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PREFACE 
 
  
The concept of supermatrix for social scientists was first 
introduced by Paul Horst. The main purpose of his book was to 
introduce this concept to social scientists, students, teachers and 
research workers who lacked mathematical training. He wanted 
them to be equipped in a branch of mathematics that was 
increasingly valuable for the analysis of scientific data.  

This book introduces the concept of fuzzy super matrices 
and operations on them. The author has provided only those 
operations on fuzzy supermatrices that are essential for 
developing super fuzzy multi expert models. We do not indulge 
in labourious use of suffixes or superfixes and difficult 
notations; instead we illustrate the working by simple examples. 
This book will be highly useful to social scientists who wish to 
work with multi expert models.  

An important feature of this book is its simple approach. 
Illustrations are given to make the method of approach to the 
problems easily understandable. Super fuzzy models using 
Fuzzy Cognitive Maps, Fuzzy Relational maps, Bidirectional 
Associative Memories and Fuzzy Associative Memories are 
defined here. Every model is a multi expert model. This book 
will certainly be a boon not only to social scientists but also to 
engineers, students, doctors and researchers.   

The authors introduce thirteen multi expert models using the 
notion of fuzzy supermatrices. These models are also described 
by illustrative examples.  
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This book has three chapters. In the first chapter we recall 
some basic concepts about supermatrices and fuzzy matrices. 
Chapter two introduces the notion of fuzzy supermatrices and 
their properties. Chapter three introduces many super fuzzy 
multi expert models. 

The authors deeply acknowledge the unflinching support of 
Dr.K.Kandasamy, Meena and Kama.  
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

AMAL. K 
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Chapter One 
 
 
 
 
 

BASIC CONCEPTS  
 
 
 
 
 
 
In this chapter we just recall the definition of supermatrix and 
some of its basic properties which comprises the section 1. In 
section 2 fuzzy matrices are introduced. 
 
 
1.1 Supermatrices  
 

The general rectangular or square array of numbers such as  
 

A = 
2 3 1 4
5 0 7 8

⎡ ⎤
⎢ ⎥− −⎣ ⎦

,  B = 
1 2 3
4 5 6

7 8 11

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

 

C = [3, 1, 0, -1, -2] and D = 

7 2
0

2
5
41

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

are known as matrices.  
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We shall call them as simple matrices [92]. By a simple 
matrix we mean a matrix each of whose elements are just an 
ordinary number or a letter that stands for a number. In other 
words, the elements of a simple matrix are scalars or scalar 
quantities. 

A supermatrix on the other hand is one whose elements are 
themselves matrices with elements that can be either scalars or 
other matrices. In general the kind of supermatrices we shall 
deal with in this book, the matrix elements which have any 
scalar for their elements. Suppose we have the four matrices; 
 

a11 = 
2 4
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

,  a12 = 
0 40
21 12

⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 

a21 = 
3 1
5 7
2 9

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 and a22 = 
4 12
17 6
3 11

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
One can observe the change in notation aij denotes a matrix and 
not a scalar of a matrix (1 < i, j < 2). 

Let  

a = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

; 

 
we can write out the matrix a in terms of the original matrix 
elements i.e., 

a = 

2 4 0 40
0 1 21 12
3 1 4 12
5 7 17 6
2 9 3 11

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
Here the elements are divided vertically and horizontally by thin 
lines. If the lines were not used the matrix a would be read as a 
simple matrix. 
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Thus far we have referred to the elements in a supermatrix 
as matrices as elements. It is perhaps more usual to call the 
elements of a supermatrix as submatrices. We speak of the 
submatrices within a supermatrix. Now we proceed on to define 
the order of a supermatrix.  

The order of a supermatrix is defined in the same way as 
that of a simple matrix. The height of a supermatrix is the 
number of rows of submatrices in it. The width of a supermatrix 
is the number of columns of submatrices in it. 

All submatrices with in a given row must have the same 
number of rows. Likewise all submatrices with in a given 
column must have the same number of columns. 

A diagrammatic representation is given by the following 
figure. 
 
          
   
          
          
          
          
   
          
   

 

  

 

     
 
 

In the first row of rectangles we have one row of a square 
for each rectangle; in the second row of rectangles we have four 
rows of squares for each rectangle and in the third row of 
rectangles we have two rows of squares for each rectangle. 
Similarly for the first column of rectangles three columns of 
squares for each rectangle. For the second column of rectangles 
we have two column of squares for each rectangle, and for the 
third column of rectangles we have five columns of squares for 
each rectangle. 

Thus we have for this supermatrix 3 rows and 3 columns.  
One thing should now be clear from the definition of a 

supermatrix. The super order of a supermatrix tells us nothing 
about the simple order of the matrix from which it was obtained 
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by partitioning. Furthermore, the order of supermatrix tells us 
nothing about the orders of the submatrices within that 
supermatrix. 

Now we illustrate the number of rows and columns of a 
supermatrix. 
 
Example 1.1.1: Let 

a = 

3 3 0 1 4
1 2 1 1 6

0 3 4 5 6
1 7 8 9 0
2 1 2 3 4

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
a is a supermatrix with two rows and two columns.  
 
Now we proceed on to define the notion of partitioned matrices. 
It is always possible to construct a supermatrix from any simple 
matrix that is not a scalar quantity.  

The supermatrix can be constructed from a simple matrix 
this process of constructing supermatrix is called the 
partitioning. 

A simple matrix can be partitioned by dividing or separating 
the matrix between certain specified rows, or the procedure may 
be reversed. The division may be made first between rows and 
then between columns.  

We illustrate this by a simple example. 
 
Example 1.1.2: Let 

A = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a 6 × 6 simple matrix with real numbers as elements. 
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A1 = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now let us draw a thin line between the 2nd and 3rd columns. 

This gives us the matrix A1. Actually A1 may be regarded as 
a supermatrix with two matrix elements forming one row and 
two columns. 

Now consider  

A2 = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Draw a thin line between the rows 4 and 5 which gives us the 
new matrix A2. A2 is a supermatrix with two rows and one 
column.  
Now consider the matrix  
 

A3 = 

3 0 1 1 2 0
1 0 0 3 5 2
5 1 6 7 8 4
0 9 1 2 0 1
2 5 2 3 4 6
1 6 1 2 3 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
A3 is now a second order supermatrix with two rows and two 
columns. We can simply write A3 as  
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11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where 

a11 = 

3 0
1 0
5 1
0 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, 

 

a12 = 

1 1 2 0
0 3 5 2
6 7 8 4
1 2 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

 

a21 = 
2 5
1 6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and a22 = 
2 3 4 6
1 2 3 9

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
The elements now are the submatrices defined as a11, a12, a21 and 
a22 and therefore A3 is in terms of letters. 

According to the methods we have illustrated a simple 
matrix can be partitioned to obtain a supermatrix in any way 
that happens to suit our purposes. 

The natural order of a supermatrix is usually determined by 
the natural order of the corresponding simple matrix. Further 
more we are not usually concerned with natural order of the 
submatrices within a supermatrix. 

Now we proceed on to recall the notion of symmetric 
partition, for more information about these concepts please refer 
[92]. By a symmetric partitioning of a matrix we mean that the 
rows and columns are partitioned in exactly the same way. If the 
matrix is partitioned between the first and second column and 
between the third and fourth column, then to be symmetrically 
partitioning, it must also be partitioned between the first and 
second rows and third and fourth rows. According to this rule of 
symmetric partitioning only square simple matrix can be 
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symmetrically partitioned. We give an example of a 
symmetrically partitioned matrix as,  
 
Example 1.1.3: Let  

 

as = 

2 3 4 1
5 6 9 2
0 6 1 9
5 1 1 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Here we see that the matrix has been partitioned between 
columns one and two and three and four. It has also been 
partitioned between rows one and two and rows three and four. 
 
Now we just recall from [92] the method of symmetric 
partitioning of a symmetric simple matrix.  
 
Example 1.1.4: Let us take a fourth order symmetric matrix and 
partition it between the second and third rows and also between 
the second and third columns. 
 

a = 

4 3 2 7
3 6 1 4
2 1 5 2
7 4 2 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
We can represent this matrix as a supermatrix with letter 
elements. 

a11 = 
4 3
3 6

⎡ ⎤
⎢ ⎥
⎣ ⎦

, a12 = 
2 7
1 4

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

a21 = 
2 1
7 4

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and a22 = 
5 2
2 7

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 
so that 
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a = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
The diagonal elements of the supermatrix a are a11 and a22. We 
also observe the matrices a11 and a22 are also symmetric 
matrices. 

The non diagonal elements of this supermatrix a are the 
matrices a12 and a21. Clearly a21 is the transpose of a12.  

The simple rule about the matrix element of a 
symmetrically partitioned symmetric simple matrix are (1) The 
diagonal submatrices of the supermatrix are all symmetric 
matrices. (2) The matrix elements below the diagonal are the 
transposes of the corresponding elements above the diagonal. 

The forth order supermatrix obtained from a symmetric 
partitioning of a symmetric simple matrix a is as follows.  
 

a = 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

a a a a
'a a a a
' 'a a a a
' ' 'a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
How to express that a symmetric matrix has been symmetrically 
partitioned (i) a11 and at

11 are equal. (ii) at
ij (i ≠ j); t

ija  = aji and  
t
jia  = aij. Thus the general expression for a symmetrically 

partitioned symmetric matrix; 
 

a = 

11 12 1n

12 22 2n

1n 2n nn

a a ... a
a ' a ... a

a ' a ' ... a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

# # #
. 

 
If we want to indicate a symmetrically partitioned simple 
diagonal matrix we would write 
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D = 

1

2

n

D 0 ... 0
0 D ... 0

0 0 ... D

⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′⎣ ⎦

 

 
0' only represents the order is reversed or transformed. We 
denote  t

ija  = a'ij just the ' means the transpose.  
D will be referred to as the super diagonal matrix. The 

identity matrix  
 

I = 
s

t

r

I 0 0
0 I 0
0 0 I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
s, t and r denote the number of rows and columns of the first 
second and third identity matrices respectively (zeros denote 
matrices with zero as all entries). 
 
Example 1.1.5: We just illustrate a general super diagonal 
matrix d; 
 

d = 

3 1 2 0 0
5 6 0 0 0
0 0 0 2 5
0 0 0 1 3
0 0 0 9 10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 i.e.,  d = 1

2

m 0
0 m

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
An example of a super diagonal matrix with vector elements is 
given, which can be useful in experimental designs. 
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Example 1.1.6: Let  
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Here the diagonal elements are only column unit vectors. In 
case of supermatrix [92] has defined the notion of partial 
triangular matrix as a supermatrix. 
 
Example 1.1.7: Let  

u = 
2 1 1 3 2
0 5 2 1 1
0 0 1 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

u is a partial upper triangular supermatrix. 
 
Example 1.1.8: Let 

L = 

5 0 0 0 0
7 2 0 0 0
1 2 3 0 0
4 5 6 7 0
1 2 5 2 6
1 2 3 4 5
0 1 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; 



 17

 
L is partial upper triangular matrix partitioned as a supermatrix. 
 

Thus T = T
a

⎡ ⎤
⎢ ⎥′⎣ ⎦

 where T is the lower triangular submatrix, with 

 

T = 

5 0 0 0 0
7 2 0 0 0
1 2 3 0 0
4 5 6 7 0
1 2 5 2 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and a' = 
1 2 3 4 5
0 1 0 1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
We proceed on to define the notion of supervectors i.e., Type I 
column supervector. A simple vector is a vector each of whose 
elements is a scalar. It is nice to see the number of different 
types of supervectors given by [92]. 
 
Example 1.1.9: Let 
 

v = 

1
3
4
5
7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
This is a type I i.e., type one column supervector. 
 

v = 

1

2

n

v
v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

 
where each vi is a column subvectors of the column vector v.  
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Type I row supervector is given by the following example. 
 
Example 1.1.10: v1 = [2 3 1 | 5 7 8 4] is a type I row 
supervector. i.e., v' = [v'1, v'2, …, v'n] where each v'i is a row 
subvector; 1 ≤ i ≤ n.  
 
Next we recall the definition of type II supervectors. 
 
Type II column supervectors. 
 
DEFINITION 1.1.1: Let  
 

a = 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

m

m

n n nm

a a a
a a a

a a a

 

 
a1

1 = [a11 … a1m] 
a2

1 = [a21 … a2m] 
… 

an
1 = [an1 … anm] 

 

i.e.,     a  = 

1
1
1
2

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

n m

a
a

a

 

is defined to be the type II column supervector.  
Similarly if  

a1 = 

11

21

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

n

a
a

a

,  a2 = 

12

22

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

n

a
a

a

 , …,  am  = 

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

m

m

nm

a
a

a

 .  

 
Hence now a = [a1 a2 … am]n is defined to be the type II row 
supervector. 
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Clearly  

a = 

1
1
1
2

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

n m

a
a

a

 = [a1 a2 … am]n 

the equality of supermatrices. 
 
Example 1.1.11: Let  
 

A = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a simple matrix. Let a and b the supermatrix made from A. 
 

a = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where  

a11 = 
3 6 0
2 1 6
1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, a12 = 
4 5
3 0
2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

a21 = 
0 1 0
2 0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and a22 = 
1 0
2 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 

i.e.,      a = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 
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b = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 11 12

21 22

b b
b b

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where  

b11 = 

3 6 0 4
2 1 6 3
1 1 1 2
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 , b12 = 

5
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

 
b21 = [2 0 1 2 ] and b22 = [1]. 

 

a = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  

b = 

3 6 0 4 5
2 1 6 3 0
1 1 1 2 1
0 1 0 1 0
2 0 1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
We see that the corresponding scalar elements for matrix a and 
matrix b are identical. Thus two supermatrices are equal if and 
only if their corresponding simple forms are equal. 
 

Now we give examples of type III supervector for more 
refer [92]. 
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Example 1.1.12:  

a = 
3 2 1 7 8
0 2 1 6 9
0 0 5 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 =  [T' | a'] 

and 
 

b = 

2 0 0
9 4 0
8 3 6
5 2 9
4 7 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = T
b

⎡ ⎤
⎢ ⎥′⎣ ⎦

 

 
are type III supervectors. 
 
One interesting and common example of a type III supervector 
is a prediction data matrix having both predictor and criterion 
attributes. 

The next interesting notion about supermatrix is its 
transpose. First we illustrate this by an example before we give 
the general case. 
 
Example 1.1.13: Let  

a = 

2 1 3 5 6
0 2 0 1 1
1 1 1 0 2
2 2 0 1 1
5 6 1 0 1
2 0 0 0 4
1 0 1 1 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 
11 12

21 22

31 32

a a
a a
a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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where 
 

a11 = 
2 1 3
0 2 0
1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, a12 = 
5 6
1 1
0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

a21 = 
2 2 0
5 6 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

, a22 = 
1 1
0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 

a31 = 
2 0 0
1 0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and a32 = 
0 4
1 5

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
The transpose of a  
 

at = a' = 

2 0 1 2 5 2 1
1 2 1 2 6 0 0
3 0 1 0 1 0 1
5 1 0 1 0 0 1
6 1 2 1 1 4 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Let us consider the transposes of a11, a12, a21, a22, a31 and a32. 
 

a'11 = t
11

2 0 1
a 1 2 1

3 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

a'12 = t
12

5 1 0
a

6 1 2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

a'21 = t
21

2 5
a 2 6

0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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a'31 = t
31

2 1
a 0 0

0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

a'22 = t
22

1 0
a

1 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

a'32 = t
32

0 1
a

4 5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

 

a' = 11 21 31

12 22 32

a a a
a a a

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎣ ⎦

. 

 
Now we describe the general case. Let  
 

a = 

11 12 1m

21 22 2m

n1 n2 nm

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

 
be a n × m supermatrix. The transpose of the supermatrix a 
denoted by 
 

a' = 

11 21 n1

12 22 n2

1m 2m nm

a a a
a a a

a a a

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

"
"

# # #
"

. 

 
a' is a m by n supermatrix obtained by taking the transpose of 
each element i.e., the submatrices of a. 
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Now we will find the transpose of a symmetrically partitioned 
symmetric simple matrix. Let a be the symmetrically partitioned 
symmetric simple matrix.  
 
Let a be a m × m symmetric supermatrix i.e.,  
 

a = 

11 21 m1

12 22 m2

1m 2m mm

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

 
the transpose of the supermatrix is given by a' 
 

a' = 

11 12 1m

12 22 2m

1m 2m mm

a (a ) (a )
a a ' (a )

a a a

′ ′ ′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

"
"

# # #
"

 

 
The diagonal matrix a11 are symmetric matrices so are unaltered 
by transposition. Hence  

a'11 = a11, a'22 = a22, …, a'mm = amm. 
 

Recall also the transpose of a transpose is the original matrix. 
Therefore  

(a'12)' = a12, (a'13)' = a13, …, (a'ij)' = aij. 
 

Thus the transpose of supermatrix constructed by 
symmetrically partitioned symmetric simple matrix a of a' is 
given by  
 

a' = 

11 12 1m

21 22 2m

1m 2m mm

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′⎣ ⎦

"
"

# # #
"

. 
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Thus a = a'. 
Similarly transpose of a symmetrically partitioned diagonal 
matrix is simply the original diagonal supermatrix itself; 
 
i.e., if  

D = 

1

2

n

d
d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%
 

 

D' = 

1

2

n

d
d

d

′⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥′⎣ ⎦

%
 

 
d'1 = d1, d'2 = d2 etc. Thus D = D'.  
 
Now we see the transpose of a type I supervector.  
 
Example 1.1.14: Let  
 

V = 

3
1
2
4
5
7
5
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The transpose of V denoted by V' or Vt is  
 

V’ = [3 1 2 | 4 5 7 | 5 1]. 
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If  

V = 
1

2

3

v
v
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where  

v1 = 
3
1
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, v2 = 
4
5
7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and v3 = 
5
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
V' = [v'1 v'2 v'3]. 

 
Thus if  

V = 

1

2

n

v
v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

then  
V' = [v'1 v'2 … v'n]. 

 
Example 1.1.15: Let  

 

t = 
3 0 1 1 5 2
4 2 0 1 3 5
1 0 1 0 1 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
= [T | a ]. The transpose of t 
 

i.e., t' = 

3 4 1
0 2 0
1 0 1
1 1 0
5 3 1
2 5 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
T
a

′⎡ ⎤
⎢ ⎥′⎢ ⎥⎣ ⎦

. 



 27

 
The addition of supermatrices may not be always be defined.  
 
Example 1.1.16: For instance let  
 

a = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and  

b = 11 12

21 22

b b
b b

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where  

a11 = 
3 0
1 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

,  a12 = 
1
7

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
a21 = [4  3],  a22 = [6]. 

 
b11 = [2],   b12 = [1  3] 

 

b21 = 
5
2

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and  b22 = 
4 1
0 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
It is clear both a and b are second order square supermatrices 
but here we cannot add together the corresponding matrix 
elements of a and b because the submatrices do not have the 
same order. 

Now we proceed onto recall the definition of minor product 
of two supervectors.   
 
Suppose 
 

va = 

1

2

n

a

a

a

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 and vb = 

1

2

n

b

b

b

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
. 
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The minor product of these two supervectors va and vb is given 
by 

= 

1

2

1 2 n

n

b

b
a b a a a

b

v

v
v v v v v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤′ ′ ′ ′= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

 

 
= 

1 1 2 2 n na b a b a bv v v v v v′ ′ ′+ + +" . 
 
We illustrate this by the following example. 
 
Example 1.1.17: Let Va and Vb be two type I supervectors 
where 

Va = 
1

2

3

a

a

a

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

with  

1a

0
v 1

2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
2a

4
0

v
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 and 
3a

1
v

2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Let  

Vb = 
1

2

3

b

b

b

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

where 
 

1b

1
v 1

0

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 
2b

4
1

v
2
0

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 and 
3b

1
v

1
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 
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1

1 2 3 2

3

b

a b a a a b

b

v

V V v v v v

v

⎡ ⎤
⎢ ⎥

⎡ ⎤′ ′ ′ ′= ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
=  

1 1 2 2 n na b a b a bv v v v v v′ ′ ′+ + +"  

=  [ ] [ ] [ ]

4
1

1 1
0 1 2 1 4 0 1 1 1 2

2 1
0

0

−⎡ ⎤
⎡ ⎤ ⎢ ⎥ −⎡ ⎤⎢ ⎥ ⎢ ⎥− + − + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

 

 
=  –1 + (–16+2) + (–1+2) 
=  –1 – 16 + 2 – 1 + 2  
=  –14. 
 
It is easily proved V'a Vb = V'bVa. 

Now we proceed on to recall the definition of major product 
of type I supervectors. 

Suppose  
 

Va = 

1

2

n

a

a

a

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 and Vb = 

1

2

m

b

b

b

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 

 
be any two supervectors of type I. The major product is defined 
as 
 

Va V'b = 

1

2

n

a

a

a

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
. 

1 2 mb b bv v v⎡ ⎤′ ′ ′⎣ ⎦"  
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= 

1 1 1 2 1 m

2 1 2 2 2 m

n 1 n 2 n m

a b a b a b

a b a b a b

a b a b a b

v v v v v v

v v v v v v

v v v v v v

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′ ′⎢ ⎥⎣ ⎦

"
"

#
"

. 

 
Now we illustrate this by the following example. 
 
Example 1.1.18: Let  

Va = 
1

2

3

a

a

a

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and Vb = 

1

2

3

4

b

b

b

b

v

v

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where  

1av = [2], 
2a

1
v

1
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 and 

3a

1
v 2

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

and 

1b

3
v 1

2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
2b

1
v

2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
3b

3
4

v
1

0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 and 
4bv = [5]. 

 

VaV'b = [ ]

2
1
1

3 1 2 1 2 3 4 1 0 5
1
2
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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=

[ ][ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 3 1 2 [2] 1 2 [2] 3 4 1 0 [2] 5
1 1 1 1

3 1 2 1 2 3 4 1 0 5
1 1 1 1

1 1 1 1
2 3 1 2 2 1 2 2 3 4 1 0 2 5
0 0 0 0

⎡ ⎤−
⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

= 

6 2 4 2 4 6 4 2 0 10
3 1 2 1 2 3 4 1 0 5
3 1 2 1 2 3 4 1 0 5

3 1 2 1 2 3 4 1 0 5
6 2 4 2 4 6 8 2 0 10
0 0 0 0 0 0 0 0 0 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − − − − − − −
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We leave it for the reader to verify that (Va V'b)' = Vb V'a.  
 
Example 1.1.19: We just recall if  

 

v = 
3
4
7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a column vector and v' the transpose of v is a row vector then 
we have  
 

v'v = [ ]
3

3 4 7 4
7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

= 32 + 42 + 72 = 74. 
Thus if  

V'x = [x1 x2 … xn] 
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V'x Vx = [x1 x2 … xn] 

1

2

n

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

 
= 2 2 2

1 2 nx x x+ + +… . 
 
Also  

[1 1 … 1 ] 

1

2

n

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 = [x1 + x2 + … + xn] 

 
and  

[x1 x2 … xn]  

1
1

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 = [x1 + x2 + … + xn]; 

 
i.e., 1'vx = v'x1 = ix∑  

 
where 
 

vx = 

1

2

n

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

and  
x∑ i = x1 + x2 + … + xn. 

 
We have the following types of products defined. 
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Example 1.1.20: We have 

[0 1 0 0] 

0
1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 1, 

 

[0 1 0 0] 

1
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 0, 

 

[0 1 0 0] 

1
1
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 1 

and  
0
1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

[1 0 0] = 

0 0 0
1 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Recall     

a = 
11 12 1m

21 22 2m

n1 n2 nm

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

 

we have 

a = 

1
1
1
2

1
n m

a
a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
    (1) 

and  
a = [a1 a2 … am]n .  (2) 
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Now transpose of 

a = 

1
1
1
2

1
n m

a
a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 

is given by the equation 
 

a' = 1 1 1
1 2 n m

(a ) (a ) (a )′ ′ ′⎡ ⎤⎣ ⎦"  

 

a' = 

1

2

m
n

(a )
(a )

(a )

′⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥

′⎢ ⎥⎣ ⎦

#
. 

 
The matrix 
 

b = 

11 12 1s

21 22 2s

t1 t 2 ts

b b b
b b b

b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# " #
"

 

 
row supervector of b is 
 

b = [b1 b2 … bs]t = [b1 b2 … bs]t . 
 
Column supervector of b is 
 

b = 

1
1
1
2

1
t s

b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
. 

Transpose of b; 
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b' = 

1
1
1
2

1
s t

b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 

 
b' = [b1 b2 … bt]s. 

 
The product of two matrices as a minor product of type II 
supervector. 
 

ab = [a1 a2 … am]n 

1
1
1
2

1
t s

b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 

 
= 1 1 1

1 1 2 2 m t ns
a b a b a b⎡ ⎤+ + +⎣ ⎦… . 

 
How ever to make this point clear we give an example. 
 
Example 1.1.21: Let  

 
1 1
1 2a a

2 1
a 3 5

6 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  

b = 
1

2

1 2 b
3 1 b

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 

ab = [ ] [ ]
2 1
3 1 2 5 3 1
6 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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= 
2 4 3 1
3 6 15 5
6 12 3 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

= 
5 5

18 11
9 13

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
It is easily verified that if the major product of the type II 
supervector is computed between a and b, then the major 
product coincides with the minor product. From the above 
example. 
 

ab = 

[ ] [ ]

[ ] [ ]

[ ] [ ]

1 2
2 1 2 1

3 1

1 2
3 5 3 5

3 1

1 2
6 1 6 1

3 1

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

= 
2 1 1 3 2 2 1 1
3 1 5 3 3 2 5 1
6 1 1 3 6 2 1 1

× + × × + ×⎡ ⎤
⎢ ⎥× + × × + ×⎢ ⎥
⎢ ⎥× + × × + ×⎣ ⎦

 

 

= 
5 5

18 11
9 13

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We can find the minor and major product of supervectors by 
reversing the order of the factors. Since the theory of 
multiplication of supermatrices involves lots of notations we 
have resolved to explain these concepts by working out these 
concepts with numerical illustrations, which we feel is easy for 
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the grasp of the reader. Now we give the numerical illustration 
of the minor product of Type III vectors. 
 
Example 1.1.22: Let  

 

X = 
2 3 4 2 2 2
1 1 1 1 0 1

0 0 2 4 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

and  

Y = 

2 0
1 1
2 1
5 3
1 1
0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be two type III supervectors. To find the product XY. 
 

X Y = 
2 3 4 2 2 2
1 1 1 1 0 1

0 0 2 4 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

2 0
1 1
2 1
5 3
1 1
0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= [ ]
2 3 4 2 2 2 5 3

2 0
1 1 1 2 1 1 0 1 1 1

1 1
0 0 2 4 0 0 0 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

= 
7 3 8 4 12 8
1 1 2 1 5 5

0 0 4 2 20 12

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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= 
27 15
6 7
16 10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

 

Yt Xt = 
2 1 2 5 1 0
0 1 1 3 1 2

⎡ ⎤
⎢ ⎥−⎣ ⎦

 

2 1 0
3 1 0
4 1 2
2 1 4
2 0 0
2 1 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= [ ]2 1 2 1 0 2
4 1 2

0 1 3 1 0 1
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 1 4
5 1 0

2 0 0
3 1 2

2 1 0

−⎡ ⎤
⎡ ⎤ ⎢ ⎥+ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 

= 
7 1 0 8 2 4 12 5 20
3 1 0 4 1 2 8 5 12

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

= 
27 6 16
15 7 10

−⎡ ⎤
⎢ ⎥−⎣ ⎦

. 

 
From this example it is very clear. 
 

(XY)t = Yt Xt. 
 
Now we illustrate the minor product moment of type III row 
supervector by an example. 
 
Example 1.1.23: Let  

 

X = 
2 3 4 3 4 5 0
1 4 1 1 1 1 6
2 1 2 0 2 1 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Consider  

XX’ = 
2 3 4 3 4 5 0
1 4 1 1 1 1 6
2 1 2 0 2 1 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

2 1 2
3 4 1
4 1 2
3 1 0
4 1 2
5 1 1
0 6 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= [ ]
2 3 4

2 1 2
1 4 1 4 1 2

3 4 1
2 1 2

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+  

 
3 1 0

3 4 5 0
4 1 2

1 1 1 6
5 1 1

0 2 1 1
0 6 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

 

 

= 
13 14 7 16 4 8 50 2 13
14 17 6 4 1 2 2 39 7
7 6 5 8 2 4 13 7 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

= 
79 20 28
20 57 15
28 15 15

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Minor product of Type III column supervector is illustrated by 
the following example.  
 
Example 1.1.24: Let  

Yt = 
2 3 1 0 1 2 1 5 1
0 1 5 2 0 3 0 1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦
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where Y is the column supervector  

YtY = 
2 3 1 0 1 2 1 5 1
0 1 5 2 0 3 0 1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

2 0
3 1
1 5
0 2
1 0
2 3
1 0
5 1
1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

= [ ]
2 0

2 3 1 0
3 1 0 2

0 1 5 2
1 5

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 + 

1 0
2 3

1 2 1 5 1
1 0

0 3 0 1 0
5 1
1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 
14 8 0 0 32 11
8 26 0 4 11 10

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 = 

46 19
19 40

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
Next we proceed on to illustrate the major product of Type III 
vectors. 
 
Example 1.1.25: Let  

 

X = 

3 1 6
2 0 1
1 2 3
6 3 0
4 2 1
5 1 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

and  
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Y = 
3 5 2 0
1 1 2 2
0 3 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 

XY = 

3 1 6
2 0 1
1 2 3
6 3 0
4 2 1
5 1 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

3 5 2 0
1 1 2 2
0 3 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

= [ ] [ ]

3 5 2 0
3 1 6 3 1 6

1 1 2 2
2 0 1 2 0 1

0 3 1 2

3 5 2 0
1 2 3 1 1 2 3 1 2 2

0 3 1 2

6 3 0 3 6 3 0 5 2 0
4 2 1 1 4 2 1 1 2 2
5 1 1 0 5 1 1 3 1 2

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎥

 

 

= 

10 34 14 10
6 7 3 2
5 16 9 2
21 33 18 6
14 25 13 2
16 23 11 4

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now minor product of type IV vector is illustrated by the 
following example. 
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Example 1.1.26: Let  
 

X = 

1 3 1 2 5 1
2 1 1 1 2 0
1 5 1 1 1 2
4 1 0 2 2 1
3 2 1 0 1 1
1 0 1 1 0 1

4 2 1 3 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

 

and  

Y = 

1 1 0 1 3 1 2 1 2
2 0 1 0 1 2 0 0 1
1 1 0 2 3 0 1 1 4
1 0 1 1 2 1 1 2 0
1 2 0 1 1 0 1 1 2
0 1 1 0 1 1 0 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

XY = 

1 3 1 2 5 1
2 1 1 1 2 0
1 5 1 1 1 2
4 1 0 2 2 1
3 2 1 0 1 1
1 0 1 1 0 1

4 2 1 3 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

 ×   

 
1 1 0 1 3 1 2 1 2
2 0 1 0 1 2 0 0 1
1 1 0 2 3 0 1 1 4
1 0 1 1 2 1 1 2 0
1 2 0 1 1 0 1 1 2
0 1 1 0 1 1 0 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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= 

1
2
1
4
3
1

4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

  [1 1 0 1 | 3 1 2 | 1 2] + 

3 1 2
1 1 1
5 1 1
1 0 2
2 1 0
0 1 1
2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  
2 0 1 0 1 2 0 0 1
1 1 0 2 3 0 1 1 4
1 0 1 1 2 1 1 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

+ 

5 1
2 0
1 2

1 2 0 1 1 0 1 1 22 1
0 1 1 0 1 1 0 2 11 1

0 1
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

= 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ][ ] [ ][ ] [ ][ ]

1 1 1
1 1 0 1 3 1 2 1 2

2 2 2

1 1 1
4 4 4

1 1 0 1 3 1 2 1 2
3 3 3
1 1 1

4 1 1 0 1 4 3 1 2 4 1 2

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 + 
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2 0 1 0 1 2 0 0 1

3 1 2 3 1 2 3 1 2
1 1 0 2 3 0 1 1 4

1 1 1 1 1 1 1 1 1
1 0 1 1 2 1 1 2 0

5 1 1 5 1 1 5 1 1
2 0 1 0 1 2 0

1 0 2 1 0 2 1 0 2
1 1 0 2 3 0 1

2 1 0 2 1 0 2 1 0
1 0 1 1 2 1 1

0 1 1 0 1 1 0 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣

[ ] [ ] [ ]

0 1
1 4
2 0

2 0 1 0 1 2 0 0 1
2 1 3 1 1 0 2 2 1 3 3 0 1 2 1 3 1 4

1 0 1 1 2 1 1 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎤
⎢ ⎥⎡ ⎤⎥
⎢ ⎥⎢ ⎥⎥
⎢ ⎥⎢ ⎥⎥
⎢ ⎥⎢ ⎥⎥ ⎣ ⎦⎢ ⎥⎦
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

+ 

[ ] [ ] [ ]

5 1 1 2 0 1 5 1 1 0 1 5 1 1 2
2 0 0 1 1 0 2 0 1 1 0 2 0 2 1

1 2 1 2 1 2
2 1 1 2 0 1 2 1 1 0 1 2 1 1 2
1 1 0 1 1 0 1 1 1 1 0 1 1 2 1
0 1 0 1 0 1

1 2 0 1 1 0 1 1 2
1 1 1 1 1 1

0 1 1 0 1 1 0 2 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎤
⎢ ⎥⎢ ⎥

⎦⎢ ⎥⎣ ⎦

 

 

= 

[ ] [ ] [ ]

1 1 0 1 3 1 2 1 2
2 2 0 2 6 2 4 2 4

1 1 0 1 3 1 2 1 2
4 4 0 4 12 4 8 4 8
3 3 0 3 9 3 6 3 6
1 1 0 1 3 1 2 1 2
4 4 0 4 12 4 8 4 8

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 + 
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9 1 5 4 10 8 3 5 7
4 1 2 3 6 3 2 3 5

12 1 6 3 10 11 2 3 9
4 0 3 2 5 4 2 4 1
5 1 2 2 5 4 1 1 6
2 1 1 3 5 1 2 3 4
8 1 5 5 11 7 4 7 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

+

5 11 1 5 6 1 5 7 11
2 4 0 2 2 0 2 2 4
1 4 2 1 3 2 1 5 4
2 5 1 2 3 1 2 4 5
1 3 1 1 2 1 1 3 3
0 1 1 0 1 1 0 2 1
1 3 1 1 2 1 1 3 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

= 

15 13 6 10 19 10 10 13 20
8 7 2 7 14 5 8 7 13

14 6 8 5 16 14 5 9 15
10 9 4 8 20 9 12 12 14
9 7 3 6 16 8 8 7 15
1 1 2 2 3 1 0 4 3

13 8 6 10 25 12 13 14 17

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We now illustrate minor product moment of type IV row vector 
 
Example 1.1.27: Let  

X = 

1 1 1 1 0 1
2 1 2 2 1 2
0 1 1 3 1 1
1 0 1 1 3 2
5 1 0 2 1 3
1 1 0 1 2 4
2 1 1 5 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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XXt = 

1 1 1 1 0 1
2 1 2 2 1 2
0 1 1 3 1 1
1 0 1 1 3 2
5 1 0 2 1 3
1 1 0 1 2 4
2 1 1 5 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

1 2 0 1 5 1 2
1 1 1 0 1 1 1
1 2 1 1 0 0 1
1 2 3 1 2 1 5
0 1 1 3 1 2 0
1 2 1 2 3 4 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

= 

1 1 1
2 1 2
0 1 1
1 0 1
5 1 0
1 1 0
2 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
1 2 0 1 5 1 2
1 1 1 0 1 1 1
1 2 1 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 +  

 
1 0
2 1
3 1

1 2 3 1 2 1 51 3
0 1 1 3 1 2 02 1

1 2
5 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

+ 

1
2
1
2
3
4
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  [1 2 | 1 2 3 4 | 2] = 
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1 2 0 1 5 1 2
1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1
2 1 2 2 1 2 2 1 2

1 2 1 1 0 0 1

0 1 1 0 1 1 0 1 1
1 2 0 1 5 1 2

1 0 1 1 0 1 1 0 1
1 1 1 0 1 1 1

5 1 0 5 1 0 5 1 0
1 2 1 1 0 0 1

1 1 0 1 1 0 1 1 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ]
1 2 0 1 5 1 2

2 1 1 1 1 2 1 1 1 0 1 1 2 1 1 1
1 2 1 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

+ 

[ ] [ ] [ ]

1 0 1 2 1 0 3 1 2 1 1 0 5
2 1 0 1 2 1 1 3 1 2 2 1 0

3 1 3 1 3 1
1 3 1 2 1 3 3 1 2 1 1 3 5
2 1 0 1 2 1 1 3 1 2 2 1 0
1 2 1 2 1 2

1 2 3 1 2 1 5
5 0 5 0 5 0

0 1 1 3 1 2 0

⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

 

+ 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ][ ] [ ][ ] [ ][ ]

1 1 1
1 2 1 2 3 4 2

2 2 2

1 1 1
2 2 2

1 2 1 2 3 4 2
3 3 3
4 4 4
2 1 2 2 1 2 3 4 2 2

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦
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=   

3 5 2 2 6 2 4
5 9 3 4 11 3 7
2 3 2 1 1 1 2
2 4 1 2 5 1 3
6 11 1 5 26 6 11
2 3 1 1 6 2 3
4 7 2 3 11 3 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

 
 

1 2 3 1 2 1 5
2 5 7 5 5 4 10
3 7 10 6 7 5 15
1 5 6 10 5 7 5
2 5 7 5 5 4 10
1 4 5 7 4 5 5
5 10 15 5 10 5 25

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1 2 1 2 3 4 2
2 4 2 4 6 8 4
1 2 1 2 3 4 2
2 4 2 4 6 8 4
3 6 3 6 9 12 6
4 8 4 8 12 16 8
2 4 2 4 6 8 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 

= 

5 9 6 5 11 7 11
9 18 12 13 22 15 21
6 12 13 9 11 10 19
5 13 9 16 16 16 12

11 22 11 16 40 22 27
7 15 10 16 22 23 16

11 21 19 12 27 16 35

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
The minor product moment of type IV column  

vector is illustrated for the same X just given in case of row 
product. 
 



