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Existential Import: an Extensional Approach

KANEKO Yusuke

Introduction

Existential import is a notion researchers o�en mention, not explaining it in depth1, but 
interests us. We approach it by beginning with the traditional diagrams, namely Euler 
diagrams and Venn diagrams (ch.1). As to ∃x(Fx∧Gx), the Venn diagram is adopted (i.e. 
(1)). As to ∀x(Fx→Gx), the Euler diagram is adopted (i.e. (3)). By contrasting the two, we 
�nd the inference from the universal sentence to the particular sentence impossible (§2). 
Exactly here, existential import steps into the picture.

Chapter 1. Diagrammatic Approaches2

First of all, we see {∀x(Fx→Gx)} ⊬ ∃x(Fx∧Gx).3 While ∀x(Fx→Gx) can be true vacuously, 
∃x(Fx∧Gx) cannot. It follows from this that the former cannot imply the latter. We see it 
by contrasting two diagrams, the Venn diagram and the Euler diagram.

§1. Venn diagrams and Euler Diagrams4

�e explanations using diagrams help beginners so much. But something inadequate re-
mains. We watch this, tracing a normal course of illustration. 

1.1. The Venn diagram

Venn diagrams work well for beginners of logic. It enables beginners to grasp the ideas so 
easily. To take an example:

(1) A Venn diagram5  ∃x(Fx∧Gx)

●

F G
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�is is a Venn diagram for the particular sentence6. Beginners may wonder why “Some F 
is a G.”7 is formulated as ∃x(Fx∧Gx). �en, this diagram will help. 

�e intersection ensures the conjunction in ∃x(Fx∧Gx). �e point ● ensures the exis-
tential character of the particular sentence8.

1.2. The Euler diagram

We make sure Venn is John Venn (1834-1923), a notable English mathematician. 
In contrast with the particular sentence, however, the Venn diagram begins malfunc-

tioning in illustrating the universal sentence:

(2) A Venn diagamm9  ∀x(Fx→Gx)

�e part colored gray means 𝜙, an empty set. �is blockage (or emptiness) appears sur-
plus10, because we only need such an indication of inclusion F ⊂ G as the following:

(3)  An Euler diagram11  ∀x(Fx→Gx)

�is is much better than (2). Note that the part colored gray does not mean 𝜙 this time, 
but emphasizes the realm of F.

As is well known, diagram (3) is called an Euler diagram. We make sure Euler is Leon-
hard Euler (1707-1783), a Swiss mathematician.

F G
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1.3. A Detour through Set Theory

�e broken line in diagram (3) will not be discussed. It expresses the Aristotelian notion 
of being undistributed (cf. Kondo et al. 1979, pp.23-25). Distribution, a typically old-fash-
ioned idea, is ascribed to Euler (cf. Sudo 1947, pp.51-58), who had no exact notion of sets 
(or classes). Set theory was initiated long a�er his death12.  

Venn actually abolished the notion of distribution. We follow it not to touch on dis-
tribution any further13.

§2. A Syntactical Approach
We saw Venn diagrams and Euler diagrams. By contrasting the two, we �nd 
{∀x(Fx→Gx)} ⊬ ∃x(Fx∧Gx), at which our discussion centers.

2.1. A Collapse of Inference

In Aristotelian logic, the universal sentence supersedes the particular sentence. �e former 
naturally implies the latter. So it seems. But that is not the case, actually.

See the preceding two diagrams, (3) and (1). �e crossover of the Venn diagram and 
the Euler diagram is unproblematic, since neither Venn nor Euler knew set theory back 
then (§1.3). 

�e problem is {∀x(Fx→Gx)} ⊬ ∃x(Fx∧Gx). ∃x(Fx∧Gx) has ● in (3) while in (1), 
∀x(Fx→Gx) does not. �is slight di�erence makes the inference from ∀x(Fx→Gx) to 
∃x(Fx∧Gx) collapse. 

2.2. A Vacuous Truth

Let us see the collapse of inference in more detail. Let F be something empty, such as a 
round triangle. F = 𝜙, then. It makes F∩G = 𝜙, so (1) at least never holds. 

By contrast, in the same setting as F = 𝜙, (3) holds, since F⊂G even if F = 𝜙. �is is simply 
because 𝜙⊂G for any G. 

�e so-called vacuous truth has a hand in this logic14. De�ne 𝜙⊂G as ∀x(x∊𝜙→x∊G)15. 
And we can say for any x, x∉𝜙.16 Based on these, ∀x(x∊𝜙→x∊G) gets true vacuously. 

