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Abstract
There are different narratives on mathematics as part of our world, some of which are
more appropriate than others. Such narratives might be of the form ‘Mathematics is
useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These
narratives play a crucial role in mathematics education and in society as they are
influencing people’s willingness to engage with the subject or the way they interpret
mathematical results in relation to real-world questions; the latter yielding important
normative considerations. Our strategy is to frame current narratives of mathematics
from a virtue-theoretic perspective. We identify the practice of mathematizing, put
forward by Freudenthal’s ‘Realistic mathematics education’, as virtuous and use it to
evaluate different narratives. We show that this can help to render the narratives more
adequately, and to provide implications for societal organization.

Keywords Philosophy of mathematical practice · Narratives of mathematics ·
Images of mathematics · Values in mathematics · Mathematics for human
flourishing · Mathematical beauty · Theorem credits · Mathematizing · Realistic
mathematics education

Probably no area of human activity is as afflicted as mathematics
with a gap between the public perception of its nature and what its

practitioners believe it to be.

(Barbeau 1990, p. 42) as quoted in Picker and Berry (2000).
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1 Introduction

When the second author participated in an award ceremony for the local mathematics
olympiads there was a greeting by the states minister of education. It started along
the lines of “I’ve always been bad at mathematics, but I am happy that there are nerds
out there who already know much more than most adults”, followed by a pause for
applause. An unusual theme to evoke there, but it is a repeating one throughout social
events, may it be dinner parties or talk shows. A phrase such as “I’ve always been
bad at mathematics” is a safe bet to gain sympathy from other participants, guests and
the audience (as long as they are not mathematicians, which causes problems in the
mentioned award ceremonies). Sometimes this narrative gets pierced by a much more
positive narrative, something along the lines of “Look, mathematics is everywhere: in
your smartphone, it brought us to the moon and made cars possible.”1

We understand a narrative of mathematics as a story that tells us about the role of
mathematics in our world and about the people doing mathematics, the professional
mathematicians. A narrative aims at generalizing from the specific features, grasping
the crucial ideas and putting them together in an easily imaginable picture. Because of
this, narratives are hugely important for the ideas ofmathematicswhich are entertained
by the people in our society. If people use a certain narrative in their discourse about
mathematics, then this can have an impact on society on a personal level (people
might be discouraged to engage with mathematics since everyone tells them that it is
too hard),2 on the level of a group of people for whom it is important to understand
a complex situation (a mathematical model of the situation might too quickly be
interpreted as a correct description of the real situation), or on the level of reflecting
about the nature of mathematical activity itself (mathematicians might be seen as
serving the applied sciences such as physics or economics by providing mathematical
tools).

In this paper, we want to analyze different narratives of mathematics and sug-
gest that mathematizing as a virtuous practice in its own right is a better narrative of
mathematics than, for example, extrinsic narratives which focus on the results of math-
ematical activity and the application of mathematics in non-mathematical contexts.
By ‘better’ we mean that the mathematizing-narrative describes mathematical prac-
tice more adequately and that it allows for a shift in mathematics education that yields
beneficial outcomes for our society. We argue that the fundamental activity of doing
mathematics, or, more precisely, of introducing, using, varying, applying … mathe-
matical symbolism is a virtuous practice—what we call mathematizing, drawing on
Freudenthal’s research in mathematics education.3 Mathematizing means modelling
a context in mathematical terms, which includes individual choices on the component
factors of the model. We argue that mathematizing, parallel to virtues such as art
appreciation or art production, is beneficial for personal flourishing as it opens up a

1 For an in-depth discussion of such a narrative, see the work of Colli et al. (2014).
2 Bishop (2012) investigates the importance of identity-narratives of mathematics students and finds that
“the ways people talk and interact are powerful influences on who they are, and can become, with respect
to mathematics” (p. 34).
3 This paper is no text exegesis in the sense thatwe take the freedom to depart fromFreudenthal’s elaboration
where this seems more adequate to us.
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new aspect of reality—or at least a new perspective on it—that is not available without
mathematizing. This virtue narrative focusing on mathematizing is better than other
competing narratives that are currentlymore present in society. The latter often hide the
arbitrary component factors of mathematical models which depart from the real-world
context for reasons of reducing complexity or favoring simplicity of the mathematical
tools for example. A mathematical model is often perceived as an objective and true
representation of a societal context. If it, however, becomes clear that any normative
conclusion, which is (partly) grounded in such a model, is directly connected to the
choices made by building the model, then we can reduce the risk associated with the
authority of formal tools in public debates.

The interaction between narratives and mathematics is considered on very different
levels in the literature. There is formal narratology, or the question how mathematics
is depicted in literature and its intersection with such.4 Margolin (2012) analyzes
how we could literally find narratives in proofs, where a proof is seen as a story and
mathematical objects as actors. We want to focus on another point: the narratives
we incorporate as a society concerning mathematics and its effects. As mentioned
by Corfield (2012), the goals and aims of mathematicians are manifold. We here
conceive of a narrative as the softly codified stereotypes and tropes we refer to in our
day to day discourse, a broader nowhere directly told view or picture we have about
a discipline. As most people in our society are not mathematicians by practice, this
means especially narratives about mathematics or mathematicians in virtue of their
goals, aims and practices.

In Sect. 2, we briefly introduce the notion of mathematizing, mostly focusing on
Freudenthal’s work. His approach is mainly used to understand education for primary
school level children. We explain how it relates to mathematics at a research level
by linking it to the mathematical activity of theory-building as introduced and popu-
larized by Gowers (2000). We then give a case study about how we can understand
mathematical logic as an instance of mathematizing. In Sect. 3, we discuss why this
should be seen as an intellectually virtuous practice. In Sect. 4, we report and ana-
lyze narratives of mathematics that we encountered during our university studies as
two trained mathematicians, a series of interview studies and research conferences
in the fields of mathematics, philosophy, and mathematics education. In this sense,
this analysis does not constitute a precise cartography of beliefs about the nature of
mathematics but should be seen as contributing an exploratory exposition. We then
evaluate their adequacy and the problems we encounter and see how the narratives
change when we add the assumption that mathematizing is the main characteristic of
mathematical activity.

2 Mathematizing

Starting with the words of the founder of the RealisticMathematical Education (‘Real-
istische mathematische Erziehung’, in short RME):

4 See for instance Gowers (2012) or Teissier (2012).
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In its first principles mathematics means mathematizing reality, and for most of
its users this is the final aspect of mathematics, too. For a few ones this activity
extends tomathematizingmathematics itself. The result can be a paper, a treatise,
a textbook. A systematic textbook is a thing of beauty, a joy for its author, who
knows the secret of its architecture and who has the right to be proud of it. […]
What humans have to learn is not mathematics as a closed system, but rather
as an activity, the process of mathematizing reality and if possible even that of
mathematizing mathematics. (Freudenthal 1968, p. 7)

A detailed analysis of Freudenthal’s notion ofmathematizing can be found in Freuden-
thal (1968, 1973, 1983, 1991) as a primary resource or van den Heuvel-Panhuizen and
Drijvers (2014) for an exposition. The term ‘realistic’ is not closely related to ‘reality’
as it is understood in English. Van den Heuvel-Panhuizen explains that the original
Dutch term ‘zich realizeren’ rather means ‘to imagine’ (van den Heuvel-Panhuizen
2003, pp. 9–10). So, realistic mathematical education does not especially focus on
a close relation to reality but on the process of mathematizing phenomena from the
physical world as well as abstract structures. We note that this shifts also from “math-
ematics as a closed system” towards the action-based verb “mathematizing”.

