves over time and as a whole given ranges of initial condi-

tions. According to Chemero3 and Lewin,32 the model assumes that

focusing on only one of either personal states or the environment in insufficient

for describing the emergence of behavior:
Dynamical systems theory is especially appro-

priate for explaining cognition as interaction

with the environment because single dynam-

ical systems can have parameters on each

side of the skin. That is, we might explain

the behavior of the agent in its environment

over time as coupled dynamical systems [...]

It is only for convenience (and from habit)

that we think of the organism and environment

as separate; in fact, they are best thought of

as forming just one nondecomposable

system.3

Dynamical systems approaches to human

behavior are readily available in the fields of

ecological psychology1,3,35 and (radical)

embodied cognitive science.3 Moreover, dynam-

ical systems approaches to studying or modeling

systemic change12 and coupled human-nature

systems60 have been recently proposed in the
context of socio-ecological systems theories. However, ecological psychol-

ogy and cognitive science in particular have traditionally struggled with tak-

ing into account the social dimension.62 To remedy this, the present article

also models the dynamical human-environment system as a social one: no

behavior is truly private in a socially connected world where organisms

teach, copy, learn in social networks, and modulate their niche to shape

its affordances.10 The conceptual model underlying the ABM is illustrated

in Figure 1. In the following sections, the theoretical and methodological as-

sumptions of this model are elaborated (see Table 1 for a summary). For a

more detailed conceptual model, see Kaaronen.2

Environment Affords Behavior

For any active organism, the environment affords a variety of behaviors. In

ecological psychology, these opportunities for action have traditionally

been called ‘‘affordances.’’1,3,35 Affordances are commonly defined as

the relations between the abilities of animals to perceive and act and fea-

tures of the environment.3,63 That is, an affordance is the functional mean-

ing of an environment for an organism. A chair, for instance, affords the

function of sitting for humans, whereas a bicycle affords cycling. Affordan-

ces are specified to an organism through the availability of ecological in-

formation.1 Ecological information is ‘‘the set of structures and regularities

in the environment,’’ such as patterns of light or sound reflected by

the physical environment, ‘‘that allow an animal to engage with

affordances.’’34

It is important to emphasize that an affordance is a relational construct, or a

relation between capabilities and the environment.3 For instance, a bicycle

path will only afford bicycling for a person who knows how to cycle. The

basic logical structure of an affordance can therefore be defined as

‘‘affords-f (environment, organism), where f is a behaviour.’’63

Ecological psychologists have thus focused on the functional meaning of

environments for animals, particularly humans. A central tenet of ecological

psychology is that in our immediate experiential and phenomenological

world, we do not generally perceive our environment as functionally mean-

ingless. For instance, when we perceive a chair, we do not merely perceive
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Figure 5. Empirical Validation

Real-world and simulated data of cycling and

driving patterns in Copenhagen. Shown are (A) real-

world data from 1970 to 2018 and (B and C) simu-

lated time-series data, the latter of which have a

dashed vertical line at the year 2018. 300 simulation

runs with a ribbon of ±1 standard deviation are

shown in (B), and a single representative simulation

run, manually selected from (B), is shown in (C).

Results at year 2018 (timestep 17,885) when the rate

of niche construction is varied are illustrated in (D).

Lines in (B)–(D) are smoothed conditional means

(GAM). In (D), notice the phase transition between

niche construction rates of roughly 5 and 7, similar in

logic to the tipping point illustrated in Figures 2A

and 2B.
a static object; rather, we perceive an opportunity for sitting.64 In other

words, (some of) the primary things we perceive are affordances.1

Rietveld and Kiverstein4 have argued that humans inhabit a particularly rich

and resourceful ‘‘landscape of affordances.’’ That is, we have designed and

fitted our environments—urban environments in particular—with a large vari-

ety of opportunities for action. This notion of a landscape of affordances is

crucial for the presentmodel given that themodel’s grid (Figure S17) effectively

represents a landscape of affordances.

Recently, affordance theory has been applied particularly in assessing the

functional meaning of urban form, e.g., the provision of sustainable affordan-

ces in urban environments2,65 and the child friendliness of affordances in ur-

ban and rural environments,14 and it has also found foothold in sense-of-

place research.66 What these approaches have in common is the attempt

to study or model the psychologically meaningful dimensions of the material

environment and the influence of the physical environment on human

behavior.67

Moreover, research in ecological and environmental psychology has sug-

gested that a ‘‘positive interaction cycle’’ could emerge between humans

and environments when affordances are readily available.14 That is, an in-

crease in affordances for behavior B will increase the probability of actual-

izing behavior B, which in turn increases the probability for engaging with af-

fordances for behavior B in the future (as a result of increased motivation,

learning, habituation, and other factors; see Behavior Modulates Personal

States). Similar feedback loops have been proposed by Chemero3 and

Kaaronen.2

Behavior Modulates Personal States

The ways in which we behave—or whatever affordances we act upon—

often influence how we behave in the future. This is because humans learn

from individual behavior (individual or asocial learning), form habits, and

have a tendency to adjust their attitudes and values to their behavior,

among an innumerable variety of other cognitive, psychological, and neural

factors.

A habit is an automatic behavioral response to environmental cues and

is believed to develop through the repetition of behavior in consistent
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contexts.6 Particularly with commonly encoun-

tered cues (or affordances), a habit leads to

the frequent performance of a behavior B, and

habits are often strong enough to override any

conscious or intentional regulations for that

behavior.6 We have a tendency to behave in

the ways in which we are used to behaving or

the ways in which our environment prompts us

to behave, sometimes even regardless of our in-

tentions or desires. In everyday life, this is

almost self-evident: our behavioral patterns are

far from random, and to give some examples,

we often shop for the same items as we have

shopped for before, use familiar routes and
modes of transport, and so on. The process of gaining habits, or a

‘‘behavioral response decrement that results from repeated stimulation,’’

is called habituation.37

Other fields of (social) psychology and cognitive science have illus-

trated how we have a tendency to modulate our internal states (such

as attitudes and values) to our behavior. For instance, research in

cognitive dissonance theory illustrates how through processes of self-

justification, we have a tendency to adjust our attitudes and beliefs to

conform with our current, past, or recent behavior.5,40,68 More recent

approaches to cognitive science, such as predictive processing, also

support the notion that we have a tendency to adjust our internal

models of the world to minimize prediction error or to keep our internal

models of the world in tune with our past and current behavior.68,69 If

these internal states are predictors of behavior B (see Personal States

Affect Behavior), this would also imply (all other things being equal,

and on average) that behavior B would increase the future probability

of behaving in that way.

