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PREFACE 

Frege' s semantical theor·ies, and especially his dis­

tinction between sense (Sinn) and denotation {Bedeutung), 

have come in for increasing attention as philosophers have 

become aware of the special problems posed by the so-called 

oblique or intensional contexts (even the term oblique is 

f'rom Frege•s nungerade 11 ). Such frequently used phrases as 

"John believes that", "John knows that 11 , "it is surprising 

that 11 , 11 it is necessary that 11 all pose logical and inter­

pretive difficulties which have only recently come in for 

intensive investigation. The development of quantified 

modal logic, which had its beginnings only in 1946, has 

made the problem of interpretation especially acute. 

In his article "Uber Sinn und Bedeutung 11 (1892}, 

Frege outlined his theory of sense and denotation and pro­

vided a special treatment of oblique contexts using the 

notion of indirect denotation. This article, which is 

concerned with the analysis of ordinary German, !a written 

in a highly condensed, informal way; and though the sense 

and denotation distinction is mentioned in a rew other 

ot his writings, the doctrine ot indirect denotation and 

thus his treatment ot oblique contexts seems to be confined 

to this one source. Frege•a work itself, therefore, is 
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more in the nature of a proposal than a fully developed 

doctrine. 

Though widely lmown, Frege's theory has not, 1n gen­

eral, been received with favor. No one denies its im­

portance; it is just that few like it. Alonzo Church, who 

has been its most consistent (and perhaps sole ) prominent 

champion, has called repeatedly for a precise development 

or the ideas according to contemporary logical and 

semantical standards. And surely, if a fair evaluation or 

this important theory is to be reached, such a development 

is required. In 1951, Church attempted to axiomatize the 

theory in his article 11 A Formulation of the Logic of Sense 

and Denotation", but that formalization has serious defi­

ciencies. The present work is another attempt to formalize 

Frege 1s theory; this time depending more heavily on 

semantical methods first developed by Alfred Tarski than 

on the axiomatic method. 

I had the great good fortune to be one or a few 

UCLA students who attended graduate courses in semantics 

given first by Rudolf Carnap and later by Alonzo Church. 

Each man lectured on his as yet unpublished ideas on 

intensional logic. 'Ihe theories seemed complementary; 

Church's formal language ~d Carnap's interpretation ot 

intensions, each o.ftered solutions to dit.ficulties in the 

other's theory. In this dissertation, the .foundations ot 

intensional logic are developed in a way which. hopefully, 
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partal<es of the best features of both Carnap's and Church' a 

theories. 

In the formulation presented herein, intensional 

logic becomes a branch of the theory of models, founded by 

Alfred Tarski and cultivated intensely since 1950 by a 

number of logicians. '!hose familiar with model theory will 

recognize a number of our intensional entities under other 

names. An especially close relation holds with the model 

theoretic notion of a direct product of models. 

'Ihe research leading to this dissertation was sup­

ported by the National Science Foundation under N.S.F. 

G-13226, N.S.F. G-19830, and N.S.F. GP-1603. 'Ihe work has 

benefited by criticisms, suggestions, and encouragement 

from my teachers Rudolf Carnap, Donald Kalish, and Richard 

Montague, who 1n addition are responsible for my philo­

sophical style. Literary style and philosophical content 

are my own responsibility. 



ABSTRACT OF THE DISSERTATION 

' Foundations of Intensional Logic 

by 

David Benjamin Kaplan 
Doctor of Philosophy in Philosophy 

University of California, Los Angeles, 1964 

Professor Rudolf Carnap, Chairman 

A number of languages baaed on Gottlob Prege's dis­

tinction of sense {Sinn) and denotation (Bedeutung) are 

constructed. The semantics of these languages 1a developed 

purely within set theory. Axioms are provided and complete­

ness and decidability results are obtained for certain of 

the languages. The languages provide facilities for treat­

ing oblique contexts but are fully extensional in the sense 

that the replacement of any part or a well formed expres­

sion by another with the same denotation leaves the denota­

tion of the whole unchanged, where the denotation of a 

name, predicate, or sentence may be taken to be the thing 

named, the class of things to which the predicate applies, 

and the truth value of the sentence respectively. 

'!be syntax of the languages is baaed on that of the 

language constructed in Alonzo Church'8 "A formulation ot 

the logic of sense and denotation° in Structure, method 
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and meaning: essays 1n honor of Henry M. Sheffer, edited 

by Henle, Kallen and Langer, New York, 1951. The semantical 

interpretation of intensions is baaed on that of Rudolf 

Carnap's Meaning and necessity, Chicago, 1947. 

Preliminary sections provide a formulation or what 

are taken to be the fundamental ideas of Frege's semantical 

theory, especially with regard to the analysis of oblique 

contexts. In these terms, languages or direct discourse 

are distinguished from languages of indirect discourse, and 

some advantages of the former are suggested. The languages 

of sense and denotation are developed as languages of 

direct discourse, and their similarity with other languages 

of direct discourse, 1n particular formalized semantical 

metalanguages, is emphasized. 
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CHAPi'l'ER 1 

INTRODUCTION 

1. The General Program 

Qui, primary goal is to construct a language based on 

Frege's distinction of sense and denotation, and to describe 

the semantics of such a language within set theory. 'lhe 

language is to provide facilities for treating so-called 

oblique contexts but is to be fully extensional (in a 

sense to be given in section 3 below). 'lbe syntax of the 

language is based on that ot Church [6] with certain modi­

fications to conform to the semantical point or view 

adopted. '!he semantical interpretation (especially of 

intensions) is based on that or Carnap [4], [SJ, [6] 

with certain modifications to conform to the syntax of the 

language. 

Preliminary sections provide a formulation of what 

are taken to be the fundamental ideas or Frege•s semantical 

theory, especially in regard to the analysis of oblique 

contexts. In these terms, languages or direct discourse 

are distinguished from languages of indirect discourse and 

aome disadvantages or the latter are suggested. 'lbe 

language or sense and denotation is developed as a language 

ot direct discourse and its similarity with other languages 
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or direct discourse (especially formalized semantical meta­

languages) is emphasized. 

2. Semantical Systems 

We understand a semantical system to be composed or 

two elements: a language and a semantical relation for 

that language. 

2.l. Languages 

A lansll!Se consists or a class of expressions which 

we call well formed expressions (wte's) with a structure 

which determineo a part-whole relation. '!his structure is 

often conveniently given 1n terms of a tYpe function, a 

class or atomic wfe 1 s, and a set of syntactical operations 

on wte's which we call formation rules (or formation opera­

tions). ~e type function assigns a grammatical category 

or tzpe (for example: term, formula, two-place predicate of 

individuals, etc.) to each wte. Each formation rule is a 

1-1 function with all w.t'e's of a given type as its domain 

(or, in the case of an n-place (n > 1) formation rule, each 

domain consits of all wte•s of a given type) and its range 

included 1n the set ot wte•s ot a single type. 1he forma­

tion rules have disjoint ranges and a wte is atomic just 1n 

case it is not 1n the range ot any formation rule. 1 Every 

wte is to be obtainable as the last element of a construc­

tion. that is, a· finite sequence ot wte•s each element ot 

which is either atomic or the result or applying a tormation . 
. . : .' 
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2 rule to previous elements. In these terms we can define 

the part-whole relation among wfe's. It <:t. and ft are wre•s, 

we say that ex: is ,a part of 13 just in case <Xis an element 

of every construction of which )3 is an element. 