We now sketch how we understand mathematizing as an activity in general and in
mathematics and give the case study of mathematizing metamathematics.

2.1 On Freudenthal’s notion of mathematizing

Since we employ mathematization as the core part of our narrative of mathematics, let
us start with the practice of counting which stands at the beginning of every mathe-
matical career. This is because counting is closely related to the physical world for the
trivial reason that there is nothing else to be mathematized: it can be connected to the
steps of a stairway, one’s fingers or anything which could be aligned in a row. This is
reflected in a lot of theories in mathematics education, most prominently in the work
of Tall (1980a, 1980b, 1991, 2013). He refers to the embodied world as the first layer
of his model of mathematical development and sees this mathematical embodiment
of the world as the first steps towards mathematizing the world.

Starting from this idea, RME evolved first in the Netherlands as opposed to the
“NewMaths” movement, which is based on a reduction of mathematics to set theory.5

Treffers (1987) argues (and Freudenthal adapted his claims) that there are two kinds
of mathematization. First horizontal mathematization: abstracting from observed phe-
nomena and solving problems found in our physical worldwith adequatemathematical
tools. For example, structuring an unstructured set in order to count its members is
already horizontal mathematization. In contrast, vertical mathematization is what is
called “mathematizing mathematics” in the quote of Freudenthal at the beginning of
Sect. 2. This includes the organization of symbols and the study of these concepts,
which were abstracted from the physical world.

5 SeeDieudonné (1961) for an early exposition of the “New Math” project. Themain goal of thismovement
was to put mathematics education on a rigorous foundation. This often included starting with set theory
and introducing new concepts in a more axiomatic and abstract way. A typical example for an idea of the
New Math project is the introduction of groups in elementary schools.
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The usage of symbolic notation is a key component of mathematizing. This might
mean in the simplest cases, or at the beginning of an academic mathematical career,
that we mathematize when we use numbers, sketches, and symbolisms to identify the
crucial structures of a context. The usage of symbolic notation to encodemathematical
content is also an important tool for the working mathematician. Kießwetter (2006)
for instance stresses its role for overcoming limits of our working memory. It is an
important feature of mathematics that these symbols and concepts themselves can
become the object of mathematical study, i.e., that symbolizing itself can be iterated.
For example, functionswhichmap numbers to numbersmight first be seen on one layer
above the object level containing only numbers. But in higher mathematics, functions
themselves are members of function-spaces that are studied by mathematical means.

A second fundamental feature of mathematizing is its individual nature. Mathema-
tizing can be done in different ways, since it includes individual choices. For example,
we can employ a continuous or discrete model to represent fine grained sand, we can
see a doodle on a sheet of paper as an object in Euclidean space, or in a topologi-
cal space. We could see aligned spoons as points in a grid, as rather complex shapes
in Euclidean space, or even on a higher dimensional manifold. Therefore, one con-
sequence of assuming that mathematizing is the main characteristic of mathematical
activity is to emphasize the individual choicesmade in themathematical formulation of
a problem. In contrast,mathematics is nowadays often taughtwith the implicit assump-
tion that there is a unique way of formulating and solving a given problem in a rather
mechanical fashion. Mason andWatson speak for instance about their observation that
“Mathematics is often seen by learners as a collection of concepts and techniques for
solving problems assigned as homework” (Mason and Watson (2008) before putting
their more variation focused approach forward. The authors’ experiences also contrast
with such a mechanical idea. After studying mathematics and attending mathematical
research conferences as well as informally talking to mathematicians, we think that
the situation is adequately described as follows: for professional mathematicians, it is
part of their everyday life that there are different possibilities to formulate a problem
and different methods are suitable to tackle a given problem. They often experience
that some formulations are well suited for an easy solution, while others seem to
require complicated constructions. We want to emphasize this gap between the prac-
tice of mathematics and its perceived objectivity in application: no mathematical way
of formulating or solving a problem is the only correct way, there are always various
ways and it is a challenge as well as it can be a joy to choose between those options
or to come up with a new one. Our focus on mathematizing aims to highlight this
aspect. If one is aware of this observation, it is obvious that the choices made in the
mathematizing process should be made visible and can be discussed. We will come
back to this aspect in more detail in Sects. 3.1 and 3.2.

2.2 Mathematizing inmathematics

In order to bring forward our idea of mathematizing as an integral part of mathemat-
ical research, we analyze the notion a bit further. Freudenthal indicates three main
components of mathematizing:
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[T]he origin of the termmathematising [is] an analogue to axiomatising, formal-
ising, schematising. … [I]t is not unusual, in particular in education, to restrict
the term to one of its components. I myself insist on including in this one term the
entire organising activity of the mathematician, whether it affects mathematical
content and expression, or more naive, intuitive, say lived experience, expressed
in everyday language. But let us not forget about the individual and the envi-
ronmental dependence of “lived” and “everyday life” on expanding reality and
progressing linguistic sophistication! (Freudenthal 1991, p. 31)

Firstly, we learn fromFreudenthal that axiomatizing, formalizing and schematizing are
the main components of the process of mathematizing.6 Second, we learn that mathe-
matizing is an organizing activity which can affect mathematical content and language
as well as lived experience and everyday language. Hence, Freudenthal insists on the
similarity of mathematical activity applied to everyday life contexts and mathematical
activity in mathematical research itself. This is one of the key aspects of mathematics
on which we follow Freudenthal. We take it to be inherent to mathematizing that it
can be applied to various contexts, be it a phenomenon in the physical world or a
mathematical research problem.

For further elucidation of the mathematizing process, we distinguish between con-
tent and form. Freudenthal points out that the interplay of content and form is one
important characteristic ofmathematical activity and emphasizes that formcanbecome
content. This aspect is significant to understandmathematizing inmathematics. Recall
from above that mathematizing is mainly an organizing process:

In mathematics … organising and reorganising is a continuing affair, and the
newly acquired organisation forms may become content in the sense of subject
matter to be examined as such. (Freudenthal 1991, p. 11)

The process of mathematizing usually starts in the physical world. By an emphasis on
form, observed phenomena are structured7 and people think about forms, which can
be seen as (possibly tiny) mathematical models for the phenomena, for example, one
could think about aligning dots when counting some candies lying disorganized on
the table. Naturally, mathematicians are well trained in the process of mathematizing,
and many mental objects and mental activities are part of their reality. Many forms
that are acquired through mathematizing observed phenomena became content that
can again be affected by mathematizing.

We observed above that the main components of mathematizing are schematizing,
formalizing and axiomatizing. When mathematical content is organized in that way,
mathematicians work towards the organization of a mathematical field; they try to find
an adequate form, an explicit language and the fundamental laws governing the field.

6 Mathematizing can be analyzed on different scales of granularity, in mathematics education we can find
for instance the concrete study of involved processes, like Superzeichenbildung as discussed for instance
by Nolte and Pamperien (2017) or Kießwetter (2006): when we solve a problem, we might assign a new
sign to a structure we analyzed in detail beforehand.
7 Freudenthal tells us that “[s]tructuring, whether applied to products or to processes, means emphasising
form. The first non-trivial structure as such, i.e., whole number as the product of the process of count-
ing, begot rich process and product content which, organized by ever new structures, in turn begot new
contents—a never ending cyclic process” (Freudenthal 1991, p. 10).
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Important examples in this activity of a research mathematician include preparing a
lecture or writing a textbook.