Moreover, behavior can result in a wide variety of individual learning.11,39

This is fairly uncontroversial: if a person enacts behavior B (e.g., cycling) regu-

larly, they might improve their cycling skills and thus engage in that behavior

more often in the future. For instance, Kytt€a14 has suggested that repeated

engagement with familiar affordances can result in increased motivation to

interact with them in the future.

Thus, crudely, it could be asserted that on average and in the long run (and

all other things being equal), behaving in a way B at time t would increase the

probability of performing behavior B at time t+1, mediated through changes in

the personal state P (which include individual learning and habituation, among

other cognitive processes).

Personal States Affect Behavior

The notion that the personal state of a human has an effect on behavior is

perhaps the most familiar assumption of the present model. We like to think

of our behavior as being guided by our attitudes, values, subjective norms,

and so on. Indeed, a branch of psychology dealing with the ‘‘theory of



Figure 6. Development of Bicycling Affor-

dances in Copenhagen

(A) Real-world data of kilometers of bicycle tracks in

Copenhagen from 1996 to 2018 with a linear

regression fit for illustrative purposes.

(B) The proportion of pro-environmental affordan-

ces over time in 300 simulation runs with smoothed

conditional mean (GAM). The shaded area

signifies ±1 standard deviation, and the vertical

dashed line is at year 2018.
planned behavior’’ deals explicitly with this;7 it proposes that behavior can

be predicted from ‘‘attitudes toward the behavior, subjective norms [an in-

dividual’s perception about a behavior], and perceived behavioral control.’’7

However, there exist a wealth of behavioral patterns that are not predicted

by attitudes or subjective norms. This has been studied extensively in the

context of the attitude-action gap.47,70 For instance, possession of environ-

mental knowledge and environmental awareness does not necessarily trans-

late into pro-environmental behavioral patterns.47,71 This discrepancy might

be a result of old habits or, simply, the lack of given and easily accessible ac-

tion opportunities or affordances.2

For these reasons, in the present text, the personal state (P) of an organism

is defined as the totality of an organism’s properties that dispose it to behaving

in a particular way. More precisely, in the present model, the P of an agent cor-

responds to the probability of interacting with a certain type of affordance.

Therefore, the personal state as referred to in this paper is much more than

just a conception of attitudes, subjective norms, or values—it is an umbrella

term that also includes adopted habits (even unconscious ones), personality,

learned sensorimotor skills, (tacit and explicit) knowledge, capabilities,38 and

so on.
Behavior Shapes the Environment

Not only do affordances influence human behavior, but we also actively

shape the affordances within our ecological niche. This process, ‘‘whereby

organisms, through their activities and choices, modify their own and each

other’s niches,’’ is called niche construction.8 Although the roots of niche

construction theory lie in evolutionary ecology,9 niche construction theory

has more recently gained interest in cognitive science3,69,72 and cultural evo-

lution.8,10 For present purposes, it suffices to understand niche construction

as the construction of non-random biases on behavioral selection

pressures.9

Through the process of niche construction, we design our environment to

afford a large variety of behaviors that reinforce our daily habits and rou-

tines.69 Recent theories in cognitive science suggest that, in general, niche

construction occurs to make the environment more predictable—that is, we

tend to design our environment so that it conforms to our cognitive

models.69,73 As Veissière et al. argue,74 niche construction ‘‘can be viewed

as the process whereby agents make their niche conform to their expecta-

tions’’ (see also Constant et al.72). Thus, the behavioral selection pressures

caused by niche construction would then generally serve to reinforce past

behaviors.

In the context of the present model, niche construction could include urban

design (e.g., implementation of bicycle paths as a response to increased de-

mand), household design (e.g., fitting one’s household with eco-friendly affor-

dances, such as recycling bins), or other forms of self-organizing social activ-

ities (e.g., providing a community with more autonomy in designing their niche

from the bottom up; see Alexander53).
Social Learning and Networks

Any description of human behavior that does not

account for social learning and transmission

would be radically incomplete. Therefore, in the

present model, all behavior is assumed to emerge

in a social network. This is because humans are,

above all, social learners, and our social capabil-
ities are arguably the feature that sets us most apart from other

species.10,75

Social learning is the process through which learning is ‘‘facilitated by obser-

vation of, or interaction with, another individual or its products.’’11 In a social

network, behaviors and information spreads through a process known as so-

cial transmission, where ‘‘the prior acquisition of a behavioral trait T by one in-

dividual A, when expressed either directly in the performance of T or in some

other behavior associated with T, exerts a lasting positive causal influence

[emphasis added] on the rate at which another individual B acquires and/or

performs T.’’11

Social learning and social transmission form a cornerstone of studies of

cultural evolution.10,11 This is simply because ‘‘much behavioral variation be-

tween societies can be explained in terms of cultural transmission: people ac-

quire knowledge, customs, attitudes, values, and so on from other members of

their society.’’45 In fact, the social intelligence hypothesis76 goes as far as to

propose that, particularly in the case of humans, social learning is more com-

mon and influential than individual learning.

For the purpose of this model, this implies that whenever an agent engages

with an affordance and behaves successfully, it will exert lasting positive

causal influence on its local social network, increasing their probability to

behave similarly.

Model Design

Concluding from the previous sections, we can now define Lewin’s equa-

tion’s parameters more precisely (see Table 1). Behavior is a function of

person and environment (Equation 1), where, first, the environment (E) is

a landscape of affordances consisting of a distribution of opportunities

for behavior. Second, behavior (B) at time t occurs from successful interac-

tion with affordances (E) and can lead to non-random modification of the

environment (E), altering the selection pressures for behavior at t+1. Third,

a personal state (P) corresponds to the probability of engaging with an af-

fordance and is modulated by behavior (B). Fourth, all behavior (B) occurs

in a social network where behaviors affect the personal states (P) and thus

behaviors of others.

Although by no means exhaustive, this conception provides a coherent

framework for designing a formal model around Lewin’s equation. We now

proceed to a description of the ABM itself. A more detailed description of

the model’s procedures and mechanisms can be found in the ODD Protocol

subsection of the Supplemental Experimental Procedures. The ODD Protocol

also includes Unified Modeling Language diagrams (Figures S1, S5, and S6)

and further elaboration of network structure (Figures S2–S4).

In the spirit of pattern-oriented modeling,17 we rely on ‘‘multiple patterns

observed in real systems to guide design of model structure.’’ We have de-

signed themodel in accordance with multiple micro-level patterns, fromwhich

realistic macro-level patterns emerge.