 49

Example 1.1.28: Let  

X = 

1 1 1 1 0 1
2 1 2 2 1 2
0 1 1 3 1 1
1 0 1 1 3 2
5 1 0 2 1 3
1 1 0 1 2 4
2 1 1 5 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 

Xt X = 

1 2 0 1 5 1 2
1 1 1 0 1 1 1
1 2 1 1 0 0 1
1 2 3 1 2 1 5
0 1 1 3 1 2 0
1 2 1 2 3 4 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 1 1 1 0 1
2 1 2 2 1 2
0 1 1 3 1 1
1 0 1 1 3 2
5 1 0 2 1 3
1 1 0 1 2 4
2 1 1 5 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

= 

1 2
1 1
1 2 1 1 1 1 0 1
1 2 2 1 2 2 1 2
0 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

+ 

0 1 5 1
1 0 1 1 0 1 1 3 1 1
1 1 0 0 1 0 1 1 3 2
3 1 2 1 5 1 0 2 1 3
1 3 1 2 1 1 0 1 2 4
1 2 3 4

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

 + 

2
1
1
5
0
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [2 1 1 | 5 0 | 2] 

 



 50

= 

[ ] [ ] [ ]

1 2 1 2 1 2
1 1 1 1 0 1

1 1 1 1 1 1
2 1 2 2 1 2

1 2 1 2 1 2

1 2 1 1 1 1 2 1 0 1 2 1
0 1 2 1 2 0 1 2 1 0 1 2

1 1 1 1 0 1
1 2 1 2 1 2

2 1 2 2 1 2

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 + 

 

0 1 1 3 1 1
0 1 5 1 0 1 5 1 0 1 5 1

1 0 1 1 3 2
1 0 1 1 1 0 1 1 1 0 1 1

5 1 0 2 1 3
1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 1 2 4

0 1 1 3 1
3 1 2 1 1 0 1 3 1 2 1 1 3 3 1
1 3 1 2 5 1 0 1 3 1 2 2 1

1 1 0 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ]

1
2 1 2

1 3 1 2 3
4

0 1 1 3 1 1
1 0 1 1 3 2

1 2 3 4 1 2 3 4 1 2 3 4
5 1 0 2 1 3
1 1 0 1 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

+ 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ][ ] [ ][ ] [ ][ ]

2 2 2
1 2 1 1 1 5 0 1 2
1 1 1

5 5 5
2 1 1 5 0 2

0 0 0
2 2 1 1 2 5 0 2 2

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎣ ⎦

 = 
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5 3 5 5 2 5
3 2 3 3 1 3
5 3 5 5 2 5
5 3 5 5 2 5
2 1 2 2 1 2
5 3 5 5 2 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 + 

27 6 1 12 10 21
6 3 1 6 4 8
1 1 2 4 4 3

12 6 4 15 10 15
10 4 4 10 15 18
21 8 3 15 18 30

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 + 

4 2 2 10 0 4
2 1 1 5 0 2
2 1 1 5 0 2

10 5 5 25 0 10
0 0 0 0 0 0
4 2 2 10 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 

36 11 8 27 12 30
11 6 5 14 5 13
8 5 8 14 6 10
27 14 14 45 12 30
12 5 6 12 16 20
30 13 10 30 20 39

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Now we proceed on to illustrate the major product of type IV 
vectors 
 
Example 1.1.29: Let  

X = 

[ ]

1 2 1 1 2 3
3 1 2 3 1 1

1 1 3 1 1 1
2 3 1 2 0 1
3 4 2 0 1 0
4 2 4 1 0 0
5 0 1 1 1 1

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦
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and 
 

Y = 

1 1 2 1 2 1 3 1 0
1 0 2 4 3 1 4 1 1
0 1 0 3 1 0 1 2 1
1 1 0 0 2 1 1 2 1
1 0 1 1 1 2 2 1 2
0 1 0 1 1 1 1 1 0

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

 
Now we find the major product of XY. The product of the first 
row of X with first column of Y gives  

 
1 1 2 1
1 0 2 4

1 2 1 1 2 3 0 1 0 3
3 1 2 3 1 1 1 1 0 0

1 0 1 1
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= [ ]1 2 1 1 0 2 4
1 1 2 1

3 1 2 0 1 0 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ 

 
1 1 0 0

1 2 3
1 0 1 1

3 1 1
0 1 0 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 

= 
1 1 2 1 2 1 4 11 3 4 2 5
3 3 6 3 1 2 2 10 4 4 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

= 
6 6 8 17
8 9 9 15

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 
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Now 
2 1
3 1

1 2 1 1 2 3 1 0
3 1 2 3 1 1 2 1

1 2
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= [ ]
2 1

1 2 1 3 1 1 2 3
2 1 1 2

3 1 2 1 0 3 1 1
1 1

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

= 
2 1 7 2 7 8
6 3 5 1 8 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

= 
16 11
19 10

⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

 
Consider the product of first row with the 3rd column.   
 

3 1 0
4 1 1

1 2 1 1 2 3 1 2 1
3 1 2 3 1 1 1 2 1

2 1 2
1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 

= [ ]
1 2 1

1 2 1 4 1 1 1 2 3
3 1 0 2 1 2

3 1 2 1 2 1 3 1 1
1 1 0

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥−⎣ ⎦

 

= 
3 1 0 9 4 3 8 1 5
9 3 0 6 5 3 6 6 5

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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= 
20 6 8
21 14 8

⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

 
The product of 2nd row of X with first column of Y gives  
 

1 1 2 1
1 1 3 1 1 1 1 0 2 4
2 3 1 2 0 1 0 1 0 3
3 4 2 0 1 0 1 1 0 0
4 2 4 1 0 0 1 0 1 1

0 1 0 1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

 

[ ]

1 1 3 1 1 1
1 1 0 0

2 3 1 1 0 2 4 2 0 1
1 1 2 1 1 0 1 1

3 4 2 0 1 0 3 0 1 0
0 1 0 1

4 2 4 1 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 
 

= 

1 1 2 1 1 3 2 13 2 2 1 2
2 2 4 2 3 1 6 15 2 3 0 1
3 3 6 3 4 2 8 22 1 0 1 1
4 4 8 4 2 4 4 20 1 1 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

= 

4 6 5 16
7 6 10 18
8 5 15 26
7 9 12 24

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
The product of 3rd row of X with the 3rd column of Y.  
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[ ]

3 1 0
4 1 1
1 2 1

5 0 1 1 1 1
1 2 1
2 1 2
1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 

=  [ ][ ] [ ] [ ]
1 2 1

4 1 1
5 3 1 0 0 1 1 1 1 2 1 2

1 2 1
1 1 0

⎡ ⎤
⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥−⎣ ⎦

 

=  [15 5 0] + [1 2 1] + [4 2 3] 
=  [20 9 4]. 
 
The product of second row of X with second column of Y.  
 

2 1
1 1 3 1 1 1 3 1
2 3 1 2 0 1 1 0
3 4 2 0 1 0 2 1
4 2 4 1 0 0 1 2

1 1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= [ ]

1 1 3 1 1 1
2 1

2 3 1 3 1 2 0 1
2 1 1 2

3 4 2 1 0 0 1 0
1 1

4 2 4 1 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

= 

2 1 6 1 4 4
4 2 10 3 5 3
6 3 14 4 1 2
8 4 10 2 2 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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= 

12 6
19 8
21 9
20 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.  

 
 
The product of the 2nd row with the last column of Y.  
 

3 1 0
1 1 3 1 1 1 4 1 1
2 3 1 2 0 1 1 2 1
3 4 2 0 1 0 1 2 1
4 2 4 1 0 0 2 1 2

1 1 0

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥

−⎢ ⎥⎣ ⎦

  

 

= [ ]

1 1 3 1 1 1
1 2 1

2 3 1 4 1 1 2 0 1
3 1 0 2 1 2

3 4 2 1 2 1 0 1 0
1 1 0

4 2 4 1 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

=  

3 1 0 7 7 4 4 2 3
6 2 0 13 5 4 3 3 2
9 3 0 18 8 6 2 1 2

12 4 0 12 10 6 1 2 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

= 

14 10 7
22 10 6
29 12 8
25 16 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
 



 57

The product of 3rd row of X with 1st column of Y  
 

[ ]

1 1 2 1
1 0 2 4
0 1 0 3

5 0 1 1 1 1
1 1 0 0
1 0 1 1
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 

[ ][ ] [ ] [ ]
1 1 0 0

1 0 2 4
5 1 1 2 1 0 1 1 1 1 1 0 1 1

0 1 0 3
0 1 0 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
= [5 5 10 5] + [0 1 0 3] + [2 2 1 2] 
 
= [7 8 11 10]. 
 
The product of 3rd row of X with 2nd column of Y.  
 

[ ]

2 1
3 1
1 0

5 0 1 1 1 1
2 1
1 2
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

 

[5] [2 1] + [0 1] [ ]
2 1

3 1
1 1 1 1 2

1 0
1 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

=  [10  5] + [1  0] + [4  4]  
=  [15  9]. 
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XY = 

7 9

6 6 8 17 16 11 20 6 8
8 8 9 15 19 10 21 14 8
4 6 5 16 12 6 14 10 7
7 6 10 18 19 8 22 10 6
8 5 15 26 21 9 29 12 8
7 9 12 24 20 7 25 16 7
7 8 11 10 15 9 20 9 4

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
On similar lines we can find the transpose of major product of 
Type IV vectors. 
 

Now we proceed on to just show the major product moment 
of a type IV vector. 
 
Example 1.1.30: Suppose  
 

X = 

1 2 1 3 2 1
2 3 1 2 1 2
1 4 2 3 2 2
4 1 3 2 1 1
2 3 2 3 2 3
3 4 1 1 4 2
2 1 2 2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and 

Xt = 

1 2 1 4 2 3 2
2 3 4 1 3 4 1
1 1 2 3 2 1 2
3 2 3 2 3 1 2
2 1 2 1 2 4 1
1 2 2 1 3 2 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Xt X = 

1 2 1 4 2 3 2
2 3 4 1 3 4 1
1 1 2 3 2 1 2
3 2 3 2 3 1 2
2 1 2 1 2 4 1
1 2 2 1 3 2 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ×  

  
1 2 1 3 2 1
2 3 1 2 1 2
1 4 2 3 2 2
4 1 3 2 1 1
2 3 2 3 2 3
3 4 1 1 4 2
2 1 2 2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Product of 1st row of Xt with 1st column of X  
 

[ ]

1
2
1
41 2 1 4 2 3 2
2
3
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

=  [ ] [ ] [ ][ ]

1
1 4

1 2 1 4 2 3 2 2
2 2

3

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 

=  5 + 30 + 4  
=  39. 
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Product of 1st row of Xt with 2nd column of X.  
 

[ ]

2 1
3 1
4 2
1 31 2 1 4 2 3 2
3 2
4 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

=  [ ] [ ] [ ][ ]

4 2
2 1 1 3

1 2 1 4 2 3 2 1 2
3 1 3 2

4 1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 

=  [8  3] + [26  21] + [2  4] 
=  [36  28].  
 
The product of 1st row of Xt with 3rd column of X.  
 

[ ]

3 2 1
2 1 2
3 2 2
2 1 11 2 1 4 2 3 2
3 2 3
1 4 2
2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

= [ ] [ ] [ ][ ]

3 2 2
3 2 1 2 1 1

1 2 1 4 2 3 2 2 1 3
2 1 2 3 2 3

1 4 2

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦
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=  [7 4 5] + [20  22  18] + [4  2  6] 
 
= [31  28  29]. 
 
The product of 2nd row of Xt with 1st column of X.  
 

1
2
1

2 3 4 1 3 4 1 4
1 1 2 3 2 1 2 2

3
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

=  [ ]

1
2 3 1 4 1 3 4 4 1

2
1 1 2 2 3 2 1 2 2

3

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

 

=  
8 26 2 36
3 21 4 28

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.  

 
The product of 2nd row of Xt with 2nd column of X.  
 

2 1
3 1
4 2

2 3 4 1 3 4 1 1 3
1 1 2 3 2 1 2 3 2

4 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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=  [ ]

4 2
2 3 2 1 4 1 3 4 1 3 1

1 2
1 1 3 1 2 3 2 1 3 2 2

4 1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

 

=  
13 5 42 21 1 2
5 2 21 18 2 4

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

=  
56 28
28 24

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
The product of 2nd row of Xt with 3rd column of X.  

 
3 2 1
2 1 2
3 2 2

2 3 4 1 3 4 1 2 1 1
1 1 2 3 2 1 2 3 2 3

1 4 2
2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

= [ ]

3 2 2
2 3 3 2 1 4 1 3 4 2 1 1 1

2 1 3
1 1 2 1 2 2 3 2 1 3 2 3 2

1 4 2

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

 

=  
12 7 8 27 31 26 2 1 3
5 3 3 19 15 15 4 2 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

=  
41 39 37
28 20 24

⎡ ⎤
⎢ ⎥
⎣ ⎦

.  
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The product of 3rd row of Xt with 1st column of X.  
 

1
2
13 2 3 2 3 1 2
42 1 2 1 2 4 1
21 2 2 1 3 2 3
3
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

=  
7 20 4 31
4 22 2 28
5 18 6 29

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

 
The product of 3rd row of Xt with 2nd column of X.  
 

 

2 1
3 1
4 23 2 3 2 3 1 2
1 32 1 2 1 2 4 1
3 21 2 2 1 3 2 3
4 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

=  
12 5 27 19 2 4
7 3 31 15 1 2
8 3 26 15 3 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

=  
41 28
39 20
37 24

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  
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The product 3rd row of Xt with 3rd column of X.  
 

3 2 3 2 3 1 2
2 1 2 1 2 4 1
1 2 2 1 3 2 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3 2 1
2 1 2
3 2 2
2 1 1
3 2 3
1 4 2
2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

= 
13 8 7 23 18 19 4 2 6
8 5 4 18 25 19 2 1 3
7 4 5 19 19 18 6 3 9

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

 

= 
40 28 32
28 31 26
32 26 32

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  

 

Xt X = 

39 36 28 31 28 29
36 56 28 41 39 37
28 28 24 28 20 24
31 41 28 40 28 32
28 39 20 28 31 26
29 37 24 32 26 32

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
On similar lines interested reader can find the major product 
moment of type IV column vector.  

For more about supermatrix and their properties please refer 
[92]. We have not given the general method for the notations 
seems to be little difficult as given by this book [92]. They have 
also defined new form of products of supermatrices etc. Most of 
the properties pertain to applications to models mostly needed 
by social scientists. 
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1.2 Introduction to Fuzzy Matrices  
 
Just we recall the definition of fuzzy matrix. A fuzzy matrix is a 
matrix which has its elements from [0, 1]. We as in case of 
matrix have rectangular fuzzy matrix, fuzzy square matrix, 
fuzzy row matrix and fuzzy column matrix. We just illustrate 
them by the following examples. 
 
Examples 1.2.1: Let A = [1 0.4 0.6 0 1 0.7 0.1]; A is a row 
fuzzy matrix. In fact A is a 1 × 7 row fuzzy matrix.  
 A1 = [0 1] is a 1 × 2 row fuzzy matrix. 
 A2 = [1 0 1 0 0.6 0.2 110] is a 1 × 9 row fuzzy matrix.  
 
Example 1.2.2: Let  

B = 

1
0

0.14
0
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

B is 6 × 1 column fuzzy matrix. 

B1 = 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

is a 2 × 1 column fuzzy matrix. 

B2 = 

0.06
0.2

0.14
0
1

0.03
0.12
0.31

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

is a 9 × 1 column fuzzy matrix. 



 66

 
Now having seen a fuzzy column matrix and fuzzy row matrix 
we proceed on to define the fuzzy square matrix. 
 
Example 1.2.3: Consider the fuzzy matrix  
 

A = 

0 0.1 1 0.6 0.7
0.4 1 0 1 0
1 0.5 0.6 0.2 1
0 1 0 0.1 0

0.2 0.6 1 1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a square fuzzy matrix. Infact A is a 5 × 5 square fuzzy matrix. 
 
Example 1.2.4: Consider the fuzzy matrix  
 

B = 
1 0 0
0 1 1
1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 
B is a square 3 × 3 fuzzy matrix. 
 
Example 1.2.5: Consider the fuzzy matrix  

 

C = 
1 0.3

0.1 0.04
⎡ ⎤
⎢ ⎥
⎣ ⎦

,  

 
C is a 2 × 2 fuzzy square matrix.  

Now we proceed into illustrate fuzzy rectangular matrices. 
 

Example 1.2.6: Let  

A = 
0 0.3 1 0.2

0.1 1 0 0.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
A is a 2 × 4 fuzzy rectangular matrix. 
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Let  

T = 

0 1
0.3 0.1
1 1

0.8 0.71
0.5 0.11
0 0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; 

 
T is a 6 × 2 fuzzy rectangular matrix. 
 

V = 

0.3 1 0 1
1 0.31 0.6 0.7
0 0.11 0.2 0

0.2 0.5 0.1 1
0.1 0.14 1 0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a 5 × 4 fuzzy rectangular matrix. 
 
Now we define these in more generality. 
 
Let  

A = [a1 a2 … an] 
 
where ai ∈ [0, 1], i = 1, 2, …, n; A is a 1 × n fuzzy row matrix. 
 
Let  
 

B = 

1

2

m

b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
,  

 
bj ∈ [0, 1]; j = 1, 2, …, m; B is a m × 1 fuzzy column matrix.  
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Let  
 

C = 

11 12 1n

21 22 2n

n1 n 2 nn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

 
aij ∈ [0, 1]; 1 ≤ i, j ≤ n. C is a n × n fuzzy square matrix. 
 
Let  
 

D = 

11 12 1n

21 22 2n

m1 m2 mn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

 
aij ∈ [0, 1], 1 ≤ i ≤ m; 1 ≤ j ≤ n. D is a m × n rectangular fuzzy 
matrix m ≠ n.  
 
Note: We may work with any fuzzy matrix.  

 
It is still important to note while doing fuzzy mathematical 

models the fuzzy matrix may take its entries from the interval  
[–1, 1] then also they are known as fuzzy matrices. We mention 
here that Fuzzy Cognitive Maps (FCMs) model take their 
entries only from the interval [–1, 1]. 

The main operations performed on fuzzy matrices are usual 
max-min operations. Many cases the operation “+” i.e., usual 
addition may be replaced by ‘max’ i.e., (0.5 + 0.7) = max (0.5, 
0.7) = 0.7. 

“×” may be replaced by min i.e., min (0.5, 0.7) = 0.5. 
 
But since matrix multiplication involves both addition and 
multiplication we make use of the min max or max min 
principle. Before we proceed on to define the very new notion 
of fuzzy supermatrix we just illustrate a few operations on the 
fuzzy matrices. 
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Example 1.2.7: Let  

A = 
0.1 0 0.1
1 0.7 0

0.2 0.6 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  

B = 
0.9 1 0 0.8
0 0.2 1 0.5

0.1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
i.e., if A = (aij) and b = (bij), then  
 
max min {A, B} = max min {aij, bjk} = max {min{(a11, b11), min 
(a12, b21), min (a13, b31)} (for i = 1, k = 1) i.e.,  
 
r11  =  max {min (0.1, 0.9), min (0, 0), min (0.1, 0.1)} 
 = max {0.1, 0, 0.1} 
 = 0.1 
r12 = max {min (0.1, 1), min (0, 0.2), min (0.1, 0)} 
 = max {0.1, 0, 0} 
 = 0.1 
r13  = max {min (0.1, 0), min (0, 1), min (0.1, 0)} 
 = max {0, 0, 0} 
 = 0 
r14 =  max {min (0.1, 8), min (0, 0.5), min (0.1, 0)} 
 = max {0.1, 0, 0} 
 = 0.1 
 
r21 =  max {min (1, 0.9), min (0.7, 0), min (0, 0.1)} 
 = max {0.9, 0, 0} 
 = 0.9 
r22 =  max {min (1, 1), min (0.7, 0.2), min (0, 0)} 
 = max {1, 0.2, 0} 
 = 1 
r23 =  max {min (1, 0), min (0.7, 1), min (0, 0)} 
 = max {0, 0.7, 0} 
 = 0.7 
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r24 =  max {min (1, 0.8), min (0.7, 0.5), min (0, 0)} 
 = max {0.8, 0.5, 0} 
 = 0.8 
 
r31 =  max {min (0.2, 0.9), min (0.6, 0), min (0.5, 0.1)} 
 = max {0.2, 0, 0.1} 
 = 0.2 
r32 =  max {min (0.2, 1), min (0.6, 0.2), min (0.5, 0)} 
 = max {0.2, 0.2, 0} 
 = 0.2 
r34 =  max {min (0.2, 0.8), min (0.6, 0.5), min (0.5, 0)} 
 = max {0.2, 0.5, 0} 
 = 0.5 
r33 =  max {min (0.2, 0), min (0.6, 1), min (0.5, 0)} 
 = max {0, 0.6, 0} 
 = 0.6. 
 
Now  

R = 
0.1 0.1 0 0.1
0.9 1 0.7 0.8
0.2 0.2 0.6 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Thus when ever multiplication is compatible we can define on 
the fuzzy matrices the max min function or operation. 
 
Example 1.2.8: Let  
 

A = 
0.7 0.5 0
1 0.2 0.1
0 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = (aij) 

 
A.A = max {min(aik, , akj) / 1 ≤ i, j, k ≤ 3} 
 
i.e., A.A = {( ija′ ) / 1 < i < 3, 1 < j < 3} using the min max 
operator. 
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A.A  =  
0.7 0.5 0
1 0.2 0.1
0 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
0.7 0.5 0
1 0.2 0.1
0 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

  = 
0.7 0.5 0.1
0.7 0.5 0.1
0.3 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Example 1.2.9: Let  

 

A = 

8 1

0.2
1

0.5
0

0.7
0
1

0.4
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a 8 × 1 fuzzy column matrix and  
 

B = [0 0.1 1 1 0.8 0.6 0.7 0.2]1×8 
 
is a fuzzy row matrix.  
 
Now  
 
B.A  =  max {min (0, 0.2), min (0.1, 1), min (1, 0.5), min 
   (1, 0), min (0.8, 0.7), min (0.6, 0), min (0.7, 1), min 
   (0.2, 0.4)} 
  =  max {0, 0.1, 0.5, 0, 0.7, 0, 0.7, 0.2}  

= 0.7. 
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Example 1.2.10: Let  

A =

0.2
1

0.5
0

0.7
0
1

0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and  

B = [0 0.1 1 1 0.8 0.6 0.7 0.2]. 
 
Now 
 

max min{A, B} = [ ]

0.2
1

0.5
0

, 0 0.1 1 1 0.8 0.6 0.7 0.2
0.7
0
1

0.4

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

=  

0 0.1 0.2 0.2 0.2 0.2 0.2 0.2
0 0.1 1 1 0.8 0.6 0.7 0.2
0 0.1 0.5 0.5 0.5 0.5 0.5 0.2
0 0 0 0 0 0 0 0
0 0.1 0.7 0.7 0.7 0.6 0.7 0.2
0 0 0 0 0 0 0 0
0 0.1 1 1 0.8 0.6 0.7 0.2
0 0.1 0.4 0.4 0.4 0.4 0.4 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Example 1.2.11: Let  

A = 

6 1

0.2
0
1

0.7
0.3
1

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and 

B = 

6 6

0.1 1 0 1 0 0.7
1 0.2 0.4 0 0.3 1

0.4 0 0 0.1 0 0.8
0 0 1 0.3 1 0.1
1 0 0.2 1 0.1 0
1 1 0 1 0 1

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be two fuzzy matrices. The max min {B, A} = [0.7 1 0.8 1 0.7 
1]1×6 is a fuzzy row matrix.  
 
Example 1.2.12: Let  

B = [0 0.1 0.2 1 0 0.5 1 0.7]1×8 
 
be a column fuzzy matrix and 

 

A = 

8 3

0.1 1 0
1 0 0.3

0.4 0.2 1
1 1 1
0 0 0

0.2 0.9 0.3
0.5 0.1 0.8
0.9 0.6 0.5

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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be a fuzzy rectangular matrix. max min {B, A} = [0.7 1 1]1×3 is 
a fuzzy row matrix. 
 
Example 1.2.13: Let  

A = 

6 3

0.3 1 0
1 0.2 1

0.2 1 0
0 0 0.3
1 1 0.2

0.1 0.3 0
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  

B = 

3 5

0 0.2 1 0.3 0
0 0.1 0 1 0
0 1 0.1 0 1

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be two fuzzy rectangular matrices. 
 

max min {A, B} = 

6 5

0 0.2 0.3 1 0
0 1 1 0.3 1
0 0.2 0.2 1 0
0 0.3 0.1 0 0.3
0 0.2 1 1 0.2
0 0.1 0.1 0.3 0

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a fuzzy rectangular matrix. Thus we have given some 
illustrative examples of operations on fuzzy matrices. 
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Chapter Two 
 
 
 
 
 

FUZZY SUPERMATRICES AND  
THEIR PROPERTIES  
 
 
 
 
 
 
This chapter has three sections. In the first section we for the 
first time introduce the notion of fuzzy supermatrices and some 
operations on them which are essential for the fuzzy 
supermodels. In the second section we introduce the new notion 
of pseudo symmetric partition and pseudo symmetric 
supermatrices. In the third section special operations of fuzzy 
super special matrices are given.  
 
 
2.1 Fuzzy Supermatrices and their Properties  
 
Now we proceed on to introduce the notion of fuzzy 
supermatrices and operations on them. Throughout this chapter 
we consider matrices with entries only from the fuzzy interval 
[0, 1]. Thus all matrices in this chapter unless we make a 
specific mention of them will be fuzzy matrices. 
 
DEFINITION 2.1.1: Let As = [A1 | A2 | …| At] (t >1) where each 
Ai is a fuzzy row vector (fuzzy row matrix), i = 1, 2, …, t. We 
call A as the fuzzy super row vector or fuzzy super row matrix. 
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Example 2.1.1: Let As = [0 0.1 0.3 | 0.6 0.7 0.5 1 0 1 0.9], As is 
a fuzzy super row matrix, here t = 2 i.e., A = [A1 | A2] where A1 
= [0 0.1 0.3] and A2 = [0.6 0.7 0.5 1 0 1 0.9]. 
 
Note: Given any fuzzy row matrix A = [a1, a2, …, an] where ai ∈ 
[0, 1]; i = 1, 2, …, n, we can partition the fuzzy row matrix A to 
form a fuzzy super row matrix. For instance if we have only two 
partitions i.e., A = [a1 a2 … at | at+1 … an];  
 
A is a fuzzy super row matrix with  
 
 A  = [A1 | A2] = [A1 A2] where 
 A1  = [a1 a2 … at] and 
 A2 = [at+1 at+2 … an] . 

A = [a1 a2 … ar | ar+1 … ar+s | ar+s+1 … an] 
= [A1 | A2 | A3]  = [A1 A2 A3] 

 
is also a fuzzy super row matrix got by partitioning the fuzzy 
row vector A, here A1 = [a1 … ar] is a fuzzy row matrix, A2 = 
[ar+1 … ar+s] and A3 = [ar+s+1 … an] are all fuzzy row matrices. 

Thus a super fuzzy row matrix can be obtained by 
partitioning a fuzzy row matrix. 

 
Example 2.1.2: Let A = [0 1 0.3 1 1 0 0.5 0.3 0.4 1 1 0 0.3 0.2] 
be a fuzzy row matrix. 

A = [0 1 0.3 | 1 1 0 0.5 0.3 | 0.4 1 1 0 | 0.3 0.2]  
is a super fuzzy row matrix. 

 
Now we proceed on to define super fuzzy column matrix. 

 
DEFINITION 2.1.2: Let  

As = 

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

N

A
A

A

 

 
where N > 1 and each Ai be a fuzzy column matrix for i = 1, 2, 
…, N; then As is defined to be the super fuzzy column matrix. 
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Example 2.1.3: Let  

 

As =
1

2

3

A
A
A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

0.2
1

0.3
0

0.14
1

0.7
0.9
0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
where  

 

A1 = 
0.2
1

0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, A2 = 

0
0.14

1
0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 and A3 = 
0.9
0.8

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
be the three fuzzy column matrices. 
 
As is a super fuzzy column matrix. Here N = 3. Now as in case 
of super fuzzy row matrix, we can obtain super fuzzy column 
matrices by partitioning a fuzzy column matrix. 
 
Suppose  

 

B = 

1

2

3

m

b
b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
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be a fuzzy column matrix. 
 
Let  

Bs = 

1

2

3

4

5

6

t

t 1

n

b
b
b
b
b
b

b
b

b

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

#

 = 
1

2

3

B
B
B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 
1

2

3

B
B
B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a super fuzzy column matrix obtained by partitioning the 
fuzzy column matrix B.  
 
Example 2.1.4: Let  

 

B = 

0.2
1
0

0.3
0.7
0.9
0

0.1
1

0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy column matrix. 
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B1 = 

0.2
1
0

0.3
0.7
0.9
0

0.1
1

0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 is a super fuzzy column matrix. We can find super fuzzy 
column matrices according to our wish.  
 
Now for instance 
 

B2 = 

0.2
1
0

0.3
0.7
0.9
0

0.1
0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
is also a super fuzzy column matrix. 
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B3 = 

0.2
1
0

0.3
0.7
0.9
0

0.1
1

0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is also a super fuzzy column matrix. Clearly B1, B2 and B3 are 
three distinct super fuzzy column matrices obtained by 
partitioning the fuzzy column matrix B. 
  
Now we define super fuzzy matrices. 
 
DEFINITION 2.1.3: Let us consider a fuzzy matrix 
 

A = ⎥
⎦

⎤
⎢
⎣

⎡

232221

131211

AAA
AAA

 

 
where A11, A12, A13, A21, A22 and A23 be fuzzy submatrices where 
number of columns in the fuzzy submatrices A11 and A21 are 
equal.  

Similarly the columns in fuzzy submatrices of A12 and A22 
are equal and columns of fuzzy matrices A13 and A23 are equal. 
This is evident from the second index of the fuzzy submatrices. 
One can also see, the number of row in fuzzy submatrices A11, 
A12 and A13 are equal.  

Similarly for fuzzy submatrices of A21, A22 and A23 the 
number of rows are equal.  

Thus a general super fuzzy matrix, 
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A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mnmm

n

n

AAA

AAA
AAA

"
###

"
"

21

22221

11211

 

 
where Aij's are fuzzy submatrices; i = 1, 2, …, m and j =  
1, 2, …, n. 

 
We illustrate this by the following examples. 

 
Example 2.1.5: Let  

A = 

11 12 13

21 22 23

31 32 33

41 42 43

A A A
A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
where Aij are fuzzy submatrices, Ak1, Ak2 and Ak3 have same 
number of rows for k = 1, 2, 3, 4. A1m, A2m, A3m and A4m have 
same number of columns for m = 1, 2, 3. 
 
Example 2.1.6: A is a super fuzzy matrix given below: 
  

A = 

0.2 0.3 1 0 0.5 0.6 1 0.7 0.2
1 0 0.2 1 0.3 0.9 0 0.2 0
0 1 0.3 0 0.4 1 0 0.2 0

0.9 0.3 0 1 1 0 0 1 0
0.6 1 0 0.4 1 0.3 1 0 0
0.2 0 1 0 1 0.4 0 1 0.3
0.3 1 0.3 0.1 0 0.5 1 0.1 0
1 0.4 0.2 1 0 1 0.3 0 0.3
0 1 0.1 0 0 1 0.2 0.5 0.3

0.4 0.3 1 0.2 0.5 0.7 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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where  
 

A11 = 
0.2 0.3
1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 

A12 = 
1 0 0.5 0.6

0.2 1 0.3 0.9
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 

A13 = 
1 0.7 0.2
0 0.2 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 

A21 = 
0 1

0.9 0.3
0.6 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

A22 = 
0.3 0 0.4 1
0 1 1 0
0 0.4 1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

A23 = 
0 0.2 0
0 1 0
1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

A31 = 
0.2 0
0.3 1
1 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

A32 = 
1 0 1 0.4

0.3 0.1 0 0.5
0.2 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
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A33 = 
0 1 0.3
1 0.1 0

0.3 0 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

A41 = 
0 1

0.4 0.3
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 

A42 = 
0.1 0 0 1
1 0.2 0.5 0.7

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and  
 

A43 = 
0.2 0.5 0.3
1 1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
Thus we see A11, A12 and A13 has each two rows. A21, A22 and 
A23 has each 3 rows. A31, A32 and A33 has each three rows. A41, 
A42 and A43 each has two rows. A11, A21, A31 and A41 each has 
two columns. A12, A22, A32 and A42 each has 4 columns. A13, 
A23, A33 and A43 each has 3 columns. 
 