We have a look at each of the three activities in turn. Schematizing is a way of math-
ematizing that focuses on content: “schematising… is the counterpart to axiomatising
and formalising insofar as contents rather than abstract form and language are con-
cerned” (Freudenthal 1991, p. 31). By schematizing, the content is ordered. The result
is a scheme that represents the context in a faithful way pointing out its crucial fea-
tures but being closely connected to the context itself. An example for a scheme is
the representation of the multiplication 5 times 8 by a rectangle with 5 rows each of
8 points.8 Schematizing prepares the recognition of the structures that appropriately
represent the problem, but it is a second step to isolate the forms of such a scheme since
the scheme is always connected to reality, whereas the form is not. In Freudenthal’s
words, schematizing is the activity “to create schemes to fit reality” (Freudenthal 1991,
p. 31).

Formalizing, in contrast, is a way ofmathematizing that focuses on form.We search
for appropriate symbols and formalisms to describe a scheme, a mental object, or an
activity. Thereby, we get more and more sophisticated in our linguistic expression,
which is necessary to precisely grasp the characteristics of the structures. We could
start by describing a problem in natural language, and by trying to be exact in what
we say, we start to use more symbolic language, looking for appropriate symbols to
express our observation or thoughts.

Axiomatizing is the activity of identifying the rules which govern a context.
Freudenthal gives the development of group theory as one example for an axiom-
atizing activity within mathematics:

[The] first striking example [for the technique of axiomatizing] was groups.
From the turn of the 18th century onwards,mathematicianswere confrontedwith
mappings of sets upon themselves, often singled out by invariance properties,
and were led to compose such mappings. In this way they became acquainted
with sets of transformations which, under composition, automatically satisfied
thewell-known postulates, required later on for groups. Cayley, in 1854, took the
unifying step to define, by means of these postulates, the (finite) object he called
a group; yet not before 1870 did this new conception become whole-heartedly
accepted by leading creative mathematicians, and then also in infinite substrates.
(Freudenthal 1991, pp. 30–31)9

Building on these first ideas ofwhatmathematizingmeans for professionalmathemati-
cians, we relate the notion to further mathematical research activities. The priority of a
mathematician whose main activities are schematizing, formalizing and axiomatizing
is, we argue, theory-building rather than problem-solving. Gowers (2000) introduced
this prominent distinction in his paper Two Cultures of Mathematics, where he empha-
sizes that “when I say that mathematicians can be classified into theory-builders and
problem-solvers, I am talking about their priorities, rather than making the ridiculous

8 See Freudenthal’s example 7 (Freudenthal 1991, p. 43).
9 Maddy also gives an informative summary of this development of group theory with an emphasis on
the question when and why the group concept was accepted by mathematicians (Maddy 2011, p. 7 and
pp. 134–135).
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claim that they are exclusively devoted to only one sort of mathematical activity”
(original emphasis, Gowers 2000, p. 66).

We understand theory-building and problem-solving as two typical research activ-
ities of a professional mathematician which are different in their goals. Some
mathematicians might have a clear tendency to prefer one of those activities. Relating
this distinction to the mathematizing process, we argue that problem-solving requires
a rather short mathematizing process, and a prolonged and continued mathematizing
process leads to theory-building—this process might even include metamathematics,
as we elaborate in the next section. For example, problem-solving typically does not
include axiomatizing, and, among other activities, often applying a given method in
a structured context, which is not mathematizing in a narrow sense. As Freudenthal
shows, mathematizing requires looking for essentials within a context. He provides a
list of examples for what ‘within a context’ can mean, ranging from “within a situ-
ation and across situations” via “within a structure and across structures” to “within
an axiomatic system and across axiomatic systems”. He adds that looking across is
important “[b]ecause discovering common features, similarities, analogies, isomor-
phisms is the way towards generalising” (Freudenthal 1991, all quotes on p. 35). The
mathematizing process in problem-solving often consists in discovering similarities
with known problems or with other mathematical structures in order to choose or
develop an appropriate method that may be successfully applied to solve the problem.
In contrast, the theory-building focuses on such similarities and common features as
mathematical content and continues to mathematize those similarities and features to
finally build a theory of them. Examples for theory-building in mathematics are the
developments of group theory, set theory or homotopy type theory. The concepts of a
group, a set and a homotopy type were each introduced as common structures which
were isolated in a variety of mathematical contexts, since they adequately encode their
similarities.

But, as Gowers (2000) himself observes, the boundaries between these notions
are not sharp. For instance, the solution of some problems fueled the development
of corresponding theories. The rather easily stated question of Fermat, whether there
are any solutions for m>2 for am + bm � cm, was solved by Wiles and Taylor by
translating it into a special form of cubic equations, namely elliptic curves. Important
advancements in this theory made it possible to solve Fermat’s Last Theorem. On
the other hand: these advancements of the theory can be labelled in large parts with a
corresponding theorem, namely the solved Taniyama-Shimura-Conjecture. Especially
theory building must not be bigger than problem solving in the sense that there are
problems solved over a long period of time with many contributors as well and there
are of course more local examples of theory building in contrast to something like the
emergence of group theory.

Although there is no sharp division between theory-building and problem-solving
practices, we nevertheless argue that mathematizing is closer to theory-building since
both activities can have fruitful interactions. Our focus on mathematizing thus empha-
sizes an essential part of mathematical activity that can be different from solving
long standing open problems. Here, the reader should get a first impression of how
mathematizing can help to render narratives more adequately.
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2.3 Mathematizingmetamathematics: the case of logic

In this section we briefly speak about the formalization of the notion of proof within
mathematical logic and, in particular, within proof theory. There are several examples
how mathematical fields emerged from the mathematization of informal notions. One
may argue that topology or geometry formalizes our spatial intuitions or that arithmetic
was born out of basic operation on collections of clearly distinguishable objects.10

But there are two examples of mathematized notions which pertain to mathematical
practice itself. Those are the notion of algorithm and the notion of proof .Wewill focus
on the latter as the former is extensively discussed as the Turing-Church-thesis.11

The Grundlagenkrise in the early 20th century led to the field of mathematical
logic/metamathematics and provided what is currently the most accepted framework
for all mathematics, namely, first order logic and set theory. We cannot reconstruct the
whole development of the proof concept in mathematical logic, and rather pick major
contributions, which we think are relevant to understand the mathematizing that is
going on in this debate. The Hilbert’s school needed to find a formal counterpart to a
real-world phenomenon, namely proofs, leading to the development of proof theory,
whose well defined syntactical objects of inquiry are derivations in formal systems.
The formal and informal concepts are very closely related, and we often use “proof” to
refer to both concepts. For ease of reference we name the formal notion “derivation”
or “formal proof” and the informal one “informal proof”. Clearly, these two notions
differ. The neglect of those differences was for example called out by Davis and Hersh,
who address

the error of identifyingmathematics itself (what real mathematicians really do in
real life) with its model or representation in metamathematics, or, if you prefer,
first-order logic. (Davis and Hersh 1998, p. 354)

In (Leitgeb 2009, p. 268) we find a table listing differences of both notions: while
derivations are given by a formal syntax, informal proofs are given informally, the for-
mer allow no gaps, while the latter is more lenient, etc. Derivations also hardly feature
inmathematical practice, sincemostmathematical reasoning is conducted outside con-
crete formal systems.12 But why do we then say things like, Gödel’s Incompleteness
Theorem showed that “provable” and “true” are not extensionally the same thing?