The subsection Sensitivity Analysis in the Supplemental Experi-

mental Procedures also includes two kinds of sensitivity analyses: local
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one-factor-at-a-time (OFAT) sensitivity tests,77 where the model’s sensi-

tivity to each parameter is analyzed individually (Figures S7–S13), and

global sensitivity tests (Figures S14–S16), where all free parameters are

allowed to vary with the use of Latin hypercube sampling.

Model Setup

Affordances

The grid of this model represents a landscape of affordances.4 This model has

two types of affordances: a pro-environmental affordance, where pro-environ-

mental ‘‘refers to behavior that harms the environment as little as possible, or

even benefits the environment,’’78 and a non-environmental affordance, where

non-environmental refers to an environmentally harmful activity.

In its abstract form, the model is indifferent to what these affordances

precisely are. What is important for the model design, however, is that these

behaviors are dependent. For instance, if the pro-environmental affordance

is understood to represent an opportunity for ‘‘cycling,’’ engaging with this

affordance should have an effect on the probability of engaging with the

non-environmental affordance (e.g., ‘‘driving’’). The abstract categorization

into binary affordances (non-environmental and pro-environmental) is not a

necessity for the model design, but it makes for more simple interpretation.

Considering that modeling the whole of the landscape of affordances in any

given human niche would be practically impossible, this limitation is also a

pragmatic one.

The model represents affordances as patches within NetLogo’s Cartesian

grid. See Table S2 for a brief definition of the model’s parameters and the Dis-

cussion for thoughts on how the model could be extended to include more be-

haviors in the future. The model’s setup procedure generates a landscape of

affordances, where the initial proportion of pro-environmental affordances is

assigned by the parameter ‘‘pro-amount.’’

Networks

In model setup, agents are spawned on the grid at random locations (the

default value for the ‘‘number-of-agents’’ is 300). During the generation of

agents, links are generated to connect the agents, creating a Klemm-Eguı́luz

network.79 The Klemm-Eguı́luz model was chosen because it represents two

characteristics we know to characterize social systems: societies have hubs

(the network degree distribution follows a power law distribution, i.e., it has

scale-free properties), and societies have highly clustered local communities

(social networks have high clustering coefficients).79 Although our ABM also

supports the Erd}os-Rényi model80 (random network), the Barabási-Albert

model81 (scale-free network with low clustering), and the Watts-Strogatz

small-world model82 (highly clustered network without scale-free properties),

the Klemm-Eguı́luz model was chosen because it combines the best aspects

of the latter twomodels: scale-free properties and high clustering. The code for

creating the Klemm-Eguı́luzmodel was adaptedwith permission fromCaparri-

ni’s83 Complex Networks Toolbox. All links in this model are undirected such

that information flows both ways.

The model is quite robust against variation in network density, although

extreme values will create more polarized outcomes in model behavior. In

the following simulations, we set the Klemm-Eguı́luz model parameter m

to 0.9 and m0 to 5 (see Caparrini83 for a concise definition of these param-

eters and Klemm and Eguı́luz79 for a more detailed account). This creates a

network with a long-tailed degree distribution and a high global clustering

coefficient. With these parameter values, the model relatively rarely creates

agents with more than 150 direct connections. Although it is notoriously

difficult to operationalize a realistic network density, the chosen network

structure does respect the suggested upper cognitive limit of the degree

of stable social relationships, or Dunbar’s number,84 which suggests that

humans are cognitively incapable of maintaining over 150 social

relationships.

Personal States

Each agent is assigned two initial personal states, ‘‘pro-env’’ and ‘‘non-env.’’

The former defines the probability of interacting with a pro-environmental af-

fordance, and the latter defines the probability of interacting with a non-envi-

ronmental affordance. Personal states are initially sampled from a normal dis-

tribution with a mean defined by the parameters ‘‘initial-pro’’ (for pro-env) and

‘‘initial-non’’ (for non-env) and a standard deviation of 0.15. A standard devia-

tion of 0.15 (in the range of 0–1) is roughly in line with data on standard devia-

tions of environmental attitudes and self-reported behaviors. For instance,
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Chan85 reports standard deviations ranging from 0.75 to 0.8 for self-reported

pro-environmental behaviors on a five-point scale.

Because personal states are probabilities, they are bounded within the

range [0, 1]. Each agent is given individual upper bounds and lower bounds

for their personal states. The bounds are drawn from normal distributions

with means of 0.2 (lower) and 0.8 (upper) and a standard deviation of 0.05.

This allows for some agents to adopt more extreme habits than others, which

is in line with empirical observations; for instance, some people might be more

prone to adopting strict vegan habits than others who adopt, at most, part-

time vegetarian or flexitarian eating habits. Note that the personal states

need not add up to 1; it is possible, for example, that a person would actualize

the affordance of driving (when encountering a driving affordance) with a prob-

ability of 0.55 while also actualizing an encountered cycling affordance with a

probability of 0.55.

Model Processes

Overview

The Go command launches the model. Agents move in a random walk

around the landscape of affordances. During each tick (timestep), the agents

have a chance of interacting with the affordance (patch) they are currently on.

For example, if an agent is on a pro-environmental affordance and currently

has a pro-env value of 0.5, it has a 50% chance of interacting with that afford-

ance. Each agent must behave somehow during each tick. Therefore, if an

agent does not interact with an affordance successfully, it will move one

step forward and try again by repeating this procedure until it interacts suc-

cessfully with an affordance it encounters. Successfully interacting with an

affordance represents one instance of behavior. Behaviors are tracked

through the global variables ‘‘pro-behavior’’ and ‘‘non-behavior,’’ which are

reset at the beginning of each tick. This allows us to track the total amount

of pro-environmental and non-environmental behaviors at the end of each

timestep.

Individual Learning

Successful behavior launches a series of procedures. First, behaving leads to

individual learning and habituation. If, for instance, an agent behaves pro-envi-

ronmentally at time t, it will set its personal state pro-env to ‘‘pro-env(t) +

asocial-learning’’ and its non-env to ‘‘non-env(t) � asocial-learning,’’ where

‘‘asocial-learning’’ is the rate of individual learning and habituation. The

sequence is identical for non-environmental behavior. It is important that an in-

crease in pro-env leads to a decrease in non-env (i.e., they are not indepen-

dent) because otherwise the model would practically always converge to a

state where each agent possesses a maximum possible value for both pro-

env and non-env. The decrease can simply be understood as the decay of

an acquired habit when a given behavior is not practiced.