We do not call them as type 3 or type 4 or any type of super 
fuzzy matrices. We give yet another example of a super fuzzy 
matrix. 
 
Example 2.1.7: Let  
 

A = 

0.1 0.4 1 0 0.5 0.3
1 0 0.7 0.3 1 0
0 1 0.2 0.4 0.6 0.7

0.4 0 0.3 0.2 0.2 0.3
0.6 1 0.5 0.4 1 0
0.7 1 0.2 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
= [A1 | A2] where 
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A1 = 

0.1 0.4 1 0
1 0 0.7 0.3
0 1 0.2 0.4

0.4 0 0.3 0.2
0.6 1 0.5 0.4
0.7 1 0.2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and 

A2 = 

0.5 0.3
1 0

0.6 0.7
0.2 0.3
1 0
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

is a super fuzzy matrix. 
 
Example 2.1.8: Let  
 

A = 

0.3 1 0 0.2 1 0.5
0 0.2 1 0 1 0.6
1 1 0 1 0.3 1

0.3 1 0 0.1 0.2 1
0 0.3 0.2 0.1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

=  1

2

A
A

⎡ ⎤
⎢ ⎥
⎣ ⎦

  

where 
 

A1 = 
0.3 1 0 0.2 1 0.5
0 0.2 1 0 1 0.6
1 1 0 1 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

and 
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A2 = 
0.3 1 0 0.1 0.2 1
0 0.3 0.2 0.1 1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
is a fuzzy supermatrix. 
 
Example 2.1.9: Let  
 

A = 

0.3 0.5 1 0 0.2
0.6 1 0 0.7 0.1
0.4 0.3 1 0.3 0.5
1 0.2 0 0.2 1
0 1 0.7 0.6 0

0.7 0.5 0.6 0.3 0.5
0.2 0.1 0.3 1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

=  11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where 
 

A11 = 
0.3 0.5 1
0.6 1 0
0.4 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 

A12 = 
0 0.2

0.7 0.1
0.3 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , 

 

A21 = 

1 0.2 0
0 1 0.7

0.7 0.5 0.6
0.2 0.1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

and  
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A22 = 

0.2 1
0.6 0
0.3 0.5
1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Now we proceed on to define the notion of transpose of a fuzzy 
supermatrix. 
 
DEFINITION 2.2.4: Let 
 

A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mnmm

n

n

AAA

AAA
AAA

"
###

"
"

21

22221

11211

 

 
where Aij are fuzzy submatrices of A; 1 ≤ i ≤ m and 1 ≤ j ≤ n, 
with entries from [0, 1]. A is a fuzzy supermatrix for elements of 
A belong to [0, 1]. 

The transpose of the fuzzy supermatrix A is defined to be At 
denoted by A'. 

 

At = A' = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′′

′′′
′′′

mnnm

m

m

AAA

AAA
AAA

"
###

"
"

2

22212

12111

 

 
where At

ij = A'ij ; 1 < i < m and 1 < j < n. 
 

We illustrate them by the following examples. 
 

Example 2.1.10: Let A = [A1 | A2 | A3 |A4] be a super fuzzy row 
vector, where A1 = [0 1 0.3], A2 = [0.5 1 0 0.2], A3 = [1 0] and 
A4 = [0.3 1 0.6 0 1 0.7]. 
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Now the transpose of the super fuzzy row vector A is given by  
 

A' = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′
′

4

3

2

1

A
A
A
A

  

where 
 

A'1 = 
0
1

0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, A'2 = 

0.5
1
0

0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, A'3 = 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and A'4 = 

0.3
1

0.6
0
1

0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now we proceed on to define some operations on them,  
 
Example 2.1.11: Let  

A = 
1

2

3

A
A
A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy super column vector where  

 

A1 = 

0.3
0.2
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, A2 = 

1
0

0.1
0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 and A3 = 

0.5
0.1
0.5
0.2
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 . 

 
Now A' = [A'1 A'2 A'3] = [0.3 0.2 1 0 | 1 0 0.1 0.4 | 0.5 0.1 0.5 
0.2 1]. 
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Example 2.1.12: Let  

A = 
1

2

3

A
A
A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy super column vector where  

A1 = 
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, A2 = [ 0.3 ] and A3 = 

1
0.2
0.5
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
A'  =  [A'1 A'2 A'3] 

=  [0 1 0 | 0.3 | 1 0.2 0.5 0] 
 
is a fuzzy super row vector. 
 

{max min{A', A}} = A'. A. 
(This is only a notational convenience)  
  

 [ ]
1

1 2 3 2

3

A
max max min A A A , A

A

⎡ ⎤⎧ ⎫⎡ ⎤
⎢ ⎥⎪ ⎪⎢ ⎥′ ′ ′⎨ ⎬⎢ ⎥⎢ ⎥

⎪ ⎪⎢ ⎥⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦

 

 

= [ ]

0
1
0

0.3
max max min 0 1 0| 0.3 | 1 0.2 0.5 0 .

1
0.2
0.5
0

⎧ ⎫⎧ ⎫⎡ ⎤
⎪ ⎪⎪ ⎪⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎪⎢ ⎥⎨ ⎨ ⎬⎬⎢ ⎥⎪ ⎪ ⎪⎪⎢ ⎥⎪ ⎪ ⎪⎪⎢ ⎥⎪ ⎪ ⎪⎪⎢ ⎥⎪ ⎪ ⎪⎪⎢ ⎥⎪ ⎪ ⎪⎪⎢ ⎥⎣ ⎦⎩ ⎭⎩ ⎭

 

 
=  max{A'1 . A1, A'2 . A2, A'3 . A3} 
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which will be known as the minor product of two fuzzy 
supermatrices. 
 
max{A' . A} 

=     [ ]

1
0

0.2
max 0 1 0 . 1 , [0.3] . [0.3], [1 0.2 0.5 0] .

0.5
0

0

⎧ ⎫⎡ ⎤
⎡ ⎤⎪ ⎪⎢ ⎥

⎪ ⎪⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

 

 
= max [{max {min (0, 0), min (1, 1), min (0, 0)}, max 

{min (0.3, 0.3)}, max{min (1, 1), min (0.2, 0.2), min 
(0.5, 0.5), min (0, 0)}] 

= max {max (0, 1, 0), max (0.3), max {1, 0.2, 0.5, 0}} 
= max {1, 0.3, 1}  
= 1; 

 
the way in which max{A' . A} = max {max{min(A', A)}} is 
defined is peculiar which may be defined as the super pseudo 
product of the transpose of the fuzzy supermatrix A' and the 
fuzzy supermatrix A.  
 
Before we define product or min operation we give the 
illustration of it with  
 

min (A', A) = min [ ]
1

1 2 3 2

3

A
A A A , A

A

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥′ ′ ′⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
we first make a note as submatrix multiplication the product is 
not compatible. So we multiply in this special way. 
 
min (A', A)  
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=  [ ]

0
1
0

0.3
min 0 1 0 0.3 1 0.2 0.5 0 ,

1
0.2
0.5
0

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

= min [ ]

1

2

3

4
1 2 3 4 5 6 7 8

5

6

7

8

a
a
a
a

a a a a a a a a ,
a
a
a
a

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

=  

1 1 1 2 1 8

2 1 2 2 2 8

8 1 8 2 8 8

min(a a ) min(a a ) min(a a )
min(a a ) min(a a ) min(a a )

min(a a ) min(a a ) min(a a )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

 

=  

0 0 0 0 0 0 0 0
0 1 0 0.3 1 0.2 0.5 0
0 0 0 0 0 0 0 0
0 0.3 0 0.3 0.3 0.2 0.3 0
0 1 0 0.3 1 0.2 0.5 0
0 0.2 0 0.2 0.2 0.2 0.2 0
0 0.5 0 0.3 0.5 0.2 0.5 0
0 0 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Now we make three observations from the example. 
 

1) The product is not compatible as usual matrices 
yielding a single element. 

2) The partition is carried by the super pseudo product of 
type I in a very special way. 

3) The resultant fuzzy matrix is symmetric. In fact it can 
be defined as a fuzzy symmetric supermatrix. 

 
DEFINITION 2.1.5: Let A = [A1 | A2 | … | An] be a fuzzy super 
row matrix i.e., each Ai is a 1 × ti fuzzy row submatrix of A, i = 
1, 2, …, n. Now we define using the transpose of A;  
 

A' = 

1

2

′⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥′⎢ ⎥⎣ ⎦

#

n

A
A

A

 

 
the two types of products of these fuzzy super column and row 
matrices. i.e., A . A' and A' . A. 

max{A . A'}  = max [ ]
1

2
1 2 .

′⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥′⎪ ⎪⎢ ⎥′ ′ ′⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥′⎪ ⎪⎣ ⎦⎩ ⎭

…
#n

n

A
A

A A A

A

 

 
max {A1 . A'1, A2 . A'2, …, An . A'n} = max {max min (ai1,  a'11), 
max min (ai2, a'i2), …, max min (ain, a'in)}; 1 < i1, i'1 < t1, 1 < i2, 
i'2 < t2, …, 1 < in, i'n < tn where  

A1 = (a1, …, 
1t

a ) and  A'1 = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′

′

1

1

ta

a
#  

 
i.e., A'1 = 1

tA , A2 = (a1, a2, …, 
2t

a ) and A'2 = 2
tA  and so on. 

Thus max{A . A'}  = max{A . At} = a ∈ [0, 1]. 
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This fuzzy supermatrix operation is the usual operation with 
product of ai. a'j replaced by minimum (ai, a'j) and the sum of 
the elements 

1i
a + … + 

ni
a  replaced by the maximum of (

1i
a … 

ni
a ). 
 
Thus given any fuzzy super row matrix A we can always define 
the product where A' is the transpose of A the fuzzy super 
column matrix. 

Now A . A' is defined as the product of two fuzzy super row 
matrix (vector) and fuzzy super column vector and the product 
is always an element from the fuzzy interval [0, 1]. 

Now how is A'A defined A' is a n × 1 fuzzy super column 
vector and A is a 1 × n fuzzy super row vector. How to define 
this product at the same time not fully destroying the partition 
or the submatrix structure.  

 
Thus we define as a super pseudo product which is a super 
fuzzy n × n matrix. 
 
DEFINITION 2.1.6: Let A = (a1 a2 … an) = (A1 | A2 | …| An) be a 
super fuzzy row matrix and A' be the transpose of A. 
 

min{A', A} = 

1 1 1 2 1

2 1 2 2 2

1 1

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

"
"

# # #
"

n

n

n n n n

min( a a ) min( a a ) min( a a )
min( a a ) min( a a ) min( a a )

min( a a ) min( a a ) min( a a )

. 

 
Now min{A' . A} is a n × n square fuzzy matrix. It is partitioned 
as per the division of rows and columns of A and A' 
respectively. It is important to note min{A' . A} is a symmetric 
matrix about the diagonal  
 

min{A', A} = 

1 1 1 2 1

2 1 2 2 2

1 2

n

n

n n n n

min( a ,a ) min( a ,a ) min( a ,a )
min( a ,a ) min( a ,a ) min( a ,a )

min( a ,a ) min( a ,a ) min( a ,a )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

, 
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where a'i = ai for the elements remain as it is while transposing 
the elements clearly since min (a2, a1) = min (a1, a2) we get the 
min{A', A} matrix to be a symmetric matrix. Further if A = (A1 
A2 … An) with number of elements in Ai is ti then we see 1 < i < 
n and 1 < ti < n. min{A', A} is a super fuzzy matrix with i × i 
fuzzy submatrices i = 1, 2, …, n. and min{A', A} is a n × n fuzzy 
matrix.  
 
We first illustrate this by the following example. 
 
Example 2.1.13: Let  
 

A  = [0.1 0 0.5 | 0.2 1 | 0.3 0.1 1 1]  
= [A1 | A2 | A3]  

 
be a fuzzy super row matrix with  
 

A1 = [0.1 0 0.5], A2 = [0.2 1] 
and  

A3 = [0.3 0.1 1 1]. 
 

A' = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

A
A
A

 

we find  

min(A', A) = min [ ]

0.1
0

0.5
0.2

, 0.1 0 0.5 0.2 1 0.3 0.1 1 11
0.3
0.1
1
1

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
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= 

min(0.1,0.1) min(0.1,0) min(0.1,1)
min(0,0.1) min(0,0) min(0,1)

min(1,0.1) min(1,0) min(1,1)
min(1,0.1) min(1,0) min(1,1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # #
"
"

. 

 
We see min{A', A} is a 9 × 9 fuzzy supermatrix partitioned 

between 3rd and 4th row. Also between 5th and 6th row. Similarly 
min{A', A} is a fuzzy supermatrix partitioned between 3rd and 
4th column and 5th and 6th column. 
 

min{A', A} = 

0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0 0 0 0 0 0 0 0 0

0.1 0 0.5 0.2 0.5 0.3 0.1 0.5 0.5
0.1 0 0.2 0.2 0.2 0.2 0.1 0.2 0.2
0.1 0 0.5 0.2 1 0.3 0.1 1 1
0.1 0 0.3 0.2 0.3 0.3 0.1 0.3 0.3
0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0 0.5 0.2 1 0.3 0.1 1 1
0.1 0 0.5 0.2 1 0.3 0.1 1 1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 

 

= 
11 12 13

12 22 23

13 23 33

B B B
B B B
B B B

⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥′ ′⎣ ⎦

 

where  

B11 = 
0.1 0 0.1
0 0 0

0.1 0 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= min{A'1, A1}; 
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B12 = 
0.1 0.1
0 0

0.2 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= min{A'1, A2}  

 

= [ ]
0.1

min 0 , 0.2 1
0.5

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

= 
min(0.1,0.2) min(0.1,1)
min(0,0.2) min(0,1)

min(0.5,0.2) min(0.5,1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

B13 = min{A'1, A3} = min [ ]
0.1
0 , 0.3 0.1 1 1

0.5

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

= 
min(0.1,0.3) min(0.1,0.1) min(0.1,1) min(0.1,1)
min(0,0.3) min(0,0.1) min(0,1) min(0,1)

min(0.5,0.3) min(0.5,0.1) min(0.5,1) min(0.5,1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 
0.1 0.1 0.1 0.1
0 0 0 0

0.3 0.1 0.5 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = B13. 

 

B'12 = min{A'2, A1} = min [ ]0.2
, 0.1 0 0.5

1
⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

 

= 
min(0.2,0.1) min(0.2,0) min(0.2,0.5)
min(1,0.1) min(1,0) min(1,0.5)

⎡ ⎤
⎢ ⎥
⎣ ⎦
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= 
0.1 0 0.2
0.1 0 0.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = B'12 = t
12B . 

 

B22 = min{A'2, A2} = min [ ]0.2
, 0.2 1

1
⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

 

=
min(0.2,0.2) min(0.2,1)
min(1,0.2) min(1,1)

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

= 
0.2 0.2
0.2 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 

B23 = min{A'2, A3} = min [ ]0.2
, 0.3 0.1 1 1

1
⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

 

= 
min(0.2,0.3) min(0.2,0.1) min(0.2,1) min(0.2,1)
min(1,0.3) min(1,0.1) min(1,1) min(1,1)

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

= 
0.2 0.1 0.2 0.2
0.3 0.1 1 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
B'13 = min{A'3, A1} = min{(A'1. A3)'}  

 

= min [ ]

0.3
0.1

, 0.1 0 0.5
1
1

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

= 

min(0.3,0.1) min(0.3,0) min(0.3,0.5)
min(0.1,0.1) min(0.1,0) min(0.1,0.5)
min(1,0.1) min(1,0) min(1,0.5)
min(1,0.1) min(1,0) min(1,0.5)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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= 

0.1 0 0.3
0.1 0 0.1
0.1 0 0.5
0.1 0 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
B'23 = min{A'3 , A2} = min{(A'2, A3)'}  

 

= min [ ]

0.3
0.1

, 0.2 1
1
1

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  

 

= 

min(0.3,0.2) min(0.3, 1)
min(0.1,0.2) min(0.1, 1)
min(1, 0.2) min(1, 1)
min(1, 0.2) min(1, 1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

= 

0.2 0.3
0.1 0.1
0.2 1
0.2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
B33 = min{A'3 , A3}  

 

= min [ ]

0.3
0.1

, 0.3 0.1 1 1
1
1

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
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= 

min(0.3,0.3) min(0.3,0.1) min(0.3,1) min(0.3,1)
min(0.1,0.3) min(0.1,0.1) min(0.1,1) min(0.1,1)
min(1,0.3) min(1,0.1) min(1,1) min(1,1)
min(1,0.3) min(1,0.1) min(1,1) min(1,1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

= 

0.3 0.1 0.3 0.3
0.1 0.1 0.1 0.1
0.3 0.1 1 1
0.3 0.1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Thus the fuzzy supermatrix of A'A is a fuzzy supermatrix got by 
the super pseudo product of the transpose of A with A. i.e., of 
A' with A where A is a 1 × n fuzzy row vector. A'A is a n × n 
super fuzzy matrix here n = 9. 
 
Next we define the notion of symmetric fuzzy supermatrix. 
 
DEFINITION 2.1.7: Let  

A = 

11 12 1

21 22 2

1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

n

n

n n nn

A A A
A A A

A A A

 

 
be a fuzzy supermatrix, we say A is a fuzzy super square matrix 
or supermatrix or fuzzy square supermatrix if the number of 
columns and number of rows of A are the same and the number 
of fuzzy submatrices along the rows is equal to the number of 
fuzzy column submatrices. 

If the number of rows and columns of the fuzzy supermatrix 
is different then we call the fuzzy supermatrix to be a 
rectangular fuzzy supermatrix or fuzzy rectangular supermatrix 
or fuzzy super rectangular matrix.  
 
All these terms mean one and the same. Before we go for 
further investigations we give an example of each. 
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Example 2.1.14: Let  

A = 
11 12

21 22

31 32

A A
A A
A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 

0.1 1 0 0.2 1 0
1 1 1 0.5 0 0.6

0.6 0.8 0.5 1 1 1
0 1 0 0.6 1 0.4

0.2 0 1 0.2 0 0.1
1 0.2 0.3 0.3 0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

A11 = 
0.1 1 0 0.2
1 1 1 0.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

,  

 

A12 = 
1 0
0 0.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
A21= [0.6 0.8 0.5 1],  

 
A22 = [1 1] 

 

A31 = 
0 1 0 0.6

0.2 0 1 0.2
1 0.2 0.3 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

and  

A32 = 
1 0.4
0 0.1

0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
This is a ordinary fuzzy supermatrix, but is not a fuzzy square 
supermatrix.  
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We see the transpose of A is given by  
 

At = 
t t t
11 21 31
t t t
12 22 32

A A A
A A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

= 

0.1 1 0.6 0 0.2 1
1 1 0.8 1 0 0.2
0 1 0.5 0 1 0.3

0.2 0.5 1 0.6 0.2 0.3
1 0 1 1 0 0.2
0 0.6 1 0.4 0.1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We can easily observe that the fuzzy matrix At is partitioned 
between the rows 2 and 3 and 3 and 4. It is partitioned between 
the columns 4 and 5.  
 
Example 2.1.15: Let  

A = 

11 12 1n

21 22 2n

n1 n2 nn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

 
be a fuzzy square matrix. The fuzzy supermatrix got from A by 
partitioning A between the columns a1i and a1i+1 
 

As = 

11 12 1i 1i 1 1n

21 22 2i 2i 1 2n

n1 n2 ni ni 1 nn

a a a a a
a a a a a

a a a a a

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

" "
" "

# # # # #
" "

 

 
is a fuzzy supermatrix but is not a square fuzzy supermatrix. We 
see the transpose of AS is 

 



 101

11 21 n1

12 22 n 2

t
s 1i 2i ni 1

1i 1 2i 1 ni 1

1n 2n nn

a a a
a a a

A a a a
a a a

a a a

+

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # #
"
"

# # #
"

. 

 
We see yet another example. 
 
Example 2.1.16: Let A be any fuzzy square matrix. 
 

A = 

11 12 1n

21 22 n2

n1 n2 nn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

. 

 
We see A is partitioned between the rows ai1 and ai+11 and 
between the rows aj1 and aj+11.  

The fuzzy supermatrix As obtained from partitioning A is 
 

As = 

11 12 1n

21 22 2n

i1 i2 in

i 11 i 12 i 1n

j1 j2 jn

j 11 j 12 j 2n

n1 n2 nn

a a a
a a a
a a a

a a a

a a a
a a a

a a a

+ + +

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"
"

#
"
"

#
"

. 

 
We see A is partitioned between the rows ai1 and ai+11 and 
between the rows aji and aj+11.  



 102

Clearly  

At
s = 

11 21 i1 i 11 j1 j 11 n1

12 22 i 2 i 12 j2 j 12 n2

1n 2n in i 1n jn j 1n nn

a a a a a a a
a a a a a a a

a a a a a a a

+ +

+ + +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" " …
" " "

# # # # # # #
" " …

. 

 
Now As

t is got by partitioning A between the rows ai1 and ai+11 
and aj1 and aj+11. As is not a fuzzy square supermatrix it is just a 
fuzzy supermatrix.  

Now we still give another example. 
 
Example 2.1.17: Let A be a fuzzy square matrix. 
 

As = 

11 12 1i 1i 1 1n

21 22 2i 2i 1 2n

j1 j2 ji ji 1 jn

j 11 j i2 j 1i j 1 i 1 j 1n

n1 n2 ni ni 1 nn

a a a a a
a a a a a

a a a a a
a a a a a

a a a a a

+

+

+

+ + + + + +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # # # #

# # # # #
"

 

 
A partitioned between the rows j1 and j + 11 and between the 
columns 1i and 1i + 1 where i ≠ j is a fuzzy supermatrix but is 
not a square fuzzy supermatrix.  
 
We give yet another example. 
 
Example 2.1.18: Let A be a fuzzy square matrix. 
 

As = 

1 0 0.3 0.5 0.2
0.3 1 0.6 0.5 0.1
0.1 0 1 0 1
0.2 0.8 0.5 1 0.8
0.5 1 1 0 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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The 5 × 5 square fuzzy matrix has been partitioned between the 
3rd column and the 4th column and also partitioned between the 
3rd row and the 4th row. Thus As is a square fuzzy supermatrix.  
 

Now having seen an example of a square fuzzy supermatrix 
we proceed on to define the notion of it. 
 
DEFINITION 2.1.8: Let A be a n × n fuzzy square matrix. We 
call A a super fuzzy square matrix or a square fuzzy 
supermatrix if A is partitioned in the following way. 

If the matrix A is partitioned between the columns say i and 
i + 1, j and j+1 and t and t+1 then A is also partitioned between 
the rows i and i+1, j and j+1 and t and t+1, now to be more 
general it can be partitioned arbitrarily between the columns i1 
and i1+1, i2 and i2+1, …, ir and ir+1 and between the rows i1 and 
i1+1, i2 and i2+1, …,  ir and ir+1 ( r+1 < n). 
 
Now having defined a fuzzy square supermatrix we proceed on 
to define the notion of symmetric square fuzzy matrix. 
 
DEFINITION 2.1.9: Let As be a fuzzy super square matrix or 
fuzzy square supermatrix. We say As is a symmetric fuzzy super 
square matrix or a fuzzy symmetric super square matrix or a 
symmetric square super fuzzy matrix. If 
 

As = 

11 12 1

21 22 2

1 2

N

N

N N NN

A A A
A A A

A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

, 

 
then A11, A22, …, ANN are square fuzzy matrices and each of 
these fuzzy square matrices are symmetric square matrices and 
At

ij = Aji for 1 < i < N and 1 < j < N.  
 
We illustrate this by the following example. 
 
Example 2.1.19: Let As be a fuzzy supermatrix. 
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As = 

0.8 1 0.8 0 1 0.1 0.9 1 0
1 0 0.6 1 0 0.3 0.8 0 0.6

0.6 1 0.2 0 1 0.2 1 0.2 1
0.5 0.4 1 0.5 0.7 1 0 0 0.2
0.3 1 0.4 1 1 0.6 1 1 0.3
0.6 0.7 1 0 0 1 1 1 0
1.0 1 0.3 0.3 0.1 0.4 0.8 0 0
0.9 0 1 1 1 1 1 0.6 0.1
1.0 0.9 1 0.4 0.4 0 0.6 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

A A A A
A A A A
A A A A
A A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Clearly As is a fuzzy super square matrix. For it is a 9 × 9 

fuzzy matrix, partitioned between the 3rd and 4th column and 
row. It is partitioned between the 5th and 6th row and column and 
between the 8th and 9th row and column. Clearly As is not a 
symmetric fuzzy supermatrix for we see At

ij ≠ Aji.  
We illustrate this by the following example. 
 
Example 2.1.20: Let As be a fuzzy supermatrix i.e.,  
 

As = 

0 1 0.3 0.7 1 0 1 0.9 0.3
1 0.2 1 0 0 1 0 1 0

0.3 1 0.5 0.3 0.5 0 1 0 1
0.7 0 0.3 1 0.2 0.3 0.4 0.5 0.6
1 0 0.5 0.2 0.6 0.6 0.5 0.4 0.3
0 1 0 0.3 0.6 0.7 1 0 0.9
1 0 1 0.4 0.5 1 0.6 1 0.2

0.9 1 0 0.5 0.4 0 1 0 0.8
0.3 0 1 0.6 0.3 0.9 0.2 0.8 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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= 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We see A11, A22 and A33 are symmetric fuzzy matrices. Further 
A12 = At

21 and A13 = At
31 and A23 = At

32. Thus As is a symmetric 
fuzzy supermatrix, as As is also a square matrix. 
 We have just shown examples that if A is a fuzzy super row 
vector then A'A (A' the transpose of A) under the super pseudo 
product is a symmetric fuzzy square supermatrix i.e., A'A is a 
symmetric fuzzy supermatrix. Thus we can say if one wants to 
construct fuzzy symmetric supermatrices then one can take a 
fuzzy super row vector A and find the pseudo super product of 
A and A'. A'A will always be a symmetric fuzzy supermatrix.  
  
Now we are interested in the following problem which we first 
illustrate and the propose it as a problem. 
 
Example 2.1.21: Let  

A = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
be a fuzzy 2 × 2 square matrix.  
 
In how many ways can A be partitioned so that As the fuzzy 
supermatrix got from A is distinct. 
 
1. As = A no partitioning. 

 

2. As = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

 partitioned between first and second 

column. 
 

3. As = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 partitioned between the first and second 

row. 
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4. As = 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
partitioned between the first row and second row and between 
the first column and second column, which will also be known 
as the cell partition of A. A 2 × 2 matrix has 4 cell and a n   × m 
matrix A will have mn cells by a cell partition of A. Thus we 
have four ways by which a 2 × 2 fuzzy matrix can be partitioned 
so that A is a super fuzzy matrix; the first of course no partition 
or trivial only a fuzzy matrix; so we say we have only 3 
partitions. So if no partition is made on the fuzzy matrix we will 
not call it as a fuzzy supermatrix. 
 
Example 2.1.22: Let us consider the matrix  
 

A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where aij ∈ [0, 1]; 1 < i < 3 and 1 < j < 3. We now physically 
enumerate all the possible partitions of A so that A becomes a 
fuzzy supermatrix. 
 

1. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, partitioned between first and second 

column. 
 

2. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, partitioned between column two and 

three. 
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3. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, partitioned between the first and 

second column and between the second and third column. 
 

4. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, partitioned between the first and 

second row. 
 

5. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 partitioned between the second row 

and third row. 
 

6. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 partitioned between the first and 

second row and between the second and third row. 
 

7. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 partitioned between the first row and 

second row and between the first column and the second 
column. 
 

8. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 partitioned between the first and 

second column and partitioned between the second and third 
row. 
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9. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 partitioned, between the first and 

second column. Partitioned between the first and second 
row and between the second and third row. 
 

10. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is partitioned between the 2nd and 3rd 

column and partitioned between the first and second row.  
 

11. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 partitioned between the 2nd and 3rd 

column and second and 3rd row. 
 

12. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 is partitioned between the 2nd and 3rd 

column and between the first and second row and second 
and third row.  
 

13. As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is partitioned between the second and 

3rd column and first and second column. Also As is 
partitioned between the first and the 2nd row. 
 

14. Now As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 is partitioned between the first 

row and second row and between the second row and third 
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row. Partitioned between the first and second column and 
between second and third column, the cell partition of A.  

 
We call this partition as the cell partition of the fuzzy matrix. 

 
We see we have 14 types of 3 × 3 fuzzy supermatrix but 

only 3 in case of 2 × 2 fuzzy supermatrix. Thus we now pose 
the following problem. 
 

1. Find the number of distinct fuzzy supermatrix obtained 
from partitioning a square fuzzy n × n matrix. 

 
2. Find the number of symmetric fuzzy supermatrix using 

a n × n matrix. 
 
Note: In case of 3 × 3 fuzzy supermatrices we have only two 
partitions leading to symmetric fuzzy supermatrix given by 

 

As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and  

As = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
With A11 and A22 square symmetric fuzzy matrices and A12 = 
(A21)t or A21 = (A12)t.  

Now when we take the collection of all 4 × 4 fuzzy 
supermatrices. 
 

A = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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where aij ∈ [0, 1]. How many partition of A will lead to fuzzy 
symmetric supermatrices? 
 
Example 2.1.23: We have six partitions which can lead to fuzzy 
symmetric matrices which is as follows: 

 

1.     As = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
where we have partitioned between first row and second row 
and partitioned between first column and second column. 
 

2.     As = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; 

 
we have a partition between the 3rd and 4th row as well as 
between 3rd and 4th column.  
 

3.    As = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

;  

 
where we partition between the 2nd and 3rd row and also between 
the 2nd and 3rd column. 
 

4.     As = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
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we have partitioned between the first and second row and first 
and second column. We have also partitioned between the 3rd 
and 4th row and the 3rd and 4th column of A to have a symmetric 
super fuzzy matrix. 
 

5.    As = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

 
we have partitioned the fuzzy matrix between the 1st and 2nd 
column and row respectively and between the 2nd and 3rd row 
and column respectively to obtain a supermatrix which may lead 
to the construction of symmetric fuzzy supermatrices. 
 

6.     As = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The 4 × 4 fuzzy matrix A is partitioned between the 2nd and 3rd 
row and column respectively and between the 3rd and 4th row 
and column respectively to obtain a fuzzy supermatrix which 
can lead to a fuzzy symmetric supermatrix. 
 
We illustrate this by an example. We take for this basically a 
fuzzy symmetric 4 × 4 supermatrix. 
 
Example 2.1.24: Let  

A = 

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

be a fuzzy symmetric 4 × 4 matrix.  
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Now the six super symmetric matrices got from A are as 
follows. 
 

1.     1
sA  = 

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
A11 and A22 are square symmetric fuzzy matrices and  

A12 = (A21)t = 

t0.6
1

0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= [0.6 1 0.4]. 

 

2.     2
sA  = 

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
All the four fuzzy submatrices of the fuzzy supermatrix As

2 are 
symmetric and are square fuzzy submatrices of A2

s. 
 

3.     3
sA  = 

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 
the four submatrices A11, A12, A21 and A22 are such that A11 and 
A22 are square fuzzy matrices which are symmetric and  

A12 = (A21)t = (0.4 0 0.5)t = 
0.4
0

0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

3
sA  is yet another symmetric super fuzzy matrix. 
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4.    4
sA  = 

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where A11, A22 and A33 are fuzzy square matrices which are 
symmetric. 
 

A12 = At
21. 

A13 = (A31)t = [1 0.4] = 
t1

0.4
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
Similarly  

A23 = [0.4 0] = [A32]t = 
t0.4

0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Thus 4
sA  is a symmetric fuzzy supermatrix with submatrices. 

 

5.   5
sA  = 

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where A11, A12, A13 , …, A32 and A33 are fuzzy submatrices with 
A11, A12 and A33 fuzzy symmetric matrices. 
 

A12 = 
1

0.4
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and A13 = 
0.4
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
(A21)t = A12 = (1 0.4)t 
 
(A31)t = A13 = (0.4 0)t. 
 
Next we consider the super symmetric fuzzy matrix. 
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6.   6
sA =

1 0.6 1 0.4
0.6 0.2 0.4 0
1 0.4 0 0.5

0.4 0 0.5 0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where A11, A22 and A33 are symmetric fuzzy matrices and  

 

A12 = [0.6 1] = 
t0.6

1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
A13 = [0.4] = A31 
 

A23 = 
0

0.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = [0 0.5]t. 

 
Thus we have seen a single symmetric 4 × 4 fuzzy matrix can 
lead to 6 symmetric super fuzzy matrices.  

 
Example 2.1.25: Given any n × n fuzzy symmetric matrix A 
how many partitions be made on A so that As is a super fuzzy 
symmetric matrix. The advantage of symmetric super fuzzy 
matrices we can arrive at several symmetric super fuzzy 
matrices given any symmetric fuzzy matrix. We have seen just 
now given a 4 × 4 symmetric fuzzy matrix, we can construct six 
super symmetric fuzzy matrices. We just see how many 
symmetric super fuzzy matrices can be constructed using a 5 × 
5 symmetric fuzzy matrix. 

 

A = 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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A's =

11 12 15

21 22 25

51 52 55

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
A is partitioned between the first row and second row and first 
column and second column. 

 

2
sA  = 

11 12 15

21 22 25

51 52 55

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # #
"

. 

 
A is partitioned between the fourth and fifth row and fourth and 
fifth column respectively. 
 

3
sA  = 

11 12 13 15

21 22 23 25

31 32 33

51 52 53 55

a a a a
a a a a
a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

# # #
"

. 

 
A is partitioned between the second and third row and between 
the second and third column. 

 

4
sA  = 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
A is partitioned between the 3rd and 4th row and between 3rd and 
4th column.  
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Now we proceed on to describe the symmetric super fuzzy 
matrix 5

sA  
 

5
sA  = 

11 12 13 15

21 22 23 25

31 32 33 35

51 52 53 55

a a a a
a a a a
a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # #
"

 = 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
where A11, A22 and A33 are symmetric fuzzy matrices. 

 

6
sA  = 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  

 
A11, A22 and A33 are symmetric fuzzy matrices. 

 

7
sA  = 

11 12 13 15

21 22 23 25

31 32 33

51 52 53 55

a a a a
a a a a
a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

# # # #
"

 = 
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Here also 6

sA  is different from 7
sA  and 8

sA . 
 

8
sA  = 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

A A A A
A A A A
A A A A
A A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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where A11 , A12 A13 and A44 are symmetric fuzzy matrices.  

 
Thus we have more symmetric super fuzzy matrices obtained 
from a fuzzy symmetric 5 × 5 matrix. 
 
 
2.2 Pseudo Symmetric Supermatrices  
 
In this section we for the first time define the notion of pseudo 
diagonal, pseudo symmetric matrix and pseudo super symmetric 
matrix or pseudo symmetric supermatrix.  