We have so tar avoided reference to primitive symbols 

and concatenation, 1n order to avoid confounding the part­

whole relation with which we are concerned with an analogous 

relation within pure syntax. In general, that a given wre 

f3 may be obtained from a wfe o::by concatenation is no 

guarantee that cxis a part of )3 in our (semantical) sense. 

Merely scrutinizing a wre will not reveal its parts; in 

fact, given a class of wfe's many different structures are 

possible (as indicated in the following examples). 

Consider the expression 1 (P ~ Q)'. We may consider 

'P' and 'Q' as the only parts (other than '(P _,. Q}' 

itself), and the entire formula simply as the result ot 

combining these parts 1n a certain manner. Here, the signs 

'(', ')', ·~· are all thought or as syncategorema.tic, or as 

Church puts it improper Slffibols.3 'Ibey merely express a 

mode of connection between 'P' and 'Q'. 'P' and 'Q' are 

thought of as having a certain semantical value (perhaps a 

truth value, or a meaning), as is '(P ~ Q) '. But no inde­

pendent value is assigned to • ( ' , • ) • , or •+• • Another 

possible structure tor '(P + Q) • would make •p•, 'Q', and 

•_,.r all parts. Under this 1nterpreta tion, •+• would be 

thought ot as having an independent semantical value, and 



the entire formula ae the reeult or combining three wfe's 

into a certain compound. 

We understand the part-whole relation as definable 

only for a whole language, which we may think of as a 

quadruple <E,T,A,F> where E is the class of wfe'a, T the 

type function, A the class of atomic formulas and F the set 

ot formulation rulea. 4 

We do not claim that our notion of a language has 

special advantages over any other, except for the present 

explicitly semantical purposes.5 For these purposes we are 

interested 1n which are the semantically relevant expres­

sions (namely the wte's) and which pieces of compound 

expressions are such that their semantical values are 

thought to be relevant to the semantical value or the 

whole. 6 

In this sense, we would ordinarily consider 'John' 

a part ot 'John is tall', and •cat' not a part of •cattle'. 

The question as to whether 'John' should be considered a 
I I 

part ot 'John' seems to be generally answered in the 

negative. The question as to whether 'John' should be con­

sidered a part ot 'It is necessary that John-John' has 

generally been answered 1n the affirmative, but there are 

important d1tt1cult1es which arise trom this decision. 

If we are to associate transtormat1on rules with a 

language, we would tormul&te them in terms ot the structure 

ot the wte•a. Thus~ the ditticultiea which are avoided by 



not treating certain pieces as parts (as in the last ex­

ample ot the preceding paragraph) arise again, in that this 

treatment precludes these pieces from the scope or the 

transformation rules. 

Here again we emphasize the importance or the abstract 

structure or the wre•a. If one is to describe the actual 

designs or the wfe's, many additional considerations come 

into play (such as the convention placing the identity 

predicate between its terms). For purposes or convenience 

we will usually describe languages in the conventional way, 

providing simultaneous recursive definitions or the class 

or wte 1s and the type function 1n terms or atomic formulas 

and formation rules. '!be latter are only implicitly indi­

cated by the clauses of the recursive definitions; however, 

it will be easily seen how to express the languages in terms 

ot explicit formation rules. In particular, the essential 

feature or the formation rules~ that they provide a unique 

decomposition of each wfe into its atomic parts, will be 

obvious. 

2.2. Semantical Relations 

A semantical relation (or, more exactly, a semantical 

function) for a language L assigns some entity to each wte 

or L. Por example, the relations which associate with each 

sentence of English, its truth value, its cognitive con­

<tent, its emotive content, etc. (we take the word "entity" 

1n a veey broad sense) are all taken to be semantical 



relations tor a language whose wte'e are English sentences. 

3. Fregean Semantical Systems 

When we are given a complete semantical system <L,R> 

we can meaningfully as~, are the values or compound wre•s 

functions or the values of the parts? niat is, if ex is a 

part of 13 1 o is of the same type as a:, 6 is the result or 

subs ti tu ting r for one or more occurrences of ~ in J3, and 

R(o:.) = R (T), must R (.a) • R (0)?7 Ir this condition holds 

for all wte's a:, 'f3, 6, 6, we call (L,R> Fregean. Our nomen­

clature is motivated by what Carnap has called Frege prin­

ciples or interchangeability, 8 namely that the denotation 

or a compound wte is to be a function or the denotation or 

the parts,and the sense or a compound wte is to be a func­

tion or the sense of the parts.9,lO We refer to the 

generalized interchangeability requirement (with respect 

to an arbitrary semantical relation) as Frege•s principle. 

Most familiar symbolic languages are Fregean Wlder a 

natural analysis or the part-whole relation and a natural 

semantical relation. In fact, we often take as a principle 

or logic, axioms which make explicit these assumptions. 

Consider, tor example, Leibniz•· Law: 

r1r rJ. • )3, then ;ex it and on17 it ~ ,•. 

It .we treat o:, }31 fla! ~ as parts ot this expression, and 

"take a semantical relation R which assigns to terms, the 

designated entity and to tormulaa. truth values, then 



Leibniz' Law tells us that when R{cx) • R(~), R(fla} m R{;,.8). 

Euclid's Law can be understood ae making a similar 

assertion about compound terms, with terms as parts. Inter-

change of Equivalents, though sometimes formulated 
, 

a way that r fl it and only if 1P is required to be a 
r. 

in order to allow the inference of Xfl if and only 

in such 

theorem , 
if x"' I 

can also be for~ulated in a weaker fashion so as to allow 
r 

the interchange on the basis of the truth of fl if and , 
only if' Lt' • When formulated in this form, it can be under-

stood as asserting that the truth values of compound formu­

las with formulas as parts is to be a function of the truth 

values of the parts. 

It we turn to the familiar developments of the seman-

tics of, say, first order logic, we see an even more ex­

plicit reflection of Frege's principle in the recursive 

definitions of •satisfaction• and 'value' or 'designation•.11 

If a semantical system <L,R> is Fregean, the semanti­

cal relation R can be put in the form (T*,A*,Fif')-, where T* 

is a tunction which assigns to each tJ'pe at L a non empty set 

(the universe trom which wte•s of that type talce their 

values), A* is a function Which assigns to each atomic 

wre ex. of L an element ot the wiiverse or the type or ex. 