Social Learning

Second, behavior leads to social learning and transmission. If an agent be-

haves non-environmentally at time t, it will ask its network neighbors (the

agents it is directly linked to) to set their non-env to ‘‘non-env(t) + social-

learning’’ and its pro-env to ‘‘pro-env(t) � social-learning,’’ where ‘‘social-

learning’’ is the parameter for the rate of social transmission. Again, the

sequence is identical for pro-environmental behavior.

Niche Construction

Third, behaving can lead to niche construction. For example, if an agent be-

haves pro-environmentally, it can flip one of the patches in its Moore neighbor-

hood (its surrounding eight patches) to a pro-environmental affordance (thus

increasing the likelihood of encountering a pro-environmental affordance in

the future and effectively making the environment more predictable; see

Behavior Shapes the Environment). The procedure is identical for non-environ-

mental behavior. The probability for niche construction is defined by the pa-

rameters ‘‘construct-pro’’ (for pro-environmental niche construction) and

‘‘construct-non’’ (for non-environmental niche construction).

Other Processes

Finally, if mutations are turned on, on each tick agents have a chance of

mutating their pro-env and non-env values by a slight amount. This is analo-

gous to external influence or the influence of factors not captured by the

model. This produces more jagged data more resemblant of real-world obser-

vations. We use mutations only in empirical validation. All behaviors in the

model are sequential: an agent completes the full set of actions before passing

on control to the next agent. The order of agents is read randomly on each tick.



DATA AND CODE AVAILABILITY

All data (.CSV) and code (R) used for analysis are available on GitHub: https://

github.com/roopekaaronen/affordance. The agent-based model (NetLogo)

with code is available at https://www.comses.net/codebases/c2feceb8-

d9c4-4637-8f27-fda49c7dc4f3/releases/1.2.0/.
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Supplemental Information can be found online at https://doi.org/10.1016/j.

oneear.2020.01.003.
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Supplemental Experimental Procedures 

 

Software  

In this research article and NetLogo (version 6.1.0) model, we use NetLogo’s native 

BehaviorSpace tool for parameter sweeping, and NetLogo’s BehaviorSearch for Genetic 

Algorithms 1. We use R 2 and R Studio 3 and R packages tidyverse 4, factoextra 5, Hmisc 6, plyr 

7, RColorBrewer 8, reshape2 9, gridExtra 10 and nlrx 11 for data analysis and visualisation. 

 

ODD Protocol  

The following model description follows the ODD (Overview, Design concepts, Details) 

protocol for describing agent-based models 12,13. 

1. Purpose 

This model illustrates the cultural evolution of pro-environmental behaviour patterns. It shows 

how collective behaviour patterns evolve from interactions between agents and agents (in a 

social network) as well as agents and the affordances within a niche. More specifically, the 

cultural evolution of behaviour patterns is understood in this model as a product of: 

1. The landscape of affordances (action opportunities) provided by the material 

environment, 

2. Individual learning and habituation, 

3. Social learning and network structure, 

4. Personal states (such as habits and attitudes), and 

5. Cultural niche construction, or the modulation of affordances within a niche. 



 

 

More particularly, the model illustrates how changes in the landscape of affordances 14 can 

trigger nonlinear changes in collective behaviour patterns. The model also shows how several 

behavioural cultures can emerge from the same environment and even within the same 

network. 

The model is an elaboration of Kurt Lewin’s 15 heuristic equation, B = f(P, E), where behaviour 

(B) is a function (f) of the person (P) and the environment (E). The model introduces several 

feedback loops (1–5 above) to Lewin’s equation, and thus provides a framework for studying 

the evolution of dynamical and complex behavioural systems over time. The model should be 

considered an abstract model, since many of its parameters are unspecifiable due to limits to 

current understanding of human (social) behaviour. However, the model can be tuned to 

replicate real-world macro patterns, and be used as a sandbox environment to locate tipping 

points in social systems. In the present manuscript, for example, we use the model to reproduce 

real-world patterns of bicycle and car use in Copenhagen. 

 

2. Entities, state variables, and scales  

The model includes three types of agents: human individuals, represented by mobile circle-

shaped agents (or ‘turtles’ in NetLogo lingo), affordances (static patches that occupy grid cells) 

and links (which connect agents in a social network). 

Individuals: Agents represent a single human being, located within a broader collective social 

network and ecological niche. Each individual has two personal states. These personal states 

correspond to the individual’s probability of engaging with a specific kind of affordance. 

Affordances are opportunities for action provided by the environment. The two personal states 

in this model are pro-env and non-env. The former, pro-env, defines the probability of an 



 

 

individual to engage with pro-environmental affordances, and the latter, non-env, defines the 

probability of an individual to engage with non-environmental affordances. 

The personal states of individual agents are sampled from a normal distribution with mean 

values initial-pro (for pro-env) and initial-non (for non-env), and SD 0.15. This standard 

deviation is roughly in line with empirical data related to environmental attitudes and self-

reported behaviours 16. Owing to the model’s probabilistic representation of human behaviour, 

the values of pro-env and non-env must be bounded between 0 and 1. More specifically, the 

model assigns individual boundaries for the pro-env and non-env of each agent. The bounds 

are sampled from a normal distribution with mean values 0.2 (lower bound) and 0.8 (upper 

bound), with SD 0.05.  

Individuals are coloured based on their personal states. This is purely cosmetic, but it aids in 

noticing changes in personal states. If pro-env > non-env, the agent is coloured black. If non-

env > pro-env, the agent is coloured red. 

Links: Individual agents are embedded in a social network which is connected by links. The 

model supports four types of networks: the Klemm-Eguíluz model (highly clustered scale-free 

network), the  Watts–Strogatz model (small-world network), the Barabási–Albert model (scale-

free network with preferential attachment) and the Erdős–Rényi model (random network). All 

network edges (links) are undirected (bidirectional). 

The default network choice is the Klemm-Eguíluz model 17. The Klemm-Eguíluz algorithm 

generates a network based on a finite memory of the nodes (agents), creating a highly clustered 

and scale-free network (see Figures S2–S4). The Klemm-Eguíluz model was chosen since it 

represents two features we know to characterize social systems: Societies have hubs (the 

network degree distribution follows a power law distribution, i.e. it has scale-free properties) 

and societies have highly clustered local communities (social networks have high clustering 



 

 

coefficients) (ibid.). See Klemm and Eguíluz 17 and Caparrini 18 for descriptions of how 

Klemm-Eguíluz model works, as well as Prettejohn et al. section 3.4 in 19 for useful pseudocode. 