We reason that “formal proof” abstracts from “informal proof” in a way that still
keeps what we need to analyze for the purposes of mathematicians or in other words:
the step from informal proofs to formal ones is simply an act of mathematization.
Our judgement on the adequacy of this act of mathematization might change in the
course of time. Before Einstein we would have thought that Euclidean geometry is
the right model for space but now, we employ manifolds to represent certain spatial

10 Numerous further examples can be found in Lakoff and Núñez (2000).
11 Apparently, there is also literature on the Hilbert Thesis, see for instance Kahle and Oitavem (2018) or
Hipolito and Kahle (2019). See below.
12 Formal systems become more important due to recent developments in formal mathematics. This is a
branch of mathematics using Automated Theorem Provers to generate derivations for non-trivial mathemat-
ical theorems, including the four-color theorem by Gonthier (2008) and the odd-order theorem by Gonthier
et al. (2013).
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features. The iterative refinement of scientific theories and the difference between the
scientific model and their domain of discourse is analyzed in depth by philosophers
of science.13 In a similar fashion, we can have a debate whether formal proofs capture
informal ones in the right way. Kahle (2019) mentions the first written occurrence of
the affirmation of that question in a Handbook for Logic.

[T]he informal notion of provable used in mathematics is made precise by the
formal notion provable in first-order logic. Following a sug[g]estion of Martin
Davis, we refer to this view as Hilbert’s Thesis. (Barwise 1977, p. 41)

Herewewill not focus toomuch on the “first order” part.14 The exact interplay between
these notions can be spelled out differently.

The adequacy of this act of mathematization can now be debated, which is mostly
done in the debate on how closely such formal derivations would need to be related to
the corresponding informal proofs. The most influential approach to this question is
Azzouni’s (2004) Derivation-Indicator View [DI-View], which suggests that there is
an underlying derivation below an informal proof. He writes:

[T]heday-to-daypractice ofmathematicians isn’t to actually execute suchderiva-
tions, but only [to] indicate, to themselves or to others in their profession, such
derivations, it’s clear why proof and not derivation must occupy centerstage in
mathematical practice; and this despite the fact that, in a very clear sense, it’s
derivation which provides the skeleton for (the flesh of) proof. (Azzouni 2004,
p. 95)

Azzouni notes himself that “indication” should not be overemphasized (Azzouni 2009,
footnote 17). But it is unclear whether the informal proof is a kind of blueprint that
can (maybe automatically) fill in details to complete it to a derivation as argued for
instance by Carl and Koepke (2014). Tanswell raised the problem that there may be
too many derivations fitting one proof (Tanswell 2015, 7, chapter 1). But those works
would fit very well into the picture of mathematizing, where the connection between
the object and the more abstract layer is not clear and up to modelling decisions.

In all these debates, we see that mathematizing mathematical activity itself requires
a debate about the aspects that we want to take into account. Mathematical activity is a
very rich context and bymathematizing it, we focus on certain aspectswhile neglecting
others. Some views in these debates claim that modelling techniques which keep more
qualitative information may be better suited. For instance, Lakatos (1976) stressed
the dialectic nature of producing proofs. In his famous Proofs and Refutations, he
investigates among other things the case of Euler characteristics. Mathematizing is
certainly not a universal technique to model whatever context one considers. It will
give a mathematical representation of a context. But, if one wishes for a mathematical
representation of a context, then this is achieved by mathematizing it, which in turn
requires one to make some simplifying assumptions and to make a choice on what
will be included in the model. These choices and assumptions are made visible by

13 See for example Bogen and Woodward (1988), Cartwright (1983), McMullin (1985), Weisberg (2007)
or Woodward (2011). This does of course not mean that all disputes are settled.
14 Berk (1982) analyzes in great detail whether first order logic is enough, or we need stronger logics.
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mathematization and prevent one from (falsely) expecting the correct mathematical
model.

2.4 Mathematizing as an intellectually virtuous practice

In this section, we present an argument for the claim that mathematizing is an intel-
lectually virtuous practice. Our main thesis is that mathematizing reveals truth about
reality and therefore leads to a substantially better understanding of it.

Typical intellectual virtues are humility, wisdom, or perseverance. King explains
that “[i]ntellectual virtues are dispositions to think and act excellently as one carries out
intellectual activities; that is, activities with intellectual ends” (King 2014, pp. 3782f)
and intellectual ends or goods include “truth, knowledge, or understanding” (King
2014, p. 3792). Since mathematizing is a practice rather than a trait, we examine it
here not as virtue but as a virtuous practice that is directed at the achievement of the
intellectual good of understanding.

Mathematizing improves our understanding of societal problems and phenomena
that we observe in the physical world. Nevertheless, we do not claim that we can under-
stand these problems and phenomena completely by mathematizing them because
mathematizing often includes abstraction and, therefore, eliminates some features of
the problem or phenomenon under consideration that may be important. Mathematiz-
ing is one of many processes that lead to a better understanding. Other such processes
could include the preparation and realization of experiments, literature research, or the
formulation of good working hypotheses. However, mathematizing reveals an impor-
tant aspect of the problem without which a full understanding cannot be achieved.
Mathematizing does not just add a tiny improvement in understanding but an essential
part of it.

In mathematics itself, mathematizing can lead to a full understanding of a mathe-
matical context though it remains a matter of how far one wants to mathematize. We
saw in Sect. 2.2 that problem-solving usually requires a shorter mathematizing process
than theory-building. But theory-building stops at some point too and does not abstract
any further. A continuation of the mathematizing process leads to a logical analysis of
mathematical language and mathematical argumentation that is usually called meta-
mathematics (see Sect. 2.3). Here we encounter again the aspect of preference, which
is very fundamental to the mathematizing process. People have different preferences
and they mathematize according to their preferences. Often, logic is too abstract for
mathematicians. For the structures become poorer and poorer and, at some point, they
are too poor to be still interesting for a mathematician, who prefers richer structures.15

15 The notion of poor and rich structures is taken from (Freudenthal 1991, 1.2.1). As an example, he
says: “As a geometric structure a tetrahedron is a richer structure than combinatorically. There is more
one can say about it; within this structure one can, for instance, measure distances, edges, angles, surfaces
and volume” (Freudenthal 1991, p. 20). Later, he explicitly describes first order logic structures as poor
and mathematical structures as rich when he says that “Bourbaki’s compass [shows how] to sail from the
poor to the rich structures” (Freudenthal 1991, p. 131). He extends these notions to poor and rich contexts
(Freudenthal 1991, 2.2.3), where rich contexts are better suited for education because pupils can ask more
varied questions about a rich context than about a poor context.
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Mathematicians improve their understanding of a mathematical context by math-
ematizing because they can understand why the method that applies to a problem
works, and in which other contexts the method works. They do not lose the connec-
tion between the context and the method but focus on the mathematization of the
context—to find appropriate schemes that fit the context, to become more sophisti-
cated in their linguistic expression to speak about the context and to identify the laws
that govern the context. In that way, the mathematizing mathematician understands
more about the context than a non-mathematizing mathematician who applies a given
method in a given context ‘just because it works’.16 For example, when we understand
that some theorems about the real numbers are actually true due to the fact that we
can see the reals as a topological space and not due to more specific properties of the
real numbers. It can even trigger something like a paradigm shift and constitute whole
new fields of studies.