2.3. A Carnapean-Kantian Approach 

�e preceding argument can be put in syntax. We may call it a Carnapean-Kantian approach, 
because it reminds us of the two philosophers. 

Let F be “a round triangle” as in the previous section (§2.2). And let G be “square.” 
�en, ∀x(Fx→Gx) is read, as follows:

(4) ∀x((x is a round triangle) → (x is square))  [vacuously true]
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�is says, “Every round triangle is square.” It is vacuously true, because its antecedent 
 “(x is a round triangle)” is contradictory. 

�is contradiction, to be recognized, requires something extralogical, which Rudolf 
Carnap (1891-1970) would specify under the name of a meaning postulate:17 

(5) ∀x((x is round) → ¬(x is a triangle))    [meaning postulate]

By this postulate, the antecedent “(x is a round triangle)” in (4) is calculated18 to be found 
contradictory19.

§3. Existential Import
∀x(Fx→Gx) can be true vacuously, which collapses the inference {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). 
At the end of this chapter, we see how logicians overcame this problem.

3.1. Existential Import

“Every round triangle is square.” It is vacuously true. But there is not a round triangle which 
is square. So {∀x(Fx→Gx)} ⊬ ∃x(Fx∧Gx).

�is appears odd to Aristotelian logicians thinking the universal sentence supersedes 
the particular sentence. Some refused, therefore, the existential character of the particular 
sentence. �at is, “Some round triangle is square.” need not be “�ere is a round triangle 
which is square.” Among them were Euler20 and Gottfried Leibnitz (1646-1716)21.

Others thought the opposite. According to them, something extralogical is needed to 
ensure the inference from the universal sentence to the particular sentence; that is ●, 
which was lacking in (3), the diagram of ∀x(Fx→Gx). 

(6) Existential import for F in ∀x(Fx→Gx)

�is is how ● was brought in (3) as well, which logicians called existential import. Note 
that the broken line, which expresses being undistributed, is no longer discussed (§1.3).

G
F

●
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3.2. Fe

Finally, we have reached existential import, the initial problem of this article. �is idea is 
o�en expressed syntactically:

(7) ∀x(Fex→Gx)     [existential import]

�e superscript “e” indicates existential import22.
Fe makes sure of the existence of an element in F. In other words, the antecedent F must 

be something meaningful, not such a contradictory predicate as “(x is a round triangle).”
Fe prevents the universal sentence from being vacuously true. 
{∀x(Fex→Gx)} ⊢ ∃x(Fx∧Gx) is graphically recognized. Compare (6) with (1). Clearly 

(6) implies (1). But not vice versa; ∃x(Fx∧Gx) is compatible with ∃x(Fx∧¬Gx), which, i.e. 
∃x(Fx∧Gx)∧∃x(Fx∧¬Gx), contradicts ∀x(Fx→Gx).

Chapter 2. Semantics

�is is how logicians made up for the collapse of the inference, {∀x(Fx→Gx)} ⊬ ∃x(Fx∧Gx), 
with the help of existential import. It secretly referred to semantics, however. We look into 
this aspect of the problem in succession.

§4. Fe vs. F
Existential import was indicated with Fe. But this notation is suspicious. We investigate it 
in the sequel.

4.1. The Problem of Fe 

  Syntax has no room to allow Fe, to tell the truth. For all syntax can do is prove. To prove 
(a theorem or an inference), all that we can use is axioms (or proof �gures)23. �us, Fe 
cannot but be lain outside syntax24.

One who sees ∀x(Fex→Gx) images something like (6). But diagram (6) lies outside 
syntax, because in syntax, all we can do is prove; all we can use is axioms (or proof �gures). 
�en, what is Fe, a sign accompanied by a diagrammatical image? 

4.2. Amalgamated Expressions

Fe is ungrammatical, lying outside syntax. �is pushes us back to look over ∀x(Fx→Gx) 
again. We have checked how it gets true vacuously (§2.2). For that, we used such an amal-
gamated expression25 as “x is a round triangle.” Can we use such a expression in the �rst 
place? �is query about amalgams turns our eyes to the actualities of logic. 
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4.3. Schematic Letters

In logic, we use schematic letters, such as p, q, c1, c2, F, G, etc. Amalgams, such as “x is a 
round triangle,” are transformations of predicates among them, so to speak. On the other 
hand, we must think of schematic letters as constants, as are individual constants, such as 
c1, c2, etc. Predicates like F, G, etc. should be constants, �e same is true of p, q, etc.26 

As constants, schematic letters constitute a language, into which ordinary expressions, 
such as “a round triangle,” are translated. 