(that is, if a. has type t A*(o:)£T*(7:)) and F* is a function 

which assigns to every tormation rule or L a corresponding 

function on elements in the universes ot the typea. '!'he 

connection between .Fregean systems and the <T*,A*,~ 
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representation is perhaps more en.ally oeen in the follm·ring 

(where we write 1W(c)' for r the set of all 'trfe 1 D of the 

language L of type 'L' ) • 

Tl. If L = <E,T,A,F> ls a language, and R is a Eemantical 

relation for L, then <L,R> is Fregean if and only if there 

are T*,A*,F* fulfilling the following conditions: 

(1) T* is a function whose domain is the set of types of 

L (that is, the range of T) and which assigns to 

each such type a non-empty set as universe; 

(2) A* is a function whose domain is the set of atomic 

wfe 1 s of L (that is, A) and which assigns to each 

atomic wfe a.., an element of the universe of the type 

of o: (that is, an element of T*{T(oc.)) ); 

(3) F* is a :function whose domain is the set of formation 

rules of L (that is, F), and which is such that if 

{0 , ••• ,rr are types of Land f is a formation rule 

which assigns to every r-tuple of wfe's 

<OJ., ••• •°i> f {W(T1)x• • •xW(Zr)) a compound wfe E W(T0 ), 

then F*(f) is a function from T*(Zi}x•••xT*{--z;.) into 

T*(To); 

(4) if ex: is an atomic wfe of L, then R(a:) = A*{cx:.); 

(5) if f is a formation rule of L, and <d].•••••ctz> is 1n 

the domain of f' then R(f ( cxl I. I. J ~J) a 

(F*(f~(R(a;_), ••• ,R(°io)). 

T2. If L • <E,T,A,F> is a language, and R, T*, A*, F* are 
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as in clauses (1)-(5) of Tl, then <L IC> is Fregean. In 

particular, 1£ ex is any wi'e of L, R(a:) is an element of 

the universe of the type of cc; (that is, R(a.) T*(T(<r)) }. 
(' 

T3. If L = (E,T,A,F> is a language, and T*, A*, F* are as 

1n clauses (1)-(3) of Tl, then there is a unique semantical 

relation R for L which satisfies (4) and (5). 

4. Denotation 

We understand denotation as a semantical relation 

defined originally only for names (and description•) and 

assigning to each such name the thing named (or described). 

Let us call this relation "restricted-denotation". Barring 

certain peculiar constructions (the so-called oblique con­

texts), the restricted-denotation or compound names is a 

function of the restricted-denotation or the parts. 

As a simple example consider the language 

L1 • <E,T,A,F> where T assigns to each wre the type name, 

A= t'Aristotle', 'Leibniz', 1Frege•r, F = {m,r} where 

m(oq • rthe mother or cx:1, f(~ .,. rthe rather or rx\ and E 

is the closure of A under the formation rules. 

Consider the triple <T*,A*,F*>, where T* assigns to the 

type name the set of humans, A* ('Aristotle') =Aristotle, 

A* ( 1Le1bn1z 1 ) •Leibniz, A* ('Frege') = Frege, F*(m) • 

that function Which assigns to each human his mother~ 

F*(t) • that tunction which assigns to each hwnan his 

tather. Clearly',, 1t R(c4 is the restricted-denotation ot ex; 

9 



R, T*, A*, F* satisfy the conditions of theorem l. Hence, 

<L1,R:> is Fregean. 

Suppose now that we wish to extend the semantical 

theory of the relation of restricted-denotation. '!his may 

be done in essentially two different ways. We may leave 

the class or wre•s to which we apply the relation untouched 

and extend the class or formation rules, thus enlarging the 

part-whole relation. If we proceed by this method, we 

continue to apply the semantical relation only to names, 

but we may "break-down" compound names in new ways. For 

example, 1n the name 'the person whom John believes to be 

the president', 'John' would ordinarily be treated as a 

part, but we may now also attempt to treat 'the president' 

as a part. A second alternative for extending the semanti­

cal theory ot restricted-denotation, is to enlarge the class 

or wte•s to which the relation is applied by including 

expressions or different types. 

'lhe first alternative seems quickly to lead to fail­

ures or Frege•s principle and will be discussed in section 

6. Let us consider here the second method or extending 

the relation ot restricted-denotation and let us call the 

extended relation (simply) "denotation". Let us attempt to 

extend the class ot wfe's by including sentences. We must 

now search tor an appropriate universe of entities to serve 

as denotations tor sentences. What considerations lhould 

guide such a search? Suppose that we have such an extended 

10 
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language L. 'n'len beyond the obvious requirement that the 

relations or restricted-denotation and denotation nhould 

agree for wfe's of the type name, we shall propose two 

criteria: 

Cl: The semantical system <L, denotation> should be 

Fregean, 

C2: The number of distinct entities which serve as deno-

tations for sentences, should be minimized. 

Since in general there are a number of different ways of as­

signing values to sentences which are compatible with Cl, we 

propose C2 in order to require that we choose one of the 

most simple methods. In general, Cl requires us to assign 

distinct denotations to certain pairs of sentences, and C2 

requires us to assign the same denotation to a pair of 

sentences unless Cl requires that their denotations be 

distinct. 

Given an appropriately complex structure on L (in 

terms of the part-whole relation), Cl immediately rules out 

certain possibilities since it requires that for every 

formation rule we be able to find a corresponding semantical 

operation. For example, if Id is a formation rule or L 

(where Id( ex ,J3) • r(cx •.,B) 1 ), Cl requires that we be able to 

tind a semantical operation Id* such that den (Id(o: )3)) -= 

Id*(den («) 1 den ~)) = Id*(rden (o:..), rden Q3)) 

(where we write 'den (oc)• for 'the denotation ot ex:' 

and 'rden (ex:)' tor 'the restricted-denotation ot ex:•). 
Thus we cannot take the meaning or a sentence as its 

11 



denotation, since the meaning of an identity sentence 1s 

not determined solely by the individuals named; we need to 

know in addition how they are named. Compare, for example, 

the meanings of Id ('Hesperus•, 'Phosphorus') and 

Id ('Hesperus•, 'Hesperus'). The meanings clearly differ, 

although rden ('Hesperus') = rden ('Phosphorus'). We may 

treat this argument as showing that the relation between 

a sentence and its meaning is not the natural analogue of 

restricted denotation. 12 

The degree to which Cl rules out possibilities de­

pends of course on the complex! ty of the structure \n L. If 
• 'I 

' •,. 
this is given in such a way that no name contains a~sentence 

' 

as a part (although sentences may contain names and·other . 
sentences as parts) then Cl permits, and hence C2 requires, 

that all sentences take the same value. Suppose, however, 

that L contains compound names of the form rthe unique 

individual who is identical with ex.if ¢, a~d who is identi­

cal with f3 if it is not the case that ¢1 with the names ex, 

J3 and the sentence ¢ as parts. Suppose, in fact, that we 

have a formation rule g which yields the given compound 

name when applied to any wfe 1 s oe.,,p~ ¢of the appropriate 

types. 13 Let g* be the correoponding semantical operation, 

that is, let den (g(oc, )3, $1)) = g* (den(cq, den (J3) 1 

den (fl) ) • The denotations of oc. , )3, and g (ex: , p, r/) are 

already determined by the fact that they are all names and 

our requirement that the denotation or a name be the same 

12 
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ao its reotrictcd-denotation. Hence we know that if ¢ is 

true,, den (g(a:..,, '}3 1 ¢) == rden (g(cr.,, )3 .. ¢) = rden (o::) .. and 

if ¢ is false, den(g(oc,, p .. ¢)) = rden ()3). It follown that 

if L contains names oc,, )3 such that rden (a) I rden (/3), 

then Cl requires that if ¢1 VJ differ in truth value,, 

den (¢) I den ('f). Since if den (¢) =den {'l') when, say 

¢is true and f false, rden (ex) = den (g(o::., )31 ¢) 