For our argument that mathematizing is an intellectually virtuous practice, it is
important to stress that mathematizing is not necessary to solve problems. People
could solve a problem by applying an imposed or given method. Consider Freuden-
thal’s example of the commutativity of the addition of natural numbers, in which he
distinguishes between horizontal and vertical mathematization: “Replacing 2 + 9 by
9 + 2 may be due to horizontal mathematising if 2 and 9 are visually or mentally
combined as linearly structured sets and their combination is read backwards. It may
be vertically interpreted as soon as the law of commutativity is generally applied”
(Freudenthal 1991, pp. 42f). The horizontal mathematizing process is a clear example
in which the understanding of addition of natural numbers is improved. When some-
one is clear about the fact that 2 + 9 is identical to 9 + 2, for example, because 2 dots
aligned and then 9 dots attached gives the same mental object as 9 dots aligned and
2 attached, the person can easily apply the same scheme to other cases of addition.
After several such examples, the children might get by induction to a general law that
applies whenever natural numbers are added. After realizing this to be a law, formu-
lating it by using symbols, and giving it the name ‘the law of commutativity’, it can
be applied with understanding, which, Freudenthal tells us, is vertical mathematizing.
In contrast, if a teacher says that one can always switch the numbers when adding,
and pupils apply the law to calculate 9 + 2 instead of 2 + 9 because the first is easier,
we would not claim that they understood more about the addition of natural numbers.
Instead, we would say that they rather applied an imposed rule.

Another non-mathematizing way to deal with a problem is trial and error. To stick to
our example, a child could also have heard that, actually, one can switch the numbers
when adding them and tries it out with, say, about ten or twenty examples, and,
then is convinced that this holds generally. Although we would claim that this child
understood addition a bit better than the one who applied the imposed rule, it still
misses the important part to recognize that it has to be the same in every case, not just
the observation that it gave the same result in every concrete example.

We emphasized that a problem can be solved in other ways, but mathematizing
a problem leads to a substantially better understanding. One could read this argu-

16 Of course, the application of a method ‘just because it works’ can be a fruitful starting point to reflect
further on the context, the problem and the method, for example by looking for essentials also across
problems and methods.
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mentation as a requirement that one should always mathematize everything to better
understand it. Given the time andmental resources that are needed for amathematizing
process, this is not what we think is the right conclusion. Instead, division of labor is
called for. If one wants to better understand a problem, then it is recommended that
one mathematizes it. However, if one is fine with solving it quickly and going on to
the next task, one can easily leave the understanding to somebody else, apply a given
strategy for solving it, and continue with one’s work. Mathematizing is opposed to
cookbook like teaching which requires children to memorize the recipes and to apply
them in suitable contexts. This unnecessarily limits the children and the RME tradition
wants more. The hope is that

[i]f the students experience the process of reinventing mathematics as expanding
common sense, then they will experience no dichotomy between everyday life
experience and mathematics. Both will be part of the same reality. (Gravemeijer
and Doorman 1999, p. 127).

The facts that mathematizing improves our understanding of a problem and that math-
ematizing is not necessary to engage with it lead us to argue that mathematizing is
an intellectually virtuous practice since the practice is directed at the achievement
of an intellectual good: understanding. Mathematizing is in the sense we argued a
particularly good practice to address a problem.

3 Narratives of mathematics

If we want to understand the narratives of mathematics as they are understood by a
member of the broader public, that is, a layman, we can look into the literature. Paul
Ernest puts the public image of mathematics as follows:

A widespread public image of mathematics is that it is difficult, cold, abstract,
theoretical, ultra-rational, but important and largely masculine. It also has the
image of being remote and inaccessible to all but a few super-intelligent beings
with „mathematical minds ”. (Ernest 1995, p. 1)

There are empirically informed approaches (closely related to Ernest’s work) to the
study of the image of mathematics (or mathematicians); see for instance Sam (1999),
who handed questionnaires to 548 people and conducted semi-structured interviews
with 62 people. From this, she distilled that there are five main views:

1. “Utilitarian view:mathematics is primarily viewed in terms of its utilitarian value.”
(Sam 1999, p. 253)

2. “Symbolic view:mathematics is perceived as a collection of numbers and symbols,
or rules and procedures to be followed and memorised.” (ibid, p. 254)

3. “Problem solving view: mathematics is related to a set of problems to be solved.”
(ibid, p. 256)

4. “Enigmatic view: mathematics is seen as mysterious but yet something to be
explored and whose beauty is to be appreciated” (ibid, p. 257)

5. “Absolutist or dualistic view: mathematics is perceived as a set of absolute truths,
or as a subject of which always has right or wrong answers.” (ibid, p. 257)
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As we are doing, she links these images to mathematics education. She observes,
“[i]n particular, [that] many respondents’ images of mathematics seem to be linked to
their experiences of learning mathematics in school” (ibid, p. 343).

A crucial element for narratives ofmathematics is also the depiction ofmathematics
in pop culture, for instance in films like “A beautiful mind”, “PI”, “The Man Who
Knew Infinity” and many more. Here, apparently, historic contingency comes into
play: the subject’s history (as our society in general) was not as colorful as it could
have been. This depiction was analyzed for example in Moreau et al. (2009, 2010),
who stressed a white, male, middle-class, heterosexual picture of mathematicians, a
theme closely related to the quote of Ernest above. It was also analyzed how this
had consequences for mathematics learners, for instance by Picker and Berry (2000).
A crucial finding of this work is that hardly any boy drew a female mathematician,
when asked to draw a stereotypical mathematician. Even girls drew in only~20% of
the cases female mathematicians in Finland, Sweden, and Romania. The UK and US
surpassed these percentages with~57% and respectively~30%.

In this section, we analyze the following narratives of mathematics:

1. Mathematics is useful
2. Mathematics is beautiful
3. Mathematicians aim at deep understanding
4. Mathematicians aim at theorem-credit

The first narrative ofmathematics thatwewill investigate coincideswith the utilitar-
ian view identified by Sam. Its main characteristic lies in the assumption that research
mathematics serves later applications in science which in turn serve our society in
the form of technical progress: mathematics is useful for our everyday life.17 The
second narrative—mathematics is beautiful—takes a quite different view by empha-
sizing an intrinsic value of mathematics, independent of any application for science
and society. This view has great similarities to Sam’s enigmatic view. The narrative
that mathematicians aim at deep understanding also has similarities to the enigmatic
view. Here, the emphasized intrinsic value of mathematics is of an epistemological
nature and not of an aesthetic nature as in the previous narrative. The last narrative we
are concerned with is motivated by sociological aspects of the community of research
mathematicians: the norms of the community seem to support that theorem credit is
one of the main values for mathematicians.

We will have a look at each of these narratives in turn and investigate how taking
into account the idea that mathematizing is the main characteristic of mathematics
changes the respective narrative. Our aim is to show that the narratives are rendered
more adequate by stressing the role of mathematization as a virtuous practice and that
our society would be better off with these improved narratives.