�is is the actualities of logic. In the structure, i.e. symbolic (arti�cial) languages of 
logic vs. ordinary (natural) languages, we have no room to allow amalgamated expressions. 

§5. Immature Semantics
We have re�ected on the actualities of logic. From the angle, we look over the previous 
argument again.  

5.1. Interpretations

It is in the Carnapean-Kantian approach (§2.3) that we used amalgams, such as “x is a 
round triangle.” But we should deny it, re�ecting on the actualities of logic (§4.3). 

What did we do back then? �e answer will be that we made interpretations. 
Amalgamated expressions are products of immature interpretations or, as it were,  

immature semantics. In terms of mature semantics, namely model theoretic semantics27, 
the preceding arguments are corrected in the following way:

(8) �e origin of an amalgam

(i) ∀x(Fx→Gx) [a formal expression in logic]

(ii) I1(F) = {X | X is a round triangle}28,  I1(G) = {X | X is square}.  [an interpretation]

(iii) ∀x((x is a round triangle) → (x is square)) [amalgam (4)]

�is is how amalgam (4) originated from ∀x(Fx→Gx). Although the process is complicat-
ed, we merely re�ected model theoretic interpretations of F and G into amalgam (4), or 
(8-iii) above29.

�e kernel is an interpretation, which is model theoretic mappings of predicates, F 
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and G, onto30 sets, or more precisely, subsets of a universe of discourse D1 in model M1 = 
⟨D1, I1⟩

31, as indicated in (8-ii)32. 

5.2. A Translation

An interpretation, reversed, becomes a translation, which is also found in the Carna-
pean-Kantian approach (§2.3). Let us examine it, too.

We decomposed (4), namely (8-iii) above, into ∀x((x is round) ∧ (x is a triangle) → (x 
is square))33. Behind it, we did a translation; that is, we translated an ordinary expression 
“a round triangle” into two schematic letters F1 and F2.

(9) �e decomposition of an amalgam

(i) ∀x((x is a round triangle) → (x is square)) [(8-iii), (4)]

(ii) ∀x( F1x ∧ F2x → Gx ) [a translation]

(iii) I2(F1) = {X | X is round},  I2(F2) = {X | X is a triangle}. [an interpretation]

(iv) ∀x((x is round) ∧ (x is a triangle) → (x is square)) [amalgam]

F1 and F2 are, again, interpreted as “round” and “a triangle,” for which we made an inter-
pretation. 

�is procedure of (9) was unnecessary, however. We can deduce (9-iv) from meaning 
postulate (5) directly, since {∀x(F1x→¬F2x)}⊢ ∀x(F1x∧F2x→Gx), which is a mere logical 
truth34. We do not deal with this aspect of the argument any further.

§6. Mature Semantics
In terms of model theoretic semantics, awkwardness or immaturity of the preceding dis-
cussions is to be revealed. We dig into this in succession. 

6.1. A Reference Tree

�e true nature of the amalgamated expressions lies in immature semantics (§5). Amalgamated 
expressions disappear if we apply correct semantics. As such, we take up a refutation tree, 
to begin with35.
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(10) A refutation tree36

1. ∀x(Fx→Gx) ✓
2. ¬∃x(Fx∧Gx) ✓
3. Fα1→Gα1  [1.R∀] ✓✓37

4. ∀x¬(Fx∧Gx)  [2.R¬∃] ✓
5. ¬(Fα1∧Gα1)  [4.R∀] ✓

6. ¬Fα1  [5.R¬∧]  ¬Gα1  [5.R¬∧]

7. ¬Fα1  [3.R→] Gα1  [3.R→] ¬Fα1  [3.R→] Gα1  [3.R→]
8. ×        [6,7]

�is is a refutation tree of {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). We can realize from this why we 
were driven to refer to such an amalgam as “x is a round triangle.”

6.2. Counter Models

On the basis of (10), we can make two models to counter the inference, {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). 
First, see the le� branch of (10). It tells us that D3 having that object which is not F but 

G becomes a model to counter {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). We name this model M3 = ⟨D3, I3⟩
38.

Second, see the right branch of (10). It tells us that D4 having that object which is not 
G nor F becomes a model to counter {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). We name this model  
M4 = ⟨D4, I4⟩.