We set the default Klemm-Eguíluz model’s parameter m0 (initial number of agents) to 5 and μ 

(probability to connect with low degree nodes) to 0.9. 

Figure S1. Class diagram (UML). 

 

 

 

  



 

 

Figure S2. Network degree distribution. A representative plot of the network degree 

distribution from a single model run with 300 agents. Notice how some agents have 

amounts of links that greatly exceed the mean (black dashed line) and median (red dashed 

line).  

 

Figure S3. Cumulative network degree distribution. 1000 simulations (total of 300,000 

agents) on a logarithmic scale. Notice the scale -free density distribution and relative 

infrequency of agents with above 150 direct links. Mean links are signified by the black 

dashed line and median by the red dashed line.  

 



 

 

Figure S4. Global clustering coefficients . Histogram with 1000 runs with 100 agents. 

Global clustering coefficients are calculated based on triplets of nodes. Triplets are three 

nodes which are connected either by two (open triplet) or three (closed tripled) edges 

(links). The global cluster coefficient is the number of closed triplets in a network 

divided by the total number of triplets . Dashed line is at the mean global clustering 

coefficient, 0.24. 

 

 

Patches (environment): Patches represent the action-opportunities, or affordances, within the 

environment. An affordance is the functional relevance of the environment for an individual. 

The model has two affordances: One represents an opportunity for pro-environmental 

behaviour (represented by a violet patch) and one represents an opportunity for 

environmentally harmful behaviour (sky-blue patch). The latter are from here on referred to as 

non-environmental affordances. The affordances of the environment are therefore binary in this 

model, even though nothing prevents the addition of more kinds of affordances. Affordance-

patches occupy the two-dimensional grid of the model. The grid wraps horizontally and 

vertically (i.e., it is torus-shaped). The total area of the grid is an arbitrary 201x201 patches. 



 

 

Scales: The model can be adapted to represent different spatial and temporal scales. One time-

step can be understood to either represent one instance of behaviour per agent, or a collection 

of behaviours. In the abstract version of the model, the spatial and temporal scales are not 

specifically defined. In empirical validation, the spatial area of the model represents the city 

centre of Copenhagen, with each tick representing one day. 

 

3. Process overview and scheduling 

The submodels of the model are described in more detail and pseudocode in the Submodels 

section. In this section, we describe a brief process overview. 

Setup: The model begins with a setup phase where the patches, agents and links are created. 

Ticks are reset after the setup, so all setup processes occur before the first timestep. 

First, the social network (agents and links) is created. This will create a network with 

individuals specified by the parameter number-of-agents. 

Second, each agent is assigned two personal states, pro-env and non-env. 

Third, affordances are created. Affordances are binary patches-own variables: value 0 signifies 

a non-environmental affordance, and value 1 a pro-environmental affordance. First, all patches 

are assigned with a non-environmental affordance (and coloured sky-blue). Subsequently, the 

proportion of patches designated by the parameter pro-amount are turned into pro-

environmental affordances. Therefore, the parameter pro-amount corresponds to the initial 

proportion of pro-environmental affordances within the total landscape of affordances. 

 



 

 

Go: The ‘Go’ procedure is the heart of the model. 

First, agents behave. If the agent is on a pro-environmental affordance, it will interact with it 

with the probability of P(pro-env). For example, if an agent’s personal state pro-env is 0.5, it 

has a 50% chance of interacting with a pro-environmental affordance. 

Likewise, if the agent is on a non-environmental affordance, it will interact with it with the 

probability of P(non-env). Again, if an agent’s personal state non-env is 0.7, it has a 70% 

chance of interacting with a non-environmental affordance. 

A while-loop ensures that each agent behaves once every turn. Each agent owns a binary value, 

behaved?, which signifies whether it has behaved, or actualized an affordance, during the 

current tick. If behaved? is TRUE, the agent will stop attempting to behave after completing 

the behaviour commands (including steps 1–5 below). 

Once an agent behaves successfully, a sequence of procedures launched in the following order. 

1. If the agent behaved pro-environmentally (i.e., it actualizes a pro-environmental 

affordance), it will increase its current personal state pro-env by the amount of asocial-

learning and decrease its current non-env by the amount of asocial-learning. 

Conversely, if the agent behaved non-environmentally (i.e., it actualizes a non-

environmental affordance), it will increase its current non-env by the amount of asocial-

learning and decrease its current pro-env by the amount of asocial-learning. 

2. If niche-construction is TRUE (niche construction is turned on) and if the agent 

behaved pro-environmentally, with probability construct-pro it will ask one of the eight 

patches in its Moore neighbourhood to turn into a pro-environmental affordance (which 

is then coloured in violet). construct-pro therefore defines the rate of pro-environmental 



 

 

niche construction. The procedure is identical for non-environmental niche construction 

(following non-environmental behaviour), whose rate is defined by construct-non. 

Rates of niche construction are controlled for number-of-agents. This way, adding more 

agents to the simulations does not add to the rate of overall niche construction. This is 

necessary because the area (grid) of the model is held constant. 

3. If networks is TRUE and if the agent behaved pro-environmentally, it will engage in 

social learning with its network neighbours (the agents to which it is directly connected 

to by a link). Following pro-environmental behaviour, the agent will ask its network 

neighbours to increase their current pro-env by the amount specified by parameter 

social-learning, as well as to decrease their current non-env by the amount specified by 

parameter social-learning. Again, the procedure is similar after non-environmental 

behaviour, except this results in an increase of non-env and decrease of pro-env by the 

amount of social-learning. 

4. The agent will bound its personal states pro-env and non-env. If the agent’s personal 

state is above its upper bound or below its lower bound, it will set its personal state to 

its upper and lower bound, respectively. 

5. If mutate? Is TRUE, at each tick, the pro-env and non-env of all agents have a chance 

of mutating. The default probability for mutation (mutate-prob) is 0.005, and the default 

rate for mutation (mutate-rate) is 0.05. The probabilities for increasing or decreasing 

pro-env and non-env values (of all agents) are equal, i.e. mutation is not biased to any 

direction. 

After each behaviour or attempt to behave, agents move in a random forward direction 

between 45 degrees right and 45 degrees left from their current heading. In one tick (time-



 

 

step) agents will continue moving until they have behaved, i.e. until they have successfully 

interacted with an affordance. 

The aforementioned steps are sequential: An agent completes the full set of actions before 

passing on control to the next agent. The order of agents is read in a random order on each 

tick.  

