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Although we often see references to Carnap’s inductive logic even in modern literatures, seemingly its confusing 

style has long obstructed its correct understanding. So instead of Carnap, in this paper, I devote myself to its 

necessary and sufficient commentary. In the beginning part (Sections 2-5), I explain why Carnap began the study of 

inductive logic and how he related it with our thought on probability (Sections 2-4). Therein, I trace Carnap’s 

thought back to Wittgenstein’s Tractatus as well (Section 5). In the succeeding sections, I attempt the simplest 

exhibition of Carnap’s earlier system, where his original thought was thoroughly provided. For this purpose, minor 

concepts to which researchers have not paid attention are highlighted, for example, ॠ-function (Section 8), 

ड़ॡ-correlation (Section 10), C-correlate (Section 10), statistical distribution (Section 12), and fitting sequence 

(Section 17). The climax of this paper is the proof of theorem (56). Through this theorem, we will be able to 

overview Carnap’s whole system.  

Keywords: inductive logic, confirmation, probability, the earlier system in Foundations, λ-system 

1. Introduction 

In his later theory called λ-system, Carnap provided the simplest way to calculate the probability in 

inductive inference. 

(0)    ॖλ (M (as+1), i) = 
ୱMା 

౭M
ಒ
 ஛ 

ୱା ஛
  (Carnap 1952, 33)  

 

Here, “ॖλ” is a ॖ-function (cf. (31) below). “M” is a molecular predicate (cf. (13) below). “i” is an individual 

distribution (cf. (41) below). “λ” is a parameter weighting the logical factor 
୵M

ச
  (Section 19). “sM” is the 

number of individual constants of which M is predicated. “wM” is the width of M (cf. (18) below). “κ” is the 
number of Q-predicates (cf. (17) below). “s” stands for the number of individuals observed until then; thus “as+1” 
for the individual observed next.  

After its publication, most of the researchers began to study this system alone. It had, however, an 

undesirable outcome as well: they forgot the basic idea underlying Carnap’s inductive logic. 

It is well known that Carnap published his inductive logic mainly in two books: The Logical Foundations 

of Probability (1950, 1st ed.) and The Continuum of Inductive Methods (1952). We may call the one published 

in Foundations1 “the earlier system,” and the other published in Continuum “the later system” or simply 

“λ-system.”  

Formula (0) was provided in the later system. However, the main thought of inductive logic is, without a 

doubt, stated exclusively in the earlier system. So by adopting Formula (0), we may say, researchers have 
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forgotten the central ideas of Carnap’s inductive logic. 

The aim of this paper is nothing but getting back these lost ideas. Although my commentary is sometimes 

a bit lengthy, I am sure that through it, readers will be led to the kernel of inductive logic. 

2. From Confirmation to Probability 

Carnap’s inductive logic can be put in the context of his wider program, the logic of science, which was 

already stated in Syntax (1937, xiii). As early as in Testability, Carnap found inductive logic necessary for this 

program and mentioned its key concept, confirmation, as well (1936-37, 87). Confirmation is the concept to 

characterize the relationship between observed evidence and theoretical hypotheses. Carnap grouped it under 

inductive inference. Thus, inductive logic was, first of all, a theory to clarify the confirmation concept (1962, 1f.). 

The procedure to clarify a concept was called explication by Carnap (1962, 3f.). Explication goes through 

three stages (Carnap 1962, 12). First, a concept is originally used as a classificatory one. Second, the concept is 

refined into a comparative one. Third, it is explicated into a quantitative one (Carnap 1962, 8f.; 1966, 51f.). 

Confirmation was no exception. Corresponding to the three stages, three concepts of confirmation were 

considered. 
 

(1)  The classificatory concept of confirmation (Carnap 1962, 21f.):  
  (i) h is confirmed by e. 

  (ii) Ձ(h, e).  
(2)  The comparative concept of confirmation (Carnap 1962, 22f.):  

(i) h is more strongly confirmed by e than h' by e'. 

(ii) ैՁ(h, e, h', e').  
(3)  The quantitative concept of confirmation (Carnap 1962, 23): 
  (i) The degree of confirmation of h with respect to e is q. 

  (ii) ॖ ሺ݄, ݁ሻ ൌ   .ݍ
 

Here, (ii) is a mere abbreviation of (i).  

ैՁ and Ձ are predicates, but ॖ is a functor. This difference is important: confirmation becomes a function 

in its third stage, which is regarded as probability function “P” today.2 In this manner, Carnap proceeded from 

the explication of confirmation to the probability function. He called such a confirmation concept ॖ-functions 

(1962, 293f.). And in this context, probability was named probability1 (Carnap 1962, 25). 

3. Probability1 and Probability2 

This is how, in his course of argument, Carnap took up the probability concept as well. Yet, this treatment 

seemingly oversimplified the concept.  

Carnap’s distinction between probability1 and probability2 might become the answer (1962, 23f.).3 

Probability1 is a degree of confirmation, which is, as just explained, the quantitative concept of confirmation 

(Carnap 1962, 25), whereas probability2 is a relative frequency in the long run (Carnap 1962, 25).  

In ordinary talks, we usually think about probability2. Suppose, e.g., we talk about the batting average of a 

batter in a baseball game, saying, “The probability of the batter making a hit this time is 0.3.” This talk is 

thought to be about probability2; indeed, it matches Reichenbach’s straight rule quite well (Reichenbach is a 

typical supporter of probability2).  

Carnap objected to this analysis for the reason that even in the case, the probability we have in mind is not 

probability2 but an estimate of relative frequency (1962, 168); the estimate of relative frequency is not 
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probability2 but the probability1-weighted mean, a kind of probability1 (1962, 169, 525); that is why our 

mindset is only directed to probability1.
4  

Reflecting on history, Carnap further said: probability had been originally considered as probability1 

(1962, 182-83), and probability2 had been derived from probability1 because of the thinkers’ inadvertent ways 

of thought (cf. Section 14 below). 

In this way, Carnap reduced probability2 to probability1. His standpoint was not dualism but monism in 

spite of the dichotomy. 

4. Relativity and the Basic Idea 

This is Carnap’s stance to the probability concept. Probability is, for him, probability1, in other words, a 

degree of confirmation.  

He was interested especially in the relative character of probability. This was because his concept, 

probability1, was the expression of the relationship between a hypothesis and evidence. Carnap named the 

character relativity (1962, 31f.). The relativity is identified with what we call conditional probability today. In 

this way, Carnap centered conditional probability in his system. This choice is instructive, considering that the 

axiom systems for conditional probability and those for unconditional probability easily coexist in modern 

probability theories. 

But how did Carnap formulate the relativity? This question leads us to a deeper part of inductive logic. Let 

us trace Carnap’s statements. 
 

(4)  Suppose now that X is interested in a certain hypothesis h; he wants to obtain a judgment about h on the basis 
of his knowledge. For this purpose, he examines the relation between the range of e and that of h (Carnap 
1962, 298). 

 

Here, Carnap has possible world semantics in mind; “range” is a set of possible worlds where the sentence h or 

e holds, though Carnap called possible worlds “state-descriptions” (cf. (19) below).5 The range of e is written 

Ը(e), and that of h Ը(h). The rest of this passage is as follows:  
 

(5)  Suppose the whole knowledge which an observer X has gained … is expressed by the sentence e.… If he finds that 

Ը(e)ؿԸ(h), then (since the actual world in which X has observed e will be, through the inclusion, the world in 
which X observes h, too) h must likewise be true        (Carnap 1962, 298).6 

 

Here, Carnap has deductive logic in mind: the logical implication e՜h (Carnap 1962, 84). However, what if the 

whole inclusion does not hold? 
 

(6)  If, however, he finds that only a part of the range of e is contained in that of h, … then he cannot find certainty 

concerning the truth of h.… He knows the actual state—or the actual world, hereafter written ԽA—is described 

by one of the state-descriptions in Ը(e).… If now ԽA belonged to Ը(e)תԸ(h), then h would be true; otherwise, h 
would be false              (Carnap 1962, 84).7  

 

However, the problem is: to X, the pinpoint place of the actual world ԽA in Ը(e) is not known. Thus, the size of 

each range must be counted. 
 

(7)  Therefore, the larger the part of Ը(e) overlapping with Ը(h) is in relation to the whole of Ը(e), in other words, 
the more of those possibilities which are still left open by e are such that h would hold in them, the more reason 
has X, who knows e, for expecting h to be true        (Carnap 1962, 84). 

 

Carnap depicted this idea as follows: 
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(8)  

                                            The shaded area is Ը(e)∩Ը(h). (Carnap 1962, 297) 

 

We do not know where the actual world ԽA is in Ը(e). However, the larger Ը(e)תԸ(h) is, the more is the 

possibility of ԽA being the world in which h holds. This is the basic idea called partial inclusion. (Of course, it 

is different from the relation of the proper subset in set theory.)  

Here let us recall: if Ը(e)ؿԸ(h), the logical implication e՜h holds (see (5) above). After this, the relation 

of e and h can be named partial logical implication when partial inclusion holds between Ը(e) and Ը(h). This 

is why Carnap called the relationship of confirmation, probability, or inductive inference “partial logical 

implication” (1962, 31).  

5. Wittgenstein as Background 

This is the basic idea of inductive logic. It is the theory that handles the interface of ranges, to which 

possible worlds belong. Yet there still remain questions. How can we formally deal with ranges? How can we 

measure them? What about their contents? What on earth are the possible worlds in Carnap’s system? 

To answer these questions, we may ascribe inductive logic to another thought; in my opinion, Wittgenstein’s 

Tractatus is justly counted as such.8  

Theses from 5.15 to 5.156 in Tractatus famously deal with probability. Carnap’s interest in them was also 

remarkable (1962, 299); he took his idea of range from Wittgenstein’s Spielraum in 4.463 (1942, 96-97, 107; 

1962, 83).  

The characteristic of Wittgenstein’s idea is making use of truth-tables. This is stated from 4.25. Carnap 

mostly followed it, constructing his system in such a manner that its theorems are provable from truth-tables 

(e.g., see notes 16, 17, and 18).  