Now we proceed onto define the notion of a pseudo 
symmetric supermatrix.  
 
DEFINITION 2.2.1: We just call a fuzzy matrix to be pseudo 
symmetric if it is symmetric about the opposite diagonal.  
 

That is if A= 11 12

21 22

a a
a a

⎡ ⎤
⎢ ⎥
⎣ ⎦

 we see a11 = a22 so that pseudo 

symmetry is about the pseudo diagonal a12 and a12. The diagonal 
vertically opposite to the usual main diagonal of a square matrix 
A will be known as the pseudo diagonal of A.  

 
Example 2.2.1: Let  

A = 
0.4 1
0 0.4

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
i.e., in case of a 2 × 2 matrix we need the diagonal elements to 
be equal. The pseudo diagonal elements are 1 and 0. 
 
Example 2.2.2: Let  

A = 
0.3 0.1 0.5
1 0.4 0.1

0.2 1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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A is a fuzzy pseudo symmetric matrix for the pseudo diagonal is 
0.5, 0.4 and 0.2 and the elements of this matrix are 
symmetrically distributed about the pseudo diagonal.  

One natural question would be, can any symmetric matrix 
be pseudo symmetric. The answer is yes. 
 

For A = 
0.2 0.5
0.5 0.2

⎡ ⎤
⎢ ⎥
⎣ ⎦

 is a pseudo symmetric fuzzy matrix as well 

as symmetric fuzzy matrix. 
 
Example 2.2.3: Let  

A = 
0.5 0.2 0.7
0.2 0.1 0.2
0.7 0.2 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
A is both a pseudo symmetric fuzzy matrix as well as a 
symmetric fuzzy matrix. 
 
Note: For a 3 × 3 fuzzy matrix 

A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
to be both pseudo symmetric and symmetric we must have 

1. a11 = a33 
2. a13 = a31 
3. a12 = a21 = a23 = a32. 

 
Example 2.2.4: Let A be a fuzzy 4 × 4 matrix 
 

A = 

0.3 0.4 0.5 0.7
0.4 0.1 0.2 0.5
0.5 0.2 0.1 0.4
0.7 0.5 0.4 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
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A is both symmetric and pseudo symmetric. Let  
 

A = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
is both pseudo symmetric and a symmetric fuzzy matrix, if  

a11 = a44 
a14 = a41 
a33 = a22 

a12 = a21 = a34 = a43 
a13 = a31 = a24 = a42 

a23 = a32. 
 
It is to be noted that in general a fuzzy supermatrix which is 
pseudo symmetric need not be symmetric. We can have several 
examples to prove our claim. 
 
Example 2.2.5:  

As = 

0.3 1 1 0 0.2 0.5
1 0 0.1 0.9 0.7 0.2

0.5 1 0.8 0.3 0.9 0
0 0.7 0.4 0.8 0.1 1

0.6 0.2 0.7 1 0 1
0.7 0.6 0 0.5 1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a pseudo symmetric fuzzy supermatrix. Clearly As is not a 
symmetric fuzzy supermatrix. We see  
 

As = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Clearly A12 and A21 are square fuzzy matrices which are pseudo 
symmetric about the pseudo diagonal. For  
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A12 = 

1 0 0.2 0.5
0.1 0.9 0.7 0.2
0.8 0.3 0.9 0
0.4 0.8 0.1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
Clearly A12 is pseudo symmetric fuzzy matrix about the pseudo 
diagonal. 

A21 = 
0.6 0.2
0.7 0.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
is clearly not a symmetric fuzzy matrix but only a pseudo 
symmetric fuzzy matrix. Further A11 and A22 are not even 
square matrices. Further  
 

A11 = 

0.3 1
1 0

0.5 1
0 0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 and  A22 = 
0.7 1 0 1
0 0.5 1 0.3

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
We clearly see A11

t ≠ A22 or A22
t ≠ Α11. It is interesting to 

observe that A11 and A22 are not square fuzzy matrices so they 
can never be symmetric or pseudo symmetric we give yet 
another example of a fuzzy pseudo symmetric supermatrix but 
we see the entries in A11 and A22 some way related! 

 
Example 2.2.6: Let  
 

As = 

0.2 1 0 0 0.1 0.4
0.1 0.5 0.4 0.2 1 0.1
0.7 0.8 0.6 0.8 0.2 0
1 0.5 0.2 0.6 0.4 0

0.7 0 0.5 0.8 0.5 1
0.4 0.7 1 0.7 0.1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦
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where A11, A12, A21 and A22 are fuzzy submatrices of the super 
fuzzy matrix As. We see A11 is neither symmetric nor a pseudo 
symmetric fuzzy matrix A12 is a pseudo symmetric fuzzy matrix 
A21 is also a pseudo symmetric fuzzy matrix. 

We also see A11 ≠ A22
t or A22 ≠ A11

t. To this end we define a 
new notion called pseudo transpose of a matrix. 
 
DEFINITION 2.2.2: Let  

A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mnmm

n

n

aaa

aaa
aaa

"
###

"
"

21

22221

11211

 

be a rectangular m × n matrix. The pseudo transpose of A 
denoted by 

 

2 1

2 22 21

1 12 11

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# # #

"
"

p

mn m m

t

n

n

a a a

A
a a a
a a a

. 

 
ptA  is n × m matrix called the pseudo transpose of A.  

 
We illustrate this by the following examples. 
 
Example 2.2.7: Let 

A = 

0.3 1 0.5
0.2 0 0.6
0.7 0.4 0
0 0.9 1

0.8 1 0.4
0.9 0.5 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be any 6 × 3 fuzzy rectangular matrix. The pseudo transpose of 
A denoted by ptA is given by 
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ptA = 
0.2 0.4 1 0 0.6 0.5
0.5 1 0.9 0.4 0 1
0.9 0.8 0 0.7 0.2 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
ptA is a 3 × 6 matrix, clearly At ≠ ptA . For  

 

At = 
0.3 0.2 0.7 0 0.8 0.9
1 0 0.4 0.9 1 0.5

0.5 0.6 0 1 0.4 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now when we define the notion of pseudo symmetric matrix we 
need the notion of pseudo transpose. We give yet another 
example of a pseudo symmetric super fuzzy matrix. 
 
Example 2.2.8: Let  

 

A = 

0.2 0.1 0.5 0.4
0.7 0.9 0.2 0.5
0.3 0.8 0.9 0.1
0.6 0.3 0.7 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 11 12

21 22

A A
A A

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
be a fuzzy pseudo symmetric supermatrix with A11, A12, A21 and 
A22 as its submatrices. Clearly A12 and A21 are fuzzy square 
submatrices of A which are pseudo symmetric. Now  

 

A11 = 
0.2
0.7
0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Then the pseudo transpose of A11 is A22 i.e., A22 = pt

11A  =  [0.3 
0.7 0.2]. Clearly t

11A  = [0.2 0.7 0.3] ≠ pt
11A .  

 Now we see how the pseudo transpose of a row matrix 
looks like. 
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DEFINITION 2.2.3: Let a = [a1 a2 … an] be a 1 × n row matrix. 
The pseudo transpose of a denoted by  
 

pta  = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

1

2

1

a
a

a
a

n

n

#  

 
is a column matrix but is not the same as   
 

at = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

na

a
a

#
2

1

. 

Let  

b = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mb

b
b

#
2

1

 

 
 be a m × 1 column matrix. The pseudo transpose of b defined 
as ptb  = [bm bm-1 … b2 b1]. Clearly ptb  ≠  bt = [b1 b2 … bm]. 
It is important to note if  
 

A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

aaa

aaa
aaa

"
###

"
"

21

22221

11211

 

 
be a n × n square matrix its pseudo transpose, 
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ptA = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11121

21222

12

aaa
aaa

aaa

n

n

nnnn

"
"

###
"

 

 
Example 2.2.9: Let  

A = 
0.3 0.2 1
0.8 0.4 0.2
0.5 0.8 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a pseudo symmetric fuzzy matrix.  
The pseudo transpose of A is given by  

 

ptA  = 
0.3 0.2 1
0.8 0.4 0.2
0.5 0.8 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We see ptA = A. Thus we can define a pseudo symmetric matrix 
A to be a matrix in which its pseudo transpose is the same as the 
matrix i.e., A = ptA . 
 
We now give in the following example the pseudo transpose of 
a pseudo symmetric matrix A. 
 
Example 2.2.10: Let  
 

A = 

0.3 0.1 1 0 0.2
1 0.2 0.6 0.9 0

0.7 1 0.3 0.6 1
0.5 1 1 0.2 0.1
0 0.5 0.7 1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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ptA = 

0.3 0.1 1 0 0.2
1 0.2 0.6 0.9 0

0.7 1 0.3 0.6 1
0.5 1 1 0.2 0.1
0 0.5 0.7 1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
The pseudo transpose of A is ptA so A is a pseudo symmetric 
fuzzy matrix. 
 
Let us now find the pseudo transpose of a 2 × 5 fuzzy matrix. 
 
Example 2.2.11: Let  

 

A = 
0.1 0.8 1 0 0.7
0.4 0 1 0.7 0.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
be a 2 × 5 fuzzy rectangular matrix. The pseudo transpose of A 
is  

ptA  = 

0.6 0.7
0.7 0
1 1
0 0.8

0.4 0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

ptA is a 5 × 2 fuzzy rectangular matrix.  
 
What is the pseudo transpose of a symmetric fuzzy matrix A? 
To this we give an example 
 
Example 2.2.12: Let  
 

A = 

0.2 1 0.6 0.3
1 0 0.7 0.5

0.6 0.7 1 0.8
0.3 0.5 0.8 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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be a 4 × 4 symmetric fuzzy matrix. The pseudo transpose of A;  
 

ptA  = 

0.4 0.8 0.5 0.3
0.8 1 0.7 0.6
0.5 0.7 0 1
0.3 0.6 1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Clearly we see ptA  is also a symmetric matrix but it is not equal 
to A. Thus one can by pseudo transpose obtain from a 
symmetric matrix another new symmetric matrix. 
 
Now using the notion of pseudo transpose we can now define a 
symmetric matrix. 
 
DEFINITION 2.2.4: Let A be a square matrix if ptA  the pseudo 
transpose is a symmetric matrix then A is also a symmetric 
matrix, but different from A. 
 
Example 2.2.13: Let  
 

A = 
0.5 0.3 0.7
0.4 1 0
0.8 0.9 0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a 3 × 3 fuzzy matrix. 
 

ptA  = 
0.1 0 0.7
0.9 1 0.3
0.8 0.4 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

is its pseudo transpose of A.  
Now let  

ptA  = 
0.1 0 0.7
0.9 1 0.3
0.8 0.4 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = B. 
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To find  

ptB  = 
0.5 0.3 0.7
0.4 1 0
0.8 0.9 0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Thus we see ( ) p
p

ttA  = A we can prove the following theorem 

for square matrices. 
 
THEOREM 2.2.1: Let  

A = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

aaa

aaa
aaa

"
###

"
"

21

22221

11211

 

be a n × n square matrix. Then ( ) p
p

ttA  = A. 

 
Proof: Given  

A = 

11 12 1n 1 1n

21 22 2n 1 2n

n1 n2 nn 1 nn

a a a a
a a a a

a a a a

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # # #
"

 

 

ptA = 

nn 2n 1n

nn 1 2n 1 1n 1

n2 22 12

n1 21 11

a a a
a a a

a a a
a a a

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # #
"
"

. 

Now consider  

( ) p
p

ttA  =

11 12 1n 1 n1

21 22 2n 1 n2

n1 n2 nn 1 nn

a a a a
a a a a

a a a a

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # # #
"

 = A.  
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Hence the claim. 
 
THEOREM 2.2.2: Let A be a n × n symmetric matrix then ptA is 
another symmetric matrix. 
 
Proof: Given  

A = 

11 12 1n

21 22 2n

n1 n2 nn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

is a symmetric matrix as aij = aji (i ≠ j) Now 
 

ptA  = 

nn n 1n 2n 1n

2n 2n 1 22 12

1n 1n 1 12 11

a a a a

a a a a
a a a a

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# # # #

"
"

.  

 
Clearly as aij = aji this is also a symmetric matrix.  
Clearly it is easy to verify that if we see ptA is also a symmetric 
matrix different from A. 
 
Now having defined the notion of pseudo symmetry and 
obtained the notion of symmetry in terms of pseudo symmetry 
we proceed on to apply these concepts in case of fuzzy 
supermatrices. We have already defined the notion of symmetric 
fuzzy supermatrix; for which we said we have to partition only a 
fuzzy symmetric matrix and obtain several fuzzy super 
symmetric matrices from a given fuzzy symmetric matrix. 
 Now to define the fuzzy pseudo symmetric supermatrix we 
need to define the notion of pseudo partition of a square matrix 
for that alone can lead to the notion of pseudo symmetric 
supermatrix. We follow some sort of order in the pseudo 
partition and when the matrix is a rectangular one we cannot 
define the notion of pseudo partition for we do not have the 
notion of symmetric matrix or pseudo symmetric matrix in case 
of rectangular matrices. 
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DEFINITION 2.2.5: Let A be a square n × n matrix i.e., A = (aij), 
1 < i < n and 1 < j < n. 
 

A = 

11 12 1 1 1

21 22 2 1 2

11 12 1 1 1

1 2 1

n n

n n

n n n n n n

n n nn nn

a a a a
a a a a

a a a a
a a a a

−

−

− − − − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # # #

"

 

 
be a n × n square matrix. The pseudo partition is carried out in 
this manner. Suppose we partition between r and [r+1]th 
column then we partition the row between the n – (r – 1)th row 
and (n – r)th row. Conversely if we partition the row between 
the rows s and (s+1)th row then we partition the column 
between [n – (s – 1)]th column and (n – s)th column. Such form 
of partitioning a square matrix is known as the pseudo 
partition. 
 
 First we illustrate this by few examples. 
 
Example 2.2.14: Let A be a 7 × 7 matrix. 
 

A = 

0 1 2 5 0 2 1
1 1 2 0 7 4 3
0 1 1 0 1 0 1
2 1 2 1 2 1 0
3 5 1 0 0 1 1
1 0 1 1 2 2 0
0 1 0 1 2 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We partition between the 2nd and 3rd column; then we have to 
carry out the partition between the 5th and 6th row. Similarly for 
partitioning between 2nd and 3rd row we have to carry out a 
partition of the 5th and 6th column. Only this partition we call as 
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a pseudo partition of the square matrix. Now we show yet 
another example to show that in general all partitions are not 
pseudo partitions but all pseudo partitions are partitions seen by 
the following example. 
 
Example 2.2.15: Let A be a 5 × 5 matrix 
 

A = 

0 1 2 3 4
4 2 1 4 7
0 1 0 1 0
2 1 2 8 6
1 2 0 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
This clearly a partition which is not a pseudo partition of A. 
Now we proceed on to give yet another example to show that 
certain partition of a square matrix can always be both a 
partition as well as a pseudo partition. 
 
Example 2.2.16: Let A be a 6 × 6 matrix. 
 

A = 

3 0 1 2 5 0
2 2 0 1 0 1
1 0 1 0 1 0
0 1 1 1 1 1
1 0 1 2 3 4

5 6 7 8 9 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
This is both a partition and a pseudo partition i.e., it can be 
performed as a partition which will result in a pseudo partition. 
A condition for it is stated below as a theorem. 
 
THEOREM 2.2.3: Let A be a 2n × 2n matrix. A partition of A by 
dividing the n and (n+1)th row or (n and (n+1)th column) and 
dividing (2n – (n – 1))th and (2n – n)th column or (2n –(n – 1)th 
and (2n – n)th row) is always a pseudo partition. 
 



 131

Proof:  Obvious by the very construction of the partition. 
 
The interested reader can find nice characterization theorem to 
show conditions under which a partition is a pseudo partition. 
 
Example 2.2.17: Consider the matrix A; 

 

A = 

1 2 3 0 4
5 1 0 2 1
2 4 1 0 2
1 0 5 1 0

0 2 1 1 5

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
This is a partition for we have partitioned between the 3rd and 4th 
column and between the 2nd and 3rd row. This is also a pseudo 
partition. We see if we pseudo partition a symmetric matrix it 
need not in general be a pseudo symmetric matrix.  
 
THEOREM 2.2.4: Let A be a symmetric matrix. A pseudo 
partition of A in general does not make A; a pseudo symmetric 
supermatrix. 
 
Proof: We prove this by an example first, though we can also 
prove the result for any n × n symmetric matrix. 
 
Take the symmetric matrix. 
 

A = 

0 1 2 3 4
1 1 0 1 0
2 0 2 1 2
3 1 1 3 1
4 0 2 1 5

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Now make a pseudo partition on A by dividing (or partitioning) 
at the 2nd and 3rd column and at the [5 – (2 – 1)] = 4th row and 
the [5 – (3 – 1)] = 3rd row. Clearly A is not a pseudo symmetric 
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matrix only a supermatrix which is neither super symmetric nor 
pseudo super symmetric. We make yet another theorem. 
 
THEOREM 2.2.5: Let A be any pseudo symmetric matrix. A 
symmetric partition of A does not in general make A to be super 
symmetric matrix. 
 
Proof: We show this by an example. 
 

A = 

0 1 2 3 4
1 2 4 5 3

7 6 1 4 2
3 9 6 2 1
1 3 7 1 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
is a pseudo symmetric matrix. We give a symmetric partition of 
A i.e., 

As = 

0 1 2 3 4
1 2 4 5 3

7 6 1 4 2
3 9 6 2 1
1 3 7 1 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

As is not a symmetric supermatrix with the given partition hence 
the claim. 
 
 Thus we have seen in general a symmetric matrix cannot be 
made by a pseudo symmetric partition into a symmetric matrix 
or equally a pseudo symmetric matrix cannot be made into a 
symmetric matrix by a symmetric partition. Thus we see a 
pseudo symmetric matrix can be easily made into a pseudo 
symmetric supermatrix by a pseudo symmetric partition and a 
symmetric matrix can be made into a symmetric supermatrix by 
a symmetric partition.  
 
Having made such observations we proceed onto illustrate this 
by some simple examples. 
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Example 2.2.18: Let A be a pseudo symmetric matrix. 
 

A =

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
We have some of the pseudo partitions on A so that A is a 
pseudo symmetric supermatrix.  
 

1
sA  =

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

2
sA  = 

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
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3
sA  = 

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

4
sA  = 

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

5
sA  = 

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

6
sA  = 

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
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7
sA  = 

0 1 2 3 4 5 6
1 0 1 2 7 1 5
2 5 6 8 9 7 4
1 4 2 3 8 2 3

6 2 7 2 6 1 2
5 3 2 4 5 0 1
0 5 6 1 2 1 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
Thus we have given in this example 7 pseudo symmetric 
supermatrices. 
 
Next we proceed onto give an example of a symmetric 
supermatrix. 
 
Example 2.2.19: Let A be a 6 × 6 symmetric matrix. 
 

A = 

2 1 0 1 2 5
1 6 8 2 1 0
0 8 4 3 9 7
1 2 3 0 6 4
2 1 9 6 10 5

5 0 7 4 5 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1
sA  = 

2 1 0 1 2 5
1 6 8 2 1 0
0 8 4 3 9 7
1 2 3 0 6 4
2 1 9 6 10 5

5 0 7 4 5 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
This is a symmetric supermatrix of order 6. 
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2
sA  = 

2 1 0 1 2 5
1 6 8 2 1 0
0 8 4 3 9 7
1 2 3 0 6 4
2 1 9 6 10 5

5 0 7 4 5 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

3
sA  = 

2 1 0 1 2 5
1 6 8 2 1 0
0 8 4 3 9 7
1 2 3 0 6 4
2 1 9 6 10 5

5 0 7 4 5 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

4
sA  = 

2 1 0 1 2 5
1 6 8 2 1 0
0 8 4 3 9 7
1 2 3 0 6 4
2 1 9 6 10 5

5 0 7 4 5 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We can make several such symmetric supermatrices.  
 
The following interesting problems are proposed for the reader. 
 

1. Given any n × n symmetric matrix A find the number of 
partition on it so that A is a symmetric supermatrix. 

 
2. Given any n × n pseudo symmetric matrix Ap find the 

number of pseudo partition on Ap so that Ap is a pseudo 
symmetric supermatrix. 

 
Example 2.2.20: Let us consider the pseudo symmetric matrix 
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A = 

1 0 2 5 7
3 4 9 3 5
1 1 8 9 2

5 3 1 4 0
0 5 1 3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
Any pseudo symmetric partition of A will make A always a 
pseudo symmetric supermatrix. 

But a partition will not always make a symmetric matrix 
into a symmetric supermatrix; this is illustrated by the following 
example 
 
Example 2.2.21: Let A be a symmetric 7 × 7 matrix. 
 

A = 

6 2 1 0 5 4 9
2 3 0 1 0 1 0
1 0 4 1 1 1 2
0 1 1 5 2 2 3
5 0 1 2 8 3 1
4 1 1 2 3 9 7
9 0 2 3 1 7 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now consider a partition of A between the rows 2 and 3 and 
between the columns 4 and 5. Let As be the resulting 
supermatrix. 
 

As = 

6 2 1 0 5 4 9
2 3 0 1 0 1 0
1 0 4 1 1 1 2
0 1 1 5 2 2 3
5 0 1 2 8 3 1
4 1 1 2 3 9 7
9 0 2 3 1 7 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Clearly As is not symmetric through A is a symmetric matrix. 
Thus every partition of a symmetric matrix need not in general 
lead to a symmetric supermatrix. Thus we call a partition to be a 
symmetric partition if A is itself only a square matrix. For a 
symmetric partition in general cannot be defined on a 
rectangular matrix. So if A is any square matrix, we say a 
partition of A is said to be a symmetric partition of A if the r 
and (r+1)th row is partitioned for A then it is a necessity that r 
and (r + 1)th column is partitioned 2 ≤ r ≤ n – 1. Only such 
partitions will be known as a symmetric partitions. 
 It is important to note that all symmetric partitions are 
partitions but every partition in general need not be a symmetric 
partition. 
 We just illustrate this by an example 
 
Example 2.2.22: Let A be a 6 × 6 matrix 
 

A = 

1 2 3 4 5 6
7 8 9 0 1 2
1 1 0 1 0 2
3 3 1 0 3 2
5 7 9 1 4 7
6 8 0 2 5 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Let us partition A between the 3rd and 4th row and between the 
2nd and 3rd column. Let the resulting supermatrix be denoted by 
As. 

As = 

1 2 3 4 5 6
7 8 9 0 1 2
1 1 0 1 0 2
3 3 1 0 3 2
5 7 9 1 4 7
6 8 0 2 5 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Clearly the partition is not symmetric by the very definition of 
the partition to be a symmetric partition. 
 
Thus we have the following nice theorem. 
 
THEOREM 2.2.6: Let A be a n × n symmetric matrix. If P is any 
symmetric partition of A then the supermatrix As is a symmetric 
supermatrix. 
 
Proof:  Given A is a symmetric matrix. So if A = (aij) then aij = 
aji, 1 ≤ i ≤ n and 1 ≤ j ≤ n; i ≠ j.  
 

A = 

11 12 13 1n

21 22 23 2n

n1 n2 n3 nn

a a a a
a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # # #
"

 

 
Any symmetric partition of A given by As where 
 

As = 

11 12 1t

21 22 2t

t1 t 2 tt

A A A
A A A

A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

. 

 
Here A11, A12, …, Att are submatrices of As. Clearly Aii are 
symmetric square matrices on the diagonal of the supermatrix 
As; i = 1, 2, …, t. 
 
Further Aij = (Aji) i ≠ j, 1 ≤ i, j ≤ t. Thus As is a super symmetric 
matrix as A is given to be a symmetric matrix. Hence the claim. 

All these concepts defined in the case of matrices can be 
carried out in case of fuzzy matrices as we have not used any 
form of multiplication or addition or any form of operations 
using two matrices. Thus the reader can easily define the notion 
of symmetric fuzzy matrix pseudo symmetric fuzzy matrix as 
well as the notion of super symmetric fuzzy matrix and the 
pseudo symmetric super fuzzy matrix. 
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2.3 Special Operations on Fuzzy Super Special Row and 
Column Matrix  
 
Now we proceed onto define the minor product of a special type 
of fuzzy super special row matrix and its transpose. To this end 
we have to define the notion of fuzzy super special row matrix 
and fuzzy super special column matrix. 
 
DEFINITION 2.3.1: A fuzzy matrix of the form 
 

X = [X1 | X2 … | Xn] 
 
will be called a fuzzy super special row matrix if X1, X2, …, Xn 
are submatrices having only the same number of rows but may 
have different number of columns. 
 
We illustrate this by the following example. 
 
Example 2.3.1: Let X = [X1 | X2 | X3 | X4] = [X1 X2 X3 X4]  be a 
fuzzy super row special matrix where  
 

X1 = 
0.2 1 0 1 0.7
0.5 0 1 0 0.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

,  

 

X2 = 
1 0
0 0.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

,  X3 = 
0.1 0.7 0.3
0 1 0.8

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and  

X4 = 
1 0 0.2 0.6 1 0.2
1 0 0.5 0.7 1 0.3

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
Example 2.3.2: Let X = [X1 | X2 | X3] where  
 

X1 = 
0 1

0.5 0.2
0.3 0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  X2 = 
0 1

0.5 0.2
0.3 0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  
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X3 = 
0 1 0 0.8 1

0.3 0 0.9 0.2 0.4
0.6 1 0.5 0.6 0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
X is a fuzzy super special row matrix. 
 
Example 2.3.3: X = [X1 | X2] where  
 

X1 = 

0.3 0.2
0.4 1
0.2 0
0.7 0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and  

X2 = 

1
0.8
0.1
0.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
X is a fuzzy super special row matrix. 
 
Now we proceed onto define the notion of fuzzy super special 
column matrix. 
 
DEFINITION 2.3.2: Let  

 

Y = 

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

m

Y
Y

Y

 

 
be a fuzzy supermatrix where Y1, Y2, …, Ym are fuzzy 
submatrices of Y and each of the Yi’s have the same number of 
columns but with many different rows. We call Y a fuzzy special 
super column matrix. 
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We illustrate this by the following example. 
 
Example 2.3.4: Let  

Y = 

0.2 0.7
0.1 0.5
0.6 0.2
1 1

0.1 0.5
0.9 0.3
0.1 1
0 0

0.7 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   

 

= 
1

2

3

Y
Y
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
is a super fuzzy special column matrix. Y has only two columns 
but Y1 is a fuzzy matrix with 2 columns and 2 rows. Y2 is a 
fuzzy matrix with 2 columns but with five rows and so on. 
 
Example 2.3.5: Let  

Y = 

0.3 0.2 0.1 0.5
1 1 1 1

0.2 0.2 0.3 0.7
0 0 0 0
1 0 0.7 0.2

0.7 0.6 0.8 1
0.1 1 0.9 1
1 0 1 1
0 0.5 0.2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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where Y is a fuzzy super special column matrix. This has only 
four columns and 9 rows contributed by the three fuzzy 
submatrices Y1, Y2 and Y3 where  
 

Y = 
1

2

3

Y
Y
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Example 2.3.6: Let  
 

Y = 
0.3 0.2 0.1 1 0
0.6 0.7 0.8 0.9 1
1 0.2 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

 

= 1

2

Y
Y

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where  
 

Y1 = 
0.3 0.2 0.1 1 0
0.6 0.7 0.8 0.9 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and  
 

Y2 = [1 0.2 1 0 1]. 
 
Y has five columns but only 3 rows. Y is a fuzzy super special 
column matrix. 

Now we see if X is a fuzzy super special row matrix with 
say n rows and  

Xs = [X1 X2 … Xt] 
 
where X1, X2, …, Xt are fuzzy submatrices each of them having 
only n rows but varying number of columns. 
 Now the transpose of X denoted by  
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Xt = [X1 X2 … Xt]t = 

t
1
t
2
t
3

t
t

X
X
X

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
. 

 
Now Xt is a fuzzy super special column matrix with n columns 
but different number of rows. 

Thus we see the transpose of a fuzzy super special row 
matrix is a fuzzy super special column matrix and vice versa. 
 
Now we illustrate this by the following example 
 
Example 2.3.7: Let 
 

X = 
0.3 1 0.4 1 0.3 0.2 0.1 0 0 1 0.1
0.1 1 0.6 0.7 0.8 1 0 1 0 0.3 1
0.2 0 1 0.5 1 0.9 1 0.2 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy super special row matrix.  

Now the transpose of X is 
 

Xt = 

0.3 0.1 0.2
1 1 0

0.4 0.6 1
1 0.7 0.5

0.3 0.8 1
0.2 1 0.9
0.1 0 1
0 1 0.2
0 0 0
1 0.3 1

0.1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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is a fuzzy super special column matrix. 
 
Example 2.3.8: Let  
 

Y = 

0.3 0.1 0.2
0.3 0.5 1
1 0 1
0 1 0

0.3 0.8 0.9
0.1 0 1
1 1 1
0 0 0

0.3 0.2 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
be a fuzzy super special column matrix. Let Yt be the transpose 
of Y 
 

Yt = 
0.3 0.3 1 0 0.3 0.1 1 0 0.3
0.1 0.5 0 1 0.8 0 1 0 0.2
0.2 1 1 0 0.9 1 1 0 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now we define a special product called the minor product 
moment of a fuzzy super special column matrix and fuzzy super 
special row matrix. 
 
Example 2.3.9: Let  
 

X = 
0.2 0.3 0.4 0.3 0.2 0.3
0.1 0.4 1 1 0.1 0.2
0.2 0.1 0.2 0.4 0.3 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy super special row matrix. Now  
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Xt = 

0.2 0.1 0.2
0.3 0.4 0.1
0.4 1 0.2
0.3 1 0.4
0.2 0.1 0.3
0.3 0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is its transpose a fuzzy super special column matrix.  
 
Now 
 

X.Xt = 
0.2 0.3 0.4 0.3 0.2 0.3
0.1 0.4 1 1 0.1 0.2
0.2 0.1 0.2 0.4 0.3 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 .

0.2 0.1 0.2
0.3 0.4 0.1
0.4 1 0.2
0.3 1 0.4
0.2 0.1 0.3
0.3 0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

= max 
0.2 0.3

0.2 0.1 0.2
max min 0.1 0.4

0.3 0.4 0.1
0.2 0.1

⎡ ⎧⎡ ⎤
⎡ ⎤⎢ ⎪⎢ ⎥

⎨ ⎢ ⎥⎢ ⎢ ⎥ ⎣ ⎦⎪⎢ ⎢ ⎥⎣ ⎦⎩⎣

 , 

 

[ ]
0.4

max min 1 0.4 1 0.2
0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

, 

 
0.3 0.2 0.3 0.3 1 0.4

max min 1 0.1 0.2 0.2 0.1 0.3
0.4 0.3 0.2 0.3 0.2 0.2

⎤⎫⎡ ⎤ ⎡ ⎤
⎥⎪⎢ ⎥ ⎢ ⎥

⎬⎥⎢ ⎥ ⎢ ⎥
⎪⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎭⎦
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= max {max min (aij, bjk), max min (cit dtk), max min (pij qjk)} 
(defined earlier) (pages 88-9 of this book). 
 

= max 
0.3 0.3 0.2 0.4 0.4 0.2 0.3 0.3 0.3
0.3 0.4 0.1 , 0.4 1 0.2 , 0.3 1 0.4
0.2 0.1 0.2 0.2 0.2 0.2 0.3 0.4 0.4

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 

= 
0.4 0.4 0.3
0.4 1 0.4
0.3 0.4 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
XXt is defined as the minor product moment of X. 
 
Example 2.3.10: Let  

 

Y = 

0.3 0.1 0.4 0.5
0.1 1 1 0
1 0 0.7 0.2

0.3 1 0.1 0.5
0.2 0 0.2 0.6
0.1 0.8 1 0.7
0 0.2 1 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy super special column matrix. Yt is the fuzzy super 
special row matrix. 
 

max{max min{Yt, Y}}  
 

= max{max min

0.3 0.1 1 0.3 0.2 0.1 0
0.1 1 0 1 0 0.8 0.2
0.4 1 0.7 0.1 0.2 1 1
0.5 0 0.2 0.5 0.6 0.7 0.2

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

 ×   
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0.3 0.1 0.4 0.5
0.1 1 1 0
1 0 0.7 0.2

0.3 1 0.1 0.5
0.2 0 0.2 0.6
0.1 0.8 1 0.7
0 0.2 1 0.2

⎫⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎬⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎭

 

 

= max{max min [ ]

0.3
0.1

, 0.3 0.1 0.4 0.5
0.4
0.5

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

, 

0.1 1
1 0 0.1 1 1 0

max min ,
1 0.7 1 0 0.7 0.2
0 0.2

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ⎡ ⎤⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

,  

 
0.3 0.2 0.1 0 0.3 1 0.1 0.5
1 0 0.8 0.2 0.2 0 0.2 0.6

max min ,
0.1 0.2 1 1 0.1 0.8 1 0.7
0.5 0.6 0.7 0.2 0 0.2 1 0.2

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

,  

 
= max 

 
0.3 0.1 0.3 0.3 1 0.1 0.7 0.2 0.3 0.3 0.2 0.3
0.1 0.1 0.1 0.1 0.1 1 1 0 0.3 1 0.8 0.7

, ,
0.3 0.1 0.4 0.4 0.7 1 1 0.2 0.2 0.8 1 0.7
0.3 0.1 0.4 0.5 0.2 0 0.2 0.2 0.3 0.7 0.7 0.7

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
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= 

1 0.3 0.7 0.3
0.3 1 1 0.7
0.7 1 1 0.7
0.3 0.7 0.7 0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

 
is the minor product moment of the transpose super fuzzy 
special column matrix Y, with the super fuzzy special column 
matrix. It is very important to note that neither Y nor Yt is a 
symmetric super fuzzy special column matrix or row matrix but 
Yt Y is a symmetric fuzzy matrix. It is nice to note the resultant 
of the product is not super symmetric fuzzy matrix only a 
symmetric fuzzy matrix. Likewise we see the minor product 
moment of a super fuzzy special row vector X with its transpose 
is a symmetric fuzzy matrix which is not a supermatrix. Thus 
we see if X is a super fuzzy special row matrix with n rows then 
XXt is just a n × n symmetric fuzzy matrix. Further if Y is a 
super fuzzy special column matrix with m rows then YtY is a m 
× m symmetric fuzzy matrix. This special product yields more 
and more symmetric fuzzy matrices of desired order. 
 
Now suppose we have super fuzzy special column matrix Y 
with m columns and a super fuzzy special row matrix X with m-
rows then we can define their product YX. Let  
 

1

2

3

t

Y
Y

Y
Y
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
where Y is a super fuzzy special column matrix with m columns 
and the total number of rows in Y will be number of rows in Y 
i.e., it will be the number of rows in Y1 + number of rows in Y2 
+ … + number of rows in Yt. Suppose the total number of rows 
in Y before partition be m. Suppose X = [X1 X2 … Xr] where X 
is a super fuzzy special row  matrix with m rows then the 
number of columns in X before partitioning will be the number 
of columns in X1 + number of columns in X2 + … + number of 
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columns in Xr. Suppose the number of columns in X be n, then 
the product YX is a super  fuzzy matrix with m rows and n 
columns with tr number of fuzzy submatrices. First we illustrate 
this by an example. 
 