 

4. Design concepts 

Basic principles. 

The model design elaborates on social psychologist Kurt Lewin’s 15 heuristic equation: B = 

f(P, E). Here, behaviour (B) is a function (f) of the person (P) and its environment (E). 

The model adds five dimensions of detail into Lewin’s equation. 

1. The environment affords a variety of opportunities for action, or affordances (E → B). 

2. Behaviour modulates personal states through processes of habituation and individual 

learning (B → P). 

3. Personal states, such as habits and intentions, drive behaviour (P → B). 

4. Behaviour shapes the environment through processes of niche construction (B → E). 

5. Feedback loops 1–4 all occur within a social network where behaviour is transmitted 

via social learning (Bmyself → Pneighbors and Bneighbors → Pmyself). 

These assumptions are elaborated in detail in the manuscript’s section Model Assumptions. 

The basic principles can be summarized as follows: Through processes of individual and social 

learning as well as niche construction, any behaviour at time t will have an effect on the 

behaviour of an agent and other agents at time t+1. The model therefore presents a dynamical 



 

 

systems approach to the emergence of human behaviour, where the unit of study is a tightly 

coupled human-environment system – a dynamical system which evolves over time and can 

behave in nonlinear ways due to positive feedback-loops. 

 

Emergence.  

The model produces a complex and dynamical system which exhibits several kinds of emergent 

behaviour. 

Firstly, the model displays nonlinearities in the development of behavioural cultures (collective 

behaviour habits). The behaviour of the agents in the network can be steady for long periods 

of time, only to be followed by abrupt phase transitions into new states (this is illustrated in 

more detail in the Results section of the manuscript).  

Second, the model illustrates how two different behavioural cultures can emerge from the same 

environment, and even in the same social network. This is a macro-level pattern that is known 

(from studies of cultural evolution) to occur in real-world societies 20. 

Third, the model has several leverage points. For instance, a small change (e.g., 5–10%) in the 

initial composition of affordances in the landscape can have radical effects on the evolution of 

the behavioural cultures. Thus, in a way which is typical to complex emergent systems, the 

model is sensitive to initial conditions, which makes its evolution difficult to predict at certain 

parameter ranges. 

Fourth, whilst the model always starts with a random composition of the affordance landscape, 

this landscape gets more structured over time as individuals construct the niche around them. 

 

 



 

 

Adaptation.  

Through processes of individual and social learning, agents adapt their personal states to their 

behaviour and to their immediate social environment. Moreover, agents construct their 

environment to be more predictable by constructing niches which are in line with past 

behaviour. 

 

Objectives.  

Agents engage in active attempts to behave successfully (actualize an affordance) and to create 

an environment where past behaviour patterns are increasingly more likely. 

 

Learning.  

The model includes two learning processes, individual and social learning. Individual (asocial) 

learning occurs after behaviour and affects only the agent who behaved. Individual learning is 

thus a product of individual behaviour. Social learning occurs in the social network an agent is 

embedded in. 

The rates of individual and social learning depend on the chosen representation of behaviours 

and time-units. Realistic rates of individual and social learning are therefore difficult to specify. 

However, by studying real-world patterns, it might be possible to infer reasonably accurate 

rates of social and individual learning (see section Empirical Validation of the manuscript). 

 

Prediction.  

Agents do not estimate future conditions or consequences of their decisions. 



 

 

Sensing.  

Agents sense the (colour of the) patch they are currently on as well as their network neighbours 

and neighbours’ behaviour. Agents also sense their physical vicinity, i.e. the patches in their 

Moore neighbourhood (the 8 patches surrounding the patch they are currently on). 

 

Interaction.  

After behaving, agents interact with their network neighbours. This involves both influencing 

the network neighbours as well as being influenced by each network neighbour (both defined 

by the rate of social-learning). Niche construction also influences the behaviour of other 

agents, and is thus an indirect form of social interaction. 

 

Stochasticity.  

The following processes rely on random sampling: 

The initial personal states of agents are sampled from a normal distribution (see section 2 of 

ODD protocol above). The initial configuration of affordances on the grid is random (the 

proportion of pro-environmental affordances, however, is fixed by the parameter pro-amount). 

The movement of agents on the grid is a random walk through the landscape of affordances. 

Each instance of behaviour and niche construction makes use of a floating random number 

generator. The model supports the use of a fixed random seed for replicability (if random-seed? 

is TRUE, a random seed can be fixed with the rseed parameter). 

  

 



 

 

Collectives.  

Individuals belong to a social network and construct their niche, as defined above. Individuals 

take part in shaping the collective network and niche which, in turn, shapes their behaviour.  

 

Observation.  

Observation generally involves tracking mean or specific values over time. The most relevant 

variables are the global variables pro-behavior and non-behavior, which track the total amount 

of pro-environmental and non-environmental behaviour during each tick. 

Parameter sweeps are conducted via NetLogo’s native BehaviorSpace tool. 

 

5. Initialization 

The initialization of the model is allowed to vary among simulations. Since many values, such 

as the personal states of agents, are randomly sampled, each model run will differ from the next 

even when run with the same parameter values. 

However, the model supports the use of a fixed random seed for replicability (if random-seed? 

is TRUE, a random seed can be fixed with the rseed parameter). 

The initial state of the model at t = 0 will depend on the parameters initial-pro, initial-non, 

pro-amount and the network parameters (networks, network-type) as defined above. 

In the abstract version of the model, the initial states are arbitrary. The abstract model can be 

used to study the dynamics and sensitivities of the model’s general structure.  



 

 

In empirical validation, the initial states of the model are tuned to reproduce real-world 

patterns, or the cycling and driving habits of people in central Copenhagen. 

 

6. Input data 

The model does not use input from external sources such as data files or other models. 

 

7. Submodels 

In the following, the processes mentioned in Process overview and scheduling (above) are 

described in more detail in pseudocode, flowcharts (UML diagrams) and natural language. 

Pseudocode is written by editing NetLogo code to resemble natural language. Whilst the 

descriptions below are comprehensive, please also refer to the fully annotated model code for 

details. The following section documents the SETUP submodels (Social network, Personal 

states and Affordances) and the GO submodels (Behavior and Mutate). Behavior includes 

descriptions of the processes of individual learning, niche construction and social learning. 