In this context, we may specify the following passage as the origin of inductive logic. 
 

(9)  Regarding the holding and not holding of n states of affairs, there are ∑ C୬ ୩
୬ 
୩ ୀ ଴  combinations  

(Wittgenstein 1918, 4.27).  
 

This passage is conspicuous in Tractatus, because it tries to solve the problem of the world, exclusively using a 

mathematical method.  

We may relate this passage with inductive logic as follows. First, using the Binomial Theorem, we obtain 

2୬ ൌ ∑ C୬ ୩
୬
୩ ୀ ଴  (Carnap 1962, 152).9 Second, counting the number of possible worlds in inductive logic, we 

find it to be 2n. (This anticipates the later arguments; see (11) and the following, plus (20) below.) From these 

two facts, it can be said that “combinations” in (9) correspond to the possible worlds in inductive logic. These 

“combinations” are customarily listed as, e.g., “1100” on a truth-table. (We can check them on table (12) below.)  

Now that the relationship between Wittgenstein’s passage (= 9) and Carnap’s thought (on possible worlds) 

is clarified, we may approach the picture of inductive logic in terms of Tractatus, especially by means of its 

truth-tables.  

But before rushing into this analysis, we must remove one obstacle between these two thinkers, that is, 

their discrepancy in the understanding of possible worlds, which is especially concerned with their units. Let us 

take up “states of affairs” in (9) as such units. States of affairs are customarily listed on the headings of the 

 

Խ1,Խ2,... 

Ըሺhሻ 

  ←ԽA?→ 
Ըሺeሻ
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left-most columns in a truth-table, for example, as “P1(a1)” (see table (12) below). Wittgenstein regarded them 

as elementary sentences (1918, 4.25). Elementary sentences are the complete picture of the external world, so 

they are fixed, not changeable. On the contrary, Carnap did not regard “P1(a1)” or the like as such. For him, 

they are merely atomic sentences, that is, the products of an artificial language, so they are changeable.  

What results from this difference? It follows that possible worlds are absolute and objective for Wittgenstein, 

whereas they are arbitrary and subjective for Carnap. Later, in this very respect, Carnap decisively broke with 

Tractatus, as Friedman pointed out (Friedman 1999, 179, 183; see also Carnap 1936-37, 58).  

It is true that we may ascribe Carnap’s thought to Wittgenstein’s Tractatus fundamentally. But Carnap’s 

picture is more flexible. We are allowed to design our view of the world, because in Carnap’s system, the 

possible worlds are simply derived from our artificial languages.10 

6. Inductive Logic as Meta-theory 

In this way, we may ascribe Carnap’s thought to Wittgenstein’s Tractatus. However, there was also a 

discrepancy between them, according to which, within Carnap’s system, we can imagine possible worlds as we 

like. Carnap also emphasized this point, in the construction of inductive logic, he fully took the importance of 

artificial languages into account (Carnap 1962, 54).  

Besides this relationship, we may also refer to the one between Carnap and Tarski. That is, for the 

designed language, Carnap provided Tarski’s semantical analysis (Carnap 1942, vif.). The language we design 

is an object language. For this language, probability theory and inductive logic are provided as its meta-theory 

(Carnap 1966, 29-39). Therefore, probability functions or ॖ-functions were thought to be semantical functions 

(Carnap 1962, 164, 283, 522).  

In this way, inductive logic was grouped under semantics. So the preceding sentences, such as (1), (2), and 

(3), were regarded as those in a meta-language, and many expressions, such as “h,” “e,” “i,” “j,” “्,” “Խ,” 

“्१॥,” etc., were assorted into meta-arguments (Carnap 1962, 55f.).  

By reference to this semantical analysis, we find that Carnap became the first person11 to answer the naïve 

question, “To what do we assign probability?”. His answer was “a name of a sentence” (Carnap 1962, 279f.). 

The argument of a probability function is a name of a sentence. 

7. Definitions of Terminology 

Now that Carnap’s philosophical backgrounds were revealed, we may go into its technical phases. Let us, 

first, define possible worlds formally; after that, we get back to the previous question “How can we measure 

ranges?” (cf. Section 5). 

According to the preceding arguments, we may artificially design a language in inductive logic. As an 

example, let us take the following language. 
 

(10)  े22:   Const. = {a1, a2}  Pred. = {P1, P2}  
 

Here, “Const.” is the abbreviation of “individual constant,” and “Pred.” of “primitive predicate.” Note that in 

inductive logic, Const. means the population (Carnap 1962, 207, 493f.). Predicates are confined to monadic 

predicates.12 Carnap called a language having π predicates and N individual constants “ेNπ” (1962, 123). ेNπ 

has also logical symbols of the first-order predicate logic.  

About this language, the following obviously holds: 
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(11)  There are N × π atomic sentences in ेNπ.         (Carnap 1962, 121)  
 

This “N × π” is equal to “n” in (9). But according to (9), there are ∑ C୬ ୩
୬
୩ ୀ ଴  (= 2n) combinations of the 

atomic sentences regarding holding and not holding. How can we count it?  

As for this question, compiling a truth-table in े22 will help: 
 

(12)  P1(a1)  P2(a1)  P1(a2)  P2(a2)                P1(a1)՜P2(a1)  P1(a2)՜P2(a2) 

 1  1 1 1 Խ1   Q1(a1)∧Q1(a2)  1 1 

 1 1 1 0 Խ2   Q1(a1)∧Q2(a2)   1  0 

 1 1 0 1  Խ3  Q1(a1)∧Q3(a2)   1  1 

 1 1 0 0  Խ4  Q1(a1)∧Q4(a2)  1  1 

 1 0 1 1 Խ5  Q2(a1)∧Q1(a2)  0  1 

 1 0 1 0  Խ6  Q2(a1)∧Q2(a2)  0  0 

 1 0 0 1  Խ7  Q2(a1)∧Q3(a2)  0  1 

 1 0 0 0  Խ8  Q2(a1)∧Q4(a2)  0  1 

 0 1 1 1  Խ9  Q3(a1)∧Q1(a2)  1  1 

 0 1 1 0  Խ10  Q3(a1)∧Q2(a2) 1  0 

 0 1 0 1  Խ11  Q3(a1)∧Q3(a2)  1  1 

 0 1 0 0  Խ12  Q3(a1)∧Q4(a2)  1  1 

 0 0 1 1  Խ13  Q4(a1)∧Q1(a2)  1  1 

 0 0 1 0  Խ14  Q4(a1)∧Q2(a2) 1  0 

 0 0 0 1  Խ15  Q4(a1)∧Q3(a2) 1  1 

 0 0 0 0 Խ16  Q4(a1)∧Q4(a2) 1  1 
 

There are 16 lines marked as, e.g., “1100” in the four left-most columns. They express the combinations of 

atomic sentences regarding holding and not holding. The combinations are calculated as a repeated permutation 

that takes four units out of two different things (1, 0). Thus, 24 = 16. In general, 2N × π = 2n. 

In this way, we can count the number of combinations of atomic sentences; and those combinations 

express possible worlds, as we saw earlier (Section 5). They are marked in the fifth column as “Խ1,” for 

example. In terms of semantics of propositional logic, they are regarded as truth assignments, too. 

However, in (12), a possible world is formed as a conjunction of atomic sentences, e.g., Խ7 as 

P1ሺa1ሻר൓P2ሺa1ሻר൓P1ሺa2ሻרP2ሺa2ሻ. This formulation is somewhat complicated. Thus, we introduce another 

formulation of possible worlds using Q-predicates, instead:  
 

(13)  Only for abbreviation, we write, e.g., “P1՜P2ሺa1ሻ” instead of “P1ሺa1ሻ՜P2ሺa1ሻ” and we call such an expression a 

molecular predicate expression. Further, we write, e.g., “M(a1)” instead of “P1՜P2(a1)” and call such an 
expression a molecular predicate (Carnap 1962, 104-05). 

 

(14)  If molecular predicates M1, …, Mp fulfill the following conditions, then they are called forming a division 
(Carnap 1962, 107-08). 

 ٧13 ׊xሾM1ሺxሻש … שMpሺxሻሿ              (exhaustiveness) 

 For any Mi, Mj (1 ൑ i, j ൑ p), ׊ ٧x¬ሾMiሺxሻרMjሺxሻሿ        (exclusiveness) 

 For no Mi (1 ൑ i ൑ p), ׌¬٧xMiሺxሻ            (Mi is not logically empty).  
 

(15)  The molecular predicates introduced with the following definition are called Q-predicates. 

 ሺ¬ሻPπሺxሻሿ    (Carnap 1962, 125)ר … רxሾQiሺxሻ՚՜ሺ൓ሻP1ሺxሻ׊
 

Here, “P1” to ”Pπ” are all the primitive monadic predicates in ेNπ. “(¬)” stands for either affirmation or 
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negation. It is obvious that the Q-predicates form a division (Carnap 1962, 126). Note that Q-predicates belong 

not to meta-languages but to object languages. In े22, all Q-predicates are as follows: 
 

 P2ሺxሻሿרxሾQ1ሺxሻ՚՜P1ሺxሻ׊  (16)
 P2ሺxሻሿ¬רxሾQ2ሺxሻ՚՜P1ሺxሻ׊  
 P2ሺxሻሿרxሾQ3ሺxሻ՚՜¬P1ሺxሻ׊  
 P2ሺxሻሿ¬רxሾQ4ሺxሻ՚՜¬P1ሺxሻ׊  

 

In general, the following holds: 
 

(17)  There are 2π Q-predicates in ेNπ.          (Carnap 1962, 126)14 
 

Carnap wrote “κ” instead of “2π” (Carnap 1962, 126).  

Q-predicates play two important roles in inductive logic. One is the following: 
 

(18)  Any formula ै(x)15 in ेNπ is expressed with a disjunction of Q-predicates in the following way:  
׊xሾैሺxሻ՚՜Qi1ሺxሻשQi2ሺxሻש ... שQiwሺxሻሿ          (Carnap 1962, 126)16 

 

Here, the number “w” is called width (Carnap 1962, 127).  