Example 2.3.11: Let 

0.3 1 0
0.2 0.4 1
1 0 0

Y 0 1 0
0.2 0.5 1
0.7 0 0.8
0.9 1 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a fuzzy super special column matrix which has 3 fuzzy sub 
matrices and 7 rows before partitioning. Further Y has only 3 
columns. Let  

 
0.2 0.6 1 0.5

X 1 0.7 0 0.6
0 1 0.2 0.8

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a super fuzzy special row matrix with two fuzzy submatrices 
with 3 rows and X having 4 columns before partitioning. Major 
special product of Y with X given by  

 
0.3 1 0
0.2 0.4 1

0.2 0.6 1 0.51 0 0
YX 1 0.7 0 0.60 1 0

0 1 0.2 0.80.2 0.5 1
0.7 0 0.8
0.9 1 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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= 

0.2 0.6 1 0.5
0.3 1 0 0.3 1 0

1 0.7 0 0.6
0.2 0.4 1 0.2 0.4 1

0 1 0.2 0.8

1 0 0 0.2 1 0 0 0.6 1 0.5
0 1 0 1 0 1 0 0.7 0 0.6

0.2 0.5 1 0 0.2 0.5 1 1 0.2 0.8

0.2
0.7 0 0.8

1
0.9 1 0.4

0

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡
⎡ ⎤
⎢ ⎥
⎣ ⎦

0.6 1 0.5
0.7 0 0.8

0.7 0 0.6
0.9 1 0.4

1 0.2 0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

= 

1 0.7 0.3 0.6
0.4 1 0.2 0.8
0.2 0.6 1 0.5
1 0.7 0 0.6

0.5 1 0.2 0.8
0.2 0.8 0.7 0.8
1 0.7 0.9 0.6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We see YX is a fuzzy super matrix having six fuzzy sub 
matrices and its order is 7 × 4 before partitioning. Thus using 
major special product we can multiply fuzzy super special 
column matrix X with the fuzzy super special row matrix 
provided the number columns in X is equal to the number of 
rows in Y. Now we can also multiply X

t
 with Y

t
. We take the 

same example.  
 
Example 2.3.12: Taking X and Y from above example we get  
 

t

0.2 1 0
0.6 0.7 1

X
1 0 0.2

0.5 0.6 0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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and 

t

0.3 0.2 1 0 0.2 0.7 0.9
Y 1 0.4 0 1 0.5 0 1

0 1 0 0 1 0.8 0.4

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.  

 

t t

0.2 1 0
0.3 0.2 1 0 0.2 0.7 0.9

0.6 0.7 1
X Y 1 0.4 0 1 0.5 0 1

1 0 0.2
0 1 0 0 1 0.8 0.4

0.5 0.6 0.8

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

 

[ ] [ ] [ ]
0.3 0.2 1 0 0.2 0.7 0.9

0.2 1 0 1 0.4 0.2 1 0 0 1 0.5 0.2 1 0 0 1
0 1 0 0 1 0.8 0.4

0.6 0.7 1 0.3 0.2 0.6 0.7 1 1 0 0.2 0.6 0.7 1
1 0 0.2 1 0.4 1 0 0.2 0 1 0.5 1 0

0.5 0.6 0.8 0 1 0.5 0.6 0.8 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0.7 0.9
0.2 0 1

0.5 0.6 0.8 0.8 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

1 0.4 0.2 1 0.5 0.2 1
0.7 1 0.6 0.7 1 0.8 0.7
0.3 0.2 1 0 0.2 0.7 0.9
0.6 0.8 0.5 0.6 0.8 0.8 0.6

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
= (YX)t. 

 
[We have used max min operation in the above product].  
 

Next we see when the product of fuzzy supermatrices are 
compatible.  
 
Before we make a formal definition we give an illustrative 
example. 
 
Example 2.3.13: Let A and B be any two fuzzy super matrices 
where 
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1 0.2 1 0.3 0.2 1

0.2 0.3 1 0.2 1 0.2
1 0.4 0.2 0.3 0.2 0.2

0.4 1 0.3 0.2 1 1A
0.2 0.3 0.2 0.3 0.2 0.3
0.3 0.4 1 1 0.4 0.2
0.2 1 0.2 0.2 1 0.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and 
 

1 0.3 0.2 1 0.3 0.8 0.1 0.2 0.5 1
0.3 0.4 1 0.2 1 0 1 0 0.2 0
1 1 0 0 0.4 0.5 0 1 0.4 0.7

B
1 0.2 1 0.7 0.7 0.2 0.5 1 0.2 0.3
0 0.1 0.5 1 0.3 0.2 0.3 0.3 0.5 0.4
1 0.4 0.2 0.5 0.5 0.4 1 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now we define the minor product of these fuzzy super matrices. 

 
Max {max min A.B} =  

 
max {max min 

[ ]

1
0.2
1

0.4 1 0.3 0.2 1 0.3 0.8 0.1 0.2 0.5 1
0.2
0.3
0.2

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

,  
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0.2 1
0.3 1
0.4 0.2

0.3 0.4 1 0.2 1 0 1 0 0.2 01 0.3
1 1 0 0 0.4 0.5 0 1 0.4 0.70.3 0.2

0.4 1
1 0.2

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

, 

 
0.3 0.2 1
0.2 1 0.2
0.3 0.2 0.2 1 0.2 1 0.7 0.7 0.2 0.5 1 0.2 0.3
0.2 1 1 0 0.1 0.5 1 1 0.3 0.2 0.3 0.5 0.4
0.3 0.2 0.3 1 0.4 0.2 0.5 0.5 0.4 1 0 1 0
1 0.4 0.2

0.2 1 0.3

⎫⎧ ⎫⎡ ⎤
⎪⎪ ⎪⎢ ⎥
⎪⎪ ⎪⎢ ⎥
⎪⎪ ⎪⎢ ⎥ ⎡ ⎤ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎪⎢ ⎥ =⎨ ⎬⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪⎪⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎪⎢ ⎥
⎪ ⎪⎪⎢ ⎥
⎪ ⎪⎪⎢ ⎥
⎪ ⎪⎣ ⎦ ⎪⎩ ⎭⎭

 
 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ][ ] [ ][ ] [ ][ ]

1 1 1
1 0.3 0.2 1 0.3 0.8 0.1 0.2 0.5 1

0.2 0.2 0.2

1 1 1
0.4 0.4 0.4

1 0.3 0.2 1 0.3 0.8 0.1 0.2 0.5 1
0.2 0.2 0.2
0.3 0.3 0.3
0.2 1 0.3 0.2 1 0.2 0.3 0.8 0.2 0.1 0.2 0.5 1

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢⎣ ⎦

,

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

⎥⎪⎩
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.2 1 .3 .4 1 .2 .2 1 1 0 .2 1 1 0 .2 0

.3 1 1 1 0 0 .3 1 .4 .5 .3 1 0 1 .4 .7

.4 .2 .4 .2 .4 .2
1 .3 .3 .4 1 .2 1 .3 1 0 1 .3 1 0 .2 0
.3 .2 1 1 0 0 .3 .2 .4 .5 .3 .2 0 1 .4 .7
.4 1 .4 1 .4 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ]

,

.3 .4 1 .2 1 0 1 0 .2 0
1 .2 1 .2 1 .2

1 1 0 0 .4 .5 0 1 .4 .7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
1 .2 1 .7 .7 .2 .5 1 .2 .3

.3 .2 1 .3 .2 1 .3 .2 1
0 .1 .5 1 1 .3 .2 .3 .5 .4

.2 1 .2 .2 1 .2 .2 1 .2
1 .4 .2 .5 .5 .4 1 0 1 0

.3 .2 .2 .3 .2 .2
1 .2 1 .7

.2 1 1 .2 1 1
0 .1 .5 1

.3 .2 .3 .
1 .4 .2 .5

1 .4 .2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

[ ] [ ] [ ]

.3 .2 .2
.7 .2 .5 1 .2 .3

.2 1 1
1 .3 .2 .3 .5 .4

3 .2 .3 .3 .2 .3
.5 .4 1 0 1 0

1 .4 .2 1 .4 .2

1 .2 1 .7 .7 .2 .5 1 .2 .3
.2 1 .3 0 .1 .5 1 .2 1 .3 1 .3 .2 1 .3 .2 .3 .5 .4

1 .4 .2 .5 .5 .4 1 0 1 0

⎡

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎫⎤
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎬⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎭

 

= 

1 0.3 0.2 1 0.3 0.8 0.1 0.2 0.5 1
0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
1 0.3 0.2 1 0.3 0.8 0.1 0.2 0.5 1

0.4 0.3 0.2 0.4 0.3 0.4 0.1 0.2 0.4 0.4max
0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
0.3 0.3 0.2 0.3 0.3 0.3 0.1 0.2 0.3 0.3
0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥⎪
⎨⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎣ ⎦⎩

, 

 



 156

1 1 0.2 0.2 0.4 0.5 0.2 1 0.4 0.7
1 1 0.3 0.2 0.4 0.5 0.3 1 0.4 0.7

0.3 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2
0.3 0.4 1 0.2 1 0.3 1 0.3 0.3 0.3
0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2
1 1 0.4 0.2 0.4 0.5 0.4 1 0.4 0.7

0.3 0.4 1 0.2 1 0.2 1 0.2 0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎣ ⎦

⎥
⎥

, 

 
1 0.4 0.3 0.5 0.5 0.4 1 0.3 1 0.3

0.2 0.2 0.5 1 1 0.3 0.2 0.3 0.5 0.4
0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.2 0.3
1 0.4 0.5 1 1 0.4 1 0.3 1 0.4

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1 0.2 1 0.7 0.4 0.3 0.5 1 0.3 0.4

0.3 0.3 0.5 1 1 0.3 0.3 0.3 0.5 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎣ ⎦

⎫
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪⎥
⎪⎥
⎪⎭

 

 

= 

1 1 0.3 1 0.5 0.8 1 1 1 1
1 1 0.5 1 1 0.5 0.3 1 0.5 0.7
1 0.4 0.4 1 0.4 0.8 0.4 0.3 0.5 1
1 0.4 1 1 1 0.4 1 0.3 1 0.4

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1 1 1 0.7 0.4 0.5 0.5 1 0.5 0.7

0.3 0.4 1 1 1 0.3 1 0.3 0.5 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
 Thus using these max min rules we operate with the super 
fuzzy matrices. All super matrix properties true for fuzzy super 
matrices can be carried out for the only simple difference 
between a super matrix and the fuzzy super matrix is that fuzzy 
super matrices take their entries from the unit interval [0,1] or at 
times from the set {–1,0,1}. We should keep in mind all fuzzy 
super matrices are super matrices only all super matrices in 
general are not fuzzy super matrices.  
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Example 2.3.14: For instance if  
 

S = 

3 7 8 9 1 2 3
0 1 5 8 4 2 9
9 0 4 2 1 0 9
7 4 0 1 2 7 4
3 7 8 4 19 1 14

10 4 9 11 25 8 19

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a super matrix but is not a fuzzy super matrix. We give yet 
another working with super fuzzy matrices. 
 
Example 2.3.15: Let A be a special row fuzzy matrix given by 
 

0 1 0 1 1 0 0 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0 0 1 0 1 0 0

A
0 0 0 1 1 1 0 1 0 0 0 0 0 1
1 1 0 0 0 1 0 0 1 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

Let  
X = [1 0 1 1]. 

X o A = [1 2 0 2 | 2 2 | 0 2 2 | 2 1 0 0 1] = B'. 
 
(This ‘o’ operator is nothing but usual matrix multiplication).  
Clearly we see B' is not a fuzzy super row vector so we 
threshold B' to make B' a fuzzy super row vector by replacing 
every entry by 1 if that entry is a positive integer and by 0 if it is 
a negative integer or zero. Thus B' after thresholding becomes  
 

[1 1 0 1 | 1 1 | 0 1 1 | 1 1 0 0 1]   =  B(say), 
B o AT  J [1 1 1 1]   =  X1   . 

 
'J denotes the resultant vector that has been thresholded'. 
Now  

X1 o A J [1 1 1 1 | 1 1 | 1 1 1 | 1 1 1 1 1] = B1.  
. 
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Once again B1 o AT will give only X1. This sort of 
multiplication of fuzzy matrices is being carried out in the 
working of the super FRM models dealt in chapter three of this 
book.  
 
Next we show how the product of a special fuzzy super column 
matrix is done which is also used in super FRM models. 
 
Example 2.3.16: Let P be a special super fuzzy column matrix 
given as follows : 

1 0 1 1 1
0 1 0 0 1
1 1 0 0 0
0 1 1 1 0
1 0 0 0 1

P 0 1 1 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

Suppose  
A = [1 0 1 | 1 1 1 0 | 1 0 | 1 0], AP = [4 3 4 3 2] 

after thresholding we get  
B = [1 1 1 1]. BPT = [4 2 2 | 3 2 3 1 | 1 1 | 1 2] 

after thresholding we get  
A1 = [1 1 1 | 1 1 1 1 | 1 1 | 1 1]. 

Now  
A1P = [5 5 4 3 5] J [1 1 1 1 1]  

and so on. 
 
We proceed on to work now with a diagonal super fuzzy matrix. 
 
Example 2.3.17: Let us consider FD a super diagonal fuzzy 
matrix 
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1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

 
Now we see we have only diagonal matrix entries and the other 
entries are zero also we observe that the diagonal matrix are also 
of arbitrary order. How does this fuzzy super diagonal matrix FD 
function? 
Suppose  

A = [1 0 0 1 | 0 1 0 1 | 0 0 1 0 0 1] 
then  

A o FD = [2 1 1 | 0 1 0 2 | 0 0 2 0 1] = B'(say)  
after thresholding we get  

B = [1 1 1 | 0 1 0 1 | 0 0 1 0 1] .  
Now  

B o T
DF  = [2 1 1 2 | 1 2 1 1 | 1 0 1 1 0 2]  

after thresholding we get  
A1 = [1 1 1 1 | 1 1 1 1 | 1 0 1 1 0 1]. 
A1 o FD = [3 1 2 | 1 2 2 3 | 1 0 2 1 3]  

after thresholding we get  
B1 = [1 1 1 | 1 1 1 1 | 1 0 1 1 1].  

B1 o T
DF  = [2 1 1 2 | 3 2 2 1 | 2 1 1 2 1 2], 

 after thresholding we get  
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A2 = [1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1]. 
A2 o FD = [3 1 2 | 1 2 2 3 | 2 2 2 2 3]  

after thresholding we get  
B2 = [1 1 1 | 1 1 1 1 | 1 1 1 1 1]. 

Thus our operation ends at this stage. 
 
 Now we proceed on to illustrate how a super fuzzy matrix 
functions. 
 
Example 2.3.18: Let X be a super fuzzy matrix given in the 
following; 
 

1 0 1 0 0 0 1 0 1 1 1 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 1
1 1 0 1 0 0 0 1 1 1 0 0 1 1
1 0 1 0 0 0 1 0 0 0 1 1 0 0
0 1 0 0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 1 1 1

X 0 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1
1 1 1 0 0 1 1 1 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 0 0 1 1 1 0 0 0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢=
⎢
⎢
⎢
⎢
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

. 

 
We show how this super fuzzy matrix operation is carried out. 
Let  

A = [0 1 | 0 0 1 1 0 0 | 1 0 1 0 0] 
A o X = [2 4 1 | 1 2 2 1 1 | 1 1 1 1 2 2];  

 
after thresholding we get  
 

B = [1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1] . 
B o XT = [7 4 | 8 5 4 6 6 | 3 3 3 7 5 7] 
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after thresholding we get 
 

A = [1 1 | 1 1 1 1 1 1 | 1 1 1 1 1]. 
A1 o X = [7 6 7 | 4 5 4 4 2 | 6 5 6 3 5 4] 

 
 after thresholding we get  
 

B1 = [1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1]. 
 
Thus we complete our calculations as we would obtain the same 
fuzzy row vector. Now we see this type of usual multiplication 
is carried out in case of all super FRM models. The only 
difference from the usual multiplication is that after each 
multiplication the resultant super row vector must be 
thresholded so that it is again a fuzzy super vector. 
 Next we proceed on to give yet another type of 
multiplication of fuzzy super matrices using the max min 
operator. 
 
Example 2.3.19: Let us consider a special fuzzy row matrix;  
 

0.1 1 0.3 1 0.7 0.7 0.2 0.3 1 0.4
1 0.2 0 0.3 0.2 0 0.5 0 0.3 1

M
0 0.7 1 0 0.1 1 0 0.4 1 0.8

0.4 0 0.6 0.5 0 0 0.4 0 0.5 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
Let us consider the fuzzy row vector A = [0.3 0 0.1 0.7]. Using 
max min operation we find  
 
 max min {A, M} =      max min (ai, mij)  

   =     [0.4 0.3 0.6 | 0.5 0.3 | 0.3 0.4 0.3 0.5 0.3]  
    =    B . 

 
Now max min {B, AT} or max min {A, BT} gives  
 

[0.5 0.4 0.6 0.6]  =  A1 
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using the max-min operation. Now using max min {A1, M} 
operation gives  
 

[0.4 0.6 0.6 | 0.5 0.5 | 0.6 0.4 0.4 0.6 0.6] = B1 (say). 
 
This procedure is repeated. 
 
Now we proceed on to show how a special super fuzzy column 
matrix works under min max operation.  
 
Example 2.3.20: Let T be a special column super fuzzy matrix 
which is given below; 
 

0.1 1 0.3 0.2 0
1 0.4 1 1 0.5

0.6 0 0.7 0 0.1
1 0.3 0 0.5 1
0 0.4 0.3 0.2 0.5

0.7 1 0.5 1 0
0.1 0 0.3 0.1 0.2

T
0.7 0.2 0.1 0.6 0.5
0.6 0.3 1 0 1
0.7 0.3 0.4 0.8 1
1 0 0.7 1 0.3

0.2 1 0.2 0.3 1
0.5 0.6 1 0.3 0.2
1 0 0.1 0 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Given A is fuzzy super row vector  
 

i.e., A = [1 0.3 0 | 0.2 1 | 0 0.1 0 1 | 1 0.3 0.2 0.5 1].  
 
We calculate max min {A, T} = 
 

[1 1 1 0.8 1] = B. 
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Now we calculate same max min {T, BT} to be  
 

[1 1 0.7 | 1 0.5 | 1 0.3 0.7 1 | 1 1 1 1 1] = A1.  
 

We can calculate using the fuzzy super row vector A1 the value 
max min {A1, T} and so on.      
  
Now we proceed on to show how the special fuzzy super 
diagonal matrix operation is carried out using the max min 
principle. 
 
Example 2.3.21: Let S be a special fuzzy super diagonal matrix. 
 

0.3 1 0.2 0.4 0 0 0 0 0 0 0 0
1 0.3 0 0.7 0 0 0 0 0 0 0 0

0.1 0.1 0.4 0 0 0 0 0 0 0 0 0
1 1 1 0.8 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0.3 0.2 0.5 0 0 0
0 0 0 0 0.7 1 0.1 0.3 1 0 0 0

S 0 0 0 0 0.2 0.3 1 0.4 0.6 0 0 0
0 0 0 0 0 0 0 0 0 1 0.7 0.3
0 0 0 0 0 0 0 0 0 0.1 1 0.2
0 0 0 0 0 0 0 0 0 0.7 0.3 0.9
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0.2 1 0

=

.3
0 0 0 0 0 0 0 0 0 0 0.7 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Suppose we are given the fuzzy super row vector  
 

A = [0.1 0 0.5 1 | 0.7 0.2 1 | 0.6 1 0.3 0.2 0.5 0.7]. 
 
Now using the max.min operation max min {A, S} gives  

 
[1 1 1 0.8 | 0.7 0.3 1 0.4 0.6 | 0.6 1 0.7] = B(say).  
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Now max min{S, BT} gives 
 

[1 1 0.4 1 0.7 0.7 1 0.7 1 0.7 0.7 1 0.7] = A1. 
 

A1 is also a fuzzy super row vector.  
 
We can proceed on in this way, to arrive at a resultant.  

Now we show how to work with a fuzzy super matrix using 
a min max operator. 
 
Example 2.3.22: Let V be a super fuzzy matrix given by  
 

0.3 0.2 1 0.6 0.7 0.1 0.8 0.3 0.2 0.5 0.7 1
0.8 0.5 0.3 1 1 0 0.7 0.2 0.4 0.3 1 0.3
1 0.2 0.4 0.6 0 1 0.8 0.8 0.7 0.5 0.7 1

0.5 0.3 1 0.5 0.9 0.3 0.1 0.9 0.4 0.1 0 0.8
0.2 1 0 0.7 1 0 1 0.1 0.3 1 0.7 1
1 0.3 0 0.8 0.7 0.3 0.6 1 0 0.3 0.2 0.9

0.3 1 0.6 1 0.3 0.8 0.2 0 1 0.8 1 0.1
0.2 0 0.8 0.7 1 1 0 0.4 1 0.5 0.7 1
0.7 0.2 0.1 0.6 0.8 0.9 1 0.7 0.6 1 0.8 0.4
0 1 0.7 1 0.2 0 0.7 0 0 0 0.9 0.6

0.9 0.7 0 0.7 0.8 0.8 1 0.5 0.4 0.8 0.9 0.2
0.1 1 0.9 0.5 1 0.6 0.5 0.1 0.2 0 0.6 0.1
0.3 1 0 0.6 0.3 0.9 1 0.7 1 0.8 0.6 1
1 0.7 0.6 1 0 0.6 0.3 0.8 0 0.5 1 0
0 0.6 0.5 0.8 1 0.2

.

0.1 0 1 0.6 0 1
0.8 1 0.2 0.1 0.3 0.6 1 0.7 0 0.2 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
Let  
 
X = [0.2 0.3 0.2 0.1 0 | 0.3 0.2 1 0.7 0.8 0.4 0.4 | 0.2 0.5 0.6 0.3]. 
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One can find min max{X, V}.  
If  

min max {X, V} = W 
 
then we find min max{W, VT} which will be a fuzzy super row 
vector.  

Now having described the working of super fuzzy matrices 
using min max operation we just state that these methods help 
in working with all types of super FAM described in chapter 
three of this book.  

Now we just show how we work with a special type of 
fuzzy super matrices which will be used when we use the super 
FCM models. 

We just show how a special type of fuzzy super diagonal 
matrix is defined, the authors say this matrix is a special type for 
the diagonal matrix are square matrix with a further condition 
that the diagonal elements of these matrices are zero.  
 
Example 2.3.23: Let W be the special fuzzy diagonal matrix 
 

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

W 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−

−
= −

0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Suppose we wish to work with the state fuzzy row vector  
 

X = [1 0 0 0 0 | 0 1 1 0 | 0 0 0 1 1 0]. 
 Now  

X o W = [0 1 –1 0 1 | 1 0 –1 0 | 1 0 1 1 0 1];   
 
After thresholding and updating X o W we get  
 

[1 1 0 0 1 | 1 1 1 0 | 1 0 1 1 1 1] = Y.  
 
Now we find Y o W and so on until we arrive at a fixed point.  
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Chapter Three 
 
 
 
 
 

INTRODUCTION TO NEW FUZZY SUPER 
MODELS  
 
 
 
In this chapter we introduce five new fuzzy super models and 
illustrate how they exploit the concept of supermatrices or 
special supervectors. These models will be very much useful 
when we have multi experts working with varying attributes. 
This chapter has five sections. In section one we introduce the 
notion of Super Fuzzy Relational Maps model, in section two 
the notion of Super Bidirectional Associative Memories 
(SBAM) models are introduced and, section 3 introduces the 
new notion of Super Fuzzy Associative Memories (SFAM). 
Section four gives the applications of these new super fuzzy 
models by means of illustrations. The final section introduces 
the new notion of super FCMs model.  

We just say a supermatrix is a fuzzy supermatrix if its 
entries are from the interval [0, 1]. The operations on these 
models are basically max min operations whenever the 
compatibility exists. 
 
 
3.1 New Super Fuzzy Relational Maps (SFRM) Model 
 
In this section for the first time we introduce the new notion of 
Super Fuzzy Relational Maps (SFRMs) models and they are 
applied to real world problems, which is suited for multi expert 
problems. When we in the place of fuzzy relational matrix of 
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the FRM (using single expert) use fuzzy supermatrix with multi 
experts we call the model as Super Fuzzy Relational Maps 
(SFRMs) model.  

This section has two subsections. In the first subsection we 
just recall the basic properties of fuzzy relational maps in 
subsection two we define new fuzzy super relational maps 
models.  
 
 
3.1.1 Introduction to Fuzzy Relational Maps (FRMs) 
 
In this section we just recall the definition and properties of 
FRM given in [231].  

In this section, we introduce the notion of Fuzzy Relational 
Maps (FRMs); they are constructed analogous to FCMs 
described and discussed in the earlier sections of [231]. In 
FCMs we promote the correlations between causal associations 
among concurrently active units. But in FRMs we divide the 
very causal associations into two disjoint units, for example, the 
relation between a teacher and a student or relation between an 
employee and employer or a relation between doctor and patient 
and so on. Thus for us to define a FRM we need a domain space 
and a range space which are disjoint in the sense of concepts. 
We further assume no intermediate relation exists within the 
domain elements or node and the range spaces elements. The 
number of elements in the range space need not in general be 
equal to the number of elements in the domain space. 

Thus throughout this section we assume the elements of the 
domain space are taken from the real vector space of dimension 
n and that of the range space are real vectors from the vector 
space of dimension m (m in general need not be equal to n). We 
denote by R the set of nodes R1,…, Rm of the range space, 
where R = {(x1,…, xm) ⏐xj = 0 or 1 } for j = 1, 2, …, m. If xi = 1 
it means that the node Ri is in the on state and if xi = 0 it means 
that the node Ri is in the off state. Similarly D denotes the nodes 
D1, D2, …, Dn of the domain space where D = {(x1,…, xn) ⏐ xj = 
0 or 1} for i = 1, 2,…, n. If xi = 1 it means that the node Di is in 
the on state and if xi = 0 it means that the node Di is in the off 
state. 
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Now we proceed on to define a FRM. 
 
DEFINITION 3.1.1.1: A FRM is a directed graph or a map from 
D to R with concepts like policies or events etc, as nodes and 
causalities as edges. It represents causal relations between 
spaces D and R. 

Let Di and Rj denote that the two nodes of an FRM. The 
directed edge from Di to Rj denotes the causality of Di on Rj 
called relations. Every edge in the FRM is weighted with a 
number in the set {0, ±1}. Let eij be the weight of the edge DiRj, 
eij ∈ {0, ±1}. The weight of the edge Di Rj is positive if increase 
in Di implies increase in Rj or decrease in Di implies decrease 
in Rj, i.e., causality of Di on Rj is 1. If eij = 0, then Di does not 
have any effect on Rj . We do not discuss the cases when 
increase in Di implies decrease in Rj or decrease in Di implies 
increase in Rj . 
 
DEFINITION 3.1.1.2: When the nodes of the FRM are fuzzy sets 
then they are called fuzzy nodes. FRMs with edge weights {0, 
±1} are called simple FRMs. 
 
DEFINITION 3.1.1.3: Let D1, …, Dn be the nodes of the domain 
space D of an FRM and R1, …, Rm be the nodes of the range 
space R of an FRM. Let the matrix E be defined as E = (eij) 
where eij is the weight of the directed edge DiRj (or RjDi), E is 
called the relational matrix of the FRM. 
 
Note: It is pertinent to mention here that unlike the FCMs the 
FRMs can be a rectangular matrix with rows corresponding to 
the domain space and columns corresponding to the range 
space. This is one of the marked difference between FRMs and 
FCMs. 
 
DEFINITION 3.1.1.4: Let D1, ..., Dn and R1,…, Rm denote the 
nodes of the FRM. Let A = (a1,…,an), ai ∈ {0, 1}. A is called the 
instantaneous state vector of the domain space and it denotes 
the on-off position of the nodes at any instant. Similarly let B = 
(b1,…, bm), bi ∈ {0, 1}. B is called instantaneous state vector of 
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the range space and it denotes the on-off position of the nodes 
at any instant ai = 0 if ai is off and ai = 1 if ai is on for i= 1, 
2,…, n. Similarly, bi = 0 if bi is off and bi = 1 if bi is on, for i= 1, 
2,…, m. 
 
DEFINITION 3.1.1.5: Let D1, …, Dn and R1,…, Rm be the nodes 
of an FRM. Let DiRj (or Rj Di) be the edges of an FRM, j = 1, 
2,…, m and i= 1, 2,…, n. Let the edges form a directed cycle. An 
FRM is said to be a cycle if it posses a directed cycle. An FRM 
is said to be acyclic if it does not posses any directed cycle. 
 
DEFINITION 3.1.1.6: An FRM with cycles is said to be an FRM 
with feedback. 
 
DEFINITION 3.1.1.7: When there is a feedback in the FRM, i.e. 
when the causal relations flow through a cycle in a 
revolutionary manner, the FRM is called a dynamical system. 
 
DEFINITION 3.1.1.8: Let Di Rj (or Rj Di), 1 ≤ j ≤ m, 1 ≤ i ≤ n. 
When Ri (or Dj) is switched on and if causality flows through 
edges of the cycle and if it again causes Ri (or Dj), we say that 
the dynamical system goes round and round. This is true for any 
node Rj (or Di) for 1 ≤ i ≤ n, (or 1 ≤ j ≤ m). The equilibrium 
state of this dynamical system is called the hidden pattern. 
 
DEFINITION 3.1.1.9: If the equilibrium state of a dynamical 
system is a unique state vector, then it is called a fixed point. 
Consider an FRM with R1, R2,…, Rm and D1, D2,…, Dn as nodes. 
For example, let us start the dynamical system by switching on 
R1 (or D1). Let us assume that the FRM settles down with R1 and 
Rm (or D1 and Dn) on, i.e. the state vector remains as (1, 0, …, 
0, 1) in R (or 1, 0, 0, … , 0, 1) in D), This state vector is called 
the fixed point. 
 
DEFINITION 3.1.1.10: If the FRM settles down with a state 
vector repeating in the form  
 
A1 → A2 → A3 → … → Ai → A1 (or B1 → B2 → …→ Bi → B1) 
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then this equilibrium is called a limit cycle.  
 
METHODS OF DETERMINING THE HIDDEN PATTERN 
 
Let R1, R2, …, Rm and D1, D2, …, Dn be the nodes of a FRM 
with feedback. Let E be the relational matrix. Let us find a 
hidden pattern when D1 is switched on i.e. when an input is 
given as vector A1 = (1, 0, …, 0) in D1, the data should pass 
through the relational matrix E. This is done by multiplying A1 
with the relational matrix E. Let A1E = (r1, r2, …, rm), after 
thresholding and updating the resultant vector we get A1 E ∈ R. 
Now let B = A1E we pass on B into ET and obtain BET. We 
update and threshold the vector BET so that BET ∈D. This 
procedure is repeated till we get a limit cycle or a fixed point. 
 
DEFINITION 3.1.1.11: Finite number of FRMs can be combined 
together to produce the joint effect of all the FRMs. Let E1,…, 
Ep be the relational matrices of the FRMs with nodes R1, R2,…, 
Rm and D1, D2,…, Dn, then the combined FRM is represented by 
the relational matrix E = E1+…+ Ep. 
 
 
3.1.2 New Super Fuzzy Relational Maps models  
 
In this section we introduce four types of new Super Fuzzy 
Relational Maps models.  
 
DEFINITION 3.1.2.1: Suppose we have some n experts working 
on a real world model and give their opinion. They all agree 
upon to work with the same domain space elements / attributes / 
concepts; using FRM model but do not concur on the attributes 
from the range space then we can use the special super fuzzy 
row vector to model the problem using Domain Super Fuzzy 
Relational Maps (DSFRMs) Model. 
 
The DSFRM matrix associated with this model will be given by 
SM 
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1 2 n

1 1 2 2 n n n
1 r 1 r 1 2 r

1

2
M

m

t t t t t t t
D
D

S

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

… … …

#
 

 
= 1 2 n

M M MS S S⎡ ⎤⎣ ⎦…  

 
where each i

MS  is a m × 
i

i
rt  matrix associated with a FRM given 

by the ith expert  having D1, …, Dm to be the domain attributes 
and ( i

1t
i
2t  … 

i

i
rt  ) to be the range attributes of the ith expert, i = 

1, 2, …, n and SM the DSFRM matrix will be a special super 
row vector / matrix (1 ≤ i ≤ n).  

However if n is even a very large value using the mode of 
programming one can easily obtain the resultant vector or the 
super hidden pattern for any input supervector which is under 
investigation.  

These DSFRMs will be known as Domain constant 
DSFRMs for all the experts choose to work with the same 
domain space attributes only the range space attributes are 
varying denoted by DSFRM models. 
 
Next we proceed on to define the notion of super FRMs with 
constant range space attributes and varying domain space 
attributes. 
 
DEFINITION 3.1.2.2: Let some m experts give opinion on a real 
world problem who agree upon to make use of the same space 
of attributes / concepts from the range space using FRMs but 
want to use different concepts for the domain space then we 
make use of the newly constructed special super column vector 
as the matrix to construct this new model. Thus the associated 
special super column matrix SM is  
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SM = 

1

2

1 2
1
1
1
2

1

2
1

2

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

#

#

#

#

m

s

t

t

m

m
t

R R R
D
D

D

D

D

D

D

 

 
The column attributes i.e. the range space remain constant as 
R1, …, Rs for all m experts only the row attributes for any ith 
expert is 1 2, , ,

i

i i i
tD D D… ; i = 1, 2, …, m; vary from expert to 

expert. This system will be known as the Range constant fuzzy 
super FRM or shortly denoted as RSFRM model.  
 
We will illustrate these two definitions by examples i.e. by live 
problems in the 4th section of this chapter. 

One may be interested in finding a model which has both 
the range and the column vector varying for some experts how 
to construct a new model in that case. 
 
DEFINITION 3.1.2.3: Suppose we have m experts who wish to 
work with different sets of both row and column attributes i.e. 
domain and range space using FRMs, then to accommodate or 
form a integrated matrix model to cater to this need. We make 
use of the super diagonal fuzzy matrix, to model such a 
problem. Suppose the first expert works with the domain 
attributes 

1

1 1
1 , ,… tD D  and range attributes 

1

1 1
1 , ,… nR R , The 
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second expert works with domain attributes 
2

2 2
1 , ,… tD D  and 

with range attributes 
2

2 2
1 , ,… nR R  and so on. Thus the mth expert 

works with 1 , ,…
m

m m
tD D  domain attributes and 1 , ,…

m

m m
nR R  

range attributes. We have the following diagonal fuzzy 
supermatrix to model the situation. We are under the 
assumption that all the attributes both from the domain space as 
well as the range space of the m experts are different. The super 
fuzzy matrix S associated with this new model is given by  
 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1
1

2
1

2
2

1

(0) (0)

(0) (0)

(0) (0) (0)

(0) (0)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… … … …

#

#

#

#

m

m

m m m
n n t

t

t

m

n
m
t

R R R R R R R R R
D

M
D

D
M

D

D
M

D

 

 
where each Mi is a ti × ni matrix associated with the FRM, we 
see except, the diagonal strip all other entries are zero. We call 
this matrix as a special diagonal super fuzzy matrix and this 
model will be known as the Special Diagonal Super FRM Model 
which will be denoted briefly as (SDSFRM).  
 