�e point common to M3 and M4 is that the object designated by α1 is ¬F, that is, not 
F. �is, i.e. ¬Fα1, is a clue to realize “x is a round triangle.” Jumping to the gist, we have to 
make F empty the way any object cannot satisfy it.

6.4. M3

�e essential point of counter models is to make F empty. We form M3 as such.

(11) M3 = ⟨D3, I3⟩:  D3 = {α1},  I3 (F) = 𝜙,  I3 (G) = {α1},  η1 (a) = α1.    

As to the free variable, we use “a” alone, which is enough since we deal with {∀x(Fx→Gx)} 
⊢ ∃x(Fx∧Gx) alone. Again, there is only one object, α1, in D3, so we have only to take up 
one evaluation, η1.  

Let us see M3 countering {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). We must begin with the form of 
the logical consequence {∀x(Fx→Gx)} ⊨ ∃x(Fx∧Gx).39 Following the de�nition, it is said 
that for any model40 Mi and for any evaluation ηj, if Mi ⊨ηj ∀x(Fx→Gx), then Mi ⊨ηj ∃x(Fx∧Gx). 
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In the present case, we begin with the middle part of this logic, having recourse to readers’ 
knowledge: 

(12) M3 ⊨ ∀x(Fx→Gx)41

⇐⇒ for any evaluation ηj,  M3 ⊨ηj Fa→Ga
⇐⇒ for any evaluation ηj,  M3 ⊭ηj Fa  or  M3 ⊨ηj Ga
⇐⇒ for any evaluation ηj,  ηj (a) ∉ I3 (F)  or  ηj (a) ∈ I3 (G)
⇐⇒ for any evaluation ηj,  ηj (a) ∉ 𝜙  or  ηj (a) ∈ {α1}.

As ηj, we have η1 alone in M3.  η1 (a) = α1 ∉ 𝜙 as a matter of course42, while η1 (a) = α1 ∈ {α1}.  
It follows from this that both disjuncts hold (although it is not necessary), so condition 
(12) is met; therefore, M3 ⊨ ∀x(Fx→Gx).

6.3. Satisfaction Conditions Continued 

Next, we see the conclusion part of {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). 

(13) M3 ⊨ ∃x(Fx∧Gx)
⇐⇒ for some evaluation43ηj,  M3 ⊨ηj Fa∧Ga
⇐⇒ for some evaluation ηj,  M3 ⊨ηj Fa  and  M3 ⊨ηj Ga
⇐⇒ for any evaluation ηj,  ηj (a) ∈ I3 (F)  and  ηj (a) ∈ I3 (G)
⇐⇒ for any evaluation ηj,  ηj (a) ∈ 𝜙  and  ηj (a) ∈ {α1}.

As ηj, we have η1 alone in M3. It is not the case that η1 (a) = α1 ∈ 𝜙 even though η1 (a) = α1 ∈ {α1}. 
So the conjunction, as a whole, does not hold; that is, M3 ⊭ ∃x(Fx∧Gx).

�e premise holds, but the conclusion does not; therefore, {∀x(Fx→Gx)} ⊭ ∃x(Fx∧Gx).  
M3 counters {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx) for sure.

§7. A Landing Point
Mature semantics, model theoretic semantics plus a refutation tree, gives us a clue to an-
alyze Fe and amalgams. We focus on it, summarizing the preceding discussions. 

7.1. The Emptiness of F

Mature semantics tells us that I3 (F) = 𝜙, the emptiness of F, is a su�cient condition for 
{∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx) collapsing. �is point has already been grasped (§2.2), to tell the 
truth. Back then, however, we went in a wrong direction, taking the point as something ver-
bal, namely such an amalgam as “x is a round triangle”44. It was quite unnecessary. We had 
only to make F empty; I3 (F) = 𝜙, which would do for everything in our course of discussions.
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7.2. Extensionality

Below is the correct interpretation taking the place of (8) above. 

(14) An extensional interpretation

(i) ∀x(Fx→Gx) [the universal sentence]

(ii) I3(F) = 𝜙,  I3(G) = {α1}. [an extensional interpretation]

�is is all we had to know about the vacuous truth of ∀x(Fx→Gx) and the collapse of 
{∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx). We can call this type of interpretation, which has no referenc-
es to verbal contents of signs, extensional.

7.3. Existential Import Reformulated

Fe, the initial understanding of existential import, was originally directed to (14), I3(F) = 𝜙 
especially. Fe was a measure to guard the universal sentence from the interpretation making 
F empty. From this, in turn, we can have a better formulation of existential import than Fe.