The other role is that we can define state-descriptions with Q-predicates, this is what we intended:  
 

(19)  The conjunctions introduced, as follows, by predicating one Q-predicate of each individual constant in ेNπ are 
called state-descriptions.  

Խi ൌ Qi1ሺa1ሻרQi2ሺa2ሻר … רQicሺaNሻ          (Carnap 1962, 72)  
 

Here, Qi1-Qic is one of Q1-Qκ in ेNπ. (The second subscript “c” in “QicሺaNሻ” shows the number of Q-predicates 

appearing in the world Խi.) This is the other formulation of possible worlds we intended. Additionally, let me 

mention the following theorem as a counterpart to Tractatus 4.27 (= 9):  
 

(20)  There are 2N × π state-descriptions in ेNπ.         (Carnap 1962, 121)17  
 

Carnap wrote “ζ” instead of “2N × π” (Carnap 1962, 121). It is obvious that state-descriptions form a division 

with the same meaning as (14) (Carnap 1962, 94). Their important role in inductive logic is as follows: 
 

(21)  Any sentence ्18 in ेNπ can be expressed with a disjunction of state-descriptions as follows: 
्՚՜Խi1שԽi2ש ... שԽim      (Carnap 1962, 94)19 

 

The second subscript “m” in “Խim” is an arbitrary number.  

In this way, we can define possible worlds formally in inductive logic. Then, based on it, let us try to 

answer the question asked from the beginning of Section 5. 
 

(22)  For any ्1, ्2, ्3, and Խi in ेNπ, we adopt the following recursive definition (Carnap 1962, 78-79): 

्1 holds in Խi  ֞   If ्1 is an atomic sentence, then ्1 is a conjunct of Խi. 
  If ्1 is ൓्2

 , then ्2 does not hold in Խi. 

 If ्1 is ्23्ש
 , then ्2 or ्3 holds in Խi. 

 If ्1 is ׊xैሺxሻ , then all of ሺa1ሻ, … ैሺaNሻ hold in Խi.  
 

Those who found state-descriptions correspondent to truth assignments (cf. (12) above) find this (22) 

correspondent to the usual definition of truth (cf. Carnap 1962, 68-69, 78). 

From this recursive definition, we can obtain a strict definition of the range: 
 

(23)  For any sentence ् in ेNπ, its range is defined as follows:  
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Ը(्) = {Խi | ् holds in Խi}         (Carnap 1962, 79)  
 

8. The Problem of Measure 

With these definitions, the preceding arguments are followed up. Based on it, then, let us tackle the issue 

“How can we measure ranges?” (Section 5).  

One might think that it suffices to identify the measure of a range with its cardinality—card(Ը(्)). This 

is much the same idea as the measure that Carnap called ॠ† (1962, 564-65).20 However, if we adopt ॖ-functions 

based on ॠ† or cardinality, inductive logic disregarding empirical data is constructed, that is, with respect to 

relevant evidence, ॖ†(h, e1) =  ॖ
†(h, e1רe2)=  ॖ

†(h, e1רe2רe3) = ….21 Therefore, Carnap had to turn it down, and 

sought for the better measure for his logic.  

At the beginning, he assumed a set of all measures, calling it ॠ-functions (1962, 293f.). His strategy was, 

then, choosing better ॠ-functions from this great number of candidates. However, in this course of thought, he 

seems to have faced a fatal difficulty: it is impossible to measure a range itself directly; in other words, we 

cannot give any values to ॠ൫Ըሺ्ሻ൯. We must recognize this fact first.  

Take another look at (23), according to which a range is merely a set of state-descriptions. So the 

following equation may be expected. 
 

(24)  ॠ൫Ըሺ्ሻ൯ ൌ  ॠሺሼԽ୧ଵ, … , Խ୧୬ሽሻ   ሺProvableሻ   
 

If the following (25) held in addition to this (24), we could proceed further smoothly:22 
 

(25)  ॠሺሼԽ୧ଵ, … , Խ୧୬ሽሻ ൌ  ॠሺԽ୧ଵ ש ש … Խ୧୬ሻ  (Unprovable)  
 

But this does not hold. For, certainly, the following holds: 
 

(26)  ԸሺԽi1ש ... שԽinሻ = ሼԽi1, ..., Խinሽ      ሺProvableሻ  
 

However, between the sentence Խi1ש  ...   ,Խin and the set ሼԽi1ש ...,  Խinሽ, we cannot prove any identity. In other 

words, ሼԽi1, ..., Խinሽ can be the range of Խi1ש ... שԽin but cannot be Խi1ש ... שԽin itself.  

If we find a sentence with which ሼԽi1, ..., Խinሽ is identified, we can proceed further than (24), but we cannot 

find it.  

On trial, let us take up the following statement of Carnap’s as a clue:  
 

(27)  A set of sentences is logically equivalent to the conjunction of its elements.   (Carnap 1962, 86)  
 

This statement is acceptable, considering a set of sentences working in {्1, ्2} ٧ ्3, for example. Thus, the 

following identity may be expected: 
 

(28)  ॠ൫Ըሺ्ሻ൯ ൌ ॠሺሼԽ୧ଵ, … , Խ୧୬ሽሻ ൌ ॠሺԽ୧ଵ ר ר … Խ୧୬ሻ     ሺProvable, but nonsenseሻ 
 

But this idea does not hold, either. For state-descriptions are exclusive with each other (cf. (19) above), so that 

Խi1ר ... רԽin is contradictory.  

After all, we must give up measuring a range itself directly. In other words, we cannot afford any values to 

ॠ൫Ըሺ्ሻ൯.  

This is why an alternative method is sought for. As such, we may focus on the state-descriptions inside a 

range. That is, measuring not the range itself but the state-descriptions inside it—this could be the alternative: 
(29)  For any sentence ् in ेN

π, ॠሺ्ሻ ൌ  ∑ ॠሺԽ୧୨
୬
୨ ୀ ଵ ሻ for ԽijאԸ(्).    (Carnap 1962, 295)  
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This idea is naturally derived from the preceding theorem (21) as well.  

Anyway, this alternative finally gives us the answer to our original question “How can we measure a 

range?”. According to it, the answer is: “By measuring the state-descriptions inside the range.” So we must not 

forget: in (29), “ॠሺ्ሻ” plays a role of “ॠ൫Ըሺ्ሻ൯.” This is the method Carnap finally adopted.  

9. The Explication of Conditional Probability 

Now we got to the starting point of inductive logic. Together with (29), by adopting the following rule, we 

can axiomatize inductive logic. 
 

(30)  For any sentence ् in ेN
π, if ् is logically false, then ॠሺ्ሻ ൌ 0.    (Carnap 1962, 295)  

 

In a great number of ॠ-functions, those fulfilling (29) and (30) are to form a subset of regular members. 

Accordingly, Carnap called them regular ॠ-functions (1962, 295). But, why “regular”? The answer is easy. It 

is because such ॠ-functions fulfill the orthodox axioms of probability. That is, those axioms are proved from 

(29) and (30).23  

On the other hand, we must carefully treat the fact that ॠ-functions now play the role of unconditional 

probability. It appears to conflict with another fact that Carnap preferred conditional probability in his system 

(cf. Section 4). To reconcile it with the other, we must say: ॠ-functions were merely a minor point in his course 

of thought. Indeed, Carnap admitted it with this formula: 
 

(31)  ॖሺ݄, ݁ሻ ൌ  
ॠሺ௛ٿ௘ሻ

ॠሺ௘ሻ
             (Carnap 1962, 295)  

 

ै-functions are no more than parts of a ॖ-function. Let me further explain it from the viewpoint of Section 4.  

Firstly, we can prove that Ը(h)ځԸ(e) ൌ Ը(hרe)  (Carnap 1962, 79). According to Section 8, the size of 

Ը(hרe)  is measured as ॠሺ݄ ר ݁ሻ, and that of Ը(e) as ॠሺ݁ሻ. Therefore, in (31),  ॠሺ݄ ר ݁ሻ  means the size of 

Ը(hרe), and  ॠሺ݁ሻ  the size of Ը(e).  

In Section 4, we saw that the larger Ը(h)ځԸ(e) is, the greater is the possibility that h becomes true (on the 

assumption that the size of Ը(e) is not changed). This was the case when X thought about the probability of h 

with regard to e. Furthermore, we can say that the larger Ը(e) is, the lower is the possibility that h becomes true 

(on the assumption that the size of Ը(h)ځԸ(e) is not changed). In short, the size of Ը(hרe)  is in direct 

proportion to the probability of h with regard to e, but the size of Ը(e) is in inverse proportion to it. This is the 

meaning of (31).  

10. Symmetrical Functions 

This is how Carnap explicated the concept of conditional probability (1962, 298). Here, let us recall that 

conditional probability was the same as what Carnap intended to clarify in his system: probability1 or a degree 

of confirmation (Sections 2-4). Then, have we already reached his goal? 

Not yet. Recall the confirmation Carnap pursued was the quantitative concept, namely ॖ-function (Section 2). 

So he still wondered how concrete values are assigned to ॖ-functions. And to solve the problem, he narrowed 

down the great many ॠ-functions from regular ॠ-functions further to symmetrical ॠ-functions. Let us trace his 

argument below. 
 

(32)  The function C that substitutes for individual constants appearing in a sentence ् other ones in accordance with 

a particular rule is called an ड़ॡ-correlation (Carnap 1962, 109).  
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“ॅॡ” of ड़ॡ-correlation is a mere abbreviation of “individual constant” (Carnap 1962, 55-56). Carnap symbolized 

“a particular rule” in this definition by ൭
aଵ aଶ
՝ ՝
aଶ aଵ

൱,24 for example. Following this rule, P1(a1) in े2
2 is altered to 

P1(a2). The latter is expressed as C(P1(a1)) and called a C-correlate of P1(a1) (Carnap 1962, 55-56). As in this 

example, it is possible that individual constants in ् do not appear in C(्). On the contrary, if all individual 

constants in ् also appear in C(्), that is, C(्) is different from ् only in the order of individual constants, 

we call C(्) isomorphic to ्  (Carnap 1962, 55-56). Obviously, any C-correlate of a state-description is 

isomorphic to the state-description, that is, C(Խi) is isomorphic to Խi. For example, considering the rule above 

in े2
2 and (12), C(Խ5) = Խ2 is isomorphic to Խ5. Symmetrical ॠ-functions have to do with such state-descriptions: 

 

(33)  Those ॠ-functions which assign the same value to all isomorphic state-descriptions are called symmetrical 

ॠ-functions (Carnap 1962, 485).  
 