17 This is also motivated by Ernest’s quote above and the articles by Moreau et al. (2009, 2010). It is
concernedwith the possibly harmful stereotype of the typicalmathematician persona. This narrative includes
aspects of Sam’s symbolic view (men are better in abstract thinking), problem solving view (you have to
be a genius to solve a mathematical problem), and the absolutist or dualistic view (mathematicians tell
you the one and only truth), but also a little bit of the enigmatic view (it is a great mystery what a genius
mathematician can do).
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3.1 Mathematics is useful

It is often reported that Galileo’s dictum was that the book of nature “is written in
the language of mathematics”. Our society stresses that students should learn to apply
mathematical tools as this is needed by natural sciences, engineering, and computer
science. This is reason enough to include it into the manifold of STEM-initiatives
with all the funding that comes along with them. Peterson (1991), as reported by Sam
(1999), goes even further. She observes that:

Even scientists and engineers whose jobs relate tomathematics ‘often harbour an
image of mathematics as a well-stocked warehouse from which to select ready-
to-use formulae, theorems, and results to advance their own theories’ (Peterson
1996). (Sam 1999, p. 14)18

In Germany, the Kultusministerkonferenz (2009) stresses that mathematical education
is indeed a key component of the whole economic development in Germany. Here,
we see also that this governmental institution is aware of another kind of beneficial
outcome, namely that the individual profits. They stress that STEM abilities make
it possible to participate in public discourse, adapt to technical improvements and
become an active citizen. We can add that there might be other personality traits or
virtues that might benefit from mathematical training. Among those are analytical
thinking, frustration tolerance and patience or intellectual humility. This can be fos-
tered due to the success of applied mathematics. Every engineering project or project
in computer science will surely use some mathematical tools or knowledge.

This narrative is clearly very beneficial for mathematical research, especially as a
justification. It seems that we strongly believe that even the most theoretic fields of
study will find application in the long term. But this narrative is problematic in at least
two senses:

1. It is an inadequate picture of mathematical practice.
2. It makes it harder to judge the value of mathematical results.

Concerning 1: The narrative overlooks that huge parts of mathematics (especially
non-applied fields) might actually never aim for results that will be applied. Even
worse, large chunks of mathematics are forgotten when the few specialists die or
lose interest in the subject of their earlier studies.19 The narrative focuses on the
extrinsic values of mathematics. We do not do mathematics for its own sake in this
narrative. This misses a large part of the practice: a lot of pure mathematicians would
even stress that the abstractness and the lack of application is a motivating factor
to work on their field of studies. We believe that the mathematizing narrative can
incorporate the good part, it even explains the applicability or more precisely takes it
as a fundamental notion because the first mathematical exercise necessarily originates

18 Sam refers to Peterson (1996). Searching for new mathematics. (Articles on Public Understanding
of Math). http://forum.swarthmore.edu/social/articles/ivars.html, but we did not find this source. Instead,
Peterson (1991) contains the same quotation.
19 As Gowers notes: “It is also true that many of the results proved by combinatorialists are somewhat
isolated and will be completely forgotten (but this does not distinguish combinatorics from any other
branch of mathematics)” (Gowers 2000, p. 69).

123

http://forum.swarthmore.edu/social/articles/ivars.html


Synthese

from the embodied world. It also stresses the process of doing mathematics in the
sense of a process-oriented narrative, while also incorporating the role of the results
in contrast to a narrative that solely stresses the results.

Concerning 2: Another important aspect connected to the “usefulness narrative”
is that it borrows strongly from authority and not from an inherent interaction with
mathematics. This authoritative aura has many consequences for the reception of
mathematical results. Numbers often have authority in societal discussions. While
mathematicians can profit from this and while the export of mathematics to other
disciplines is a big part of the reason due to which mathematical departments are so
big, we argue that the authority of models in social questions is not justified. Not
everyone is aware that it is possible to tweak such results and are not able to interpret
a precise technical statement on their own. An example is for instance that causation
and correlation often get mixed up. And there are several studies showing our bad
intuitions concerning conditionalized probabilities, see for example Díaz and de la
Fuente (2007).

Here it would be useful to combine the narrative of usefulness with the narrative of
mathematization.Mathematization is always partly dependent on choices and needs to
miss out information about the object we abstract from. It is a virtue to do this rightly
and also to evaluate, understand and appreciate such processes of mathematization.
In mathematics education, we can see partly a fitting development in this direction: the
one connected to the development of modelling competencies.20 These developments
stress the first step of mathematization from real-world phenomena but normally stop
there and do not approach iterations as we would find them in applied mathematics. To
frame this even stronger, it is very important to develop competencies to understand
and analyze formal tools in the workplace and in public debates. A narrative of ratio-
nality and objectivity without reflection is highly problematic, since it might foster the
risk ofmathematics causing harm. This was problematized by Ernest (2009, 2016).We
want to stress that the usefulness-narrative is crucial in this respect. Consultants trying
to optimize several key-performance indicators of a company might feel obligated
to forget other human and societal consequences of their work. This gets even more
important when military-related research is disguised as optimization and engineering
problems. We hope that the mathematizing narrative allows for a better implementa-
tion of a critical theory of the responsibilities which are connected to mathematical
modelling. A missing understanding of the real mathematical practice might add to
cases where the boundaries of a model are not rightfully taken into consideration, like
with the Black–Scholes equations in financial modelling.

3.2 Mathematics is beautiful

The beauty of mathematics is often revealed both in the popularization of mathemat-
ics—for example, in newspaper articles like “Mathematics: Why the brain sees maths
as beauty” by Gallagher (2014), “The beauty of mathematics: It can never lie to you”
by Roberts (2017), or “The aesthetic beauty of math” by Olsson (2019)—as well as
when mathematicians describe their own motivation for doing mathematics:

20 See for instance Schukajlow et al. (2018), Kaiser (2010) or Kaiser and Schwarz (2010).
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For me, as a mathematician, [beauty] is hugely important. My enjoyment of the
beauty of mathematics is part of what motivates me to study the subject. It is
also a guide when I amworking on a problem: if I think of a few strategies, I will
choose the one that seems most elegant first. And if my solution seems clumsy
then I will revisit it to try to make it more attractive. (Neale 2017)

The narrative of beauty as one of the main goals for mathematicians or one of the main
characteristics of mathematics associates the abstract study of mathematical objects
such as numbers, groups, or topological spaces with the creative activity of artists.
In contrast to the previous narrative, it ascribes an intrinsic value to mathematics.
The analogy between art and mathematics underscores the creative part of mathemat-
ical activity. The mathematician creates abstract forms and structures, explores those
objects, and constructs extremely complex objects and relations. According to the
narrative, this activity is driven intrinsically by the aesthetics of those objects and of
their interplay.

A rather unsurprising fact that goes well with this analogy is that not every piece
of art and not every piece of mathematics is beautiful. Some parts are more, or less,
beautiful than others. Moreover, beauty can be connected to a feeling of depth: the
mathematician found a deep fact or relation and the artist created a deep and inspiring
piece. This goes with the expectation that one does not find beauty everywhere, that
it rather takes time and reflection, expertise, and insight.