(15) Existential import  To secure {∀x(Fx→Gx)} ⊢ ∃x(Fx∧Gx), we keep F non-empty; 
that is, Ii (F) ≠ 𝜙 for any Ii. 

�is is the correct formulation of existential import. With this, we also realize the true 
intention of diagram (6). 

7.4. A Concluding Remark

Beginning with diagrammatic approaches, we saw the problem of {∀x(Fx→Gx)} ⊬ ∃x(Fx∧Gx), 
and found it solved on the premise of existential import (ch.1).

But the notion of existential import included something extralogical. To exclude that, 
we scrutinized amalgamated expressions to see that they are closely linked with immature 
semantics (§4-6).

In the end, we reached the extensional formulation of existential import with the help 
of model theoretic semantics (§6-7).

Appendix 1. Intensionality

We have ended up with a model theoretic formulation of existential import. In the following 
appendices, we add a few points to the main discussions, which will lead to a further development. 
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§8. Intension
A crucial point in this article is that we have done away with those amalgams which refer 
to verbal expressions. We dig into it a little further. 

8.1. Past Logicians

Beginners tend to rewrite ∀x(Fx→Gx) into ∀x((x is a round triangle) → (x is square)), to 
realize symbols. It is this approach that we have criticized in this article under the name of 
amalgams.

Amalgamated expressions, or approaches referring to them, had been inevitable, it 
seems, before model theoretic semantics was established. Even Venn (§1.1-1.2) and Euler 
(§1.2-1.3) had no clear image of mode theoretic semantics45. �us, we had to say their 
approaches were immature. So was Leibniz’s (§3.1)

8.2. Carnap

We nay count Carnap (§2.3) among them, namely such immature semanticists. 
Carnap wrote three books on semantics under the common title of Studies in Semantics 

(Carnap 1942, p.ix, p.255; Carnap 1947, p.iii, p.251): Introduction to Semantics (published 
in 1942), Formalization of Logic (published in 1943), and Meaning and Necessity (pub-
lished in 1947). 

None of these books, however, became a correct showcase of model theoretic semantics, 
it seems46.

8.3. Expressions of Meanings

Carnap’s endeavor is said to have opened up a new path to logic or semantics, on the oth-
er hand. Today, it is called intensional logic47. 

(16)    (i) �e extension of a predicator is the corresponding class.
(ii) �e intension of a predicator is the corresponding property.

�is is Carnap’s provisions of logic (1942, p.19). However, we cannot accept these, because 
we see a shadow of amalgams behind Carnap’s locution of the property.

Verbal expressions of meanings, which we have seen on the letters of amalgams, are 
unnecessary, whether you may call them properties or intensions.  

If a model, Mi = 〈Di, Ii〉, has n objects, i.e. Di = {α1, ..., αn}, each of F, G, etc. has 2n 
interpretations potentially48. All of these are fully expressed extensionally: 𝜙, {α1}, {α1, α3}, 
etc. Intentional expressions like {X | ... X ...} are not required. 
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Appendix 2. The λ-calculus

On the extended line of Carnap’s logic, we �nd Church’s λ-calculus as well. Let us touch 
on it.

§9. An Intensional Descendant
�e origin of intensional logic can be traced back to the logical school. We want to clarify 
it in addition to the preceding discussion.

9.1. Church

In 1941, Alonzo Church (1903-1995) published the book titled �e Calculi of Lamb-
da-Conversion. �is book is the �rst to have developed what we call the λ-calculus today. 

�e λ-calculus is a computer-friendly system49. In logic as we have dealt with it so far, 
F is distinguished from its formula50, such as Fa, to be thought of as an independent expression51. 

However52, in distinction from that, which we may call formalism, the school pro-
pounded by David Hilbert (1862-1943)53, there was another school, the logical school began 
by Gottlob Frege (1848-1925)54 and by Bertrand Russel (1872-1970)55 separately. According 
to it, F is regarded as a propositional function. Church’s λ-calculus was descendent from 
this school.

9.2. The Function

�e heart of the λ-calculus is to reserve the intensional aspect of the function. In set the-
ory, we usually learn a functions as a set of ordered pairs:

(17) I4 (S) = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, …}

�is is an interpretation of the successor function Sx.56 Church’s λ-calculus is an antithesis 
to this extensional interpretation57. He persisted in interpreting the function as it is, in 
other words, as a rule of correspondence (Church 1941, p.1)58. 