= g*(den (er),, den Cp) 1 den (¢)} = g* (den(~, den()3), 

den ('f) ) = den (g {ex:. 1 'j3, 1f'}) = rd en 93) . 
Assuming that L contains compotnd names like 

g(a:., Ji ¢) but is so ntructured that allowing den (¢) to 

be the truth value of ¢ satisfies Cl (thus L contains no 

oblique contexts), then C2 requires us to assign the same 

value to sentences with the same truth value.14 

Church has argued that the natural extension of the 

relation between a name and the thing named (which relation 

he calls 'denotation') to sentences would assign truth 

values to aentences. 15 He uses essentially two criteria, 

as do we. One corresponds to our Cl, but where we would 

use C2 Church uses the seemingly gratuitous assumption that 

logically equivalent sentences have the same denotation. 

Actually Church's assumption, though not so general as our 

C2, is more closely directed to the commonly held opinion 

that the 11 natural" semantical relation 1s that which 

assigns propositions to sentences and individuals to names. 

It is to combat such beliefs, which have hindered the 
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acceptance of semantical relations which are natural by 

our criteria but which countenance such seeminr;ly "unnatur­

al" entities as individual concepts, that the foregoing 

sketchy account of the genesis of general (that 1s, apply­

ing to more than one type of wfe) semantical relations was 

introduced. 

We understand by 'denotation' an extension in accord­

ance with Cl and C2 of the relation of restricted denota­

tion. We take truth values to be the denotation of 

sentences, functions from individuals to truth values to 

be the denotation of (one-place) predicates, truth func­

tions to be the denotation of sentential connectives, etc.16 

Note that the fact that we have extended the relation of 

restricted-denotation to apply to sentences and expressions 

of other grammatical categories is no better described as 

"treating sentences as names 11 than a similar extension of 

the relation between a sentence and its truth value to 

apply to names would be described as 11 treating names as 

sentences."17 It ie similarly misleading to refer to 

sentences as "naming" their truth value, just as it would 

be to refer to the restricted-denotation of a name as its 

ntruth value". or course, we do not wish to deny that the 

extension of a restricted semantical relation is based on 

a certain analogy between it and the extended relation, but 

the {cognitive) content of this analogy is given in our two 

cr1ter1a,18 It should not be supposed that when we speak 
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of the ndenotation" of a sentence we are abandoning the 

traditional segregation of expreso1ons into gremnut1cal 

categories. 19 

5. Sense 

Although the semantical relation we call "denotation" 

has probably received the fullest and most adequate treat­

ment,, other relations such as that between a sentence and 

its meaning, that between a sentence and its emotive con­

tent,, and even that between an expression and itself (the 

so-called autonymous use} have also received a good deal of 

attention. Let us consider the relation between a sentence 

and its meaning. He shall call this relation "restricted­

meaning" (on the analogy of our earlier "restricted­

denotation"),, and similarly speak of the restricted­

meaning of a sentence. We use this language to call atten­

tion to the fact that originally we think of sentences as 

the only vehicles of meaning. However, if we wish to pro­

vide a fuller treatment of this relation we may attempt to 

extend it to other grammatical categories of expressions 

(just as we did the denotation relation). Here, as before, 

we are guided by Cl and C2 (in their general form).18 In 

this way we come to speak of the meaning of predicates, 

names, connectives, etc., in such a way that the meaning or 

a compound expression will be a function of the meaning of 

its parts, or, in the earlier language, we develop a 

semantical relation M (meaning) such that <L,H> is Fregean. 
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'!bat the meaning of a name can not be identified with 

the denotation of the name was clearly enunciated by Frege,, 

who introduced his discussion of the two semantical rela­

tions : denotation and meaning, by asking how r (a:. = J3),,, 
if true,, can differ in meaning from r (a:.= oc),. If we 

identify the meaning of a name with its denotation,, then 

the truth of r (a::. = J3) 1 , which presumably tells us that the 

denotation of tX.is the same as that of J3, identifies the 

meaning of a:: with that of 'j3 and hence, by Frege 1 s prin­

ciple,, the meaning of r(o: = )3)1 with that of r(cx: = ~,. We 

shall follow Frege in using "sense" (from Frege's "Sinn") 

for the meaning relation. Thus we shall speak or the sense 

or a sentence, the sense of a predicate, the sense or a 

name,, etc. We follow Church [6] in also using the word 

"concept" to refer to those entities capable or being 

senses of expressions. Suppose an expression ct: has X as 

its denotation and S as its sense, then we say that 

ex expresses S, o:denotes X, and Sis a concept or x.20 

6. Extensionality 

A notion which has been much discussed in the litera­

ture and which is related to our notion ot a Fregean seman­

tical system is that or extens1onal1ty. Our notion differs 

from those conunonly found 1n that it is more general. We 

consider an arbitrary semantical relation R, whereas 

extensionality is usually only discussed with respect to 

the relation we call denotation. However, the more 
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general notion is at the heart of Frege's program, as we 

see it, and plays an explicit role in his discussions of 

the extended notion of meaning or sense. In addition, some 

authors seem to consider certain kinds of entities as 

extensional and others as intensional; for example, sets 

are often called extensional and properties intensional. 

But this conception is based on the mistaken belief that 

only certain kinds of entities can function as denotations 

of wfe's and only certain other kinds can function as 

senses, so that by examining the kinds of entities taken 

as semantical values of the wfe's, we could determine 

whether the semantical relation is that of denotation. 

Against this conception we remark that although not every 

kind of entity can be the sense of a wfe, any entity can 

be denoted by some wfe. In particular, it ex. names a wre, 

then the sense of that wte is certainly denoted by the ex­

pression rthe sense or ex,. and may also be denoted by the 

expression "John's favorite conceptn (tor further discussion 

ot this point see section 8). 

We will call a semantical system extensional 1r the 

system is Fregean and the semantical relation is that of 

denotation. 

our argument that truth values be taken as the deno­

tations of sentences depended on choosing a language with 

a atructure sutt1c1ently.r1ch to contain compound names 

like g(ct. , }• SI) but not so rich as to contain compound 
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names like 'the individual whom Jane believes to be the 

35th president' (with both 'Jane' and 'the 35th president' 

as parts). In fact, if our language structure is too rich, 

the question of extending restricted-denotation to a 

semantical relation which provides an extensional semantical 

system does not even arise, since even that part of the 

language which contains only names as wfe 1 s may be so rich 

that the semantical relation restricted-denotation already 

gives a non-Fregean semantical system. 

It seems clear that Jane may be sufficiently out of 

touch with current events for 1 the individual whom Jane 

believes to be the 35th president' to name Richard Nixon, 

but not be so coni'used that 'the individual whom Jane 

believes to be John F. Kennedy' names Richard Nixon. Since 

'the 35th president' and 'John F. Kennedy' name the same 

individual, we see that it a language contains such com­

pound names, the semantical relation or restricted­

denotation will give a non-Fregean semantical system, hence 

also a non-extensional semantical system. 