Another similarity is that people judge differently. There can be agreement about
the beauty of particular pieces of art or proofs. For example, people may agree on the
beauty of da Vinci’s Mona Lisa or van Gogh’s The Starry Night, and mathematicians
may agree on the beauty of some of theProofs from THE BOOK byAigner and Ziegler
(2004); however, on other pieces they could disagree a little bit, or even strongly.
Inglis and Aberdein (2016) report that the mathematician’s proof appraisal is not
intersubjective. Presented with the same proof, there were mathematicians judging it
as beautiful while others indicated that ‘beautiful’ is not an accurate description of the
proof.21

A valuable aspect of the narrative of mathematics striving for beauty is that it
takes a strong stance against those narratives that claim mathematics to be cold and
unapproachable. Philosophers argued strongly for a focus on the aesthetic aspect of
mathematics (for example Dreyfus and Eisenberg (1986), Tymoczko (1993), and Sin-
clair (2001)). But, of course, it is not enough to declare that proofs can be beautiful, that
mathematicians enjoy the beauty of mathematics and that mathematics is, therefore,
“super-exciting”. For, the main problem of the beauty narrative is: how can anyone

21 The framing of the proof (for instance if the mathematicians were told that it’s a proof from the Book)
played also a role in the judgements on beauty. Importantly, the authors also checked on a correlation
between the research area, respectively the career stage, and the appraisals and found that they were not
influenced by that. They write in the discussion section: “We found a remarkable level of disagreement
between our participants’ ratings of the proof. For each of the four dimensions of proof appraisal there were
participants who thought the proof should score high on that dimension, and there were participants who
thought the proof should score low on that dimension. Furthermore, neither research area nor career stage
seemed to be predictive of mathematicians’ appraisals on any of the four dimensions.” (Inglis and Aberdein
2016, p. 173).
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understand such a claim who never experienced an appreciation of beauty connected
to mathematics?

Tymoczko, when presenting the aesthetics of a proof step, accepts that some people
may lack an ability: “if they say ‘I could never have thought of that in a million years’,
we’d question their ability to appreciate mathematics” (Tymoczko 1993, p. 75). This
supports the view that one needs mathematical skills to appreciate its beauty. Dreyfus
and Eisenberg (1986) take a similar stance when they show that students were not
able to appreciate mathematical beauty and suggest educating them in their aesthetic
abilities. In contrast, Sinclair argues that “students can and do behave aesthetically in
the mathematics classroom” (Sinclair 2003, p. 204) and that their aesthetic judgments
are just different from those of expert mathematicians. In a small study with four
students, she discusses with them the best way to construct a square with a given
digital tool. The students try out their ways of constructing a square and, subsequently,
evaluate their different approaches in discussion with each other. This is a very good
example for a mathematization process in the classroom: the students are presented
with a rich tool and it becomes very clear to them that there are various ways to
construct a square, which they can compare according to their preferences.

We think that mathematizing can be very helpful in one’s attempts to understand
what beauty in mathematics can be. This is due to two aspects of mathematizing: its
structuring activity and its acknowledgment of subjective components. Sinclair reveals
an account of beauty that “interprets aesthetic response as a cognisance of fit, of struc-
ture or order, perceived part as being intuitive and recognized at an emotional level as
being pleasurable” (Sinclair 2001, p. 25).We think this is a plausible account of beauty
in mathematics that does not separate between students and expert mathematicians.
Since such a cognisance of fit can be perceived by students when mathematizing at
school, they can experience the related pleasure in the same way that expert mathe-
maticians experience pleasure when they identify a clear structure in a mathematical
context of their interest.

Beauty andmathematizing are both reflected in subjective judgments.When a prob-
lem ismathematized, there are differentways of doing so: differentways of formulating
the problem and different ways of solving it. Those choices are made according to the
person’s preferences, so, also according to the person’s aesthetic judgments. One could
find oneway ofmathematizing a problem particularly insightful, striking, or appealing
in comparison to another way that would also work but is seen as less insightful, strik-
ing, or appealing as the first one. Since those adjectives correspond to the aesthetics
dimension of the mathematician’s proof appraisal,22 such a judgment is comparable
to the judgment of a mathematician who finds a proof beautiful. People may feel the
beauty of mathematics when they choose a particular way of mathematizing according
to their own preferences.

22 Inglis and Aberdein found out by an explorative factor analysis that ‘beautiful’ loaded highly on what
they called the aesthetics-factor, which also includes adjectives such as ‘deep’, ‘ingenious’ or ‘cute’ as well
as ‘insightful’, ‘striking’, or ‘appealing’ (Inglis and Aberdein 2015). This empirical investigation can give
an idea on the meaning of beauty in mathematics, but the meaning remains an open question and there is
much controversy about it.
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3.3 Mathematicians aim at deep understanding

Our next narrative may sound trivial at first but becomes difficult to defend against the
circumstances of mathematical practice. Mathematizing can, again, shed light on the
narrative and emphasize its valuable aspects.

In the narrative of deep understanding, mathematics is the activity of advancing
our human understanding of mathematical objects; mathematicians aim to understand
mathematical structures and relations and the final goal of mathematics is to delve
deeper and deeper in that understanding. Inmathematics, understanding comes second
to truth; that is, mathematicians first find a proof of a new theorem, but they can still
be puzzled by the theorem because they do not understand why it holds.

The narrative of a deep understanding could be suggested for all sciences and
humanities: the respective scholars aim at a deep understanding of a specific subject
matter. In this sense, the narrative is rather natural and general.23

According to this narrative, mathematicians should value explanations, which give
reasons why theorems hold, higher than proofs without any explanatory power. How-
ever, it is hard to find evidence for that in mathematical practice. Mathematicians
are generally satisfied with good proofs of important theorems. On the other hand, a
mathematician could view the accumulation of important theorems about a specific
object as exactly the way to go to understand the object. In that view, from outside the
mathematical community, it looks like only theorems count, but from the inside, the
theorems are only valued if they lead to a better understanding.24

Deep understanding involves acquiring knowledge about a mathematical structure
or an established fact from different perspectives, learning all one can learn about it,
knowing its difficulties, its advantages, its nice features and how it is connected to other
close mathematical objects or facts. We imagine that if a mathematician has a deep
understanding of a mathematical object, then everything that one can say about that
object would not be surprising, but clear and expected; even more, we would imagine
that the mathematician can easily offer various explanations.25 In other words, the
mathematician has a very good idea of the bigger picture in this specific context and
can easily talk about it and present it to others. This might very well include using
suitable and telling metaphors, which illustrate the connections and objects.

It is harder to give an example of a mathematical object of which one could claim
mathematicians have deeply understood it since conceivably there may be surprising
new facts even about the numbers from 1 to 10. For example, there is a result in
set theory, that people often quote as an unexpected theorem: Shelah proved that
2ℵω < ℵω4 ifℵω is a strong limit.26 People are surprised about the number 4 appearing

23 In mathematics, it comes with the difficulty to specify the subject matter. We speak here roughly about
mathematical objects and facts without entering the debate about the existence of such objects.
24 See Sect. 3.4 below.
25 It seems again that mathematicians differ in their judgments whether a proof is explanatory or not, as
problematized by Inglis and Aberdein (2016). There is much debate about explanations in mathematics.
However, we do not want to elaborate on the concept of explanation in mathematics, but on the idea that
mathematical activity may be driven by the desire for deep understanding.
26 See (Jech 2006, p. 476) for a proof. The theorem gives an upper bound for the cardinal number 2ℵω ,
where ℵω is the ω-th cardinal number, and ℵω4 is the ω4-th cardinal number.
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in the inequality and there could be something about the number 4 that we learn by
that fact. Shelah himself asks: “Why the hell is it four? Can we replace it by one? Is
4 an artifact of the proof or the best possible bound?” (Shelah 2002, p. 560).