In (12), if ॠ is symmetrical, ॠሺԽଶሻ ൌ ॠሺԽହሻ,ॠሺԽଷሻ ൌ ॠሺԽଽሻ, and so on. 

Now then, how many isomorphic state-descriptions are there for one state-description? The answer is as 

follows:  
 

(34)  Suppose concerning a state-description Խi in ेN
π, the number of individual constants which Q1 is predicated of is 

N1, and likewise, N2 for Q2, …, Nκ for Qκ. Then, the number of state-descriptions isomorphic to Խi is 
N!

Nభ! ൈ Nమ! ൈ … ൈ Nಒ!
.             (Carnap 1962, 140)25 

 

I write “ξ” instead of “
N!

Nభ! ൈ Nమ! ൈ … ൈ Nಒ!
”.  

11. Statistics in Inductive Logic 

A ॖ-function was defined in (31); additionally, if ॠ is a regular ॠ-function there, the ॖ-function defined 

from it is also called regular (Carnap 1962, 295). Furthermore, if ॠ is a symmetrical ॠ-function, it is called a 

symmetrical ॖ-function (Carnap 1962, 486).  

We have already seen that regular ॖ-functions were devised for probabilistic logic, such as Kolmogoroff’s 

system (Section 9). In contrast, the symmetrical ॖ-functions just mentioned were devised for statistics including 

the Probability Integral Φ(z) for normal distribution, Bernoulli’s Limit Theorem, and so on. It is a bit 

surprising that Carnap included even these famous statistical laws as theorems of his system.26 

Unfortunately, it is impossible to explain all the details here, but we can abstract its main parts. (Note that 

“p,” “s1,” or the like below express cardinal numbers. See note 12.) 
 

(35)  In ेN
π, consider p molecular predicates forming a division. Let i be an individual distribution (cf. (41) below) 

stating that over the first sample K1 = {a1, …, as}, M1 is predicated of s1 individual constants, and likewise, s2 for 
M2, …, sp for Mp. Similarly i', over the second sample K2 = {as+1, …, as+s'}, s'1 is for M1, s'2 for M2, …, s'p for Mp. 

Let j be a statistical distribution (cf. (43) below) corresponding to i, and j' to i'. Since iٿi' is also an individual 

distribution, we can form a statistical distribution J corresponding to iٿi'. (J is to be a statement over s + s' 

individual constants.) Then, with a symmetrical ॖ-function, the following holds:  

ॖሺ݆,  = ሻܬ
CSభ ൈ  CSమ ൈ ൉൉൉ ൈ CS౦S౦ శ SԢ౦Sమ శ S ԢమSభ శ SԢభ

ᇱCSS శ S 
     (Carnap 1962, 491) 

This is a key theorem for symmetrical functions; but we put off its proof until succeeding sections (Sections 

12-13). Before that, we see the relationship of this theorem with statistical investigation.  
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In (35), let K1ڂK2 be equal to Const., i.e., the population, and let N1 be the number of individual constants 

which M1 is predicated of in Const., and likewise, N2 for M2, …, Np for Mp; hence, s + s' = N, s1 + s'1 = N1, …, 

sp + s'p = Np. Then, the following holds as a corollary of (35):  
 

(36)  Consider ेN
1: Const. = {a1, …, aN}, Pred. = {P1}, ׊xሾQ1ሺxሻ՚՜P1ሺxሻሿ, ׊xሾQ2ሺxሻ՚՜൓P1ሺxሻሿ. As evidence, let J 

be a statistical distribution stating that over the population Const., the absolute frequency of Q1 is N1, and that of 
Q2 is N2. As a hypothesis, let j be a statistical distribution stating that over the sample K1 = {a1, …, as}, the 

absolute frequency of Q1 is s1, and that of Q2 is s2. Then, with a symmetrical ॖ-function, the following holds:  

ॖሺ݆,  = ሻܬ
CSభ ൈ CSమ NమNభ

CSN
        (cf. Carnap 1962, 495) 

 

We may start our statistical investigation from this (36). After that, as the number of N, S, N1, N2, s1, or s2 

become larger, we may proceed to use the Binomial Law:27 
 

(37)  ॖሺ݆, ሻܬ ؆ Cୱభ ൈ ቀ
Nభ

N
ቁ
ୱభ

ୱ ൈ ቀ
Nమ

N
ቁ
ୱమ

          (Carnap 1962, 499)28 
 

Furthermore, when the number becomes much larger, we may use the Normal Law: 
 

(38)  ॖሺ݆, ሻܬ  ؆  
ଵ

஢ ൈ √ଶ஠
 ൈ eି

ಌమ

మಚమ  ൌ  
ଵ

஢
ൈ ߶ ቀ

ஔ

஢
ቁ         (Carnap 1962, 504)29 

 

Here, σ ൌ ටs ൈ ቀ
ୱభ
N
ቁ ൈ ቀ

ୱమ
N
ቁ, i.e., the standard deviation; π is the ratio of the circumference; δ ൌ   sଵ െ s ൈ ቀ

Sభ
N
ቁ, 

i.e., the deviation; e is the base of natural logarithms; ߶ሺxሻ ൌ
ଵ

஢ ൈ √ଶ஠
 ൈ eି

౮మ

మ , i.e., the Normal Function 

(Carnap 1962, 153).  

These theorems are provable in inductive logic, as stated above. Carnap never disregarded statistical 

procedures. 

12. The Form of Evidence and Hypotheses 

Now then, let us get back to theorem (35). To prove it, however, we need some more terminology. Let me 

complement it.  
 

(39)  The disjunction that connects all isomorphic state-descriptions in the following way is called a structure 
description: 

्१॥i ൌ Խi1שԽi2ש … שԽiξ
      (Carnap 1962, 116)  

 

Isomorphic state-descriptions have individual constantsall individual constants in ेN
π—in common (see (32) 

and the following). Thus, all the isomorphic state-descriptions connected in one disjunction are thought to 

express a statistical datum focusing only on properties (Q-predicates) and abstracting data on individuals. This 

is the meaning of structure-descriptions.  

With regard to table (12) in े2
2, 16 state-descriptions are reduced to 10 structure-descriptions: ्१॥1 = Խ1, 

्१॥2 = Խ2שԽ5, ्१॥3 = Խ3שԽ9, ्१॥4 = Խ4שԽ13, ्१॥5 = Խ6, ्१॥6 = Խ7שԽ10, ्१॥7 = Խ8שԽ14, ्१॥8 = Խ11, ्१॥9 = 

Խ12שԽ15, ्१॥10 = Խ16. In general, the following holds about the number of structure-descriptions: 
 

(40)  There are κ+Nԟ1CN structure-descriptions in ेN
π.       (Carnap 1962, 138)30 

 

Carnap wrote “τ” instead of “κ+Nԟ1CN” (Carnap 1962, 121). 
 

(41)  The conjunction stating over s individual constants and p molecular predicates forming a division which 
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predicate is predicated of which individual constant is called an individual distribution: 

ik = Mk1(aj1)ٿMk2(aj2)ٿ … ٿMks(ajs)
    (Carnap 1962, 111)  

 

“Mk1” to ”Mks” is one of p molecular predicates. “s” is an arbitrary number. Note that “Mki” (1 ൑ I ൑ s) is not 

confined to a Q-predicate, and individual distributions do not have to provide a datum on all individual 

constants in contrast with state-descriptions. 

For example, suppose that “M1” and “M2” are defined as follows: ׊x[M1(x)՚՜{P1(x)՜P2(x)}], 

in े3 [{൓P2(x)רP1(x)}M2(x)՚՜]x׊
2, where Const. = {a1, a2, a3} and Pred. = {P1, P2}. Then, M2(a1)ٿM1(a2) is 

an individual distribution.  

The following is analogous to (34): 
 

(42)  Let i be an individual distribution in ेN
π stating that over s individual constants, M1 is predicated of s1 individual 

constants, and likewise, s2 for M2, …, sp for Mp. Then, the number of individual distributions isomorphic to i is 
ୱ!

ୱభ! ൈ ୱమ! ൈ … ൈୱ౦!
.             (Carnap 1962, 158)  

 

I write “ς” instead of “
ୱ!

ୱభ! ൈ ୱమ! ൈ … ൈ ୱ౦!
”.  

 

(43)  The disjunction connecting all isomorphic individual distributions in the following way is called a statistical 
distribution. 

jk = ik1שik2ש … שikς
       (Carnap 1962, 111)  

 

For example, in े3
2 above, {M1(a1)ٿM2(a2)}ש{M2(a1)ٿM1(a2)} is a statistical distribution. 

Statistical distributions state the absolute frequency or relative frequency of each Mi (1 ൑  I  ൑  p). As 

individual distributions correspond to state-descriptions, so statistical distributions correspond to 

structure-distributions (Carnap 1962, 115). 

We adopt individual-distributions and statistical-distributions as the form of hypotheses and evidence. 

13. The Proof of (35) 

Let us then prove theorem (35). The subsequent (44) to (51) are lemmas for the proof; it is premised that 

ॠ is a symmetrical ॠ-function and i, j, j', and J are the same as (35). 
 

(44)    Let ्i be a sentence in ेN
π and Ը(्i) = {Խi1, …, Խin}. Then, the range of C(्i) is constructed from elements in 

Ը(्i), i.e., Ը(C(्i)) = {C(Խi1), …, C(Խin)}.        (Carnap 1962, 110)31 

(45)    For any sentence ्i, ॠሺ्௜ሻ ൌ  ॠሺCሺ्௜ሻሻ. (Carnap 1962, 488)32 
(46)    Let i be an individual distribution and j a statistical distribution corresponding to i. Then, 

ॠሺ݆ሻ ൌ
ୱ!