In addition to complex wfe'e formed using such psycho­

logical expressions as 'believes•, 'doubts•, •asserts', etc. 

there are many other contexts that produce failures or 

extens1onal1ty. By a "contextu we mean a formation rule 

(although the exact structure of the rule is often only 

implicit in our examples). '!hue every ncontext0 determines 

18 
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language L and there is no semantical function f* such that 

den (f(~, ••• ,°l-)) = f* (den(OJ,), •.• , den{~)} for all 

<e!ii•••i°i> in the domain off, then we say that f is an 

oblique context for L. 21 Here we again follow Frege, who 

called such contexts 11 ungerade. 11 

It seens best to regard the notion of an oblique con­

text in L, for arbitrary languages L, as a theoretical prim­

itive of semantics. We then regard the failures of exten­

aionality as described above as well as various ot~r 

"testa'1 that have been proposed, such as the .failure of the 

validity of existential generalization (first suggested in 

Quine (1), see also Church's review, Church [2]), as being 

indicative but not definitive or obliquity. Many contexts 

can be constructed which pass all the familiar "tests," yet 

still seem more naturally classified as oblique. For ex­

ample, suppose that Mr. Jones has the singular good fortune 

to have all and only those beliefs which are true. Should 

such a contingency require us to classif'y the context rMr. 

Jones believes that ~ as non-oblique? Note that the con­

text is now exllttensional. A definition of obliquity 1n 

terms of the possibility or a failure or extens1onality seems 

hardly satisfactory in view of the obliquity or poasib111t~. 

And even 11' this objection were not telling, still further 

cases are available which pass even such a test. For these 

reasons we prefer to regard the various tests only as pro~ 

Viding sufficient conditions tor the presence of an oblique 
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context. 

Once sensitized to the presence of oblique contexts, 

they seem ubiquitous in ordinary speech. Quine, in parti­

cular, has been remarkably successful in identifying and 

exposing some of the most subtle of such contexts. 22 He 

has also developed machinery for classifying and notation­

ally exhibiting some of their peculiar features. But his 

interest in such matters seems primarily for purposes of 

quarantine, to avoid their working mischief in our more 

mundane preoccupations. With respect to a 11 logic 11 of 

such contexts, he has often expressed scepticism. 23 

Among other non-extensional contexts are r It is 

necessary that ¢7, r,a.,i, r1t is provable in L that ~.,. 24 

In view of the importance of such contexts, the question 

immediately arises, can we provide an adequate treatment of 

the notions involved (e.g., modality) within an extensional 

semantical system? The affirmative position on this ques­

tion is known as the thesis of extensionality, expressed by 

Carnap as follows: "for any nonextensional system there 

is an extensional system into which the former can be 

translated". 25 Without involving ourselves in the diffi­

culties of providing an exact explication for •translation', 

let us now attempt an analysis of oblique contexts along 

Frege•s lines. 

1. Obliquity and Ambiguity 

Consider the following two names: 
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(1) the number of syllables in: venus 

(2) the number of syllables in: the morning star 

It appears that (2) can be obtained from (1) by replacing 

one name by another with the same denotation. Since (1) 

denotes two and (2) denotes four, the context fthe number 

of syllables in: ri' seems to be oblique. But if it were 

claimed that any language incorporating (1) and (2) must 

be non-extensional one might reply that in (1) and (2) the 

expressions 'venus' and 'the morning star' were being used 

in an unusual way. Here, they are being used to denote 

themselves, not the planet. Thus in the present context 

they do not have the same denotation, and hence (1) and 

(2) can not provide a counter instance to Frege'e prin­

ciple. The reply may be put in another way. The expres­

sion •venus' is ambiguous in English; it ia usually taken 

as denoting a certain planet, but may in special circum­

stances be taken as denoting something else (for example, 

a picture, or the word itself> If the language we are 

analyzing contains such ambiguities, we must of course 

withdraw, or at least modify, any claim of extensionality. 

But such failures of extensional1ty do not in general pose 

deep theoretical problems for semantics. In a constructed 

language the apparent simplicity attained by allowing the 

same expression to function in different ways in different 

contexts, would probably be outweighed by the relative 
. 

complexity of the semantical rules and the transformation 
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ruleo. In particular, semantical syatemc which nre Fregean 

have a certain simplicity of their own. Thus it seems 

profitable to first attempt to retain extensionality by 

revising the language so as to remove ambiguities. In this 

line we may insist on writing (1) and (2) as: 26 

(3) the number of syllables in 1 venus 1 

( 4) the number of syllables in 'the morning star' 

It seems to have been Frege's belief, and we take it 

as a tenet of that semantical tradition stemming from his 

work, that all of the oblique contexts were susceptible 

of an analysis in terms of ambiguities, along the above 

lines. 27 

Although Frege particularly called attention to those 

cases of ambiguity where names denote either themselves or 

their (usual) senses rather than their usual denotations, 

he did not propose any language reform along the lines of 

(3) and (4). Possibly this was due to the fact that he 

never attempted a formal treatment of any language adequate 

to express the oblique contexts. 

8. Direct and Indirect Discourse 

Ir we adopt Frege's point ot view, namely that fail­

ures or extens1onal1ty are due to ambiguity, we may dis­

tinguish two approaches to the formalization or a language 

adequate to express oblique contexts. 28 Ir we follow the 

method or indirect discourse, we will not insist on any 

language revision but will attempt to avoid paradox by 
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carefully restricting the transformation ruleo; for ex­

ample, existential generalization on two occurrences of the 

same name would not be allowed in certain contexts (those 

in which the name has two different denotations). If we 

follow the method of direct discourse, we first require 

that distinct uses of expressions be marked by some distinc­

tion in the expressions themselves. Dy introducing a multi­

plicity of expressions to avoid paradoxes, we can maintain 

a (relatively) standard form for the transformation ruler:. 29 

The two methods may be illustrated by reference to 

modal logic (a subject not discussed by Frege). Suppose 

we want to formalize a modal logic with identity and the 

names 'Hesperus' and 'Phosphorus•. Following the method 

of indirect discourse, we would treat such expressions ns 

(5) Hesperus = Phosphorus, and it is not necessary that 

Hesperus = Phosphorus 

as wfe's. But we would restrict applications of Leibniz' 

Law so that 

(6) It is not necessary that Hesperus = Hesperus 

could not be obtained from (5) by the transformation rules. 