Now we define the multi expert super FRM model. 
 
DEFINITION 3.1.2.4: Suppose one is interested in finding a 
model where some mn number of experts work on the problem 
and some have both domain and range attributes to be not 
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coinciding with any other expert and a set of experts have only 
the domain attributes to be in common and all the range 
attributes are different. Another set of experts are such that only 
the range attributes to be in common and all the domain 
attributes are different, and all of them wish to work with the 
FRM model only; then we model this problem using a super 
fuzzy matrix. We have mn experts working with the problem.  

Let the t1 expert wish to work with domain attributes 1
1P , 

1
2P , …, 

1

1
( )m tP  and range attributes 1

1q , 1
2q , …, 

1

1
( )n tq .  

 The t2 expert works with 1
1P , 1

2P , …, 
1

1
( )m tP  as domain 

attributes and the range attributes  2
1q , 2

2q , …, 
2

2
( )n tq  and so on. 

Thus for the ti expert works with 1
iP , 2

iP , …, ( )i

i
m tP  as domain 

space attributes and 1
iq , 2

iq , …, ( )i

i
n tq , as range attributes (1 ≤ i 

≤ m(ti) and i ≤ n (ti)). 
So with these mn experts we have an associated super FRM 

matrix. Thus the supermatrix associated with the Super FRM 
(SFRM) model is a supermatrix of the form S(m) = 

 
11 12 1

( 1) ( 1) ( 1) ( 2) ( 1) ( )

21 22 2
( 2) ( 1) ( 2) ( 2) ( 2) ( )

1 2
( ) ( 1) ( ) ( 2) ( ) ( )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

n
m t n t m t n t m t n tn

n
m t n t m t n t m t n tn

m m mn
m tm n t m tm n t m tm n tn

A A A

A A A

A A A

 

 
where  

1 2 ( )

1

2
( ) ( )

( ) ( )

( )

( )

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
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#

j

i j
i j
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j j j
n t

i

i
ij

ijm t n t
m t n t
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m t
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A a
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1 ≤ i ≤ m and 1 ≤ j ≤ n. S(m) is called the super dynamical FRM 
or a super dynamical system.  

This matrix ( ) ( )i j

ij
m t n tA  corresponds to the FRM matrix of the 

(ij)th expert with domain space attributes 1
iP , 2

iP , …, ( )i

i
m tP   and 

range space attributes 1
jq , 2

jq , …, ( )j

j
n tq  , 1 ≤ i ≤ m and  

1 ≤ j ≤ n.  
 
Thus we have four types of super FRM models viz. range 
constant super FRM model RSFRM model or the row (vector) 
super FRM model with a row fuzzy supervector (supermatrix) 
associated as a dynamical system, domain constant super FRM 
model or DSFRM model with the column fuzzy supervector 
associated matrix as the dynamical system, diagonal super FRM 
model or SDSFRM with only diagonal having the fuzzy FRM 
matrices and its related dynamical system to be a fuzzy super 
diagonal matrix and finally the fuzzy super FRM (SFRM) 
model which is depicted by a fuzzy supermatrix.  

Now having defined four types of super FRM models we 
proceed on to define super BAM models.  
 
 
 
3.2 New Fuzzy Super Bidirectional Associative Memories 
(BAM) model  
  
This section has two subsections. In the first subsection we 
recall the definition of Bidirectional Associative Memories 
models from [112]. In the subsection two the new types of super 
Bidirectional associative memories model are introduced. 
 
3.2.1 Introduction to BAM model  
 
In this section we just recall the definition of BAM of model 
from [112].  

Now we go forth to describe the mathematical structure of 
the Bidirectional Associative Memories (BAM) model. Neural 
networks recognize ill defined problems without an explicit set 
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of rules. Neurons behave like functions, neurons transduce an 
unbounded input activation x(t) at time t into a bounded output 
signal S(x(t)) i.e. Neuronal activations change with time. 

Artificial neural networks consists of numerous simple 
processing units or neurons which can be trained to estimate 
sampled functions when we do not know the form of the 
functions. A group of neurons form a field. Neural networks 
contain many field of neurons. In our text Fx will denote a 
neuron field, which contains n neurons, and Fy denotes a neuron 
field, which contains p neurons. The neuronal dynamical system 
is described by a system of first order differential equations that 
govern the time-evolution of the neuronal activations or which 
can be called also as membrane potentials.  
  
  ix�   =  gi (X, Y, ...) 
  jy�   =  hj (X, Y, ...) 
 
where ix�  and jy�  denote respectively the activation time 
function of the ith neuron in FX and the jth neuron in FY. The over 
dot denotes time differentiation, gi and hj are some functions of 
X, Y, ... where X(t) = (x1(t), ... , xn(t)) and Y(t) = (y1(t), ... , 
yp(t)) define the state of the neuronal dynamical system at time 
t. The passive decay model is the simplest activation model, 
where in the absence of the external stimuli, the activation 
decays in its resting value  
   ix�    =  xi 
and   jy�    =  yj. 
 
The passive decay rate Ai > 0 scales the rate of passive decay to 
the membranes resting potentials ix�  = –Aixi. The default rate is 
Ai = 1, i.e. ix�  = –Aixi. The membrane time constant Ci > 0 
scales the time variables of the activation dynamical system. 
The default time constant is Ci = 1. Thus Ci ix�  = –Aixi.  

The membrane resting potential Pi is defined as the 
activation value to which the membrane potential equilibrates in 
the absence of external inputs. The resting potential is an 
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additive constant and its default value is zero. It need not be 
positive.  

 
  Pi   =   Ci ix� + Aixi 

   Ii  =   ix�  + xi 
 
is called the external input of the system. Neurons do not 
compute alone. Neurons modify their state activations with 
external input and with feed back from one another. Now, how 
do we transfer all these actions of neurons activated by inputs 
their resting potential etc. mathematically. We do this using 
what are called synaptic connection matrices. 

Let us suppose that the field FX with n neurons is 
synaptically connected to the field FY of p neurons. Let mij be a 
synapse where the axon from the ith neuron in FX terminates. Mij 
can be positive, negative or zero. The synaptic matrix M is a n 
by p matrix of real numbers whose entries are the synaptic 
efficacies mij.  

The matrix M describes the forward projections from the 
neuronal field FX to the neuronal field FY. Similarly a p by n 
synaptic matrix N describes the backward projections from FY 
to FX. Unidirectional networks occur when a neuron field 
synaptically intra connects to itself. The matrix M be a n by n 
square matrix. A Bidirectional network occur if M = NT and N = 
MT. To describe this synaptic connection matrix more simply, 
suppose the n neurons in the field FX synaptically connect to the 
p-neurons in field FY. Imagine an axon from the ith neuron in FX 
that terminates in a synapse mij, that about the jth neuron in FY. 
We assume that the real number mij summarizes the synapse and 
that mij changes so slowly relative to activation fluctuations that 
is constant.  

Thus we assume no learning if mij = 0 for all t. The synaptic 
value mij might represent the average rate of release of a neuro-
transmitter such as norepinephrine. So, as a rate, mij can be 
positive, negative or zero.  

When the activation dynamics of the neuronal fields FX and 
FY lead to the overall stable behaviour the bidirectional 
networks are called as Bidirectional Associative Memories 
(BAM).    
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Further not only a Bidirectional network leads to BAM also 
a unidirectional network defines a BAM if M is symmetric i.e. 
M = MT. We in our analysis mainly use BAM which are 
bidirectional networks. However we may also use unidirectional 
BAM chiefly depending on the problems under investigations. 
We briefly describe the BAM model more technically and 
mathematically.  

An additive activation model is defined by a system of n + p 
coupled first order differential equations that inter connects the 
fields FX and FY through the constant synaptic matrices M and 
N. 
 

p

i i i j j ji i
j 1

x A x S (y )n I
=

= − + +∑   (3.2.1.1) 

n

i j j i i ij j
i 1

y A y S (x )m J
=

= − + +∑   (3.2.1.2) 

 
Si(xi) and Sj(yj) denote respectively the signal function of the ith 
neuron in the field FX and the signal function of the jth neuron in 
the field FY.  

Discrete additive activation models correspond to neurons 
with threshold signal functions.  

The neurons can assume only two values ON and OFF. ON 
represents the signal +1, OFF represents 0 or – 1 (– 1 when the 
representation is bipolar). Additive bivalent models describe 
asynchronous and stochastic behaviour.  

At each moment each neuron can randomly decide whether 
to change state or whether to emit a new signal given its current 
activation. The Bidirectional Associative Memory or BAM is a 
non adaptive additive bivalent neural network. In neural 
literature the discrete version of the equation (3.2.1.1) and 
(3.2.1.2) are often referred to as BAMs.  

A discrete additive BAM with threshold signal functions 
arbitrary thresholds inputs an arbitrary but a constant synaptic 
connection matrix M and discrete time steps K are defined by 
the equations  
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i

p
k 1 k

j j ij i
j 1

x S (y )m I+

=

= +∑     (3.2.1.3) 

 

( )
n

k 1 k
j i i ij j

i 1

y S x m J+

=

= +∑     (3.2.1.4) 

 
where mij ∈ M and Si and Sj are signal functions. They represent 
binary or bipolar threshold functions. For arbitrary real valued 
thresholds U = (U1, ..., Un) for FX neurons and V = (V1, ..., VP) 
for FY neurons the threshold binary signal functions corresponds 
to  

k
i i

k k 1 k
i i i i i i

k
i i

1 if x U

S (x ) S (x ) if x U

0 if x U

−

⎧ >
⎪⎪= =⎨
⎪ <⎪⎩

  (3.2.1.5) 

 
and  

 
k
j j

k k 1 k
j j j j j j

k
j j

1 if y V

S (x ) S (y ) if y V

0 if y V

−

⎧ >
⎪⎪= =⎨
⎪ <⎪⎩

  (3.2.1.6) 

 
 The bipolar version of these equations yield the signal value 
–1 when xi < Ui or when yj < Vj. The bivalent signal functions 
allow us to model complex asynchronous state change patterns. 
At any moment different neurons can decide whether to 
compare their activation to their threshold. At each moment any 
of the 2n subsets of FX neurons or 2p subsets of the FY neurons 
can decide to change state. Each neuron may randomly decide 
whether to check the threshold conditions in the equations 
(3.2.1.5) and (3.2.1.6). At each moment each neuron defines a 
random variable that can assume the value ON(+1) or OFF(0 or 
-1). The network is often assumed to be deterministic and state 
changes are synchronous i.e. an entire field of neurons is 
updated at a time. In case of simple asynchrony only one neuron 
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makes a state change decision at a time. When the subsets 
represent the entire fields FX and FY synchronous state change 
results.  

In a real life problem the entries of the constant synaptic 
matrix M depends upon the investigator’s feelings. The synaptic 
matrix is given a weightage according to their feelings. If x ∈ 
FX and y ∈ FY the forward projections from FX to FY is defined 
by the matrix M. {F(xi, yj)} = (mij) = M, 1 ≤ i ≤ n, 1 ≤ j ≤ p.  

The backward projections is defined by the matrix MT. 
{F(yi, xi)} = (mji) = MT, 1 ≤ i ≤ n, 1 ≤ j ≤ p. It is not always true 
that the backward projections from FY to FX is defined by the 
matrix MT.  

Now we just recollect the notion of bidirectional stability. 
All BAM state changes lead to fixed point stability. The 
property holds for synchronous as well as asynchronous state 
changes. A BAM system (FX, FY, M) is bidirectionally stable if 
all inputs converge to fixed point equilibria. Bidirectional 
stability is a dynamic equilibrium. The same signal information 
flows back and forth in a bidirectional fixed point. Let us 
suppose that A denotes a binary n-vector and B denotes a binary 
p-vector. Let A be the initial input to the BAM system. Then the 
BAM equilibrates to a bidirectional fixed point (Af, Bf) as 
 

 A → M → B 
 A’ ← MT ← B 
 A’ → M → B’  
 A’’ ← MT ← B’  etc.  
 Af → M → Bf 
 Af ← MT ← Bf etc. 

 
 where A’, A’’, ... and B’, B’’, ... represents intermediate or 
transient signal state vectors between respectively A and Af and 
B and Bf. The fixed point of a Bidirectional system is time 
dependent.  

The fixed point for the initial input vectors can be attained 
at different times. Based on the synaptic matrix M which is 
developed by the investigators feelings the time at which 
bidirectional stability is attained also varies accordingly. 
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3.2.2 Description and definition of Super Bidirectional 
Associative Memories model  
 
In this section we for the first time define four types of fuzzy 
super BAM models. The row vector fuzzy super BAM 
(SDBAM) model, column vector fuzzy super BAM (SRBAM) 
model, diagonal fuzzy super BAM (SDSBAM) model and fuzzy 
super BAM model. This model will be known as the super 
BAM (SBAM) model. Clearly this is the most generalization of 
SDBAM, SRBAM and SDSBAM.  
 
DEFINITION 3.2.2.1: Suppose a set of n experts choose to work 
with a problem using a BAM model in which they all agree 
upon the same number of attributes from the space Fx which 
will form the rows of the dynamical system formed by this multi 
expert BAM. Now n distinct sets of attributes are given from the 
space Fy which forms a super row vector and they form the 
columns of the BAM model. 
 Suppose all the n experts agree to work with the same set of 
t-attributes say (x1 x2 … xt) which forms the rows of the synaptic 
connection matrix M. Suppose the first expert works with the p1 
set of attributes given by (

1

1 1 1
1 2 … py y y ), the second expert with 

p2 set of attributes given by (
1

1 1 1
1 2 … py y y )  and so on. Let the ith 

expert with pi set of attributes given by ( 1 2 … i

i i i
py y y ) for i = 1, 

2, …, n. Thus the new BAM model will have its elements from Fy 
where any element in Fy will be a super row vector, T = 
(

1

1 1 1
1 2 py y y…  | 

2

2 2 2
1 2 … py y y | … |  1 2 … n

n n n
py y y ). Now the synaptic 

projection matrix associated with this new BAM model is a 
special row supervector Mr given by 

 

Mr= 

1 2

1 1 1 2 2 2
1 2 1 2 1 2

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

… … … …

#

n

n n n
p p p

t

y y y y y y y y y

x
x

x
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Here the elements /attributes from Fx is a simple row rector 
where as the elements from Fy is a super row vector.  

We call this model to be a multi expert Special Domain 
Supervector BAM (SDBAM) model and the associated matrix is 
a special row vector matrix denoted by Mr. Let X = (x1 x2 … xt) 
∈ Fx. Y = [

1

1 1 1
1 2 py y y…  | 

2

2 2 2
1 2 … py y y | … | 1 2 … n

n n n
py y y ] ∈  Fy. 

If X = (x1 x2 … xt) ∈ Fx is the state vector given by the expert we 
find  

XMr = Y1∈ Fy  

YMr
T =  X1∈ Fx …  

and so on. This procedure is continued until a equilibrium is 
arrived. Similarly if the expert chooses to work with Y = 
[

1

1 1 1
1 2 … py y y  | 

2

2 2 2
1 2 … py y y | … | 1 2 … n

n n n
py y y ] ∈ Fy then we 

find the resultant by finding. 
 YMr

T J  X, then find XMr and proceed on till the system 
arrives at an equilibrium state. This model will serve the 
purpose when row vectors from Fx are a simple row vectors and 
row vectors from Fy are super row vectors.  
 
Now we proceed on to define the second model which has super 
row vectors from Fx and just simple row vectors from Fy.  
 
DEFINITION 3.2.2.2: Suppose we have a problem in which all m 
experts want to work using a BAM model. If they agree to work 
having the simple vectors from Fy i.e., for the columns of the 
synaptic connection matrix i.e. there is no perpendicular 
partition of their related models matrix.   
 The rows are partitioned horizontally in this synaptic 
connection matrix i.e., the m experts have distinct sets of 
attributes taken from the space Fx i.e. elements of Fx are super 
row vectors. The resulting synaptic connection matrix Mc is a 
special super column matrix. Let the 1st expert have the set of 
row attributes to be (

1

1 1 1
1 2 … qx x x ), the 2nd expert have the set of 

row attributes given by (
2

2 2 2
1 2 … qx x x ) and so on. Let the ith 

expert have the related row attributes as ( 1 2 … i

i i i
qx x x );  i = 1, 2, 

…, m. Let the column vector given by all them is [y1 … yn]. The 
related super synaptic connection matrix Mc =  
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1

2

1 2
1
1
1
2

1

2
1
2
2

2

1

2

.

m

n

q

q

m

m

m
q

y y y
x
x

x

x
x

x

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

#

#

#

#

 
 
Mc is a special super column vector / matrix. 
 
Suppose an expert wishes to work with a super row vector X 
from Fx then X = [

1

1 1 1
1 2 … qx x x  | 

2

2 2 2
1 2 … qx x x  | …| 1 2 … m

m m m
qx x x ]  

we find X o Mc J Y ∈ Fy , YMc
T= X1 ∈ Fx, we repeat the same 

procedure till the system attains its equilibrium i.e., a fixed 
point or a limit cycle.  
 
This model which performs using the dynamical system Mc is 
defined as the Special Super Range BAM (SRBAM) model. 
 
Next we describe the special diagonal super BAM model. 
 
DEFINITION 3.2.2.3: Suppose we have n experts to work on a 
specific problem and each expert wishes to work with a set of 
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row and column attributes distinct from others using a BAM 
model.  

Then how to obtain a suitable integrated dynamical system 
using them. Let the first expert work with (

1

1 1 1
1 2 … nx x x ) 

attributes along the row of the related synaptic connection 
matrix of the related BAM and (

1

1 1 1
1 2 … py y y ) the attributes 

related to the column, let the second expert give the row 
attributes of the synaptic connection matrix of the BAM to be 
(

2

2 2 2
1 2 … nx x x ) and that of the column be (

2

2 2 2
1 2 … py y y ) and so 

on.  
Let the ith expert give the row attributes of the synaptic 

connection matrix of the BAM to be ( 1 2 i

i i i
nx x x… )  and that of 

the column to be ( 1 2 … i

i i i
py y y ) for i = 1, 2, …, n, the 

supermatrix described by  
 
 

MD = 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1
1

1

2
1

2
2

2

1

(0) (0)

(0) (0)

(0) (0) (0)

(0) (0)

n

n

n n n
p p p

n

n

n

n
n

n
n

y y y y y y y y y

x

A
x

x
A

x

x
A

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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#

#

#
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where i
iA  is the synaptic connection matrix using the BAM 

model of the ith expert, i = 1, 2, …, n where 
 

Ai
1 = 

1 2

1

2

i

i

i i i
p

i

i

i
n

y y y

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

#
 

 
(0) denotes the zero matrix.  

Thus this model has only non zero BAM synaptic connection 
matrices along the main diagonal described by MD. The rest are 
zero.  

The dynamical system associated with this matrix MD is 
defined to be the Special Diagonal Super BAM (SDSBAM) 
model. 

 
Next we describe the super BAM model. 

 
DEFINITION 3.2.2.4: Suppose we have mn number of experts 
who are interested in working with a specific problem using a 
BAM model; a multi expert model which will work as a single 
dynamical system is given by the Super BAM (SBAM)  
model.  

Here a few experts have both the row and columns of the 
synaptic connection matrix of the BAM to be distinct. Some 
accept for same row attributes or vectors of the synaptic 
connection matrix but with different column attributes.  

Some accept for same column attributes of the synaptic 
connection matrix of the BAM model but with different row 
attributes to find the related supermatrix associated with the 
super BAM model.  

The supermatrix related with this new model will be 
denoted by Ms which is described in the following.  
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where i

jA  is the synaptic connection matrix of an expert who 

chooses to work with ( 1 2 i

i i i
px x x… ) along the row of the BAM 

model and with ( 1 2 j

j j j
qy y y… ) along the column of the BAM 

model i.e. 

Ai
j = 

1 2

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

#

j

i

j j j
q

i

i

i
p

y y y

x
x

x

 

 
1 ≤ i ≤ m and 1 ≤ j ≤ n. Thus for this model both the attributes 
from the spaces Fx and Fy are super row vectors given by  

X= [
1

1 1 1
1 2 … px x x | 

2

2 2 2
1 2 … px x x | … | 1 2 … m

m m m
px x x ] 

in Fx and  
Y = [

1

1 1 1
1 2 … qy y y  | 

2

2 2 2
1 2 … qy y y | … |  1 2 … n

n n n
qy y y ] 
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from the space or the neuronal field Fy. 
The supermatrix Ms is called the synaptic connection 

supermatrix associated with the multi expert super BAM model 
(SBAM model). Now having defined the multi expert super BAM 
model we proceed on to describe the functioning of the super 
dynamical system. 

 
Let X = [

1

1 1 1
1 2 px x x… | 

2

2 2 2
1 2 px x x…  | … | 

m

m m m
1 2 px x x… ] ∈ 

Fx be the super row vector given by the expert, its effect on the 
multi super dynamical system Ms. 
 
X o Ms  J  Y  

=  [
1

1 1 1
1 2 qy y y…  | 

2

2 2 2
1 2 qy y y… | …| 

n

n n n
1 2 qy y y… ] ∈ Fy 

Y o T
sM  J  X1  ∈ Fx. 

X1 o Ms  J  Y1  ∈ Fy; 
 
and so on and this procedure is repeated until the system attains 
a equilibrium.  
 
 
3.3 Description of Super Fuzzy Associative Memories 
 
In this section we for the first time introduce the notion of super 
fuzzy associative memories model. This section has two 
subsections in the first subsection we recall the definition of 
FAM model from [112]. In second subsection four new types of 
super FAM models are defined.  
 
3.3.1 Introduction to FAM  
 
In this section the notion of Fuzzy Associative Memories 
(FAM) is recalled from [112]. For more refer [112].  

A fuzzy set is a map µ : X → [0, 1] where X is any set 
called the domain and [0, 1] the range i.e., µ is thought of as a 
membership function i.e., to every element x ∈ X, µ assigns a 
membership value in the interval [0, 1]. But very few try to 
visualize the geometry of fuzzy sets. It is not only of interest but 
is meaningful to see the geometry of fuzzy sets when we discuss 
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fuzziness. Till date researchers over looked such visualization 
[Kosko, 108-112], instead they have interpreted fuzzy sets as 
generalized indicator or membership functions; i.e., mappings µ 
from domain X to range [0, 1]. But functions are hard to 
visualize. Fuzzy theorist often picture membership functions as 
two-dimensional graphs with the domain X represented as a 
one-dimensional axis.  

The geometry of fuzzy sets involves both domain X = 
(x1,…, xn) and the range [0, 1] of mappings µ : X → [0, 1]. The 
geometry of fuzzy sets aids us when we describe fuzziness, 
define fuzzy concepts and prove fuzzy theorems. Visualizing 
this geometry may by itself provide the most powerful argument 
for fuzziness. 

An odd question reveals the geometry of fuzzy sets. What 
does the fuzzy power set F(2X), the set of all fuzzy subsets of X, 
look like? It looks like a cube, What does a fuzzy set look like? 
A fuzzy subsets equals the unit hyper cube In = [0, 1]n. The 
fuzzy set is a point in the cube In. Vertices of the cube In define 
a non-fuzzy set. Now with in the unit hyper cube In = [0, 1]n we 
are interested in a distance between points, which led to 
measures of size and fuzziness of a fuzzy set and more 
fundamentally to a measure. Thus within cube theory directly 
extends to the continuous case when the space X is a subset of 
Rn.  

The next step is to consider mappings between fuzzy cubes. 
This level of abstraction provides a surprising and fruitful 
alternative to the prepositional and predicate calculus reasoning 
techniques used in artificial intelligence (AI) expert systems. It 
allows us to reason with sets instead of propositions. The fuzzy 
set framework is numerical and multidimensional. The AI 
framework is symbolic and is one dimensional with usually 
only bivalent expert rules or propositions allowed. Both 
frameworks can encode structured knowledge in linguistic form. 
But the fuzzy approach translates the structured knowledge into 
a flexible numerical framework and processes it in a manner 
that resembles neural network processing. The numerical 
framework also allows us to adaptively infer and modify fuzzy 
systems perhaps with neural or statistical techniques directly 
from problem domain sample data.  
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Between cube theory is fuzzy-systems theory. A fuzzy set 
defines a point in a cube. A fuzzy system defines a mapping 
between cubes. A fuzzy system S maps fuzzy sets to fuzzy sets. 
Thus a fuzzy system S is a transformation S: In → IP. The n-
dimensional unit hyper cube In houses all the fuzzy subsets of 
the domain space or input universe of discourse X = {x1, …, 
xn}. Ip houses all the fuzzy subsets of the range space or output 
universe of discourse, Y = {y1, …, yp}. X and Y can also denote 
subsets of Rn and Rp. Then the fuzzy power sets F (2X) and F 
(2Y) replace In and Ip.  

In general a fuzzy system S maps families of fuzzy sets to 
families of fuzzy sets thus S: s1 r 1 pn n pI I I I× × → × ×… …  Here 
too we can extend the definition of a fuzzy system to allow 
arbitrary products or arbitrary mathematical spaces to serve as 
the domain or range spaces of the fuzzy sets. We shall focus on 
fuzzy systems S: In → IP that map balls of fuzzy sets in In to 
balls of fuzzy set in Ip. These continuous fuzzy systems behave 
as associative memories. The map close inputs to close outputs. 
We shall refer to them as Fuzzy Associative Maps or FAMs. 

The simplest FAM encodes the FAM rule or association (Ai, 
Bi), which associates the p-dimensional fuzzy set Bi with the n-
dimensional fuzzy set Ai. These minimal FAMs essentially map 
one ball in In to one ball in Ip. They are comparable to simple 
neural networks. But we need not adaptively train the minimal 
FAMs. As discussed below, we can directly encode structured 
knowledge of the form, “If traffic is heavy in this direction then 
keep the stop light green longer” is a Hebbian-style FAM 
correlation matrix. In practice we sidestep this large numerical 
matrix with a virtual representation scheme. In the place of the 
matrix the user encodes the fuzzy set association (Heavy, 
longer) as a single linguistic entry in a FAM bank linguistic 
matrix. In general a FAM system F: In → Ib encodes the 
processes in parallel a FAM bank of m FAM rules (A1, B1), …, 
(Am Bm). Each input A to the FAM system activates each stored 
FAM rule to different degree. The minimal FAM that stores (Ai, 
Bi) maps input A to Bi’ a partly activated version of Bi. The 
more A resembles Ai, the more Bi’ resembles Bi. The 
corresponding output fuzzy set B combines these partially 
activated fuzzy sets 1 1 1

1 2 mB , B , , B… . B equals a weighted 
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average of the partially activated sets B = 1 1
1 1 m mw B ... w B+ +  

where wi reflects the credibility frequency or strength of fuzzy 
association (Ai, Bi). In practice we usually defuzzify the output 
waveform B to a single numerical value yj in Y by computing 
the fuzzy centroid of B with respect to the output universe of 
discourse Y.  

More generally a FAM system encodes a bank of compound 
FAM rules that associate multiple output or consequent fuzzy 
sets B1

i, …, Bi
s with multiple input or antecedent fuzzy sets Ai

1, 
…, Ai

r. We can treat compound FAM rules as compound 
linguistic conditionals. This allows us to naturally and in many 
cases easily to obtain structural knowledge. We combine 
antecedent and consequent sets with logical conjunction, 
disjunction or negation. For instance, we could interpret the 
compound association (A1, A2, B), linguistically as the 
compound conditional “IF X1 is A1 AND X2 is A2, THEN Y is 
B” if the comma is the fuzzy association (A1, A2, B) denotes 
conjunction instead of say disjunction. 

We specify in advance the numerical universe of discourse 
for fuzzy variables X1, X2 and Y. For each universe of discourse 
or fuzzy variable X, we specify an appropriate library of fuzzy 
set values A1

r, …, Ak
2

 Contiguous fuzzy sets in a library 
overlap. In principle a neural network can estimate these 
libraries of fuzzy sets. In practice this is usually unnecessary. 
The library sets represent a weighted though overlapping 
quantization of the input space X. They represent the fuzzy set 
values assumed by a fuzzy variable. A different library of fuzzy 
sets similarly quantizes the output space Y. Once we define the 
library of fuzzy sets we construct the FAM by choosing 
appropriate combinations of input and output fuzzy sets 
Adaptive techniques can make, assist or modify these choices. 

An Adaptive FAM (AFAM) is a time varying FAM system. 
System parameters gradually change as the FAM system 
samples and processes data. Here we discuss how natural 
network algorithms can adaptively infer FAM rules from 
training data. In principle, learning can modify other FAM 
system components, such as the libraries of fuzzy sets or the 
FAM-rule weights wi. 
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In the following subsection we propose and illustrate an 
unsupervised adaptive clustering scheme based on competitive 
learning to blindly generate and refine the bank of FAM rules. 
In some cases we can use supervised learning techniques if we 
have additional information to accurately generate error 
estimates. Thus Fuzzy Associative Memories (FAMs) are 
transformation. FAMs map fuzzy sets to fuzzy sets. They map 
unit cubes to unit cubes. In simplest case the FAM system 
consists of a single association. In general the FAM system 
consists of a bank of different FAM association. Each 
association corresponds to a different numerical FAM matrix or 
a different entry in a linguistic FAM-bank matrix. We do not 
combine these matrices as we combine or superimpose neural-
network associative memory matrices. We store the matrices 
and access them in parallel. We begin with single association 
FAMs. We proceed on to adopt this model to the problem. 
 
 
3.3.2 Super Fuzzy Associative Memories models 
 
In this section four new types of super fuzzy associative 
memories models are introduced. These models are multi expert 
models which can simultaneously work with many experts 
using FAM models.  

In this section we for the first time construct four types of 
super fuzzy associative memories.  
 
DEFINITION 3.3.2.1: We have a problem P on which n experts 
wishes to work using a FAM model which can work as a single 
unit multi expert system. Suppose all the n-experts agree to 
work with the same set of attributes from the domain space and 
they want to work with different and distinct sets of attributes 
from the range space. Suppose all the n experts wish to work 
with the domain attributes (x1 x2 … xt) from the cube 

[ , ] [ , ]
−

= × ×…���	��

t

t times

I 0 1 0 1 . Let the first expert work with the range 

attributes (
1

1 1 1
1 2 … py y y ) and the second expert works with the 
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range attributes (
2

2 2 2
1 2 … py y y ) and so on. Thus the ith expert 

works with the range attributes ( 1 2 … i

i i i
py y y ), i = 1, 2, …, n. 

Thus the range attributes 
 

Y = ( 1

1 1 1
1 2 … py y y  | 

2

2 2 2
1 2 … py y y  | … | 1 2 … n

n n n
py y y ) 

 
are taken from the cube 1 2 np +p + +pI [ , ] [ , ] [ , ]

+ + +

= × × ×…

…

…�����	����

1 2 np p p times

0 1 0 1 0 1 . 

This we see the range attributes are super row fuzzy vectors. 
Now the matrix which can serve as the dynamical systems 

for this FAM model is given by FR. 
 

1 2

1 1 1 2 2 2
1 2 1 2 1 2

1
1 1 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… … … …

#

n

n n n
p p p

n

t

y y y y y y y y y

x
A A A

x

 

 
Clearly FR is a special super row fuzzy vector. Thus F: I 

t  J 
1 2 np p pI + + +… . Suppose using an experts opinion we have a fit 

vector, A = (a1, a2, …, at) ; ai ∈{0,1}, then A o FR = max min 
(ai, fij); ai ∈ A and fij ∈ FR. Let A o FR = B = (bj), then FR  o B = 
max min (fij, bi

j) and so on, till we arrive at a fixed point or a 
limit cycle. The resultant fit vectors give the solution. This FR 
gives the dynamical system of the new model which we call as 
the Fuzzy Special Super Row vector FAM model (SRFAM 
model).  
 
Next we proceed on to describe how the FAM functions when 
we work with varying domain space and fixed range space 
attributes. 

 
DEFINITION 3.3.2.2: Suppose we have n experts working on a 
problem and they agree upon to work with the same range 
attributes and wish to work with distinct domain attributes 
using a FAM model. We built a new FAM model called the 
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special super column fuzzy vector FRM model (SCFAM) and its 
related matrix is denoted by Fc. The fit vectors of the domain 
space are simple fit vectors where as the fit vectors of the range 
space are super row fit vectors.  
 

Now we describe the special column fuzzy vector FAM, Fc 
by the following matrix. The column attributes of the super fuzzy 
dynamical system Fc are given by  

(y1 y2 … ys) ∈ [ , ] [ , ]
−

= × ×…���	��

s

s times

I 0 1 0 1 . 

The row attributes of the first expert is given by 
(

1

1 1 1
1 2, , ,… px x x ), the row attributes of the second expert is given 

by (
2

2 2 2
1 2, , ,… px x x ). Thus the row attributes of the ith expert is 

given by ( 1 2 … i

i i i
px x x ),  i = 1, 2, …, n.  

We have 
 

Fc = 

1

2

1 2

1
1

1
1

2
1

2
2

1

n

s

p

p

n

n
n
p

y y y
x

A
x

x
A

x

x
A

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

#

#

#

#

 

 
to be a special super column fuzzy vector / matrix, where  
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Ai = 

1 2

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

#

i

s
i

i

i
p

y y y
x
x

x

 

 
i = 1, 2, …, n is a fuzzy pi × s matrix. Suppose the expert wishes 
to work with a fit vector (say) [

1

1 1 1
1 2 … px x x  |  

2

2 2 2
1 2 … px x x  | … | 

1 2 … n

n n n
px x x ]. Then X o Fc= B where B is a simple row vector 

we find cF [ , ] [ , ] + +

+ + +

= × × = …

…

…����	���
 1 n

1 2 n

p p

p p p times

o B 0 1 0 1 I  ; we proceed on 

to work till we arrive at an equilibrium state of the system.  
  
Next we proceed on to define FAM when n expert give opinion 
having distinct set of domain attributes and distinct set of range 
attributes. 
 
DEFINITION 3.3.2.3: Let n experts give opinion on a problem P 
and wish to use a FAM model, to put this data as an integrated 
multi expert system. Let the first expert give his/her attributes 
along the column as (

1

1 1 1
1 2 … qy y y ) and those attributes along 

the row as (
1

1 1 1
1 2 … px x x ).  

Let (
2

2 2 2
1 2 … qy y y ) and (

2

2 2 2
1 2 … px x x ) be the column and 

row attributes respectively given by the second expert and so 
on. Thus any ith expert gives the row and column attributes as 
( 1 2 … i

i i i
px x x ) and ( 1 2 … i

i i i
qy y y ) respectively, i =1, 2, 3, …, n.  

So for any ith expert the associated matrix of the FAM would 
be denoted by Ai where  

Ai = 

1 2

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

#

i

i

i i i
q

i

i

i
p

y y y

x
x

x
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Now form the multi expert FAM model using these n FAM 
matrices A1, A2, …, An and get the multi expert system which is 
denoted by  
 

FD = 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1

1

2
1

2

2

1

(0) (0)

(0) (0)

(0) (0) (0)

(0) (0)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… … … …

#

#

#

#

n

n

n n n
q q q

p

p

n

n

n
p

y y y y y y y y y

x

A
x

x
A

x

x
A

x

. 