ୱభ! ൈ ୱమ! ൈ … ൈ ୱ౦!
ൈ ॠሺ݅ሻ  (Carnap 1962, 490)33 

(47)    ٧ jٿj'՜J              (Carnap 1962, 491)34 

(48)    ٧ jٿJ ՜j'               (Carnap 1962, 491)35 

(49)    ٧ jٿJ՚՜jٿj' (Carnap 1962, 491)36 

(50)    Let ्k be a sentence that has no individual constants in common with j; then, 

 ॠሺ्୩ ٿ ݆ሻ ൌ
ୱ!

ୱభ! ൈ ୱమ! ൈ … ൈ ୱ౦!
ൈ ॠሺ्୩ ٿ ݅ሻ                    (Carnap 1962, 490)37 

(51)    ॠሺ݆ٿ ݆Ԣ ሻ ൌ
ୱ!

ୱభ!ൈୱమ!ൈ…ൈୱ౦!
ൈ

ୱԢ !
ୱ Ԣభ!ൈୱ Ԣమ!ൈ…ൈୱ Ԣ౦!

ൈ ॠ൫݅݅ٿԢ ൯                              (Carnap 1962, 491).38 

 

From these lemmas, (35) is proved as follows: 
 

(52)     ॖሺ݆,  = ሻܬ
ॠሺ௝ٿ௃ሻ

ॠሺ௃ሻ
  from (31) 
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    = 
ॠሺ௝ٿ௝ ᇱሻ

ॠሺ௃ሻ
          from (49) 

    = 

౩!
౩భ!ൈ౩మ!ൈ…ൈ౩౦!

ൈ
౩ Ԣ!

౩ Ԣభ!ൈ౩ Ԣమ!ൈ…ൈ౩ Ԣ౦!
ൈॠ൫௜ٿ௜Ԣ ൯

ሺ౩శ౩Ԣ ሻ!
ሺ౩భశ౩ Ԣభሻ!ൈሺ౩మశ౩Ԣ మሻ!ൈ…ൈሺ౩౦శ౩Ԣ ౦ሻ!

ൈॠ൫௜ٿ௜Ԣ ൯
  from (51) and (46) 

    = 

ሺ౩భశ౩ Ԣభሻ!
౩భ!ൈ౩Ԣ భ!

ൈ
ሺ౩మశ౩ Ԣమሻ!
౩మ!ൈ౩Ԣ మ!

ൈ…ൈ
ሺ౩౦శ౩Ԣ ౦ሻ!
౩౦!ൈ౩ Ԣ౦!

ሺ౩శ౩ Ԣሻ!
౩!ൈ౩Ԣ !

 = 
CSభൈ CSమൈ൉൉൉ൈ CS౦S౦శS Ԣ౦SమశSԢ మSభశSԢ భ

CSSశSԢ 
 ሁ 

 

14. From Direct Inference to Predictive Inference 

Theorem (35) provides inductive logic with a concrete value for the first time (Carnap 1962, 492). 

Therefore, Carnap seems to have attained his aim here. But this is not the case. Take another look at (35). 

Therein, not only the information of relative frequency over a sample (here I regard K2 as the sample) but also 

that over a population (here I regard K1׫K2 as the population) is provided in advance. This is strange, because 

in most cases where we make an inductive inference, we do not have information all over the population; our 

information is restricted to a sample, a part of the population. We must make an inference from one sample 

(e.g., K2 in (35)) to the other (e.g., K1 in (35)) within this restriction. Nevertheless, the information of both 

samples is provided in (35) in advance.  

Carnap noticed this strangeness. So, naming such inferences as (35) direct inferences, he strictly 

distinguished them from customary inductive inferences (1962, 207). The customary inductive inferences go 

from one sample to the other within restricted information. Carnap called such inferences predictive inferences 

(1962, 207). It is this kind of inferences that inductive logic had to deal with.  

15. The First Solution 

For the reason just mentioned, (35) could not be the final solution for Carnap. It is a method only for 

direct inferences; but our inductive inferences are usually predictive inferences. 

The target of inductive logic must be predictive inferences. We may define them formally as the 

inferences from the first sample K1 = {a1, …, as} to the second sample K2 = {as+1, …, as+s'}, where K1 and K2 

are subsets of the population Const. (In this definition, symbols are used in a different way from those in 

theorem (35). But it does not influence the following arguments.)  

Here, imagine this scenario. In े2
2 above, we research the properties expressed by M1 and M2. Their 

definitions are: ׊x[M1(x)←→Q1(x)שQ2(x)], i.e., P1, and ׊x[M2(x)←→Q3(x)שQ4(x)], i.e., P2 respectively. Again, 

we have already observed, as the first sample, a1 being M1. In this situation, what is the probability of a2 also 

being M1?  

This is a simple, good example to consider a predictive inference formally. Since we are supposed to have 

no information about population, the preceding method exhibited in Section 11 is not available now. Thus, we 

must construct a new method. This is possible, developing the basic idea mentioned in Section 4. 

The basic idea was concerned with ranges. We have already seen that ranges are measured by (29). But, 

following (29) alone, an ॠ-function (i.e., a regular ॠ-function) could not yield any concrete values.  

In contrast, if only a measure, i.e., the value of ॠሺԽ୧ሻ, is decided for all state-descriptions, we are able to 

give concrete values to any sentence. This is the breakthrough we are seeking for. So how we decide the value 

of ॠሺԽ୧ሻ—this is the most important problem. 

One might think it suffices to give equal values to each state-description; this is much the same idea as 
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Laplace’s principle of indifference. But we have already turned it down (Section 8). As ॠ†, Carnap also denied 

it (1962, 564).39 In the end, the measure he adopted was the following ॠ*: 
 

(53)  For any Խi in ेN
π, ॠ*(Խi) = 

ଵ

த
ൈ

ଵ

ஞ
.          (Carnap 1962, 563)  

 

The idea behind this formula is as follows.40 The fault of ॠ† is that it cannot reflect the influence of empirical 

evidence (cf. Section 8). To reflect it, then, what should be done? Suppose that we observed regularized 

samples, e.g., M1(a1)ٿM1(a2). If we will utilize this precious experience, we must prefer the hypothesis 

describing the more regularized world, e.g., ԽI = M1(a1)ٿM1(a2)ٿM1(a3) to the one describing the less 

regularized world, e.g., ԽII = M1(a1)ٿM1(a2)ٿM2(a3). (Here, for simplicity, we allow the notation of 

state-descriptions by molecular predicates.) If only we introduce this way of thinking, the better function will 

be provided.  

Generally speaking, structure-descriptions to which more regularized worlds belong are composed of 

fewer disjuncts. For example, compare ्१॥1 with ्१॥2  in े2
2 (see (39) and the following). The world that 

belongs to ्१॥1, i.e., Խ1, is more regularized than the worlds to ्१॥2, i.e., Խ2 and Խ5. To be concrete, Խ1 in ्१॥1 

is described with only one Q-predicate, i.e., Q1; on the contrary, Խ2  and  Խ5  in ्१॥2  are described with two 

Q-predicates, i.e., Q1 and Q2. On account of this, ्१॥1 is composed of fewer disjuncts (= Խ1) than ्१॥2 ሺൌ Խ2, Խ5ሻ.  

This fact is understandable from (34). Focus on the second subscript “ξ” of the last disjunct in (39). ξ is 

the number stated in (34). It is obvious from (34) that the state-description in which fewer Q-predicates appear 

(so, which is “regularized”) has fewer state-descriptions isomorphic to itself. Therefore, the structure-description 

composed of regularized state-descriptions has fewer disjuncts. 

In accordance with this fact, firstly, we assign equal values to each structure-description, and secondly, 

make the assigned value divided among disjuncts of each structure-description: 
 

(54)    1 ्१॥1ൌ
ଵ

ଵ଴
  Խ1ൌ

ଵ

ଵ଴
                    Example in (12) 

  ्१॥2ൌ
ଵ

ଵ଴
    Խ2ൌ

ଵ

ହ
 

    Խ5ൌ
ଵ

ହ
 

  ्१॥10ൌ
ଵ

ଵ଴
 

 

In this way, more regularized worlds (state-descriptions) come to obtain higher values; in consequence, the 

hypotheses including more regularized worlds will obtain higher values. (Recall that an hypothesis is restated 

as a disjunction of state-descriptions. See (21) again.) 

 This is the idea behind (53). And it gives the answer to our original question “What is the probability of 

a2 also being M1?”.  
 

(55)    ॖ*(M1(a2), M1(a1)) = 
ॠכሺMభሺୟమሻٿMభሺୟభሻሻ

ॠכሺMభሺୟభሻሻ
           from (31) 

        = 
ॠכሺԽభڀԽఱڀԽమڀԽలሻ

ॠכሺԽభڀԽమڀԽయڀԽరڀԽఱڀԽలڀԽళڀԽఴሻ
             from (21) and (12) 

        = 
ॠכሺԽభሻାॠכሺԽఱሻାॠכሺԽమሻାॠכሺԽలሻ

ॠכሺԽభሻାॠכሺԽమሻାॠכሺԽయሻାॠכሺԽరሻାॠכሺԽఱሻାॠכሺԽలሻାॠכሺԽళሻାॠכሺԽఴሻ
    from exclusiveness (Carnap 1962, 307) 

        = 
ଷ

ହ
                  from (53) 

This value is a little higher than the value given before observation: ॖ*(M1(a1), t) = 
ଵ

ଶ
. (“t” means tautology, 

which means “We have not observed anything yet.” See Carnap 1962, 307f.) 
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16. The Second Solution 

This is how Carnap created the function suitable for predictive inferences. However, on the other hand, he 

noticed its limitation.  

As the number of N or that of π in ेN
π becomes larger, the number of state-descriptions and that of 

structure-descriptions become extravagantly large (Carnap 1962, 139). Again, to make matters worse, when using 

this method, we must take great pains to find, for each sentence, the state-descriptions the disjunction of which 

is equivalent to the sentence. For example, see the second step of (55). There, we had to look into table (12) 

thoroughly to find, for the sentence M1(a1) in the denominator, the state-descriptions the disjunction of which is 

equivalent to it. (Recall that M1(a1) is equivalent Q1(a1)שQ2(a1), as stated in the second paragraph of Section 15. 