Similarly, we would be cautious about allowing the infer­

ence or 
(7) There is an x, such that x = Phosphorus, and it is 

not necessary that x = Phosphorus 

from (5), at least in the absence of some special semantical 

treatment which validates such inferences. 
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Following the method of direct d1scouroe we first 

note that the failure of the inference of (6) from (5), 

indicates that in (5) the names 'Hesperus' and 'Phosphorus' 

are used ambiguously. Hence we will have to introduce a 

pair of names corresponding to each of the names used in 

the previous method. But first we must decide what the 

terms denote in the necessity context. Two possibilities 

immediately occur: they may denote themselves or they may 

denote their (usual) senses. Suppose we take the first 

possibility, we then note that the fact that necessity is 

not truth functional indicates that sentences do not have 

their usual denotations (namely, truth values). Hence we 

must replace the second occurrence of the identity predi-

cate with a different sign, which when combined with two 

terms yields not a sentence (that is, an expression denot­

ing a truth value) but rather an expression which unarnbigu-

ously denotes whatever we understand the ambiguous use of 

the sentence to denote. Since we have chosen to understand 

the terms as denoting themselves, it is natural to under­

stand the sentence in the same way. Hence in the present 

method we retain the expressions 'Hesperus' and 'Phosphorus• 

in their usual use, and add new expressions, say 'Hesperus1 • 

and 'Phosphorus1 •, similarly we retain 1=1 but add an opera­

tion symbol '=i' (where we understand •c1 1 as denoting the 

syntactical operation Id or section 4). 'J.'be counterpart 

of (5) is now expressed as: 
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(8) Hesperus - Phosphorus, and (Heapcrus1 = 1 Phosphorus1) 

is not necessary. 

'lbere remains no temptation to infer any analogue to (6) by 

Leibniz' Law~ (note that the expression 'Hesperus' is not 

considered a part of the expression 1Hesperus1 1 ) or any ana­

logue to (7) by existential generalization. Thus we can use 

transformation rules (and also provide a semantical inter­

pretation) of a relatively simple character.3° 

As matters stand, we have described the relative 

merits of the two approaches as involving a choice between 

simplicity ot the structure of the wfe 1 a on the one hand, 

and simplicity of the transformation and semantical rules on 

the other hand. There are, however, more profoWld differ-

ences. If we follow the method of indirect discourse and 

think of expressions 1n modal contexts as denoting them­

selves, we have the result that two expressions which in 

modal contexts denote the same expression, are themselves 

identical. We are thus deprived or the means or expressing 

arguments which turn on the use in modal contexts or non­

synonymous expressions to denote the same expression. Con­

sider, for example, the following informal argument given in 

direct discourse.31 

Assume that John's favorite sentence is 'Hesperus a 

Hesperus' • 'l'hen presumably 

(9) John's favorite sentence is necessary 

is true. But 

(10) (9) is necessary ~· ' 

• .. 
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is not only not necessary but false, since the truth of (9) 

depends on a contingent assumption.32 However1 

(11) 'Hesperus =Hesperus' is necessary 

is true, and so is 

(12} (ll} is necessary. 

Thus one might conclude that the principle that what is 

necessary is necessarily so, sometimes holds {as with (11)) 

and sometimes fails (as with (9)). 

It we attempt to formulate the preceding argument in 

a modal logic of indirect discourse (that is, where 'is 

necessary' is preceded not by the name of a sentence but 

by a sentence itself) we will be able to express (11) as 

(13} (Hesperus = Hesperus) is necessary 

and (12) as 

(14) ((Hesperus = Hesperus) is necessary) is necessary; 

but no means is available to express (9). 

ihe argument turns on the tact that John's favorite 

sentence= 'Hesperus= Hesperus', but 'John's favorite 

sentence'~ ''Hesperus= Hesperus••; in fact, 'John's 

favorite sentence' is not even synonymous with •'Hesperus = 
Hesperus t ' • 

It we treat expressions in oblique contexts as denot­

ing their (usual) senses (rather than themselves) and de­

velop our language by the method of indirect discourse 

we have the analogous result that two expressions which in 

modal contexts denote the same sense are themselves 
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synonymous (that is 1 they have the same sense). It may 

have been this fact that has led a nwnber of authors (among 

them apparently Carnap and Qu1ne)33 to the mistaken belief 

that there is something in the nature of senses which makes 

them incapable of being denoted by non-synonymous expres­

sions. On the contrary, if ~and~ denote distinct enti­

ties of any kind whatever1 we can always construct another 

name g(a: , )3 1 fl) (using the formation rule g of section 4) . 

such that rg(cx:., }3:1 )i) = a.1 is true but contingent. ThUE 

we see that if we choose the method of direct discourse, we 

may introduce in addition to the one new expression which 

replaces the ambiguous use of an old expression, a number 

of new expressions (perhaps compound 1 as with g (a: , )3 1 ¢)) 

all with the same denotation but with different senses. 

Our comparisons of the two approaches to the forma11-

za tion of a language adequate to treat oblique contexts, 

and indeed even the description of the two methods, has 

been based on a semantical treatment of such contexts along 

Frege's lines,, namely: that the denotation of compound 

expressions is always a fWlction of the denotation or the 

parts~ but 1n some cases the denotation of an expression 

may vary with the context. However, some authors have 

probably chosen what we call the indirect discourse method 

pr1mar1]3 to avoid committing themselves to such a semanti­

cal analysis. Ir we ~eplace occurrences of 'Hesperus• 1n 

modal contexts bJ occurrences or 1Hesperus1• where the 
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latter is thought of ns denoting the sense of the former, 

and especially if we then go on to take the natural step of 

introducing variables for which 'Hesperus1 1 is a substutu­

end, we seem committed to the Fregean analysis along with 

its commitment to an entity called "the sense of the word 

'Hesperus' 11 • Unfortunately, many authors who have chosen 

the indirect discourse method have avoided committing them­

selves to any semantical analysis whatever, preferring to 

focus attention on transformation rules which inhibit the 

derivation of highly implausible conclusions from highly 

plausible premises, and treating formulas of dubious mean­

ing by a combination of suggestion and revelation.34 

Our aim is primarily semantical, and hence we adopt 

the method of direct discourse. In so doing we seek to 

emphasize the fundamental similarity of different treat­

ments within this method (for example, that treatment where-

in the new expressions are taken as denoting senses, and 

that treatment wherein the new expressions are taken as 

denoting other expressions) as opposed to the fundamental 

differences between direct and indirect discourse treat­

ments. Although 1n certain cases one direct discourse 

treatment has cer~a1n advantages over another, these din­

tinctions have perhaps been over-emphasized in the litera­

ture so as to neglec.t the connection of all such treatments 

with the Frege tradition.35 We will attempt to show the 

similarity ot different direct discourse treatments by 
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developing a language of direct discourse uh!ch admits of 

both an interpretation whereby the expressions in oblique 

contexts denote (other) expressions (we call this the 

syntactical treatment) and an interpretation whereby the 

expressions in oblique contexts denote senses (we call thio 

the intensional treatment). 
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CHAPTER 2 

FIRST FORMULATIONS 

9. Semantical Systems for Oblique Contexts 

We conceive of languages adequate to treat oblique 

contexts as extensions formed in the following way of the 

more familiar languages. We begin with a base language, and 

add whatever apparatus is needed in order to express the 

oblique contexts or the wte or the base language (we call 

such contexts singly oblique)~ We then close this language 

under the logical apparatus of the base language. Ir we 

ref er to the base language as L0 we may ref er to the new 

language as L1• It contains essentially the logical ap­

paratus of L0 with one layer of obliquity available. If 

we begin, for example, with the sentential calculus as L0 

and we are developing a treatment or modal logic, we would 

add all expressions of the torm r N ~ (where <;I is either a 

formula or L0 or the analogue to such a formula, depending 

on whether we choose the indirect discourse or the direct 

discourse methods). We then form the language L1 by taking 

all the sentential combinations ot the new wte•s with the 

formulas ot L0 • 'Ihe process ot forming L1 from L0 can then 

be repeated to torm 12 from L1• In ~ we have available 

30 



the apparatus to treat doubly oblique contcxtn {tor ex­

ample rNNp'1). In this way we form a sequence or languages, 

each a aublanguage of its successor. 