 

SETUP 

Social network 

Since fully a full description of the Klemm-Eguíluz model would require a chapter-length 

analysis, we refer the reader to Caparrini’s Complex Networks Toolbox 18 for a description of 

the Klemm-Eguíluz small-world-scale-free network (we adapted, with permission, Caparrini’s 

code for the present model). A full pseudocode description of the Klemm-Eguíluz model is 

openly accessible in Prettejohn, Berryman and McDonnell’s 19 chapter ‘3.4 Klemm and Eguílez 



 

 

Small-World-Scale-Free Network’. A full mathematical description of the model is also 

available in Klemm-Eguíluz’ original work 17. 

 

Personal states 

Personal states are created in the model setup. In pseudocode, 

to set personal states  

for each turtle in the list of all turtles [  

Set pro-env: sample a random value from a normal distribution with 

mean of initial-pro and a standard deviation of 0.15. 

Set non-env: sample a random value from a normal distribution with 

mean of initial-non and a standard deviation of 0.15. 

Set lower-bound: Set a lower bound for non-env and pro-env from a 

random normal distribution with mean 0.2 and SD 0.05. 

Set upper-bound: Set an upper bound for non-env and pro-env from a 

random normal distribution with mean 0.8 and SD 0.05  

] 

end 

 

Affordances 

Affordances are patches-own variables. Affordances are created with the following procedure 

(pseudocode): 

to create affordances  

let total-patches be total count of patches 

  ask all patches [ 

   set affordance to 0 ;; non-evironmental affordance 



 

 

set color to sky-blue ] 

  ask n-of (total-patches * pro-amount) patches [  

     set affordance to 1 ;; pro-environmental affordance 

set color to violet] 

end 

 

GO 

The go-procedure begins with each agent resetting their global pro-behavior and non-behavior 

variables to 0 (these global variables measure the total pro- and non-environmental behaviours 

of all agents at the end of each tick). Then, agents set their behaved? variable (turtles-own 

variable) to FALSE. The behaved? variable ensures that each agent behaves (either pro- or 

non-environmentally) only once during a tick. After this, agents behave. 

 

Figure S5. Go procedure, activity diagram (UML). 

 

 

Behavior 

This submodel is the heart of the model. It defines how agents interact with the environment 

and other agents. Since the procedure is identical for both pro-environmental and non-

environmental behaviours, only pro-environmental behaviour is described here. To implement 

non-environmental behaviour, simply duplicate the code and replace ‘pro-environmental’ 



 

 

(value 1) patch with ‘non-environmental’ (value 0), ‘violet’ with ‘sky-blue’, and pro-env with 

non-env (and vice versa, non-env with pro-env). The processes of habituation, niche 

construction and social learning are included in this submodel, and are described below in 

pseudocode. 

 

to behave 

  while behaved? is FALSE [ ;; Start of while-loop 

if the patch the agent is currently on is pro-environmental 

and random-floating number in range [0,1] is smaller than  

pro-env [ 

;; Engage in individual learning 

set pro-env to (pro-env + asocial-learning) 

set non-env to (non-env - asocial-learning) 

     set pro-behavior to (pro-behavior + 1) 

set behaved? to TRUE  

;; And still complete the following commands (we are still in the 

while-loop) 

 

;; Engage in niche construction 

if niche-construction is TRUE [ 

if random-floating number in range [0,1] is smaller than 

(construct-pro / number-of-agents) [ 

        ask one-of patches in Moore neighborhood [ 

set affordance to 1 

set color to violet ] 

       ]     

] 



 

 

 

;; Engage in social learning 

if networks is TRUE [ 

      ask link-neighbors [ 

        set pro-env to (pro-env + social-learning) 

        set non-env to (non-env - social-learning) 

   ] 

  ] 

] 

 

;; Set bounds for pro-env and non-env 

if pro-env > upper-bound [set pro-env to upper-bound] 

if non-env < lower-bound [set non-env to lower-bound] 

if non-env > upper-bound  [set non-env to upper-bound] 

if pro-env < lower-bound [set pro-env to lower-bound] 

 

;; Finally, move. 

turn right randomly up to 45 degrees 

turn left randomly up to 45 degrees 

move one step forward 

] ;; End of while-loop, and end the behave procedure 

end 

 

  



 

 

Mutate 

to mutate 

if mutate-on? = TRUE [ 

let mutate-probability 0.005 

let mutate-rate 0.05 

if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set pro-env to (pro-env + mutate-rate)]] 

if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set non-env to (non-env - mutate-rate) ]]  

;; ...and so on for all four possible configurations (mutation is 

not biased to any direction.) 

if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set non-env to (non-env + mutate-rate) ]] 

  if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set pro-env to (pro-env - mutate-rate) ]] 

] 

end 

 



 

 

Figure S6. The ‘behave’ submodel, activity diagram (UML). 

  



 

 

Sensitivity Analysis 

Local Sensitivity Analysis: OFAT Testing 

We begin by testing our model’s sensitivities based on one-factor-at-a-time (OFAT) sensitivity 

analysis. OFAT sensitivity analysis ‘consists of selecting a base parameter setting (nominal 

set) and varying one parameter at a time while keeping all other parameters fixed’ 21.  It is 

therefore referred to as a local sensitivity analysis method. For local sensitivity testing, we use 

the parameter values as defined by Table S3 (the abstract model run), since its output is 

arguably more intuitive to understand (than the parameter values used for empirical validation), 

and it is much less computationally demanding. For data visualisation, we use raincloud plots 

22, which illustrate the distribution of data points (in this case, the proportion of pro-

environmental behaviour at the final timestep, 2000) and a boxplot with medians and ± 1 

standard deviations. Since the mechanism for initial-pro and initial-non, as well as construct-

pro and construct-non, are identical, only the pro-environmental variants of these parameters 

are analysed. This produces a total of 7 plots, shown below. 

  



 

 

Figure S7. Sensitivity test 1. The model is especially sensitive to the initial proportion 

of pro-environmental affordances. This is, however, expected on the basis of results such 

as Figures 2A and 2B. At extreme values such as when pro-amount is larger than 0.75, 

most agents will behave pro-environmentally.  

 

Figure S8. Sensitivity test 2. The model is particularly robust against changes in the rate 

of individual (asocial) learning. 

 

  



 

 

Figure S9. Sensitivity test 3. Higher rates of pro-environmental niche construction will 

lead to more extreme results in the adoption of pro-environmental behaviour.  This effect 

was also seen and explained in the Results section of the present manuscript. 

 

Figure S10. Sensitivity test 4. The network density (minimum degree of connection, or 

m0 in the Klemm-Eguíluz model) has a notable effect on outcomes in pro -environmental 

behaviours. The reasoning is intuitive: When networks are denser, more social learning 

and transmission occurs, which leads to more polarized end results  as the society of 

agents converges into a uniform behavioural unit or culture (notice how the density 

distribution of degree connection 20 approaches what seems like a bimodal distribution) .  