And see theorem (21) and note 19. Of course, the same is true of the numerator, i.e., 

M1(a2)רM1(a1)՚՜ሼQ1(a2)שQ2(a2)}ר{Q1(a1)שQ2(a1)}՚՜ሼQ1(a1)רQ1(a2)}ש{Q2(a1)רQ1(a2)}ש{Q1(a1)רQ2(a2)}ש{Q2

(a1)רQ2(a2)}.) But this is a vital step to the present method.  

Carnap noticed this difficulty and complexity (1962, 566). Thus, he looked for an alternative method 

successively (1962, 117). As a result, what he provided was the following: 
 

(56)  In ेN
π, consider p molecular predicates forming a division. As evidence, let i be an individual distribution stating 

that over the first sample K1 = {a1, …, as}, M1 is predicated of s1 individual constants, and likewise, s2 for M2, …, 
sp for Mp; let j be a statistical distribution corresponding to i. As a hypothesis, let j' be a statistical distribution 
stating that over the second sample K2 = {as+1, …, as+s'}, the absolute frequency of M1 is s'1, and likewise, s'2 for 
M2, …, s'p for Mp. Then, the following holds: 

ॖ*(j',i) = ॖ*(j',j) = 
∏ C౩Ԣ ౟౭౟శሺ౩౟శ౩Ԣ ౟ሻషభ
౦
౟ స భ

C
౩Ԣ ಒశሺ౩శ౩ Ԣሻషభ

      (Carnap 1962, 568) 

 

We may say: this is the heart of Carnap’s inductive logic. 

17. Fitting Sequence 

Now we are at the heart of inductive logic. Theorem (56) provides us the most general method to calculate 

predictive inferences; furthermore, it becomes a connective point with the later system. 

For its proof, first of all, we must recognize the most important feature of ॠ*. 
 

(57)  Consider the following two similar languages: 

ेN
π: Const. = {a1, …, aN},  Pred. = {P1, …, Pπ}. 

ेN+1
π: Const. = {a1, …, aN, aN+1},  Pred. = {P1, …, Pπ}. 

Let Nॠ be the ॠ-function for ेN
π, and N+1ॠ for ेN+1

π. 

Let NԽj be a state-description in ेN
π, and N+1Խj in ेN+1

π. Then, 

Nॠ*(NԽj) = N+1ॠ*(NԽj).  
 

Let us prove this theorem, using the subsequent four paragraphs.  
First, consider the measure of NԽj in ेN+1

π, i.e., N+1ॠ*(NԽj). Here, note that NԽj is not a state-description in 

ेN+1
π but a mere sentence in ेN+1

π. In accordance with (29), we can regard ∑ ॠכሺNାଵ ԽNାଵ ୨୧ ሻ
୬ 
୧ ୀ ଵ  for  Խ୨୧Nାଵ א

Ըሺ Խ୨N ሻ as N+1ॠ*(NԽj). But, what is the number of the superscript “n” of Σ? The answer is given in terms of 

(21):  
 

(58)     NԽj    ึืNԽjٿሼQ1(aN+1)ڀQ2(aN+1)ڀ … ڀQκ(aN+1)}  from the exhaustiveness of Q-Predicates 

                      ึืሺNԽjٿQ1(aN+1)ሻ ڀ ሺNԽjٿQ2(aN+1)ሻڀ … ڀሺNԽjٿQκ(aN+1)ሻ 
                    ึืN+1Խj1ڀN+1Խj2ڀ … ڀN+1Խjκ.   
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Hence, n = κ.  

Second, from (53), we obtain the measure of NԽj in ेN
π: 

 

(59)  Nॠ*(NԽj) = 
ଵ

CNಒశNషభ
ൈ

ଵ
N!

Nభ! ൈ Nమ! ൈ ··· ൈ Nಒ!

ൌ 
N! ൈ ሺசିଵሻ!
ሺச ା Nିଵሻ!

ൈ
Nభ! ൈ Nమ! ൈ ··· ൈ Nಒ!

N!
    See also (40) and (34). 

 

Third, we obtain the concrete value of N+1ॠ*(NԽj) in the following way: 
 

(60)    N+1ॠ*(NԽj)  

= N+1ॠ*(N+1Խj1)+N+1ॠ*(N+1Խj2)+ … +N+1ॠ*(N+1Խjκ)      (See (58) and its preceding paragraph.) 

= 
ଵ

CNశభಒశሺNశభሻషభ
ൈ

ଵ
ሺNశభሻ!

ሺNభశభሻ!ൈNమ!ൈ ··· ൈNಒ!

 + 
ଵ

CNశభಒశሺNశభሻషభ
ൈ

ଵ
ሺNశభሻ!

Nభ!ൈሺNమశభሻ!ൈ ··· ൈNಒ!

 +…+ 
ଵ

CNశభಒశሺNశభሻషభ
ൈ

ଵ
ሺNశభሻ!

Nభ!ൈNమ!ൈ ··· ൈሺNಒశభሻ!

  from(53) 

= 
ሺசିଵሻ!ൈሺNାଵሻ!

ሺசାNሻ!
ൈ

Nభ!ൈNమ!ൈ···ൈNಒ!

ሺNାଵሻ!
ൈ ሺN ൅ κሻ                        (Recall that N1 + N2 + … + Nκ = N. cf. (34).) 

= 
ሺசିଵሻ!ൈN!
ሺசାNିଵሻ!

ൈ
Nభ!ൈNమ!ൈ ··· ൈNಒ!

N!
  

 

From (59) and (60), we realize that (57) holds. ሁ 

In this proof, it is easily seen that the following also holds: 
 

(61)  ॠ൫ Խ୨N ൯ ൌ  ∑ ॠሺNାଵ ԽNାଵ ୨୧ ሻ
ச
୧ ୀ ଵN , where NԽj is a subconjunction41 of N+1Խji. 

 

Carnap called the ॠ-functions fulfilling this condition a fitting sequence (1962, 309f.); thus, Nॠ* and N+1ॠ* 

form a fitting sequence. 

Now, from (57), we can also obtain the following: 
 

(62)  If ्i is a non-general sentence, i.e., neither universal nor existential, then,  

Nॠ*(्i) = N+1ॠ*(्i).        (Carnap 1962, 310)42 
 

From this, by mathematical induction, we obtain the following: 
 

(63)  If ्i is a non-general sentence, Nॠ*(्i) = N+mॠ*(्i).      (Carnap 1962, 311).  
 

“m” is an arbitrary number. 

18. The Proof of (56) 

Let us continue the proof of (56). Besides the theorem just proved (= 63), we need some more lemmas. 
 

(64)  If ॠ  is a symmetrical function and the hypothesis has no individual constant in common with its evidence, it 
makes no difference whether the evidence is an individual distribution or a statistical distribution. (Carnap 1962, 
490)43 

(65)  Let J be a statistical distribution stating that over a population, i.e., N individual constantsand p molecular 
predicates, i.e., M1, …, Mp, M1 is predicated of N1 individual constants, and likewise, N2 for M2, …, Np for Mp. 
Then, J is also regarded as something like a structure-description. (Note that J is described with molecular 
predicates while structure-descriptions are described with Q-predicates. See (39), (19), (43), and (41) again.) On 

J regarded as such, we can find ∏ CN౟ ୵౟ାN౟ିଵ
୮
୧ ୀ ଵ  patterns of structure-description. In other words:  

Jึื्१॥J1्ڀ … ڀ१॥Jm, where m ൌ ∏ CN౟ .୵౟ାN౟ିଵ
୮
୧ ୀ ଵ

44 

(66)  For any ्१॥i in ेN
π, ॠ*(्१॥i) = 

ଵ

CಒషభN శ ಒషభ
.        (Carnap 1962, 563).45 

 

Then, let us return to (56). For its proof, we use the notation in (57) again. We begin with the left-most 

side of (56): 
 

(67)    Nॖ*(j',i) = Nॖ*(j',j)  from (64) 
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      = 
ॠכ

N ሺ௝ٿ௝Ԣ ሻ
ॠכ

N ሺ௝ሻ
    from (31) 

      = 

౩Ԣ !
౩ Ԣభ!ൈ…ൈ౩ Ԣ౦!

ൈ ॠכ
N ሺ௜ٿ௜Ԣ ሻ

ॠכ
N ሺ௜ሻ

   from (51) and (46) ….  

 

In this last , we can regard iٿi' as well as i as an individual distribution, and further, form a statistical 

distribution corresponding to iٿi, which we call J1. In addition, we can also form a statistical distribution 

corresponding to i, calling it J2. Let us resume the proof.  
 

(68)    = 

౩Ԣ !
౩Ԣ భ!ൈ…ൈ౩ Ԣ౦!

ൈ
భ

ሺ౩శ౩ Ԣሻ!
ሺ౩భశ౩Ԣ భሻ!ൈ…ൈሺ౩౦శ౩ Ԣ౦ሻ!

ൈ ॠכ
N ሺ௃భሻ

భ
౩!

౩భ!ൈ … ൈ౩౦!

ൈ ॠכ
N ሺ௃మሻ

 …  from (46) 

 

Here, by applying (63), we upgrade statistical distributions J1 and J2 to structure-descriptions in order to use (66) 

afterward: 
 

(69)         = 

౩ Ԣ!
౩ Ԣభ!ൈ…ൈ౩ Ԣ౦!

ൈ
భ

ሺ౩శ౩Ԣ ሻ!
ሺ౩భశ౩Ԣ భሻ!ൈ … ൈሺ౩౦శ౩Ԣ ౦ሻ!

ൈ ॠכ
౩శ౩ Ԣ ሺ௃భሻ

భ
౩!

౩భ!ൈ … ൈ౩౦!

ൈ ॠכ
౩ ሺ௃మሻ

 

              = 

౩Ԣ !
౩ Ԣభ!ൈ…ൈ౩ Ԣ౦!

ൈ
భ

ሺ౩శ౩ Ԣሻ!
ሺ౩భశ౩ Ԣభሻ!ൈ…ൈሺ౩౦శ౩ Ԣ౦ሻ!