Among the earliest treatments of formalized languages 

for oblique contexts are the modal logics of c. I. Lewis 

[l],based on the sentential calculus. Among the most 

recent treatments is the system of Church [6], based on the 

simple theory or types. We shall choose a middle course, 

basing our systems essentially on the first order predicate 

calculus.36 However, before constructing these languages, 

we shall introduce a hierarchy or languages 1~ 0 , 1<1 , •.. 

based on a logic which avoids the complexities involved 

with variables and variable binding operators. In the 

present chapter the languages 'k0 and 1<1 are introduced 

and the fundamental ideas behind their interpretations are 

discussed. 

The languages 1{ 0 , 1< 1, • • • all share certain simple 

characteristics. ~e wf'e's fall into two broad categories, 

those ot simple type and those or complex type. The simple 

types are again divided into two hierarchies: i~ i 1, 12•••• 
and t, t 1, t 2, •••• Each simple tJ"Pe is associated with a 

certain universe ot entities. For example, under the 

syntactical interpretation, wte's of the simple type 1 

will denote individuals, those or the simple type 11 will 

denote names ot 1nd1v1duals, those ot type.12 will denote 

names or names ot individuals, etc. Similarly, wte•a 
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of the simple type t will denote truth values (thus, such 

wfe's are sentences), those of type t 1 will denote wte's 

denoting truth values (that is, sentences), those of type t 2 

will denote wfe 1 e denoting wfe's denoting truth values, etc. 

Under the intensional interpretation the wfe's of type i 1 

will denote concepts of individuals, those of type i 2 will 

denote concepts of concepts of individuals, etc. The wfe's 

of type t 1 will denote concepts of truth values (that is, 

propositions), those ot type t 2 will denote concepts of con­

cepts of truth values, etc. The wfe's of complex type com­

bine with wfe 1 s of simple type to form compound wfe'a of 

simple type. It a wfe ~ combines with a wfe ~of simple 

type 1 to form a compound wfe -rfo: or simple type t, then 1 
will have the complex type (i, t> and will denote a function 

which assigns to every element of the universe of the type 

1 an element of the universe or the type t.37 Hence, in 

the present case, 1 will denote a function from individuals 

to truth values and is therefore what is commonly called 

a one-place predicate. Aside from the introduction or 
variable-binding operators, all compo\Uld wfe 1 s are formed 

by prefixing a wte denoting a function to wf'e 1s denoting 

its arguments. Thus the formation rules are all or essen­

tial~ the same torm (concatenation or a function expres­

sion With its argument expressions) and the corresponding 

semantical operations all amount to the application of a 

function.to its arguments. Onl.7 atomic wte•s will have 
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complex types; hence all compound wfe's will be of simple 

type. In addition, only wfe's of simple type may stand as 

argument expressions, so we have no second-order wfe's in 

any of our languages. Languages with a variety of simple 

types, such aa ours, have been called "many sorted". 

Our base language 1{0 will contain only the simple 

types i and t. When we move to the language -/r1 we will 

add wf'e's of the simple types 11, t 1 to replace the wfe's 

of types 1 and t in singly oblique contexts. Similarly, 

the step to 1{2 requires adding new wfe's of types 121 t 2 , 

etc. 

10. 'lhe Language 1( 0 

~e base language f'0 is simply the first order 

predicate calculus with identity but without variables. 

Dl. The simple types or f<o are 1 and t (where 1 = 2 and 

t = 3).38 'lhe complex trpes-or 1{ 0 consist of all finite 

sequences <Zi, ••. , ~, (~, Where ( 0 , ••• ,z;. are simple types 

or 1{0 and r>O. 

D2. '!he atomic wfe 1s of 1(0 tall into the following cate-
-

gories: 

(1) tor each natural number p, a denUJ1erable number or 
p-place operation symbols or which O;psymb (m,p) is 

the mth 39 _, 
(2) tor each natural number p, a denumerable number or 

. 
p-plaoe predicates ot which ~r~d {m1p) is the mth, 
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(3) the material conditional sign Cond and the negation 

sign Neg, 

(4) the identity signs for individuals Iu(i) and for 

the truth values Id(t). 40 

D3. A 0-place operation symbol is called an individual 

constant, and a 0-place predicate is called a sentential 

constant. 

D4. 1be type of an atomic wfe of 1{0 ie given by the 

following: 

(l) for all m, Opsymb (m,o) has type 1, Opsymb (m,l) has 

type (1,1), Opsymb (m,2) has type <1,1,1), etc., 

(2) for all m, Pred (m,o) has type t, Pred (m,l) has 

type <1,t>, Pred (m,2) has type <1,1,t>, etc., 

(3) Cond has type <t,t,t> and Neg has type <t,t>, 

(4) Id(i) has type <1,1,t> and Id(t) has type <t,t,t>. 

D5. )3 is a well foJ:'llled expression (wfe) of f..o of tyPeL 

if and only 1£: 

(1) J3 is an atomic wte of 1(0 of type 7:, or 

( 2) there are wf e' a ~ , <X:i, ••• , ctr or 1{0 of types 

<!1, •••• rr'~' r1, ••• ,rr respectively andf3 is 
I\ ,..... ~ 

~ °l ... ~· 
For the sake or tam111ar1tJ', we have excluded wte 1 s ot such 

complex types as <t,t,1), <i,t,1), eto.,41 and have also 

excluded sentential connectives other than the usual 

logical signs. In ID8.111' ways, however, it might be more 
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natural to admit descriptive constants of every type. 

It is clear that 1( can be put in the form <E,T,A,F> 
0 

discussed in Chapter 1 (especially section 2.1). Corre-

sponding to every complex type <r1, ••• , z;, ~, we would have 
r\ I"\ I'"\ 

a formation rule ·which yields the compound ~ °i · · · ~ 
given any Y/: °l•···•C\. of the appropriate types. Since, 

as noted above, not all complex types of 1(0 are repre­

sented by wfe's, some of these formation rules (if thought 

ot as functions) would just be the empty function. To 

fulfill the requirements laid down in section 2.1, we must 

establish that (1) each formation rule is one-one, (2) 

distinct formation rules have disjoint ranges, and (3) 

no atomic wfe is in the range of a formation rule. If 

•~•, 'Pred', 10psymb 1 , 1 Cond 1 , etc., are taken as primi-

tive, we may simply lay down (1)-(3) as axioms. An alter­

native procedure is to identify wfe 1 s with certain finite 

sequences of natural number and the concatenation of ex­

pressions with the concatenation of finite sequences, 

(1)-(3) are then derivable in terms of the following 

det1n1tiona. 