(18)59 (λx. Sx)

�is incarnates Church’s idea in the most straightforward way. With it, he abstracted60 
function S from Sx, preserving its character as a role of correspondence.

9.3. The β-conversion 

�at characteristic as a rule of correspondence which Church thought the function has is 
realized with the following expression:
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(19) (λx. Sx)0

�is means, “function S is applied61 to 0 as its argument.” �e following follows this:

(20) (λx. Sx)0 ⇒ S0 ⇒ 1.

�is is the so-called β-conversion62.

§10. The Problem Left
�e intensional descendant can be connected with the problem of existence unexpectedly. 
We con�rm this point at the end of this article.

10.1. An Intensional Viewpoint 

Let us make clearer the intensional aspect of Church’s λ-calculus behind it by contrasting 
it with model theoretic semantics. 

When model theoretic semantics deals with S0, we read behind it 〈0, 1〉 ∈ {〈0, 1〉, 〈1, 2〉, 
〈2, 3〉, ...}, which stand for S0 = 1. �at is, we eliminate the notation S, reducing it into 
the extensional notion, or set {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, ...}, as we saw earlier (i.e. (17)).

In contrast, the λ-calculus preserves S, as we saw in (20). �is is the di�erence and 
why the λ-calculus is thought intensional63. 

10.2. The Propositional Function

Church preserved the verbal, intensional aspect of the function (i.e. (19)) as opposed to 
our model theoretic semantics. As noted earlier, Church’s view is descendent from the 
logical school (§8.1). 

Russel already invented the notation of the circum�ex ^ to show the propositional 
function. His notation of Sx̂, for example, is the predecessor of (λx. Sx)64.

Our interest here is in Russel’s view on the predicate. As opposed to our distinction 
between predicate F and formula Fa (§8.1), Russel equated the two to adopt the notation 
Fx̂. �is view is found in Church (1941, p.2) as well65. A predicate is a propositional function 
that receives an individual constant as its argument to return a truth value66.

Our concern is the vision next to this. �e existential quanti�er is laid above this un-
derstanding, as it were; it is thought a second-order function. 

10.3. The Problem of the Quantifier

According to Russel and Church, the amalgamated expression, such as “x is a round triangle,” 
is kept in the form of (x̂ is a round triangle) or (λx. x is a round triangle). �is appears 
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reasonable but raised another problem, which called in Frege’s idea of the quanti�er as a 
second-order function:

(21) [...] Existenz [ist] Eigenscha� des Begri�es[.] (Frege 1884, sec.53)

By saying this, Frege notoriously introduced the existential quanti�er as a second-order 
function67. Church followed it:

(22) [T]he existential quanti�er [...] is a function for which the range of arguments 
consists of propositional functions, and the range of values consists of truth values. 
(Church 1941, p.2)

�e notation incarnating his idea will be as follows:

(23)68 (λF. ∃xFx)

�is corresponds to (18) above. From this perspective, the existential quanti�er is consid-
ered a second-order function that receives F as its argument to return a truth value. 

It might be this idea that we must tackle as the genuine issue coming a�er our debates 
over existential import. Existence remains a problem even now, long a�er mathematicians 
established symbolic logic.

1 Ishiguro 1984, pp.196f.; Nomoto 1990, p.31; Kondo et al. 1979, p.55.
2 �is article consists of chapters, sections, subsections and one appendix. Chapters are divided 

into sections, and sections are divided into subsections. Chapters and sections have short 
summaries under their headings respectively. Sections and subsections are referred to, for ex-
ample, by “§1” and “§1.1” respectively, to be distinguished from “sec.” for References. Chapters 
are referred to by “ch.”

3 Notations in logic are owed to Kaneko 2021.
4 Section numbers are counted continuously regardless of chapters changing.
5 Cf. Kaneko 2021, p.49 �g.76; Kaneko 2019, p.88 �g.(142); Nolt et al. 2011, p.116 �g.5-3; Kondo 

et al, 1979, p.56 �g.13. 
6 We take it for granted that sentences in logic are divided into three groups: singular sentences, 

particular sentences, and universal sentences. See Kaneko 2019, sec.106; Kaneko 2021, sec.90, 
sec.95.