ൈ
భ

C
౩శ౩Ԣ ಒశሺ౩శ౩Ԣ ሻషభ

ൈ∏ Cሺ౩౟శ౩ Ԣ౟ሻ౭౟శሺ౩౟శ౩Ԣ ౟ሻషభ
౦
౟సభ

భ
౩!

౩భ!ൈ…ൈ౩౦!

ൈ
భ

C౩ಒశ౩షభ
ൈ∏ C౩౟౭౟శ౩౟షభ

౦
౟సభ

 from (65) and (66) 

              = 

భ
౩ Ԣభ!ൈ…ൈ౩Ԣ ౦!

ൈ∏
൫౭౟షభ൯!

൫౭౟శ౩౟షభ൯!
౦
౟సభ ൈ∏

൫౭౟శሺ౩౟శ౩Ԣ ౟ሻషభ൯!
൫౭౟షభ൯!

౦
౟సభ

భ
౩ Ԣൈ

൫ಒశ൫౩శ౩ Ԣ൯షభ൯!
ሺಒషభሻ!

ൈ
ሺಒషభሻ!

ሺಒశ౩షభሻ!

 

              = 
∏ C౩Ԣ ౟౭౟శሺ౩౟శ౩Ԣ ౟ሻషభ
౦
౟సభ

C
౩ Ԣಒశሺ౩శ౩ Ԣሻషభ

 ሁ 

19. Conclusion 

This is how the most important theorem (56) is proved. To my surprise, Carnap did not prove it in his 

books. Yet, as we saw before (Section 14), this theorem alone provides a method for customary inductive 

inferences. So its proof must be the climax of Carnap’s inductive logic. Why did Carnap omit it, then? 

One reason is, presumably, that he gave up publishing a book that would complement his earlier system 

(Carnap 1962, xiii). As already stated in Section 1, Carnap published inductive logic mainly in two books: 

Foundations and Continuum. When writing Foundations, he seems to have planned to publish a pair of books 

named Probability and Induction.46 Foundations was intended to be the first volume of the pair (Carnap 1962, 

viif.). This plan was still in place when Continuum was published (e.g., Carnap 1952, iii). However, when the 

second edition of Foundations was published in 1962, he suddenly gave up this plan (1962, xiii). This is why 

the second volume never appeared. 

The disappearance of Vol. II is not settled merely as a change of Carnap’s plan; it meant the disappearance 

of the parts that Carnap had postponed until Vol. II. In Foundations, especially, Carnap said many times that 

the concrete development of inductive logic was postponed until Vol. II (e.g., Carnap 1952, 45; 1962, 23; note 55). 

Therefore, it is not too much to say that the disappearance of Vol. II meant the disappearance of major parts of 

Carnap’s inductive logic as well. 

Among them was the proof of (56). But as stated above, it is the heart of Carnap’s inductive logic. Its 

importance is not confined to that it is the sole formula for predictive inferences. It is nothing but the 
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connective point between the earlier system and the later system. This is known by letting j' be a singular 

sentence of a molecular predicate in (56). Then, we obtain the following corollary: 
 

(70)  ॖ*(M(as+1), i) = ॖ*(M(as+1), j) = 
ୱM ା ୵M

ୱ ା ச
          (Carnap 1962, 568)  

 

This shows how firmly the earlier system is connected with the later system. We know it from the similarity 

between (70) and (0). Furthermore, by letting λ = κ, we actually obtain (70) from (0).  

But we should rather derive (0) from (70) conversely. Let us call 
ୱM
ୱ

 in (70), the empirical factor, and 
୵M

ச
 , 

the logical factor, following Carnap (1952, 27f.; 1962, 568), and then, consider weighting these two factors in 
the form of a weighted mean: 

 

(71)  
Wభ

౩M
౩
  ା  Wమ

౭M
ಒ

Wభ ା Wమ
             (cf. Carnap 1952, 27f.)  

 

Here, “W1” is a weight for 
ୱM
ୱ

, and “W2” for 
୵M

ச
.  

In this formula, if only we fix W1 as “s” (Carnap 1952, 27) and write “λ” instead of W2―this is merely for 

showing that it was the weight for the logical factor (Carnap 1952, 28), we obtain (0). And along this line, we 

see the order: (56)՜(70)՜(71)՜(0). Herein, again, we ascertain that (56) certainly underlies all the predictions. 

This insight leads to the argument we made in Section 5, according to which Carnap’s inductive logic has 

a property of artificiality, in other words, subjectivity. This picture was attributed to the earlier system alone, 

because Carnap’s possible world semantics was stated only in it.  

Carnap’s view of the world is considered to be designed subjectively; this is because it reflects our design 

of languages. But this view is eliminated, or gets lost, in λ-system. It is true that parameter λ took over such a 

property; but it is concerning numerical values alone. What we want to know is why such and such a numerical 

value is yielded. We need the answer not mathematically but philosophically. And for this interest, the earlier 

system is indispensable. So putting the formula in the earlier system, (56), at the bottom is necessary. 

From this insight, I have so far drawn many philosophical insights in other papers (Kaneko 2007; 2009; 

2012a; 2012b). This article constitutes their theoretical background in a strictly formal way.  
 

Index for Symbols 

(“f.” means “and the following”) 
n : (9)  w : (18) f.  sp : (35) 
Const. : (10) f.  Խ : (19)  τ : (40)f. 
Pred. : (10) f.  ζ : (20) f.  i : (41) 
π : (10) f.  Ը : (23)  ς : (42)f. 
N : (10) f.  C : (32)  j : (43) 
ेN

π : (10) f.  ξ : (34) f.  J : (35) 
M : (13)  K1 : (35)  Nॠ : (57) 
Q : (15)  K2 : (35)  NԽ : (57) 
κ : (17) f.  sp : (35)    

Notes 
                                                        

1. As for the abbreviations, see References below. 
2. Carnap ascribed the notation “P(h/e)” to Keynes and “P(h|e)” to Jeffreys (Carnap 1962, 280-81). 
3. To my surprise, Carnap abandoned these names too easily later (e.g., Carnap 1966, 19-39). 
4. The probabibity1-weighted mean is the same as mathematical expectation. For further explanation, see Carnap, 1952, 19; 
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1962, 525.  

5. Strictly speaking, we must distinguish his idea from possible world semantics like Kripke’s because, by refraining from 
such terminology as “possible worlds,” Carnap tried to avoid committing himself in superfluous metaphysical controversies 
(1962, 71). 

6. The omission and the parentheses are by Kaneko. 
7. Some parts of this quotation were altered by Kaneko.  
8. Of course, we can find many origins for inductive logic. But even so, its philosophical background is Tractatus. I relate 

this idea with Carnap’s philosophical lineage as a logical positivist.  
9. In Binomial Theorem ሺa ൅ bሻ୬ ൌ ∑ C୩୬

୬
୩ ୀ ଴ a୬ି୩b୩, let a = 1 and b = 1. ሁ 

10. I already elaborated on this aspect in many articles (Kaneko 2007; 2009; 2011; 2012). The present article is considered to 
be a final, theoretical foundation of those thoughts.  

11. Strictly speaking, Carnap referred to Mazurkiewics and Hosiasson (Carnap 1962, 281). 
12. This is a very controversial constraint (Carnap 1962, 122-24), which I have dealt with in Kaneko 2011; 2012.  
13. “٧” means “logically true” though Carnap wrote “ٟ” (1962, 83).  
14. Proof. Consider the repeated permutation that takes π units out of two things (affirmation or negation). ሁ 
15. Carnap called a formula a matrix and used “ै” for its meta-argument (1962, 55). So I must mention them with ै(x) 

using Quine’s quasi-quotes since variables do not belong to meta-language. However, for legibility, I often omit them.  
16. The proof is realized from truth-tables. For example, from the right-most columns, the right-most columns in (12) and 

definition (16), we can see that P1(a1)→P2(a1) is equivalent to Q1(a1)שQ3(a1)שQ4(a1), and P1(a2)→P2(a2) to Q1(a2)שQ3(a2)שQ4(a2). 
(Note that we regard P1(a1)→P2(a1) and P1(a2)→P2(a2) as equivalent to ׊x[P1(x)→P2(x)]. See (22)- below.) ሁ 

Also, we can find a more practical way to find the disjunction (cf. Kaneko 2009, 60). Stating it as to P1(x)→P2(x): 
 Transform P1(x)→P2(x) into ¬P1(x)שP2(x)  (disjunctive normal form).  
 Substitute Q3(x)שQ4(x) for ¬P1(x), and Q1(x)שQ3(x) for P2(x). 
 Connect them: Q1(x)שQ3(x)שQ4(x).  
17. Various proofs are possible. As already stated (cf. under (12)), one is a proof using a truth-table. Otherwise, consider the 

repeated permutation that takes N units (a1-aN) out of 2π things (Q1-Qκ). (2
π)N = 2N × π. ሁ 

18. Since Carnap adopted the substitutional definition for universal and existential sentences (cf. (22)-), we can regard ् as 
all kinds of sentences.  

19. Like (18), the proof of this theorem is also realized from truth tables, e.g., (12). ሁ 
Also, we can find more practical way to find the disjunction (cf. Kaneko 2009, 61). Stating it as to P1(a1)→P2(a1): 
 Transform P1(a1)→P2(a1) into ¬P1(a1)שP2(a1)  (disjunctive normal form).  
 Substitute Q3(a1)שQ4(a1) for ¬P1(a1), and Q1(a1)שQ3(a1) for P2(a1)  (cf. definition 16).  
 Substitute Խ9שԽ10שԽ11שԽ12 for Q3(a1), Խ13שԽ14שԽ15שԽ16 for Q4(a1), and Խ1שԽ2שԽ3שԽ4 for Q1(a1).  
 Connect them: Խ1שԽ2שԽ3שԽ4שԽ9שԽ10שԽ11שԽ12שԽ13שԽ14שԽ15שԽ16.  

20. Strictly speaking, 
ୡୟ୰ୢሺԸሺ्ሻሻ

ζ
ൌ ॠறሺ्ሻ. 