 
 

 This fuzzy supermatrix FD will be known as the diagonal 
fuzzy supermatrix of the FAM and the multi expert system which 
makes use of this diagonal fuzzy supermatrix FD will be known 
as the Fuzzy Super Diagonal FAM (SDFAM) model. Now the 
related fit fuzzy supervectors of this model Fx and Fy are fuzzy 
super row vectors given by X= (

1

1 1 1
1 2 … px x x |

2

2 2 2
1 2 … px x x | … | 

1 2 n

n n n
px x x… ) ∈ Fx and Y =  (

1

1 1 1
1 2 … qy y y  | 

2

2 2 2
1 2 … qy y y | … | 

1 2 n

n n n
qy y y… ) ∈ Fy.  

 Now this new FAM model functions in the following way. 
 Suppose the expert wishes to work with the fuzzy super state 
fit vector X = (

1

1 1 1
1 2 … px x x |

2

2 2 2
1 2 … px x x | … | 1 2 … n

n n n
px x x )  

then Y= (
1

1 1 1
1 2 … qy y y  | 

2

2 2 2
1 2 … qy y y | … | 1 2 n

n n n
qy y y… )  ∈ Fy. 
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Now FD o Y = X1 ∈ Fx and Xi o FD = Y1∈ Fy and so on.  
This procedure is repeated until the system equilibrium is 

reached. 
 
DEFINITION 3.3.2.4: Let us suppose we have a problem for 
which mn experts want to give their opinion. Here some experts 
give distinct opinion both for the row attributes and column 
attributes. Some experts concur on the row attributes but give 
different column attributes and a few others have the same set 
of row attributes but have a different set of column attributes. 
All of them concur to work using the FAM model. To find a 
multi expert FAM model which can tackle and give solution to 
the problem simultaneously.  

To this end we make use of a super fuzzy matrix Fs which is 
described in the following. Let the mn experts give their domain 
and column attributes as follows. The first expert works with the 
domain attributes as (

1

1 1 1
1 2 … px x x ) and column attributes as 

(
1

1 1 1
1 2 … qy y y ). The second expert works with the same domain 

attributes viz (
1

1 1 1
1 2 … px x x ) and but column attributes as 

(
2

2 2 2
1 2 … qy y y ).  The ith expert, 1≤ i ≤ n works with (

1

1 1 1
1 2 … px x x ) 

as the domain attributes and ( 1 2 … i

i i i
qy y y ) as the column 

attributes.  
The (n + 1)th experts works with the new set of domain 

attributes  (
2

2 2 2
1 2 … px x x ) but with the same set of column 

attributes viz. (
1

1 1 1
1 2 … qy y y ). Now the n + jth expert works with 

using (
2

2 2 2
1 2 … px x x ) as the domain attribute and ( 1 2 … i

i i i
qy y y ) 

as the column attribute 1 ≤ j ≤ n. The (2n + 1)th expert works 
with (

3

3 3 3
1 2 … px x x ) as the row attribute and (

1

1 1 1
1 2 … qy y y ) as 

the column attribute.  
Thus any (2n + k)th expert uses (

2

2 2 2
1 2 … px x x ) to be the row 

attribute and ( 1 2 … k

k k k
qy y y )  to be the column attribute 1≤ k ≤ 

n. Thus any (tn + r)th expert works with ( 1 2 … t

t t t
px x x ) as the row 
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attribute (1 ≤ t ≤ m) and ( 1 2 … r

r r r
qy y y ) as the column attribute 

1 ≤ r ≤ n. 
Now as 1 ≤ t ≤ m and 1 ≤ r ≤ n we get the FAM matrices of 

all the mn experts which is given by the supermatrix Fs. 
 

 

Fs = 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1 1 1
1 2

1

2
1

2 2 2
1 2

2

1

1 2

n

m

n n n
q q q

n

p

n

p

m

m m m
n

m
p

y y y y y y y y y

x

A A A
x

x
A A A

x

x
A A A

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… … … …

#

#

#

#

 

 
where i

jA  is a fuzzy matrix associated with ijth expert  
 

Ai
j = 

1 2

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

#

j

i

j j j
q

i

i

i
p

y y y

x
x

x
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1 ≤ i ≤ m and 1≤ j ≤ n. This model is known as the multi expert 
fuzzy Super FAM (SFAM) model. The fit vectors associated with 
them are super row vectors from Fx and Fy. 

The fit super row vector X from Fx is  
 

X = [
1

1 1 1
1 2 … px x x  | 

2

2 2 2
1 2 … px x x  | … | 1 2 … m

m m m
px x x ] 

and the  
 
X∈ Fx = 1 2 mp p pI + + +…  [ , ] [ , ] [ , ]

+ + +

= × × ×
…

…�����	����

1 2 mp p p times

0 1 0 1 0 1 .   

 
The fit super row vector Y from Fy is  
 

Y = (
1

1 1 1
1 2 … qy y y | 

2

2 2 2
1 2 … qy y y | … | 1 2 … n

n n n
qy y y ); 

 
Y ∈ Fy = 1 2 nq q qI + + +…  [ , ] [ , ] [ , ]

+ + +

= × × ×
…

…�����	����

1 2 mq q q times

0 1 0 1 0 1 . 

 
Thus if  

X = [
1

1 1 1
1 2 … px x x  | 

2

2 2 2
1 2 … px x x  | … | 1 2 … m

m m m
px x x ] 

 
is the fit vector given by an expert; its effect on Fs is given 

by X o Fs = Y ∈ Fy; now Fs o Y = X1 ∈ Fx then find the effect of 
X1 on Fs ; X1 o Fs = Y1 ∈ Fy and so on.  
 We repeat this procedure until we arrive at a equilibrium 
state of the system.  
 

 
3.4 Illustration of Super Fuzzy Models 
 
In this section we give illustrations of super fuzzy models. This 
section has 13 subsections the first twelve subsections give 
illustrations of the super fuzzy models defined in section 3.3. 
However the final section gives the uses of these super fuzzy 
models.  
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3.4.1 Illustration of the super row FRM model using 
super row vectors. 
 
In this section we give the working and illustration of the super 
row FRM model using super row vectors.  

In this model we wish to analyze the problem, the cause of 
dropouts in schools. Here we have a multiset of attributes given 
by multi experts. The assumption made in this model is that the 
attributes related with the domain space is the same for all 
experts as well as all the multi set of attributes for some fixed 
number of concepts or attributes are taken along the domain 
space. But the range space has multi set of attributes which is 
the different category of schools taken in this problem for 
investigation. 
 The row super FRM model is described in the following. 
Suppose we have some six attributes say D1, D2, …, D6 
associated with the school dropouts from school education in 
primary and secondary level. Suppose we are also interested in 
the study of the schools and their surroundings which contribute 
or influence to the school dropouts. We consider say 5 types of 
schools say  
 

S1 – rural corporation school,  
S2  – rural missionary run school,  
S3  – semi urban government aided school,  
S4 – city schools run by government and 
S5  – private owned posh city schools.  

 
Under these five schools S1, S2, S3, S4 and S5 we will have 
various attributes say 1

1R , …, 
1

1
tR , related with the school S1, 

2
1R , …, 

2

2
tR  be the attributes related under the school S2 and so 

on i.e., with the school Si we have the attributes i
1R , …, 

i

i
tR ; 1≤ 

i ≤ 5.  
Now how to model this not only multi experts system but a 

multi model, we model this using super row matrix. We take the 
domain attributes along the rows and the column attributes are 
attributes related with S1, S2, …, S5. Then the model is made to 
function as follows. 
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The related super row matrix R of the super domain 
constant i.e., DSFRM model is as follows. 
 

1 2 5

1 2 5

1 2 5

1 2 5

1 2 5
1 1 1 2 2 2 5 5 5
1 2 t 1 2 t 1 2 t

1 1 1 2 2 2 5 5 5
11 12 1t 11 12 1t 11 12 1t1
1 1 1 2 2 2 5 5 5
21 22 2t 21 22 2t 21 22 2t2

3

4

5

1 1 1 2 2 2 5 5 5
6 61 62 6t 61 62 6t 61 62 6t

S S S
R R R R R R R R R

d d d d d d d d dD
d d d d d d d d dD

D
D
D
D d d d d d d d d d

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

…
… … … …

… … … …

… … …

# # # # # # # # #

… … … …

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 
 It may so happen that ti = tj for some i and j, 1 ≤ i, j ≤ 5. 
 Now we describe how the model works. Suppose the expert 
has given the related super row FRM matrix model which in 
this case is a 6 × (t1 + t2 + … + t5) super row matrix.  
 Suppose an expert wants to find the effect of a state vector 
X = (1 0 0 0 0 0) on the DSFRM model R, which will result in 
an hidden pattern.  

X o R  = (
1

1 1 1
1 2 qy y y… | 

2

2 2 2
1 2 qy y y… | … | 

5

5 5 5
1 2 qy y y… ) 

= Y,  
after updating and thresholding we get XR J Y (Here 

updating is not required as vector from domain space is taken) 
now we find YRT = (x1 x2 x3 x4 x5 x6) after updating and 
thresholding we get YRT J X1. 
 Now find X1R  J Y1 then find Y1 o RT repeat this 
procedure until we land in a super fixed point or a super limit 
cycle. The fixed point or a limit cycle is certain as we have 
taken only elements from the set {0, 1}. Thus we are guaranteed 
of a fixed point or a limit cycle. Thus when we have both multi 
set of attributes and multi experts the DSFRM is best suited to 
give the hidden pattern of any desired state vector.  

Now we proceed on to study the super FRM model in which 
multi set of attributes is to be analyzed from the domain space 
and the range space attributes remain the same. 
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3.4.2 Illustration of RSFRM model  
 
We illustrate this model by the following problem  

Suppose we have to study reservation among the 
OBC/SC/ST in the higher education. We may have a fixed set 
of attributes associated with each class of students so the 
variable will only be the class of students viz, upper caste 
students, B.C. students, MBC students, SC- students, ST 
students and students belonging to minority religions like 
Christianity, Jainism or Islam.  Thus now the upper caste 
students may spell out the attributes related with them like we 
are very less percentage or so. Likewise the OBC may have 
attributes like poverty and failure of agriculture and so on. The 
SC/ST's may have attributes like discrimination, untouchability, 
instability, ill-treatment and so on. 
 How to connect or interrelate all these concepts and pose it 
as an integrated problem?  
 This is precisely done by the RSFRM (Range constant 
Super FRM model) or to be more specific super column vector 
FRM model i.e., RSFRM model. In this situation we make use 
of the super column vector / matrix. Suppose R1, …, Rn are the 
n fixed set of attributes related with the problem for each and 
every class of students. Let  
 

S1 – denote the class of SC students,  
S2 – denote the class of ST students,  
S3 – class of students belonging to minority religions,  
S4 – the MBC class of students,  
S5 – the class of OBC students and  
S6  – the class of upper caste students. 

 
Now these six classes of students may have a collection of 
attributes say the class S1 has 1

1S , …, 
1

1
mS , related to the claim 

for reservation, S2 has 2
1S , …, 

2

2
mS  sets of attributes and so on. 

Thus the class Si has i
1S , …, 

i

i
mS ,  sets of attributes 1 ≤ i ≤ 6. 

Now the RSFRM model matrix RC takes the following special 
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form. The supermatrix related with this model is a super column 
vector.  
 

 

1 11 12 1n

2 21 22 2 n

6 61 62 6 n

1 2 m
1 1 1 1
1 11 12 1n
1 1 1 1
2 21 22 2n

1 1 1 1
m m m m

2 2 2 2
1 11 12 1n
2 2 2 2
2 21 22 2n

2 2 2 2
m m m m

6 6 6 6
1 11 12 1n
6 6 6 6
2 21 22 2n

6 6 6 6
m m m m

R R R
S S S S
S S S S

S S S S

S S S S
S S S S

S S S S

S S S S
S S S S

S S S S

⎡ ⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

…
…
…

# # # #
…
…
…

# # # #
…

#

…

# # # #
…

cR .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ =
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦  

 
We see the state vectors of the domain space are super row 

vectors where as the state vectors of the range space are just 
simple row vectors. Now we using the wishes of an expert can 
find the hidden pattern of any desired state vector from the 
domain space or the range space of the super model under 
investigation.  

Suppose  
X   = 

1 2 6

1 1 2 2 6 6
1 m 1 m 1 mx x x x x x⎡ ⎤⎣ ⎦… … … …   

 
be the given state supervector for which the hidden pattern 

is to be determined.  
X o Rc = (r1, …, rn) we need to only threshold this state 

vector let  
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X o Rc  =  (r1, …, rn) J ( 1 1
1 nr ... r )  

=  Y 
(' J' denotes the vector has been updated and thresholded)  
 
Now  

Y o t
cR  =  

1 2 6

1 1 2 2 6 6
1 m 1 m 1 mt t t t t t⎡ ⎤⎣ ⎦… … … …   

=  X1 (say). 
 
X1 o RC J Y1, this process is repeated until one arrives at a 
super fixed point or a super limit cycle. 
 Thus from the super hidden pattern one can obtain the 
necessary conclusions.  
 
 
3.4.3 Example of SDSFRM model  
 
In this section we describe the third super FRM model which 
we call as the diagonal super FRM model i.e., SDSFRM model 
and the super fuzzy matrix associated with it will be known as 
the diagonal fuzzy supermatrix. First we illustrate a diagonal 
fuzzy supermatrix before we define it abstractly.  
 
Example 3.4.3.1: Let T be a super fuzzy matrix given by  
 

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

x x x x x x x x x x x x
y 0.1 0.2 0 0 0 0 0 0 0 0 0 0
y 1 0.7 0 0 0 0 0 0 0 0 0 0
y 0 0 0.1 0.3 0.4 0.7 0 0 0 0 0 0
y 0 0 1 0 0.3 0.2 0 0 0 0 0 0
y 0 0 0.1 0.5 0.8 0.9 0 0 0 0 0 0
y 0 0 0 0 0 0 0.3 0.1 0.7 1 0.6 0
y 0 0 0 0 0 0 0.5 0.7 1 0.8 0.1 0.9
y 0 0 0 0 0 0 0.1 0.4 0.1 0.5 0.7 1
y 0 0 0 0 0 0 0.5 0.1 0.4 0.6 1 0.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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A super fuzzy matrix of this form will be known as the diagonal 
super fuzzy matrix. We see all the diagonal matrices are not 
square or they are of same order.  
 
Example 3.4.3.2: Let S be a fuzzy supermatrix i.e.,  
 

S = 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

x x x x x x x x x
y 0.1 0.3 0.5 0 0 0 0 0 0
y 0.9 0.1 0 0 0 0 0 0 0
y 0 0 0 0.3 0.7 0.1 0.5 0 0
y 0 0 0 0.7 1 0.3 0.8 0 0
y 0 0 0 0.6 0.5 0.8 0.4 0 0
y 0 0 0 0.4 0.6 0.1 0.5 0 0
y 0 0 0 0.9 0.5 0.4 0.6 0 0
y 0 0 0 0.3 0.4 0.8 0.6 0 0
y 0 0 0 0.2 0.1 0.5 0.1 0 0
y 0 0 0 0
y
y
y
y

.1 0.9 0 0.3 0 0
0 0 0 1 0 0.2 0.8 0 0
0 0 0 0 0 0 0 0.3 0.2
0 0 0 0 0 0 0 0.9 0.1
0 0 0 0 0 0 0 0.8 0.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
S is a diagonal fuzzy supermatrix. 
 
DEFINITION 3.4.3.2: Let S be a some m × n fuzzy supermatrix 
where 

m = ( 
1

1 1
1 + +… pt t  + 

2

2 2
1 + +… pt t  + … + 1 + +…

r

r r
pt t ) 

and  
n = ( 

1

1 1
1 + +… qr r  + 

2

2 2
1 + +… qr r  + … + 1 + +…

t

t t
qr r ). 

 
Now the diagonal elements which are rectangular or square 
fuzzy matrices and rest of the elements in the matrix S are zeros. 
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The diagonal elements i.e., the fuzzy matrices are given by A1, 
A2, …, Ar where  

1

2

(0) (0)
(0) (0)

(0) (0) r

A
A

S

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
…

# # #
…

.  

 
For instance we continue A1, …, Ar as follows: 

 

A1 = 

1

1

1 1 1
1 2 p

i
1
i
2

i
q

t t t

r 0.1 0.9 0.12
r 0.7 0 0.3

r 0.1 0 0.11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

…
…

# # # #
…

,  

 

A2 = 

2

2

2 2 2
1 2 p

2
1
2
2

2
q

t t t

r 0.3 0.7 0.5
r 0.1 0.3 0.4

r 0.9 0.2 0.41

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

…
…

# # # #
…

, …,   

 

Ar = 

r

t

r r r
1 2 p

t
1
t
2

t
q

t t t

r 0.4 0.7 0.8
r 0.5 0.3 0.7

r 0.9 0.14 0.19

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

…
…

# # #
…

.  

 
(0) denotes a 0 matrix of the relevant order. 
 The values of A1, …, Ar are given very arbitrarily. This 
matrix S is called as the diagonal fuzzy supermatrix.  
 
We illustrate the use of this by the following model. 
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Suppose we have a set of n experts who want to give their 
opinion on a problem and if each one of them have a distinct 
FRM associated with it i.e., they have different set of domain 
attributes as well as different set of range attributes then it 
becomes impossible for them to use the super row FRM model 
or the super column FRM model. 

In this case they make use of the diagonal super FRM 
model. 

Suppose one wants to study the problem of unemployment 
and the social set up i.e., unemployment as a social problem 
with n experts. Let the first expert have ti concepts associated 
with domain space and ri concepts associated with the range 
space i = 1, 2, …, n. The related diagonal SDSFRM model SD 
given by 4 experts is as follows   
 

.6 .1 .2 .3 0 0 0 0 0 0 0 0 0 0 0 0
1 0 .4 .6 0 0 0 0 0 0 0 0 0 0 0 0
.8 .9 1 .7 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .8 .9 1 0 0 0 0 0 0 0 0 0
0 0 0 0 .5 .6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .9 .2 .4 0 0 0 0 0 0 0 0 0
0 0 0 0 .1 .7 .8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .3 .2 .1 .7 0 0 0 0
0 0 0 0 0 0 0 .5 .8 .8 .4 .8 0 0 0 0
0 0 0 0 0 0 0 0 .7 .9 .6 .1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 .3 .4 .1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 .8 .9 0
0 0 0 0 0 0 0 0 0 0 0 0 .1 0 1 .8
0 0 0 0 0 0 0 0 0 0 0 0 .4 .1 .6 1
0 0 0 0 0 0 0 0 0 0 0 0 0 .2 .3 .3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 
Let X be any super row vector of the domain space i.e.,  

 
1 1 1 2 2 2 2 3 3 3 4 4 4 4 4
1 2 3 1 2 3 4 1 2 3 1 2 3 4 5X t t t t t t t t t t t t t t t⎡ ⎤= ⎣ ⎦  
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t

i
jt ∈ [0, 1], 1≤ i ≤ 4 and 1≤ jt ≤ 5. Let Y be any super row vector 

of the range space i.e.,  
 

1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4Y r r r r r r r r r r r r r r r r⎡ ⎤= ⎣ ⎦ ,  

 

t

i
jr ∈ [0, 1], 1 ≤ i ≤ 4 and 1≤ jt ≤ 5.  

Thus if  
 

X  =  [1 0 1  | 0 1 1 1 | 0 0 1| 0 0 0 1 0]. 
 
Then we find X o SD J Y, is obtained Y is a super row 

vector find Y o SD
T and so on until we get a fixed point or a 

limit cycle. Since the elements of the state vector is from the set 
{0, 1} we get the result certainly after a finite number of steps. 
If some experts have the domain attributes in common and some 
others have the range attributes in common what should be the 
model. We use the Super FRM (SFRM) model. 

 
 
3.4.4 Super FRM (SFRM) model 
 
A Super FRM (SFRM) model makes use of the fuzzy 
supermatrix. In this case we have all the three types of super 
FRM models viz. Super Domain FRM model (DSFRM), Super 
Range FRM (RSFRM) model and the Super Diagonal FRM 
(SDSFRM) models are integrated and used. 

Suppose we have 6 = 3 × 2 experts of whom 2 of them 
choose to have both domain and range attribute to be distinct. 
The problem we choose to illustrate this model is the cause of 
migrant labourers becoming easy victims of HIV/AIDS. 

The nodes / attributes taken by the first expert as the domain 
space. 
 

1
1P  - No education / no help by government 
1
2P  - Awareness program never reaches them 
1
3P  -  No responsibility of parents to educate children. 
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1
4P  - Girls at a very young age say even at 11 years 

are married 
  
The range nodes given by the first expert 

 
1
1M  - Government help never reaches the rural poor 

illiterate 
1
2M  - Availability of cheap liquor 
1
3M  - Cheap availability of CSWs 

 
The nodes given by the second expert. The domain nodes / 
attributes given by the 2nd expert 

 
2

1P  - Addiction to cheap liquor 
2
2P  - Addiction to smoke and visit of CSWs 
2
3P  - Very questionable living condition so to have 

food atleast once a day they migrate  
 

The nodes / attributes given by the range space. 
 

2
1M  - No job opportunities in their native place 
2
2M  - No proper health center 
2
3M  - No school even for primary classes 
2
4M  - Acute poverty 

 
The nodes given by the third expert who wishes to work with 
the domain nodes 1

1P , 1
2P , 1

3P  and 1
4P  and chooses the range 

nodes / attributes as 2
1M , 2

2M , 2
3M  and 2

4M .  
The fourth expert chooses the domain nodes as 1

1P , 1
2P ,  

1
3P  and 1

4P  and range nodes as 3
1M , 3

2M  and 3
3M  which are 

given as 
 

3
1M  - No proper road or bus facilities 
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3
2M  - Living conditions questionably poor 
3
3M  - Government unconcern over their development 

in any plan; so only introduction of machine for 
harvest etc. has crippled agricultural labourers, 
their labour opportunities 

 
The fifth expert wishes to work with 2

1P , 2
2P and 2

3P  as domain 
attributes and 1

1M , 1
2M  and 1

3M  as range attributes. The sixth 
expert works with 2

1P , 2
2P and 2

3P  as domain nodes and 3
1M , 

3
2M  and 3

3M  as the range nodes. The super FRM has the 
following super fuzzy matrix which is a 7 × 10 fuzzy 
supermatrix.  

Let Ms denote the super fuzzy FRM matrix. 
 

1 1 1 2 2 2 2 3 3 3
1 2 3 1 2 3 4 1 2 3

1
1
1
2
1
3
1
4
2

1
2
2
2
3

M M M M M M M M M M
1 0 0 0 0 1 0 1 0 0P
0 0 1 0 1 0 0 0 0 1P
0 1 0 0 0 1 1 0 1 0P
1 0 0 1 0 0 1 0 1 0P
0 1 0 0 0 1 0 0 0 1P
0 1 1 1 0 0 0 0 1 0P
1 0 0 0 0 0 1 1 0 0P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
The domain state vectors are super row vectors of the form; 

A = [ 1
1a 1

2a 1
3a 1

4a  | 2
1a  2

2a  2
3a ] , 1

ia , 2
ja  ∈  {0, 1}; 1 ≤ i ≤ 4 and 1 

≤ j ≤ 3. 
The range state vectors are super row vectors of the form B 

= [ 1
1b  1

2b  1
3b  | 2

1b  2
2b  2

3b  2
4b  | 3

1b  3
2b  3

3b ] ;  1
ib , 2

jb , 3
kb  ∈ {0, 1}; 

1 ≤ i ≤ 3, 1 ≤ j ≤ 4 and 1 ≤ k ≤ 3. 
Suppose the experts want to work with X = [0 1 0 0  |  0 0 1] 

 
 XMS = Y   

=  [1 0 1 |  0 1 0 1 |  1 0 1] 
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 Y T
SM  J  [1 1 1 1 | 1 1 1] 

=  X′ 
 X′MS J  [1 1 1 | 1 1 1 1 | 1 1 1]. 
 
All the nodes come to on state. This is only an illustrative model 
to show how the system super FRM i.e., SFRM functions. 
 
 
3.4.5 Special DSBAM model illustration 
 
In this section we give illustration of the special super row 
bidirectional associative memories model.  Suppose we have 
four experts who want to work using the super row BAM i.e. 
they choose to work with the same set of domain attributes but 
wish to work with varied column attributes. Suppose they have 
six domain attributes say x1, x2, ..., x6 and the first expert has the 
range attributes as 1

1y , 1
2y , 1

3y , 1
4y  and 1

5y .  
The second expert with 2

1y , 2
2y , 2

3y  and 2
4y ,  range 

attributes the third expert with the nodes 3
1y , 3

2y  and 3
3y  as 

range attributes and the fourth expert with the nodes 4
1y , 4

2y , 
4
3y , 4

4y  and 4
5y  as range attributes.  

 The row constant super BAM model MR is given by 
 

1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 4
1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 4 5

1

2

3

4

5

6

y y y y y y y y y y y y y y y y y
x
x
x
x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Suppose A = [a1 a2 a3 a4 a5 a6] is the state vector given or chosen 
by an expert  the effect of A on MR is given by 
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A o MR  J [ 1

1b  1
2b  1

3b  1
4b  1

5b  | 2
1b  2

2b  2
3b  2

4b  | 3
1b  3

2b  3
3b  | 

    4
1b  4

2b  4
3b  4

4b  4
5b ] 

=  B. 
B o T

RM  J  A1  
=  [a'1 a'2 a'3 a'4 a'5 a'6]. 

A1 o T
RM  J  B1  

 
and so on. Until one arrives at a fixed point or a limit cycle. One 
can also start with the state vector  
 

Y    =  [ 1
1y  1

2y  1
3y  1

4y  1
5y  | 2

1y  2
2y  2

3y  2
4y  | 3

1y  3
2y  3

3y  | 
    4

1y  4
2y  4

3y  4
4y  4

5y  ]  
 
and work in the similar manner using MR. 
 
 
3.4.6 RSBAM model illustration 
 
In this section we give illustration of the Special Super Row 
BAM model (RSBAM model).  

Let us suppose we have some 4 experts working with a 
problem with same column attributes but 4 distinct set of row 
attributes which has the synaptic connection matrix to be a 
column supermatrix. 

Let the column attributes be given by (y1 y2 … y8). The first 
expert gives the attributes along the row to be ( 1

1x 1
2x  …  

1
5x ), the second experts row attributes for the same problem is 

given by ( 2
1x 2

2x  … 2
6x ) and so on. Thus the ith expert gives the 

set of row attributes as ( i
1x  i

2x  … 
i

i
px ); i = 1, 2, …, 4. Now as 

all the four experts have agreed to work with the same set of 
column attributes viz., (y1 y2 …  y8).  

The related connection matrix of the RSBAM is given by 
MC. 
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1 2 3 4 5 6 7 8

1
1
1
2
1

13
1
4
1
5
2
1
2
2
2

23
2
4
2
5
2
6
3
1
3
2
3

33
3
4
4
1
4
2
4

43
4
4
4
5
4
6

y y y y y y y y

x
x

Mx
x
x
x
x

Mx
x
x

.x
x
x

Mx
x
x
x

Mx
x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We see MC is a special super column matrix. We see the fit 
vector of the domain space FX are super row vectors where as 
the fit vectors of the range space FY are just ordinary or 
elementary row vectors. 

Thus if  
X   = [ 1

1x  1
2x  … 1

5x  | 2
1x  2

2x  … 2
6x  | 3

1x  3
2x  3

3x   3
4x |  

    4
1x  4

2x  … 4
6x ] 
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 XMC J Y  
= [y1  y2  …  y8]  ∈ FY. 

 YTMC J X1 ∈ FX 
now  

 
X1MC J Y1 ∈ FY; 

 
and so on, till we arrive at a fixed point or a limit cycle.  

 
Next we proceed on to give the illustration of a diagonal 

super BAM (SDBAM) model. 
 
 
3.4.7 Special super diagonal BAM model illustration  
 
In this section we give illustration of the special super diagonal 
BAM model with live illustration and show how it functions.  

In this model we study the problems faced by the labourers 
working in garment industries and the flaws related with the 
garment industries. We only give 3 experts opinion for proper 
understanding. However it is possible to work with any number 
of experts once a proper programming is constructed. The 
attributes given by the first expert. 
 The problems related to the labourers working in garment 
industries. 
 

1
1L  - Minimum wage act not followed 
1
2L  - Payment of bonus not followed 

1
3L  - Cannot voice for safety hazards at work place 

1
4L  - Women discriminated 

1
5L  - Pay not proportional to work and hours of work 

1
6L  - Child labour as home can be their work place 

 
The flaws related with the garment industries as given by the 
first expert. 
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1
1I   - Working and living conditions of workers are 

bad 
1
2I   - Garment workers not organized in trade union 

for fear of losing their jobs 
1
3I   - Very poor or no health / life safety to workers 
1
4I   - Forced labour on migrant women and children 
1
5I   - Most of the industries acts are flouted 

 
Next we proceed onto give the attributes of the second expert 
about the same problem using a BAM model. 
 
Attributes given by the second expert on labourers working in 
the garment industries. 
 

2
1L  - No proper wages or PF benefit 
2
2L  - Child labour at its peak 
2
3L  - Workers loose their jobs if they associate 

themselves with the trade unions 
2
4L  - Migrant labourers as daily wagers because of 

easy availability of contractors 
2
5L  - Women discriminated 

 
Attributes related with the garment industries as given by the 
second expert. 
 

2
1I  - Most workers are not aware of their right so are 

very easily exploited 
2
2I  - Outstanding in its performance very high turn 

out 
2
3I  - Only youngsters and children are employed in 

majority 
2
4I  - Forced labour on children and migrant women 
2
5I  - Garment workers not organized in any trade 

union 
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2
6I  - Long-term workers turn into labour contractors 

or sub contractors 
2
7I  - Almost all industrial laws are flouted 

 
Now we proceed on to give the views of the 3rd expert. The 
views of the 3rd expert related to the labourers working in 
garment industries. 
 

3
1L  - Pay not proportional to work 
3
2L  - No proper pay / bonus / PF or even gratuity 
3
3L  - Women and children discriminated badly 
3
4L  - No hygiene or safety at the work place 

 
The concepts / attributes given by the third expert for the BAM 
related to the flaws related to these garment industries. 
 

3
1I  - Industry acts are not followed 
3
2I  - Very outstanding performance turnout in crores 

by these industries 
3
3I  - Living conditions of garment workers are very 

bad 
3
4I  - Atmosphere very hazardous to health 
3
5I  - No concern of the garment industry owners 

about the living conditions of their workers 
 
Now using the 3 experts opinion we give the associated super 
diagonal fuzzy matrix model, which is a 15 × 17 super fuzzy 
matrix of the BAM which we choose to call as the special 
diagonal super fuzzy matrix. The nodes / attributes of FX are 
super row vectors given by  
 

X = [ 1 1 1 1 1 1
1 2 3 4 5 6L L L L L L | 2 2 2 2 2

1 2 3 4 5L L L L L  | 3 3 3 3
1 2 3 4L L L L ]. 

 
The coordinates of super row vectors from Fy which form the 
columns of the BAM are given by  
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Y = [ 1

1I  1
2I  1

3I  1
4I  1

5I  | 2 2 2 2 2 2 2
1 2 3 4 5 6 7I I I I I I I  | 3 3 3 3 3

1 2 3 4 5I I I I I ]. 
 
Any fit vector given by the expert would be from the same scale 
which was used to construct the BAM model. In this problem 
the experts agreed to work on the scale [–4, 4]. When an expert 
gives the fit vector X = [ 1 1 1 2 2 2 3 3

1 2 6 1 2 5 1 4x x x | x x x |x x… … … ] 
where  xij  ∈  [– 4,  4 ]; 1 ≤ i ≤ 3, 1 ≤ j ≤ 6  or  5  or  4. 

Let MD denote the diagonal super fuzzy matrix; MD =  
 

1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3
1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5

1
1

1
2

1
3

1
4

1
5

1
6
2
1
2
2
2
3
2
4
2
5
3
1
3
2
3
3
3
4

I I I I I I I I I I I I I I I I I
3 2 1 4 0L
1 2 0 3 2L
2 1 1 0 2 (0) (0)L
3 1 0 3 1L
1 2 1 2 1L

4 3 1 4 3L
0 1 2 3 1 2 1L
3 1 1 0 3 1 0L

(0) 4 2 0 1 4 4 2 (0)L
1 1 3 0 1 0 1L
2 3 1 2 0 2 0L

3 0 2 1 0L
2 2 1 0 1L

(0)L
L

−
−

− −
−

−
−

−
− −

− − −
−

(0) 1 1 0 2 1
1 1 0 3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥⎣ ⎦
 

Suppose the expert gives the fit vector as  
 

XK   = [2 3  0  1  –1  –2 | 0 2  –1  –3  –5  | 3  0  –2  –4]  
 
at the kth time period; using the activation function S we get 
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S(XK)  = [1  1  0  1  0  0 | 0  1  0  0  0 | 1  0  0  0 ] 
S(XK) MD = [7 1 1 10 3 | 3  1  –1  0  3  1 0 | 3  0  –2  1 0] 
   = YK+1 
S(YK+1)  = [1  1  1  1  1 | 1  1  0  0  1  1 0 | 1  0  0  1 0] 
 
S(YK+1) o T

DM  and so on. 
 
 
3.4.8 Super BAM model illustration 
 
In this section we give illustration of super BAM model by a 
real world problem.  

Now the super fuzzy matrix Ms associated with four experts 
for the same problem of garment industries is given below. 
 

1 1 1 1 2 2 2 2 2 2
1 2 3 4 1 1 3 4 5 6

1
1
1
2
1
3
1
4
1
5
2
1
2
2
2
3
2
4

L L L L L L L L L L
2 1 1 3 0 1 0 2 3 4I
3 4 0 1 2 3 1 1 2 1I
2 3 2 1 1 0 1 2 0 2I

1 1 1 2 2 1 4 0 0 3I
4 3 1 0 3 2 3 1 1 2I
3 0 1 2 0 1 0 2 1 3I
2 2 3 1 1 0 3 1 0 2I
2 2 2 1 2 2 3 0 1 0I
3 0 2 4 3 1 1 3 4 1I

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
− −⎢ ⎥

⎢ ⎥− − −⎣ ⎦

. 

 
The first expert works with ( 1 1 1 1

1 2 3 4L L L L ) as the column 
attribute and row attribute ( 1 1 1 1 1

1 2 3 4 5I I I I I ). The second expert 
works with ( 2 2 2 2 2 2

1 2 3 4 5 6L L L L L L ) as the column attribute and 
( 1 1 1 1 1

1 2 3 4 5I I I I I ) as the row attribute.  
The third expert works with ( 1 1 1 1

1 2 3 4L L L L ) as the column 
attributes and ( 2 2 2 2

1 2 3 4I I I I ) as the row attributes and the fourth 
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expert use ( 2 2 2 2 2 2
1 2 3 4 5 6L L L L L L ) as the column attributes and 

( 2 2 2 2
1 2 3 4I I I I ) as row attributes.  