But we may argue that there are mathematical facts that are deeply understood in
the sense that mathematicians could give various different explanations of the fact. For
example, the facts that there are more real numbers than there are natural numbers,
or that every polynomial of degree n has n complex roots (where the same root can
appear more than once), or that every vector space has a basis. Those are important
standard results, which are given in different formulations and with different proofs
in textbooks depending on how the author thinks it is best explained.

Mathematizing has a very close connection to the deep understanding narrative.We
argued above that mathematizing is a virtuous practice since it helps to improve our
understanding of the realworld and ofmathematics itself. Emphasizingmathematizing
as a main characteristic of mathematical activity means arguing that mathematical
activity is about extending our understanding. This directly implies our narrative of
mathematics driven by the desire for a deep understanding.

Since we argued in 2.1 that those mathematicians who prioritize theory-building
mathematize more than others, we relativize the implication and conclude from the
mathematizing narrative that some mathematicians aim for a deep understanding, and
others may have different goals. This is, we believe, correct regarding contemporary
practices in research mathematics. However, taking into account that we also argued
that mathematizing is virtuous, the deep understanding narrative describes, in contrast
to the other narratives, a kind of virtuous mathematical activity.

3.4 Mathematicians aim at theorem-credit

There are different examples of mathematicians who became very famous by proving
a conjecture which was open for many, many years, and there is a narrative which tells
us that mathematics can offer the opportunity to find a place in history by proving an
earth-shaking theorem; one will be admired for finding such a proof and mathematics
can be the way to go to achieve an honorary place. Exemplary cases are Grigori
Perelman’s proof of the Poincaré conjecture or AndrewWiles’ proof of Fermat’s Last
Theorem. In this narrative,mathematical activity is driven by the search for the solution
of important conjectures.

Various aspects of mathematical practice suggest that research mathematicians are
recognized to be good and valued in the community if they produce virtuous proofs,
where a virtuous proof is particularly beautiful, deep, innovative, or is judged to have
similar such properties.27 One main argument for that narrative is the observation that
mathematicians are given much credit when they prove an important theorem, and that
there is sometimes even emotional debate on who deserves the credit for a proof and

27 A proof can have different qualities, some of which are judged virtuous and others not. For example,
a proof that is judged elementary is probably not seen to be virtuous since it uses standard methods of
the respective research area, and is, hence, not original, or innovative. Qualities of mathematical proofs
have recently been investigated by Inglis and Aberdein (2015, 2016) (their work was mentioned above in
Sect. 3.2 on beauty in mathematics and 3.3 on deep understanding).
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who does not (see for instance the debate between Perelman and Shing-Tung).28 If
someoneproves a theoremand the proof or theorem is judged to beparticularly virtuous
by the community, the theorem is named after the mathematician who found the proof.
For example, in set theory, fundamental theorems areKönig’s lemma,Cantor’s theorem
or the Martin-Steel theorem and so on. In such cases, the respective mathematicians
are recognized by the community, for they made a valuable contribution to the joint
endeavor of research mathematics, and the more virtuous the proof or theorem is, the
higher the theorem credit.

There are several arguments in favor of the described theorem-credit narrative, for
example the publishing practices in the mathematical community, which support the
narrative that finding virtuous proofs is part and parcel of being a good mathematician
today. To succeed as a research mathematician in a practical sense, that is, to get a
permanent position as a research mathematician, publications in high-ranked journals
are essential. Those journals claim to publish original and innovative work. Thus, one
could argue, the work of a research mathematician is mainly driven by his attempt to
find such theorems and proofs.29

Although seemingly adequately representing aspects of mathematical practice, this
narrative reducesmathematical activity to the production of theorems. The focus of that
narrative lies on the products of mathematical activity instead of on the process and the
activity itself. This, we think, is a negative aspect of this narrative. The theorem-credit
narrative quantifies mathematical activity in a harmful way. Of course, it is included
in the narrative that not every theorem is a desired product, but rather particularly
virtuous proofs are desired. Thus, it is not a complete quantification, but it neglects
the process of finding a proof and its key ideas, where for example other people
could have contributed a large part by mathematizing a relevant context. Presented
with an amazing proof, one can find oneself puzzled about the question of how that
person was able to come up with such a wonderful proof. Putting mathematizing in
the equation, it is not puzzling at all. The proof does not represent the process of
finding the proof. The proof was rather found by a particularly sophisticated way of
mathematizing. Therefore, the theorem-credit narrative hides a main characteristic of
mathematics and is not adequate in this sense. It creates a distance between the public
and the final products of mathematics that is not a priori, since people who are used
to mathematizing everyday problems can easily imagine that mathematizing further
in other contexts and possibly in a more sophisticated way, can indeed lead to the
discovery of amazing proofs. But it is the preceding process of mathematizing that
is virtuous, and we should admire a mathematician for that rather than for the final
product.

28 See an article in the New Yorker: Nasar and Gruber (2006).
29 We already mentioned in Sect. 3.4 on deep understanding that one may argue that the accumulation of
theorems is not a goal in itself, but that it is rather aimed at the final goal of deepening our understanding of
mathematics. This is what someone preferring the narrative of deep understanding would object to the rea-
sons from mathematical practice which rather speak in favor of the theorem credit narrative. However, here
we want to take the narrative as an emphasis on the products of mathematics—proofs and theorems—and
consider the idea that mathematicians are mainly concerned with finding good proofs and new interesting
theorems that they can publish in major journals of their respective discipline.
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4 Conclusion

We argued that mathematizing is a virtuous practice, because it offers tools to grasp
a larger part of reality and is beneficial for epistemically valuable ends such as
understanding. Our main point is that mathematizing as a virtuous practice is a nar-
rative which captures integral parts of mathematical practice, including the activity of
research mathematicians, mathematics learners or applied scientists. It accounts for
the important role of theory-building processes for mathematics and how essential it
is to organize and systematize mathematical knowledge, for example in textbooks. We
argued that it thus constitutes a more precise and adequate narrative of mathematical
practice than its competing alternatives. Furthermore, we suggested that a narrative
of mathematics stressing mathematizing provides beneficial outcomes for society; for
example, importantly, by relativizing the authority of formal arguments in public dis-
course due to the emphasis on the modelling component that comes with any real
world application of mathematical tools.

One limitation of our paper is that we do not provide in-depth investigations of spe-
cific narratives, be it their description or their importance. This lies beyond the scope
of this article because our intention was to overview a larger topic. We compared what
we found in relevant discourses about mathematics and elaborated ways to integrate
the activity of doing mathematics, mathematizing, in those narratives. This also shows
that narratives are flexible and can be improved. It is subject to future research to try
to answer some of the following questions: Can mathematizing contribute to individ-
ual human flourishing? Which are the benefits of bringing mathematical laymen and
research mathematicians closer together in their way of understanding and valuing
mathematical activity? Which other narratives of mathematics are important in our
societies, do they reflect on mathematizing? Another important issue is gender-related
narratives.

We see our contribution as an impulse directed towards a continued development
and reflection on these matters which, we believe, can result in a valuable change of
the role of mathematics for our society—initiated by choosing a more adequate and
better narrative of mathematical activity.
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