21. In detail, see Kaneko 2009, 62f.  
22. For if (25) held, we could easily admit the following definition: 
  ॠ൫Ըሺ्ሻ൯ ൌ  ∑ ॠሺԽ୧୨ሻ

୬
୨ ୀ ଵ  for Խ୧୨ א Ըሺ्ሻ. 

However, the fact that we cannot adopt this definition compels us to adopt the alternative definition (29) below. By the way, in the 
subsequent argument, I often anticipate well-known principles for ॠ-functions (Carnap 1962, 306f.).  

23. See Carnap, 1962, 306. Strictly speaking, (29) and (30) are obtained as the extension of the following axioms for 
state-descriptions (Carnap 1962, 295): 

(i) For any Խ௜,ॠሺԽ௜ሻ ൐ 0   ሺ1 ൑ ݅ ൑ ζሻ 
(ii) ∑ ॠሺԽ௜ሻ   ൌ 1ζ

௜ ୀ ଵ   
Although more terminological definitions must be added, inductive logic is mainly axiomatized from these (i), (ii), (29), and (30). 
I express this view in order to clarify where the core of inductive logic is. 

Here I want to touch on the history of probability theory as well. It is said that the axiomatization of probability theory was 
made by Kolmogoroff in the 20th century (e.g., Swinburne 2002, 5). Although Carnap knew it, his evaluation of Kolmogoroff is 
low; he thought that Kolmogoroff had made the axiomatization only for probability2 (1962, 343). Carnap’s study of the 
axiomatization was thoroughgoing; he examined almost all of the contemporary axiomatic systems of probability and showed that 
his regular ॠ- and ॖ-functions fulfilled them (1962, 337f.).  

24. Arrows were not written by Carnap. 
25. Proof. Consider the permutation including the same N1, …, Np things (Q-predicates). ሁ 
26. Strictly speaking, the mathematical theory of approximation is required for the proof. See T96-1.c for Bernoulli’s Limit 

Theorem, T96-1.b.(3) for the Probability Integral (Carnap 1962, 505). 
27. As for the difference among values of (36), (37), and (38), see Carnap, 1962, 502-10.  
28. (37) is derived as a theorem of symmetrical functions although the knowledge of approximation is also required. 
29. In statistics, the Normal Law is derived as the limit of the Binomial Law. 
30. Consider the repeated combination that takes N units out of κ things (Q-predicates). ሁ 
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31. Proof by mathematical induction.  
 Suppose ्i is an atomic sentence. Then take up one of state-descriptions Խij in Ը(्i). Atomic sentences directly appear in 

state-descriptions (cf. (12)), so in order to decide a state-description belonging to Ը(C(्i)), it suffices to form C(Խij) simply. For 
example, in (12), consider P1(a1), Խ2 belonging to Ը(P1(a1)) and C mentioned under (32). We can simply regard C(Խ2) = Խ5 as a 
member of Ը(C(P1(a1))) = Ը(P1(a2)).  

 Suppose ्i is ൓्k. As a hypothesis of mathematical induction, we assume that (44) holds for ्k; that is, when Ը(्k) = 
{Խk1, …, Խkm}, Ը(C(्k)) = {C(Խk1), …, C(Խkm)}. In addition, let V঴ be a set of all state-descriptions; hence V঴－Ը(्k) = {Խkm+1, …, 
Խkζ}. Then, using T18-1.e (Carnap 1962, 79), Ը(൓्k) = V঴－Ը(्k) = {Խkm+1, …, Խkζ}. We can easily see that C(൓्k) = ൓C(्k). 
Thus, Ը(C(൓्k)) = Ը(൓C(्k)) = V঴－Ը(C(्k)) = V঴－{C(Խk1), ..., C(Խkm)} = {C(Խkm+1), ..., C(Խkζ)}. Other connectives are 
proved in the same way. ሁ 

32. From (29), ॠሺ्௜ሻ ൌ ∑ ॠሺԽ୧୨
୬
୨ ୀ ଵ ሻ for ԽijאԸ(्i). From (44), ॠሺCሺ्௜ሻሻ ൌ ∑ ॠሺCሺԽ୧୨ሻ

୬
୨ ୀ ଵ ሻ for C(Խij)אԸ(C(्i)). From 

the explanation under (32), ॠ൫Խ୧୨൯ ൌ  ॠ൫CሺԽ୧୨ሻ൯. Therefore, ॠሺ्୧ሻ ൌ  ॠሺCሺ्୧ሻሻ. ሁ 
33. Let j be i1שi2 ש … שiς, where i1 is i. Since i1, i2, …, iς are isomorphic, they can be C-correlates with each other (cf. (32)). 

Thus, using C1, …, Cς-1, we can write them as i1, C1(i1), …, Cς-1(i1).  
From (45), ॠሺ݅ଵሻ ൌ  ॠሺCଵሺ݅ଵሻሻ ൌ ൉൉൉ ൌ ॠ൫Cచିଵሺ݅ଵሻ൯ , and from (42),  ॠሺ݅ଵሻ ൅ ॠሺCଵሺ݅ଵሻሻ ൅ ൉൉൉  ൅ॠ൫Cచିଵሺ݅ଵሻ൯   ൌ

 
ୱ!

ୱభ! ൈ ୱమ! ൈ … ൈୱ౦!
 ൈ  ॠሺ݅ଵሻ. ሁ 

34. From (43), j states that over s individual constants, the absolute frequency of M1 is s1, and likewise, s2 for M2, …, sp for 
Mp. Similarly j', over s' individual constants, s'1 for M1, …, s'p for Mp. These two assertions entails J: over s+s' individual 
constants, s1+s'1 for M1, …, sp+s'p for Mp. ሁ 

35. Consider in the same way as in note 34. ሁ 
36. From (47) and (48). ሁ 
37. Let j be i1שi2ש… שiς, where i1 is i. Then,  
 ॠሺ्୩ ר ݆ሻ ൌ  ॠሺ्୩ٿሺ݅ଵ ש ݅ଶ ש ש… ݅ணሻሻ  ൌ  ॠሺሺ्୩ٿ ݅ଵሻ ש ሺ्୩݅ٿଶሻ ש ש… ሺ्୩݅ٿணሻሻ  
 = ॠሺ्୩ٿ ݅ଵሻ ൅  ॠሺ्୩ٿ ݅ଶሻ ൅ ൅ڮ  ॠሺ्୩݅ٿணሻ  from the exclusiveness of i1-iς (Mki forms a division. See (41).) 
 = ॠሺ्୩݅ٿଵሻ ൅  ॠሺCଵሺ्୩ٿ ݅ଵሻሻ ൅  ଵሻሻ  (As for “C1,” … “Cς-1,” see note 33.)݅  ٿ൅ॠሺCచିଵሺ्୩ڮ

 = 
ୱ!

ୱభ!ൈୱమ!ൈ … ൈୱ౦!
ൈ ॠሺ्୩݅ٿሻ from (45) and (42). ሁ 

38. From (50). ሁ 
39. I add to this that Carnap thought of not only Laplace but also Wittgenstein as the theorists who adopted ॠ† (Carnap 1962, 

565; Wittgenstein 1918, 5.15). In this respect, we know, Carnap had to alter the picture of Tractatus for the completion of his 
system (cf. Section 5).  

40. I learned this from Uchii, 1972, 410-11.  
41. Consider two sentences, one of which includes every conjunct of the other, e.g., ्I = ्13्ٿ2्ٿ

 and ्II = ्12्ٿ
 , in 

which case we call the latter a subconjunction of the former (Carnap 1962, 81). 
42. Proof. Nॠ(्i) = Nॠ(NԽi1ڀ … ڀNԽim)   from (21) 
    = Nॠ(NԽi1)+ … +Nॠ(NԽim)  from the exclusiveness of state-descriptions 
     = N+1ॠ(NԽi1)+ … +N+1ॠ(NԽim)  from (57) 
     = N+1ሺNԽi1ڀ…ڀNԽimሻ ൌ N+1ሺ्iሻ. ሁ 
43. Under the same premise with (56), let h be the hypotheses that do not have any individual constants in common with i or j. 

Then, ॖሺ݄, ݆ሻ ൌ
ॠሺ௛ٿ௝ሻ

ॠሺ௝ሻ
 = 

ॠሺ௛ٿ௜ሻ

ॠሺ௜ሻ
ൌ  ॖሺ݄, ݅ሻ, from (50) and (46). ሁ 

44. For example, J is as follows: 
 (M2(a1)ٿM1(a2)ٿ … ٿMp(aN))ڀ(M1(a1)ٿMp(a2)ٿ … ٿM2(aN))ڀ … ڀ(Mp(a1)ٿM1(a2)ٿ … ٿM2(aN)) (cf. (43) and (41)).  

Here, in each individual distribution as disjunct, N1, N2, …, and Np are the same. Now, focusing on Mi(aj) (1 ≤ i ≤ p, 1 ≤ j ≤ N), we 
can find it equivalent to Q୧ଵሺa୨ሻڀ…ڀQ୧୵౟

ሺa୨ሻ from (18). Thus, in one place occupied with Mi(aj), wi kinds of Q-predicates can 
appear. That is, Mi(aj) can be Q୧ଵሺa୨ሻ or … or Q୧୵౟

ሺa୨ሻ. From this point of view, informally, we can represent J in the following 
way: 
                      J = {M1×N1, …, Mp×Np} 
                                      ՛                    ՛ 
     w1 kinds of Q-predicates    wp kinds of Q-predicates 
Here, per Mi (1 ≤ i ≤ p), there are C୵౟ ା N౟ିଵ N౟

 patterns of appearances of Q-predicates. This is derived as the repeated 
combination that takes Ni units out of wi things (Q-predicates). Therefore, if we paraphrase J into a structure-description with 
Q-predicates, C୵భ ା Nభିଵ Nభ

ൈ …ൈ C୵౦ ା N౦ିଵ N౦
 patterns are possible as a whole. Thus, (65) holds.  ሁ 

45. From (53). ሁ 
46. There is a book with a similar title: Inductive Logik und Wahrscheinlichkeit. But this book is no more than the summary 

and translation of Foundations and Continuum by Stegmüller (Carnap 1959, Vorwort).  
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