However all the four experts agree to work on the same 
interval viz. [–4, 4]. Now any given state / fit vector by the 
expert is synchronized and made to work on the super fuzzy 
matrix MS. Clearly once again the fit vectors which are super 
row vectors take their values only from the interval [–4, 4]. This 
super BAM model also functions as the usual BAM model with 
a simple difference these resultant row vectors which is a fixed 
point or a limit cycle is just a super row vector. 
 
 
3.4.9 Special Row FAM model illustration (SRFAM)  
 
In this section we give illustration of special row FAM model 
and show how it functions.   

Suppose we have some four experts who wish to work on a 
specific problem using a special row FAM. All of them agree 
upon to work with the same set of row attributes. We indicate 
how to study the multi expert problem to analyse the problems 
faced by the labourers in Garment industries. The attributes 
related to the labourers given by all the four experts is as 
follows: 
 

W1 - Minimum wages act not followed with no 
bonus or PF or gratuity 

W2 - Women discriminated 
W3 - More hours of work pay not proportional to 

work 
W4 - Cannot voice for safety hazards 
W5 - Child labour is at its peak 

 
The attributes given by the first expert related to the flaws of 
garment industries. 
 

1
1I  - Living conditions of garment workers are bad 
1
2I  - Garment workers not organized in trade unions 

for fear of losing jobs 
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1
3I  - Outstanding in its performance very high turn 

out 
1
4I  - Youngsters and children employed for better 

turn out 
1
5I  - No medical facilities or protection from health 

hazards 
The attributes related to the garment industries given by the 
second expert. 

 
2
1I  - They run with very high profit yet deny proper 

pay to workers 
2
2I  - They do not allow the functioning of any 

workers union 
2
3I  - They employ only children and youngsters on 

contract basis so that when they become little 
middle aged or women get married they are 
sent home 

2
4I  - Forced labour on migrant women and children 
2
5I  - Living conditions of the workers is very poor 
2
6I  - Long term workers are turned into labour 

contractors or sub contractors (contracting 
inside the industry) 

 
The attributes given by the third expert related to the flaws in 
running the garment industry. 

 
3
1I  - Garment workers not organized in trade unions 

for fear of losing job 
3
2I  - All there industries run with a very high profit 
3
3I  - Living conditions of the workers questionable 
3
4I  - Forced labour on children and women 
3
5I  - All industry acts flouted 

 
Now we proceed on to give the attributes given by the fourth 
expert related to the flaws related with the industry. 
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4
1I  - Industry acts are flouted 
4
2I  - All labour laws disobeyed 
4
3I  - Children employed for better turn out 
4
4I  - No medical / health protection for the workers 
4
5I  - All industries run with 100% profit 
4
6I  - The workers social conditions very poor and 

questionable 
4
7I  - Workers cannot be organized into trade unions 

for fear of losing job 
 

The super row FAM is given by FR 
 

1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4
1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6 7

1

2
1 2 3 4

3 1 2 3 4

4

5

I I I I I I I I I I I I I I I I I I I I I I I
W
W
W A A A A
W
W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
where i

iA  is a fuzzy matrix i.e. it takes the entries from the unit 
interval [0,  1], 1 ≤ i  ≤ 4.  
If A = [0  1  0  1  0] is a fit vector given by an expert then 

A o FR = max {min (ai t
ija )};  1 ≤ t ≤ 4 

   = B (say). 
B is a super fuzzy row vector. 
 FR o B = max  min ( t

ija  bj) 
   = ai  ∈  A1. 
This process is repeated until we arrive at a fixed point. The pair 
of resultant fit vectors (Ak, Bt) would be a fuzzy row vector with  
 

Ak   =  [ 1 2 3 4 5
k k k k ka a a a a ] ;  

t
ka  ∈ [0, 1]  1 ≤ t ≤ 5  and   
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Bt  = [ 1 1 1 1 1

1 2 3 4 5b b b b b  | 2 2 2 2 2 2
1 2 3 4 5 6b b b b b b  | 

 3 3 3 3 3
1 2 3 4 5b b b b b  | 4 4 4 4 4 4 4

1 2 3 4 5 6 7b b b b b b b ], 
 

s
jkb  ∈ [0, 1]; 1 ≤ s ≤ 4 is super fuzzy row vector. Now from the 

resultant we can see the entries in the resultant are values from 
[0, 1] so that we can get the gradation of importance of each of 
the attributes. 
 
 
3.4.10 Special Column super FAM model 
 
In this section we show how a special column super FAM 
model operates on a real world problem. Suppose we have a set 
of experts who wish to work with a problem having a same set 
of column attributes but want to use a distinct set of row 
attributes, the multi expert FAM model makes use of the special 
column supervector for this study. We illustrate this by an 
example, however the model has been described in 193-5. 
Suppose three experts wish to study using FAM model the socio 
economic problems of HIV/AIDS affected women patients. All 
of them agree upon the column nodes or attributes related with 
the women to be W1, W2, W3, W4, W5 and W6 where 
 

W1 - Child marriage / widower marriage, child 
married to men thrice or four times their age. 

W2 - Causes of women being infected with 
HIV/AIDS 

W3 - Disease untreated till it is chronic or they are in 
last stages of life 

W4 - Women not bread winners thus a traditional set 
up of our society 

W5 - Deserted by family when they have HIV/AIDS 
W6 - Poverty and ignorance a major reason for 

becoming HIV/AIDS victims 
 

The concepts associated with society, men/husband leading 
women to become HIV/AIDS patients given by the first expert. 
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1
1R  - Female child a burden so the sooner they give 

in marriage the better relief economically. 
1
2R  - Poverty / not owners of property. 
1
3R  - No moral responsibility on the part of husbands 

and they infect their wives willfully. 
1
4R  - STD/VD infected husbands leading wives to 

frequent natural abortion or death of born 
infants. 

1
5R  - Bad habits of men/husbands. 

 
The concepts given by the second expert in relation to the 
causes of women becoming HIV/AIDS infected. 
 

2
1R  - Husbands hide their disease from their family 

members so the wife become HIV/AIDS 
infected 

2
2R  - STD/VD infected husbands 
2
3R  - Poverty, don’t own poverty 
2
4R  - Bad habits of men/husbands 

 
The 3rd experts views on how HIV/AIDS affect rural women. 

 
3
1R  - STD/VD infected husbands 
3
2R  - Female child a burden so they want to dispose 

off as soon as possible to achieve economic 
freedom 

3
3R  - Bad habits of men/husbands 
3
4R  - No moral responsibility on the part of husbands 

and they infect their wives willfully 
3
5R  - Poverty a major draw back 
3
6R  - Migration of men to earn, due to lack of 

employment in the rural areas 
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Let Fc denote the related special super column fuzzy matrix of 
the super column FAM model. 
 

1 2 3 4 5 6

1
1
1
2

11
13

1
4
1
5
2
1

22
22

2
3
2
4
3
1
3
2

33
33

3
4
3
5
3
6

W W W W W W

R
R

BR
R
R
R

BR
R
R
R
R

BR
R
R
R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where each of the i

iB  is a fuzzy matrix; i = 1, 2, 3. Suppose we 
have a fit vector  

A = [ 1 1 1 1 1
1 2 3 4 5a a a a a | 2 2 2 2

1 2 3 4a a a a  | 3 3 3 3 3 3
1 2 3 4 5 6a a a a a a ] 

 
which is a super fuzzy row vector then  

 
A o Fc = B = [b1 b2 b3 b4 b5 b6]; 

 
now B the fit vector is only a fuzzy row vector. 

The effect of B on the system is given by Fc o B = A1, A1 is 
a fit row vector which is a super fuzzy row vector, we proceed 
on until we arrive at a system stability. 
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3.4.11 Super fuzzy diagonal FAM model illustration  
 
This section gives illustration of how a super diagonal FAM 
functions. Here we give a super diagonal FAM model using 3 
experts opinion. Suppose some three experts are interested in 
the study of the problem of cause of migration and migrant 
labourers becoming victim to HIV/AIDS and all of them wish to 
work with distinct set of row and column attributes.  
 
The row attributes given by the first expert related to attributes 
that lead to migrant labourers becoming victim of HIV/AIDS. 
 

1
1M  - Government help never reaches the rural poor 

illiterate  
1
2M  - Availability of cheap liquor 
1
3M  - Poverty 
1
4M  - No job opportunities in their home town / 

village 
1
5M  - Living conditions questionably poor 
1
6M  - No proper health center in their home town / 

village 
 

Attributes given by the first expert related to the migrant 
labourers becoming victims of HIV/AIDS. 

 
1
1P  - No education / No help by government 
1
2P  - Smoke and visit of CSWs 
1
3P  - Addiction of cheap liquor 
1
4P  - Awareness program never reaches them 
1
5P  - No responsibility of parents to educate their 

children. 
 

Now we enlist the row and column attributes given by the 
second expert in the following. 
 
The attributes which promote migration. 
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2
1M  - No job opportunities in the place where they 

live 
2
2M  - Availability of CSWs and cheap liquor 
2
3M  - Poverty 
2
4M  - No proper health center 

 
The attributes related to the migrant labourers who become 
victims of HIV/AIDS. 

 
2

1P  - No education 
2
2P  - Very questionable living conditions so migrate 
2
3P  - Addiction to cheap liquor, CSWs and smoke 
2
4P  - Awareness program never reaches them 
2
5P  - No responsibility of parents to educate children. 

 
Now we proceed on to work with the 3rd expert. 
The attributes connected with the migrant labourers becoming 
HIV/AIDS. 

 
3
1M  - No proper health center 
3
2M  - No job opportunities at their home town 
3
3M  - Poverty 
3
4M  - Availability of CSWs and liquor at cheap rates 
3
5M  - Government programmes never reaches the 

poor illiterate. 
3
6M  - Government silence over their serious 

problems. 
3
7M  - No school even for primary classes. 

 
The nodes related to the problems of migrant labourers who 
suffer and ultimately become victims of HIV/AIDS as given by 
the third expert. 
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3
1P  - No education 
3
2P  - Very questionable living condition so migrate 
3
3P  - Awareness program never reaches them 
3
4P  - No responsibility of parents to educate children 
3
5P  - Addiction to cheap liquor and CSWs. 

 
Now we proceed on to give the diagonal super fuzzy matrix FD 
related to the super FAM using the three experts. This 
supermatrix will have 17 row elements and 15 column elements. 
The rest of the non diagonal elements are zero. 
 

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1
1
1
2

11
ij3

1
4
1
5
1
6
2
1

22
ij2

2
3
2
4
3
1
3
2
3
3

33
ij4

3
5
3
6
3
7

P P P P P P P P P P P P P P P

M
M

(F ) (0) (0)M
M
M
M
M

(0) (F ) (0)M
M
M
M
M
M

(0) (0) (F )M
M
M
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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( )1
ijF  = 

1 1 1 1 1
1 2 3 4 5

1
1
1
2
1
3
1
4
1
5
1
6

P P P P P

M
M
M
M
M
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

( )2
ijF  = 

2 2 2 2 2
1 2 3 4 5

2
1
2
2
2
3
2
4

P P P P P

M
M
M
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

and   
 

( )3
ijF  = 

3 3 3 3 3
1 2 3 4 5

3
1
3
2
3
3
3
4
3
5
3
6
3
7

P P P P P

M
M
M
M
M
M
M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

  
The fit vectors from the domain space X would be a super row 
fuzzy vector where  
 
X = [ 1 1 1 1 1 1

1 2 3 4 5 6x x x x x x  | 2 2 2 2
1 2 3 4x x x x  | 3 3 3 3

1 2 3 4x x x x 3 3 3
5 6 7x x x ]. 

 
The elements 1

ix , 2
jx , 3

kx  ∈ [0, 1];  1 ≤ i ≤ 6,  1 ≤ j ≤ 4  and  1 ≤ 
k ≤ 7. The fit vector from the range space Y would be a super 
row fuzzy vector where  
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Y = [ 1 1 1 1 1

1 2 3 4 5y y y y y  | 2 2 2 2 2
1 2 3 4 5y y y y y  | 3 3 3 3 3

1 2 3 4 5y y y y y ]. 
 
The elements t

jy  ∈ [0, 1];  1 ≤ t ≤ 3 and 1 ≤ j ≤ 5. We find X o 
FD = Y now FD o Y = X1 and so on until we arrive at the 
equilibrium of the system. 
 Now we proceed on to give the next model. 
 
 
3.4.12 Fuzzy Super FAM model Illustration   
 
In this section we illustrate a fuzzy super FAM model and its 
mode of functioning. Suppose we wish to study the Employee 
and Employer relationship model. We have 12 = 4 × 3 experts 
working on the problem. The concepts / nodes related with the 
employee given by the first expert. 
 

1
1D  - Pay with allowance to the employee 
1
2D  - Only pay to employee 
1
3D  - Average performance by the employee 
1
4D  - Poor performance by the employee 
1
5D  - Employee works more than 8 hours a day 

 
The concepts related with the employer as given by the first 
expert is as follows: 

 
1
1R  - The industry runs with maximum profit 
1
2R  - No loss, no gain 
1
3R  - Trade unions / employee unions not encouraged 
1
4R  - Employee unions have a say in the industry 
1
5R  - Contract labourers form the majority of workers 
1
6R  - The profit/loss workers remain in the same state 
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The second expert wishes to work with the same domain 
attributes but however has given a set of range attributes which 
is as follows: 

 
2
1R  - The industry is unconcerned about the social 

and the economic conditions of their workers. 
2
2R  - Industry for the past one decade has always run 

with profit or no loss. 
2
3R  - Employee unions do not exist in their 

industries. 
2
4R  - Owners always have the trend to exploit the 

employees. 
2
5R  - Bonus is given every year. 

 
The third expert wishes to work with the same set of domain 
attributes as the first expert but has a set of different range 
attributes. 

 
3
1R  - Industries least bothered about the employees 

health hazards. 
3
2R  - The industrialists have no mind set to look into 

the problems of the employees. 
3
3R  - The industry aims only for profit unconcerned 

about any other factors. 
3
4R  - Employees get proper medical care 
3
5R  - Employees enjoy all sorts of benefit including 

pension after retirement. 
3
6R  - Employees are made to work not following any 

of the industrial acts. 
 

Now the fourth expert wishes to work with a new set of domain 
attributes but is happy to accept the first experts range attributes 
viz., R1

1, R1
2, …, R1

6.  
 



 231

The set of domain attributes given by the 4th expert is as 
follows: 

 
2
1D  - No pension benefits or medical aid 
2
2D  - The employee do not perform well 
2
3D  - They work for more hours with less pay 
2
4D  - The employees are vexed, for profit or loss the 

workers are not given any benefit 
2
5D  - Workers are not informed of the health hazards 

for their labour conditions are questionable. 
 
The fifth expert wishes to work with the domain attributes 

2
1D , 2

2D , 2
3D , 2

4D  and 2
5D  the range attributes taken by him are 

2
1R , 2

2R , 2
3R , 2

4R  and 2
5R .  

 Now the sixth expert wishes to work with the domain 
attributes as 2

1D , 2
2D , 2

3D , 2
4D  and 2

5D . The range attributes 
taken by him are 3

1R , 3
2R , 3

3R , 3
4R , 3

5R  and 3
6R .  

The seventh expert works with the new set of domain 
attributes are taken as 3

1D , 3
2D , 3

3D , 3
4D , 3

5D  and 3
6D  which are 

as follows. 
 

3
1D  - Living conditions of the workers are 

questionable. 
3
2D  - The workers do not receive any good pay or 

medical aid or pension benefits. 
3
3D  - Employees cannot form any association or be 

members of any trade unions. 
3
4D  - Most of them do not have any job security. 
3
5D  - The employees are not informed about the 

health hazards when they do their job.  
 
This expert however wishes to work with the range 

attributes as 1
1R , 1

2R , …, 1
6R .   
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The eighth expert works with the domain attributes 3
1D , 

3
2D , 3

3D , 3
4D  and 3

5D  and range attributes as 2
1R , 2

2R , 2
3R , 2

4R  
and 2

5R .  
The ninth expert works with the domain attributes 3

1D , 3
2D , 

3
3D , 3

4D  and 3
5D . The range attributes taken by him are 3

1R , 
3
2R , 3

3R , 3
4R , 3

5R  and 3
6R .   

The tenth expert works with the new set of domain 
attributes which is as follows. 

 
4
1D  - No pension or medical benefit 
4
2D  - The industrialist least bothered about the social 

or economic or health conditions of the workers 
4
3D  - The employee are not given pay proportion to 

their work 
4
4D  - The employee are not allowed to associate 

themselves with any trade union or allowed to 
form any union  

4
5D  - The employee suffer from several types of 

health hazards 
4
6D  - The employee feel, loss or gain to industry, it 

does not affect their economic status 
 

However the range attributes taken by him are 1
1R , 1

2R , …, 
1
6R .  

The eleventh expert works with the domain attributes as 
given by the tenth expert viz., 4

1D , 4
2D , 4

3D , 4
4D , 4

5D  and 4
6D . 

The range attributes are taken as 2
1R , 2

2R , …, 2
5R .  

 The twelfth expert works with the domain attributes as 4
1D , 

4
2D , 4

3D , 4
4D , 4

5D  and 4
6D  and the range attributes are taken as 

3
1R , 3

2R , …, 3
6R .  

The associated dynamical system which is a super fuzzy 
matrix is as follows given by Fs. 
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1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6

1
1
1
2

1 1 11
1 2 33

1
4
1
5
2
1
2
2

2 2 22
4 5 63

2
4
2
5
3
1
3
2

3 3 33
7 8 93

3
4
3
5
3
6
4
1
4
2

4 4 44
10 11 123

4
4
4
5
4
6

R R R R R R R R R R R R R R R R R

D
D

F F FD
D
D
D
D

F F FD
D
D
D
D

F F FD
D
D
D
D
D

F F FD
D
D
D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
Each of the t

rF ; 1 ≤ t ≤ 4 and 1 ≤ r ≤ 12 are fuzzy elementary 
supermatrix and Fs forms the fuzzy supermatrix. Any fit vector 
in the domain space is a fuzzy super row vector given by   
 

X   =  [ 1 1 1 1 1
1 2 3 4 5x x x x x  | 2 2 2 2 2

1 2 3 4 5x x x x x  |  
   3 3 3 3 3 3

1 2 3 4 5 6x x x x x x  | 4 4 4 4 4 4
1 2 3 4 5 6x x x x x x ], 
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t
ix , t

jx  ∈ [0, 1] with 1 ≤ t ≤ 4, 1 ≤ j ≤ 5 and 1 ≤  i ≤ 6. The fit 
vector of the range space is a fuzzy super row vector given by  
 
Y = [ 1 1 1 1 1 1

1 2 3 4 5 6y y y y y y  | 2 2 2 2 2
1 2 3 4 5y y y y y  | 3 3 3 3 3 3

1 2 3 4 5 6y y y y y y ], 
 

t
iy , t

jy  ∈ [0, 1]; 1 ≤ t ≤ 3 and 1 ≤ i ≤ 6, 1 ≤ j ≤ 5. 
 

Now X o Fs is calculated. If the resultant is Y we find Fs o Y 
and so on until we arrive at a equilibrium state of the system. 
Here the resultant fuzzy fit vectors help us in the results as they 
are graded and not like the usual fit vectors which take values as 
0 and 1. These fit vectors take values from the interval [0, 1] so 
a gradation of preference is always possible and using the 
resultant we can predict the most important attribute and a less 
important node. 

Now having described these super fuzzy structures which 
have been introduced in – we proceed in to mention some of its 
uses. 
 
 
3.4.13  Uses of super fuzzy models 
 
1. When we have more than one expert giving his/her opinion 

on the problem super fuzzy models come handy. As far as 
super fuzzy models are concerned the same program can be 
used only in the final step we need to make a partition of the 
resultant fuzzy row vector so that it is a super row vector 
depicting the views of each and every expert 
simultaneously. This helps the observers to compare them 
and study their relative effects. 

 
2. When combined FRM is used we see that some times a 

negative value –1 cancels with the positive value +1 making 
the effect of a specific attribute over the other to zero or no 
impact but in actually we see the pair of nodes have an 
impact. In such cases we see the super FRMs or a diagonal 
super FRM or the special column FRM or the special row 
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FRM is not only handy but can give the opinion of each and 
every expert by a single super row vector distinctly. 

 
3. The super BAM models likewise can act as a multi expert 

model we see the BAM models can at a time serve as a 
single expert system but super BAM models have the 
capacity to serve as an multi expert system. Also we can 
compare the n experts opinion as they would be given by a 
single super row vector. Thus these super fuzzy BAM 
models are new and are a powerful multi experts model 
using the same BAM model technique. Even if they choose 
to opt different scales or intervals still, they can serve as a 
single dynamical system. Only supermatrices help to model 
them. 

 
4. Another advantage of these super models is they can 

function even when the experts agree upon to work with the 
same set of attributes along the rows (or columns) and 
distinct set of attributes along the columns (or rows). Even 
if each expert wishes to use a distinct set of attributes we 
have the special diagonal super FRM model or special 
diagonal super BAM model or the special diagonal super 
FAM model to serve the purpose.  

 
These models are constructed more to the engineers, doctors 

and above all socio scientists for in our opinion the socio 
scientists are the ones who do lots of service to humanity. 

The development of any tool or subject if reaches the last 
man or is useful to the last man the authors feel it is worthwhile. 
Thus this book mainly aims to built models which are with in 
the reach of a analyst with minimum mathematical knowledge. 
Using the computers the solutions can be easily programmed. 
Further the authors have made it more easy by such extensions 
in these super model. The same program can be used only a 
small command or a construction should be added to divide or 
partition the resultant row vectors to make it a supervector in 
keeping with the supermatrix used for the investigation. For 
more about programming see [228-231]. 
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3.5  Super FCM Models  
 
We have just seen super FRM model, super BAM model and 
super FAM models. All these three models makes use of special 
row fuzzy supermatrix or special column fuzzy supermatrix, 
fuzzy super special diagonal matrix and fuzzy supermatrix. But 
when we want to model Super Fuzzy Cognitive Maps i.e. super 
FCMs we cannot have the connection matrix to be a special 
fuzzy row supermatrix or a special fuzzy column supermatrix or 
the fuzzy supermatrix. Only the special diagonal fuzzy 
supermatrix alone can be used when we want to study a single 
supermatrix to depict a multi expert model using the FCMs. 
This section has two subsections. 

We just briefly recall the properties of FCM models in the 
first section. In section two we define the new super FCM 
models.  
 
 
3.5.1 Introduction to FCM models  
 
This section has two subsections in the first subsection we just 
briefly recall the functioning of the FCM from [108, 112].  

In this section we recall the notion of Fuzzy Cognitive Maps 
(FCMs), which was introduced by Bart Kosko [108] in the year 
1986. We also give several of its interrelated definitions. FCMs 
have a major role to play mainly when the data concerned is an 
unsupervised one. Further this method is most simple and an 
effective one as it can analyse the data by directed graphs and 
connection matrices. 
 
DEFINITION 3.5.1.1: An FCM is a directed graph with concepts 
like policies, events etc. as nodes and causalities as edges. It 
represents causal relationship between concepts. 
 
Example 3.5.1.1: In Tamil Nadu (a southern state in India) in 
the last decade several new engineering colleges have been 
approved and started. The resultant increase in the production of 
engineering graduates in these years is disproportionate with the 
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need of engineering graduates. This has resulted in thousands of 
unemployed and underemployed graduate engineers. Using an 
expert's opinion we study the effect of such unemployed people 
on the society. An expert spells out the five major concepts 
relating to the unemployed graduated engineers as  
 

E1   –   Frustration 
E2   –   Unemployment 
E3   –   Increase of educated criminals  
E4   –   Under employment 
E5   –   Taking up drugs etc. 

 
The directed graph where E1, …, E5 are taken as the nodes and 
causalities as edges as given by an expert is given in the 
following Figure 3.5.1.1: 
 

According to this expert, increase in unemployment increases 
frustration. Increase in unemployment, increases the educated 
criminals. Frustration increases the graduates to take up to evils 
like drugs etc. Unemployment also leads to the increase in 
number of persons who take up to drugs, drinks etc. to forget 
their worries and unoccupied time. Under-employment forces 
then to do criminal acts like theft (leading to murder) for want 
of more money and so on. Thus one cannot actually get data for 
this but can use the expert's opinion for this unsupervised data 
to obtain some idea about the real plight of the situation. This is 
just an illustration to show how FCM is described by a directed 
graph. 

E1 

E3 E4 

E2 

E5 

FIGURE: 3.5.1.1
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{If increase (or decrease) in one concept leads to increase 
(or decrease) in another, then we give the value 1. If there exists 
no relation between two concepts the value 0 is given. If 
increase (or decrease) in one concept decreases (or increases) 
another, then we give the value –1. Thus FCMs are described in 
this way.} 
 
DEFINITION 3.5.1.2: When the nodes of the FCM are fuzzy sets 
then they are called as fuzzy nodes. 
 
DEFINITION 3.5.1.3: FCMs with edge weights or causalities 
from the set {–1, 0, 1} are called simple FCMs. 
 
DEFINITION 3.5.1.4: Consider the nodes / concepts C1, …, Cn of 
the FCM. Suppose the directed graph is drawn using edge 
weight eij ∈ {0, 1, –1}. The matrix E be defined by E = (eij) 
where eij is the weight of the directed edge Ci Cj . E is called the 
adjacency matrix of the FCM, also known as the connection 
matrix of the FCM.  
 
It is important to note that all matrices associated with an FCM 
are always square matrices with diagonal entries as zero. 
 
DEFINITION 3.5.1.5: Let C1, C2, … , Cn be the nodes of an FCM. 
A = (a1, a2, … , an) where ai ∈ {0, 1}. A is called the 
instantaneous state vector and it denotes the on-off position of 
the node at an instant. 
 

ai = 0 if ai is off and 
ai = 1 if ai is on 

for i = 1, 2, …, n. 
 
DEFINITION 3.5.1.6: Let C1, C2, … , Cn be the nodes of an 
FCM. Let ,21CC  ,32CC  jiCCCC ,,43 …  be the edges of the 
FCM (i ≠ j). Then the edges form a directed cycle. An FCM is 
said to be cyclic if it possesses a directed cycle. An FCM is said 
to be acyclic if it does not possess any directed cycle. 
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DEFINITION 3.5.1.7: An FCM with cycles is said to have a 
feedback. 
 
DEFINITION 3.5.1.8: When there is a feedback in an FCM, i.e., 
when the causal relations flow through a cycle in a 
revolutionary way, the FCM is called a dynamical system. 
 
DEFINITION 3.5.1.9: Let nn CCCCCC 13221 ,,, −…  be a cycle. 
When Ci is switched on and if the causality flows through the 
edges of a cycle and if it again causes Ci , we say that the 
dynamical system goes round and round. This is true for any 
node Ci , for i = 1, 2, … , n. The equilibrium state for this 
dynamical system is called the hidden pattern. 
 
DEFINITION 3.5.1.10: If the equilibrium state of a dynamical 
system is a unique state vector, then it is called a fixed point. 
 
Example 3.5.1.2: Consider a FCM with C1, C2, …, Cn as nodes. 
For example let us start the dynamical system by switching on 
C1. Let us assume that the FCM settles down with C1 and Cn on 
i.e. the state vector remains as (1, 0, 0, …, 0, 1) this state vector    
(1, 0, 0, …, 0, 1) is called the fixed point. 
 
DEFINITION 3.5.1.11: If the FCM settles down with a state 
vector repeating in the form  

 
A1 → A2 → … → Ai → A1 

 
then this equilibrium is called a limit cycle. 
 
Methods of finding the hidden pattern are discussed in the 
following Section 1.2. 
 
DEFINITION 3.5.1.12: Finite number of FCMs can be combined 
together to produce the joint effect of all the FCMs. Let E1, E2, 
… , Ep be the adjacency matrices of the FCMs with nodes C1, 
C2, …, Cn then the combined FCM is got by adding all the 
adjacency matrices E1, E2, …, Ep . 
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We denote the combined FCM adjacency matrix by E = E1 
+ E2 + …+ Ep . 
 
NOTATION: Suppose A = (a1, … , an) is a vector which is 
passed into a dynamical system E. Then AE = (a'1, … , a'n) after 
thresholding and updating the vector suppose we get (b1, … , bn) 
we denote that by  

(a'1, a'2, … , a'n)  J  (b1, b2, … , bn). 
Thus the symbol ' J ' means the resultant vector has been 
thresholded and updated. 
FCMs have several advantages as well as some disadvantages. 
The main advantage of this method it is simple. It functions on 
expert's opinion. When the data happens to be an unsupervised 
one the FCM comes handy. This is the only known fuzzy 
technique that gives the hidden pattern of the situation. As we 
have a very well known theory, which states that the strength of 
the data depends on, the number of experts' opinion we can use 
combined FCMs with several experts' opinions. 

At the same time the disadvantage of the combined FCM is 
when the weightages are 1 and –1 for the same Ci Cj, we have 
the sum adding to zero thus at all times the connection matrices 
E1, … , Ek may not be conformable for addition. 

Combined conflicting opinions tend to cancel out and 
assisted by the strong law of large numbers, a consensus 
emerges as the sample opinion approximates the underlying 
population opinion. This problem will be easily overcome if the 
FCM entries are only 0 and 1. We have just briefly recalled the 
definitions. For more about FCMs please refer Kosko [108-
112]. 
 
 
3.5.2 Description of super fuzzy cognitive maps models 
with illustration.  
 
In this section we for the first time define a super FCM model 
and describe how it functions. Here we give the description of 
the multi expert super FCM model using the special super fuzzy 
diagonal matrix.  
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DEFINITION 3.5.2.1: Suppose n experts want to work with a 
problem P using a FCM model, then how to form an integrated 
dynamical system which can function simultaneously using the n 
experts opinion. 
 Suppose the first expert spells out the attributes of a 
problem as 1

1x , 1
2x , …, 

1

1
tx ,  the second expert gives the attributes 

as 2
1x , 2

2x , …, 
2

2
tx  and so on. Thus the ith expert gives the 

attributes with which he wishes to work as 1
ix , 2

ix , …, 
i

i
tx ; i = 1, 

2, 3, …, n. Now we model the problem using the special 
diagonal super fuzzy matrix; this supermatrix will be called as 
the super connection matrix of the Super FCM (SFCM). We see 
the special feature of this special super diagonal fuzzy matrix 
would be all the diagonal matrices are square matrices and the 
main diagonal of each of these submatrices of the special fuzzy 
super diagonal matrix is zero. The special diagonal super fuzzy 
matrix for the problem P takes the following form and is 
denoted by MD.   
 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1
1 1
2 1

1

2
1
2 2
2 2

2

1
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We see i

iM  is a fuzzy matrix with main diagonal elements to be 
zero i.e. 
 

12 1

21 2

2 2

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

# # #
…

i

i

i i

i i
t

i i
ti

i

i i
t t

m m

m m
M

m m

 

i  = 1, 2, … , n. 
 
We illustrate the functioning of this model.  
 
This model will be known as the multi expert super fuzzy 
cognitive maps model and the associated fuzzy supermatrix 
would be known as the special diagonal fuzzy supermatrix. 
 
Example 3.5.2.1: Suppose we have 3 experts who wish to work 
with a problem using FCM. The problem they wish to 
investigate is to analyze the Indian political situation to predict 
the possible electoral winner or how people tend to prefer a 
particular politician and so on or so forth. All of them choose to 
use the FCM model.  

 
The first expert wishes to work with the following six 

nodes. 
 
 

1
1x  - Language 
1
2x  - Community 
1
3x  - Service to people 
1
4x  - Finance they have 
1
5x  - Media they can accesses to 
1
6x  - Party’s strength and opponents strength. 
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 The second expert wants to work with the following five 
nodes. 

 
2
1x  - Working members of the party 
2
2x  - Party’s popularity in media 

 
2
3x  - The local communities strength and weakness 

in relative to the politicians community 
 

2
4x  - Media’s accessibility 

 
2
5x  - Popularity of the politician in the context of 

public opinion. 
 

 The third expert wishes to work with the following 
attributes or nodes 

 
3
1x  - Language and caste of the public 

 
3
2x  - The finance the politician can spend in 

propaganda 
 

3
3x  - Opponents strength 
3
4x  - Parties weaknesses 
3
5x  - Service done by the party in that village. 
3
6x  - The party’s popularity in media. 
3
7x  - Public figure configuration. 

 
 Now using these 3 experts we obtain the following super 
special diagonal fuzzy matrix MD which is as follows. 
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1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3
1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6 7
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2
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x
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We see ( 1

ijx ) is a 6 × 6 matrix in which 1
iix  = 0 for i = 1, 2, 3, 

…, 6 i.e. the diagonal terms are zero and the 1
ijx  ∈ {0, 1, –1}; 1 

≤ i, j ≤ 6. Similarly ( 2
ijx ) is a 5 × 5 matrix in which 2

kkx  = 0 , k = 

1, 2, ..., 5 and 2
ijx  ∈ {0, 1, –1}; 1 ≤ i, j ≤ 5. The fuzzy matrix 

( 3
ijx ) is such that 3

ijx  = 0, j = 1, 2, ..., 7 with 3
ijx  ∈ {0, 1, –1}. 

The diagonal elements of this special fuzzy supermatrix are all 
square matrices.  

However we see this problem is for mere illustration. 



 245

1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3
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0 1 1 0 0 1x
1 0 0 1 1 0x
1 0 0 1 0 0 (0) (0)x

0 0 1 0 1 0x
1 0 0 0 0 1x
0 1 1 0 0 0x

0 1 0 1 0x
1 0 1 0 1x

(0) 0 1 0 1 0 (0)x
1 0 1 0 1x
0 0 1 1 0x

0 0 1 0 1 1 1x
0 0 1 1 0x

x
x
x
x
x

−

−
−

−

−
−

−

0 1
1 0 0 0 1 1 0

(0) (0) 0 0 1 0 0 0 1
1 1 0 0 0 1 1
1 1 0 0 0 0 1
1 0 1 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦
 
 
Now let us see how the dynamical multi expert system MD 
functions. Suppose the expert wishes to work with  
 

X   =  [1 0 0 0 0 1 | 0 1 0 0 0 | 0 0 1 0 0 1 0 ] ; 
 
we want to obtain the hidden pattern of this state vector X.  

 
X o MD  =  [0 2 –2 0 0 1 | 1 0 1 0 1 | 2 –1 0 0 1 1 –1]  
 
after updating and thresholding we get 
 
 X1  = [1 1 0 0 0 1 ⏐ 1 1 1 0 1 ⏐ 1 0 1 0 1 1 0 ].  
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X1 o MD = [1 2 –2 1 1 1 ⏐ 1 2 2 –1 1 ⏐ 3 0 1 0 2 3 1]  
 
after updating and thresholding we get the resultant X2 to be  

 
X2  = [ 1 1 0 1 1 1 ⏐ 1 1 1 0 1 ⏐ 1 0 1 0 1 1 1 ] 

 
and so on until we arrive at fixed point or a limit cycle. Thus we 
see we can use the same C-program used for FCMs only what 
we need is to partition the hidden pattern properly. We see 
because of the programs we can use any number of experts 
opinion. Further the demerit of combined FCM which at times 
tends to zero if we have 1 and –1 as a entry is over come by this 
method. Further as every ones feeling is given by a single super 
fuzzy row vector which helps in a very easy comparison. 
Further this is the easy or simple model which can be handled 
by any non mathematician. 
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