7 Most textbook writers say, “Some F(’s) are G(’s),” stating the particular sentence (Nolt et al. 
2011, pp.111f.), but it is wrong. �e origin of the particular sentence is eventually found in 
sentences having an  inde�nite pronoun “somebody” and “something” (Kaneko 2021, sec.102). 
In this sense, the particular sentence does not mean, “Several F ’s are G’s.” but “Some F is a G.” 
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(cf. Badesa 2004, p.6). Here “some” expresses an unknown person or thing (cf. Konishi et al. 
2006, p.1820; Swan 2005, p.547). From this perspective, “some” in the particular sentence is 
equated with the inde�nite article “a (an).” “Some F is a G.” is equated with “An F is a G.” In terms 
of logic, “some” is equated with the so-called witnessing constant (cf. Kaneko 2021, sec.189).

8 �e existential character of the particular sentence can be discussed from several angles (Kaneko 
2021, sec.94, pt.VII ch.1; Kaneko 2019, sec.112-113).

9 Cf. Nolt et al. 2011, p.116 �g.5-2 ; Kondo et al. 1979, p.55 �g.10. 
10 According to Aristotelian logic, F is distributed in the universal sentence “Every F is G,” so the 

blockage by 𝜙 in diagram (2) is technically not blamable. See Kondo et al. 1979, pp.24-25.
11 Cf. Kaneko 2021, p.49 �g.75; Kaneko 2019, p.88 �g.(143); Sudo 1947, pp.53-54; Kondo et al. 

1979, p.25. 
12 By Georg Cantor (1845-1918) and his followers (cf. Kaneko 2021, pp.92f.).
13 �e relationship between set theory and Venn diagrams (or Euler diagrams) is a touchy topic, 

which most mathematical books disregarded (Chart Inst. 2011, pp.268f.; Matsuzaka 1990a, 
pp.745f.; Matsuzaka 1990b, pp.1261f.). In addition, it seems that Venn and Euler discussed 
those pure concepts like “animal” and “human being” which were not con�ned to mathemati-
cal terms, a�ected by the Aristotelian tradition, so that the border line between set theory and 
philosophical debates (over concepts) was blurred.

14 �is article presupposes readers’ knowledge of the vacuous truth (Kaneko 2021, sec.56).
15 �is is a normal course of discussion in set theory. See Kaneko 2021, p.94 n.76.
16 It follows from the axiom of the empty set that ∀x(x∉𝜙). For further details, see Kaneko 2021, 

sec.191.
17 A meaning postulate was originally introduced by Carnap to analyze the Kantian notion of 

the analytic truth (Carnap 1956, p.222; Kant 1787, B11). Kant was wrong in ascribing analyti-
city to the concept that the subject of each sentence has (cf. Kaneko 2004, sec.2; Ishikawa 
1995, p.102). Rather, the analytic truth is syntactic, calling for something extralogical that we 
may call a proper axiom (Kaneko 2019, sec.207; Kaneko 2021, p.202 n.22). �at axiom is none 
other than the meaning postulate mentioned here (in the text).

18 Note that modern logic can o�en be mentioned as calculation to be distinguished from psy-
chological inferences or the like (cf. Kaneko 2019, sec.27).

19 First, we decompose “(x is a round triangle)” into “(x is round) ∧ (x is a triangle).” Second, inde-
pendently of that, we gain (＊) below from (5) through the same logic as {p→¬q} ⊢ p ←→ p∧¬q:

(＊)  ∀x((x is round) ←→ (x is round) ∧ ¬(x is a triangle))

�ird, we apply (＊) to the conjunct “(x is round)” in “(x is round) ∧ (x is a triangle).” �en, 
“(x is round) ∧ ¬(x is a triangle) ∧ (x is a triangle)” is gained, which is a contradiction. ∎

20 Cf. Kondo et al. 1979, p.25; Sudo 1947, p.55.
21 Cf. Ishiguro 1984, pp.196f.
22 Cf. Nomoto 1990, p.31.
23 For further details, see Kaneko 2021, pt.I.
24 Similarly, Iida (1987, p.34) adopted such a notation as ∀Mx∃MyRxy to express the domain “M” 

the bound variables, x and y, range over. Yet, for the same reason as we refuse Fe, those nota-