 

  



 

 

Figure S11. Sensitivity test 5. Importantly, the model is robust against the total number 

of agents. Due to computational constraints, we do not run the model with over 1000 

agents. When the model has over 100 agents, the results are similar. The default value 

for number-of-agents, 300, can thus be justified. 

 

Figure S12. Sensitivity test 6. The effect of initial pro-environmental personal states on 

the outcome of the model is considerable, and similar in logic to the initial composition 

of affordances (Figure S7). Notice, however, that in global sensitivity testing, this effect 

is shown to be less robust when other parameters are allowed to vary.  

 

  



 

 

Figure S13. Sensitivity test 7. Similarly to Figure S10 (network density), the rate of 

social learning has a considerable effect on model outcomes, particularly at extreme 

values (i.e., ten- or twentyfold to the rate used in the Results section) . The model is quite 

robust against more moderate changes in the rate of social learning.  Again, the reasoning 

is intuitive: The more the rate of social learning is increased, the more social 

transmission occurs, which leads to more polarized end results as  the society of agents 

converges into a uniform behavioural unit or culture.  

 

 

Global sensitivity analysis: Latin hypercube sampling 

We use Latin hypercube sampling (LHS) as our method for global sensitivity analysis. LHS 

ensures that each of the model’s input variables have all portions of their distribution 

represented by input values 23. LHS is simply a K-dimensional extension of Latin square 

sampling (ibid.), and is commonly used for global sensitivity testing 24. See e.g. 24 or 23 for 

more details on LHS. We use the R package nlrx 11 to generate our Latin hypercube samples. 

We sample our input values from the ranges specified in Table S1. The values were selected 

on the basis of the OFAT sensitivity tests. We excluded extreme parameter values (which 

would lead to very predictable and extreme model results, such as when pro-amount is close to 

1), but still allow the model to run on a wide range of input values. 

  



 

 

Table S1. Parameter ranges for global sensitivity analysis.  

Model parameter Range 

number-of-agents [100, 1000] 

social-learning [0.0002, 0.0008] 

asocial-learning [0.0002, 0.0008] 

pro-amount [0.33, 0.66] 

initial-pro [0.33, 0.66] 

initial-non [0.33, 0.66] 

construct-non [0, 10] 

construct-pro [0, 10] 

network-param [3, 7] 

mu 0.9 

 

 

Figure S14. Sensitivity test 8. 300 parameter sets are sampled from the ranges specified 

in Table S1. The model is run 5 times on each parameter sample, with a different random 

seed. The lines in this plot illustrate the range of the outcomes of each parameter sample, 

from min value to max value. Overall, the model has a clear tendency of converging to 

a state of either high or low pro-environmental behaviour.  This is unsurprising, given 

the results seen in Figures 2–4.  This effect will be less drastic if the model is run for 

less than 2000 ticks or if the range of parameters such as pro -amount is decreased. 

 

  



 

 

Figure S15. Sensitivity test 9. Even when all other parameters are allowed to vary freely, 

the nonlinear effect of pro-environmental affordances on pro-environmental behaviour 

remains. This figure therefore illustrates that the phase transition effect seen in Figures 

2A and 2B is very robust. 

 

Figure S16. Sensitivity test 10. When other parameters are allowed to vary, initial -pro 

(the mean initial pro-environmental personal state) has a less apparent effect on 

behaviours than seen in Figure S12 (where an OFAT test was run on initial -pro). Notice 

how initial pro-environmental personal states often do not translate into sustained pro-

environmental behaviour (highlighted by the red box). This is most likely because of 

either a lack of pro-environmental affordances, or the interference of a high initial -non 

value (i.e., counteracting personal states). 
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Supplemental Figures 

Figure S17. A screenshot of the spatially explicit NetLogo model. Here, 100 agents 

(circle-shapes) are connected to each other in a Klemm-Eguíluz network. Agents 

coloured in black are more pro-environmentally than non-environmentally disposed, and 

vice versa for agents coloured in red . The network is represented with grey links 

connecting the agents. Notice how some agents are much more connected than others. 

The environment consists of two kinds of patches, pro -environmental affordances 

(violet) and non-environmental affordances (sky-blue). Agents move around the grid in 

a random walk. The torus-shaped world wraps around horizontally and vertically.  

 

 

  



 

 

Supplemental Tables 

Table S2. Parameters. The model’s parameters, descriptions of parameters , and ranges 

of possible parameter values.  

Model parameter Description Possible range 

number-of-agents Total number of agents. [1, 1000] 

social-learning Rate of social transmission of 

behaviour. 

[0, 1] 

asocial-learning Rate of individual learning and 

habituation. 

[0, 1] 

pro-amount Initial proportion of pro-

environmental affordances in 

the landscape of affordances. 

[0, 1] 

initial-pro Defines the initial pro-

environmental personal state, 

pro-env, which is the 

probability of interacting with 

pro-environmental affordances 

when encountered. 

[0, 1] 

initial-non Defines the initial non-

environmental personal state, 

non-env, which is the 

probability of interacting with 

non-environmental affordances 

when encountered. 

[0, 1] 

construct-non Probability of constructing a 

non-environmental affordance. 

[0, number-of-agents] 

construct-pro Probability of constructing a 

pro-environmental affordance. 

[0, number-of-agents] 

network-param m0 in the Klemm-Eguíluz 

model 17. Defines the initial 

complete graph in the network 

generating algorithm. 

[1, number-of-agents] 

mu μ in the Klemm-Eguíluz model 
17. Probability of connecting 

with low degree nodes. Alters 

the clustering coefficient of the 

network. 18  

[0, 1] 

 

 

 

 



 

 

Table S3. Parameter values for the abstract model run.  

Model parameter Value 

number-of-agents 300 

social-learning 0.00007 

asocial-learning 0.00005 

pro-amount [0, 1] 

initial-pro 0.5 

initial-non 0.5 

construct-non 0 or 10 

construct-pro 0 or 10 

network-param 5 

mu 0.9 

 

 

 

Table S4. Parameter values for the Copenhagen simulation.  

Model parameter Value 

number-of-agents 300 

social-learning 0.00007 

asocial-learning 0.00005 

pro-amount 0.4 

initial-pro 0.2 

initial-non 0.8 

construct-non 0 

construct-pro 5 

network-param 5 

mu 0.9 
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