100

tions, ∀M and ∃M, are refused.
25 More precisely, “an expression amalgamated with another expression belonging to a di�erent 

language.” Sometimes it is called an amalgam, too. Cf. Kaneko 2021, sec.15.
26 �e views in this section (§4.3) are owed to Kaneko 2021, sec.23. 
27 �e distinction between immature semantics and mature semantics is peculiar to this article 

alone. As to model theoretic semantics, see Kaneko 2021, pt.VI. 
28 “X” is a bound variable used only in a meta-language. See Kaneko 2021, sec.137.
29 As the abbreviation for (8) (iii), for example, we write (8-iii).
30 “Mappings of A onto B” means surjections (cf. Enderton 1977, p.43).
31 Number 1 of M1 is arbitrary.
32 As to semantic notations, see Kaneko 2021, pt.VI.
33 See also n.19 above.
34 �e same logic as {p→¬q}⊢(p∧q)→r.
35 Strictly speaking, the refutation tree is a mixture of syntax and semantics (Kaneko 2021, 

sec.126).
36 As to how we write a refutation tree, see Kaneko 2021, pt.V.
37 Usually we think of the sentence (or formula) checked once as removed from the list (Kaneko 

2021, p.66), but in the case where the tree has a branching part, such as 6 in (10), it is admit-
ted to check the same sentence (or formula) twice.

38 We used number 1 for (8), and 2 for (9), so the number here is 3.
39 As to the notion of the logical consequence, see Kaneko 2021, sec.154.
40 �e locution around this, namely “for any model Mi,” “for every model Mi,” etc., is touchy in 

logic. �e author made references to several writers, among whom Enderton (1972, p.71, p.83, 
p.89) is the best.

41 As to sentences, not formulas, we can begin with the so-called truth, not specifying an evalua-
tion. See Kaneko 2021, sec.145.

42 See n.16 above.
43 As to “some,” see n.7 above. �e locution around this, namely “for some evaluation ηj,” “for an 

evaluation ηj,” etc., is touchy in logic. The author owes the phrase in the text to Enderton 
(1972, p.71, p.84, p.85, p.87).

44 Interestingly enough, Frege (1884, sec.53) took a similar approach when he talked about logic.
45 Calixto Badesa, who wrote a book on the history of model theoretic semantics (2004), never 

mentioned Euler while he touched on Venn’s work slightly (Badesa 2004, p.13 n.18). He said 
major predecessors of semantics are George Boole (1815-1864), Charles Peirce (1839-1914), 
and Ernst Schröder (1841-1902); he named their studies in semantics the algebraic study of 
logic (Badesa 2004, p.ix; Kaneko 2019, sec.9).

46 For further details, see Kaneko 2022, glossary, sec.196, etc.
47 Cf. Iida 1987, p.144 n.36.
48 �e number of subsets {α1, ..., αn} has (Matsuzaka 1990a, p.704).
49 RPI (2022, p.22) provides an actual code. 
50 Cf. Kaneko 2021, sec.92.
51 Frege’s notion of unsaturatedness (Ungesättigkeit) of the predicate clearly con�icts with this 

idea (cf. Frege 1906, S.192; Iida 1987, pp.62f.). So we classify him into the logical school. �is 
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point is developed soon in the text.
52 �e following classi�cation is owed to Ramsey 1925.
53 See Kaneko 2021, sec.170.
54 Iida 1987, pp.48f.; Alama et al. 2018, sec.3.
55 Whitehead et al. 1910, p.15; Linsky 2016, sec.4.
56 If you do not know the successor function, see Kaneko 2021, sec.173. We remove parentheses 

from the function, so notation Sx, not S(x), 
57 See Kaneko 2019, pp.163-164; Enderton 1977, pp.42f.; Alama et al. 2018, intro., sec.1.2.
58 See also Alama et al. 2018, intro., sec,1.2.
59 Church (1941, p.1) kept the outermost parentheses, like “(S0),” to denote the value of the 

function. With this idea, “(λx. Sx)” is considered a dummy, so Church named (18) abstraction 
in turn (1941, p.7). “(λx. Sx)” is also written as “(λx[Sx])” or as “λx. Sx”. See Alama et al. 2018, 
sec.2.2.

60 See n.57 above.
61 As to the notion of application, see Hudak 2008, p.1; RPI 2022, p.20.
62 Cf. Hudak 2008, p.1; RPI 2022, p.21; see also Church 1941, p.12.
63 Carnap (1942, p.3) seems to have paid attention to this intensional aspect of the λ-calculus.
64 Whitehead et al. 1910, p.15 ; Linsky 2016, sec.2, sec.4.
65 �at is, the procedure is a propositional function that receives an individual constant as its ar-

gument to return a truth value. 
66 Noya (1994, pp.90-91) said a propositional function receives an individual constant and re-

turns a proposition, but this explanation is not acceptable.
67 See also Klement 2022, sec.2; Iida 1987, pp.56-57; Kato 2021, p.111. Church endorsed it (1941, p.2).
68 Zalta (2018) used this notation.
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