D6. ~e atomic wte' s ot 1(0 are defined as .follows: 

(1) Opsymb {m,p) • <2DH-l.3p+l·5> 

(2) Pred (m,p) • <3mf-l.5p+l·7> 

(3) Cond • <5> 

(4) Neg = <l> 

(5) Id(i) • <22+1•3> 
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(6) Id(t) = <23+1·3> 

'If(. If cx. 1 )3 are finite sequences of lengths m and n 
/1 

respectively, then a..p is the finite sequence of length 

m+n, whose j.ih, element is the j]h_ element of cx:if j(m, 

and the (J-m)j?h element of J3 1f j~m. 

ll. ~e Semantics of -{) /} 0 

Instead of settling on some particular semantical 

relation for -/(0 we will describe the general character­

istics of a large class of such relations, namely the 

denotation functions for 1f 0. In essence, such a function 

must assign an individual to every wfe of type 1, a truth 

value to every wfe of type t and a function of the appro­

priate kind to every wfe of complex type. In addition, it 

must assign certain particular functions to the logical 

atomic life's, that is, Cond, Neg, Id(i), and Id(t). Since 

we want our semantical systems to be extensional (that is, 

Fregean with respect to denotation), we will represent 

the semantical relations in a form closely related to the 

representation <T*,A*,F~ of section 3. It will be recalled 

that T* was to be a .tu.notion assigning a universe to each 

tYJ>e, A* a function assigning an element ot the appro­

priate universe to each atomic wte, and F* a function as­

signing a tunction or elements or the Wliverses to each 

torma.tion rule. We shall take as our fundamental semantic­

al notions~ m ia a model tor 1fo, the universe or the :!?lpe't 
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in the model lJl with respect to the language t{E..' and 1t!£ 
value of the wre a: in the model Yq with respect to the 

language 1j0 • A model for "/i0 will be an ordered couple 
-

<DR> where D is the universe of the type i (that is, the 

set of individuals) and R is a function which, like A*, 

assigns an appropriate entity to each atomic wfe. 

DB. )){ is a model for 110 if and only if there are D,R 

such that: 

( 1) tfl =-= <DR> 

(2) D is a non-empty set 

(3) R is a function which assigns an entity to each 

atomic wfe ct. or 1;0 1n accordance with the following: 

(a) if cx:ie an individual constant, then R(<X) is 

an element of D 

(b) it <:$.is a sentential constant, then R(oc) is a 

truth value 

(c) if <Xis a p-place operation symbol and p)O, 

then R(a) is a function which assigns an element 

ot D to each p-tuple or elements or D 

(d) it cxis a p-plaoe predicate and p)O, then R(~ 

is a function which assigns a truth value to 

each p-tuple ot elements ot D 

{e) it oc.1s the material conditional sign, then 

R(cx) is that two-place truth function which 

assigns F to <"> and T to all other pairs ot 

truth values42 
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(f) if oc: is the negation a!gn, then R(~ is that 

one-place truth function which assigns F to T 

and T to F. 

(g) if oc.ia the identity sign for individuals, then 

R(c:x) is that function from pairs of elements of 

D which assigns T to a pair of identical ele­

ments and F to all other pairs 

(h) if ex.is the identity sign for truth values, then 

R(cx) 'is that function from pairs of truth values 

which assigns T to a pair or the same truth 

values and F to all other pairs. 

D9. If YTt = <DR> is a model for 1(01 and L is a type of 

1(0'.A;then the universe orr in rn with respect to "Ho 
( Ll ~ ( Y)) is given by the following: 

(1) the universe of i is D 

(2) the universe or t is [T,f} (the set of truth values) 

(3) if the universes of "t0 , ••• ,'fr are respectively 

u0 , ••• ,ur and r)O, then the universe of <ti1 ••• ,Tr'l;,> 

is the set or all tunctions from{u1x···xuiJ1nto u0 • 

DlO. It l'1l = <DR> is a model tor 1(0 , and c:t. is a wre or 

~0, then the value ot a.in Yn with respect to °fr'. 
1r'. ~ 

(Val~(<X)) is given by the following: -

( 1) 1t' o:. is an atomic wte of 1f 0, then the value or a; 

is R(~ 

(2) 11" ~·°l•···•~r are wte•s ot 1(0 or types 
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for 

<tJ. 1 ••• , ~'To>, Ti 1 ••• , l;. respectively with values 

r, x1 ,, ••. ,xr respectively,, then the value of the 

compound wfe Y1_"""oi'· • :'Otf. is f(x1, •• qXr). 

If ex. is a wfe of 1(_ with type 'l, and Ii/ is a model 
0 

*a' then the value of ex. in rn is a member of the 

uni verse of Y in Y>"l • 

The notion of a denotation function, and hence of a 

Fregean semantical system, can now be reintroduced in terms 

of models for 1{0 • 

Dll. If YYl is a model for 1(0 , then the denotation func­

tion for 1(0 corresponding to f11 1s that function from the 
-

wfe•s of 1{0 which assigns to each such ex., the value of a:. 

in YI/· 
T5. It )1{ is a model for -/f0 , and F is the denotation 

tunction tor 1<0 corresponding to frl, then <1r0 ,F> is a 

Fregean semantical system. 

39 

-- ~·-



However, we here wish to develop a language or direct dis­

course, and this involves (among other things) providing 

tor each wre or ~ an analogous wre which will be uaed in 

our direct discourse treatment of oblique contexts to un­

ambiguously denote what the original wfe would ambiguously 

denote in the indirect discourse treatment of oblique 

contexts. For example, if we think or a sentence fl as 

denoting a truth value 1n the context, 

rit is not the case that ~ 1 

but as denoting itself in the context 

rit is necessary that ~, 

we will retain ~ in the former usage and provide a new wte, 

11 to replace fl in the latter usage. '!bus we must provide 

for each wte ex: or 1{0 , a new wfe Ci:..; this new wte is called 

the analogue to ex • Rather than simply introducing a new 

primitive as analogue tor each wte ~ or 1< 0 , we shall take 

advantage of the following simplifying assumption about the 

denotation of wre•s in an indirect discourse treatment of 

oblique contexts. 

Asswnption A: 'lbe denotation ot a wte or.in an oblique con­

text is the semantical value ot cxror some Fregean seman­

tical relation R. 

'l'hus, we m&¥ understand wte's in oblique contexts to reter 

to themselves, or to their sensea, etc. In &J'l¥ case we 

have the tollowing result, where Ci. is to be the analogue 
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to ex. • 'Ihe value of oc by the Fregean semantical relation R 

will be the denotation of <i:. (or for short R(cx) = den (Ci:)}. 

Thus, if r is a formation rule, den {r()3,'f')) c: R(t()3,'t'}}. 

But since R is Fregean, there is some semantical operation 

f'* corresponding to f such that R (f(~, t)) = f* (R\8) ,R(f') ). 

Therefore, since R{J3) = den C)j) and R(t1 c: den ()&) .. we have 

den (t(~_.f'.)) = f* (den gf), den ~f')) or, in words, the 

denotation of the analogue to a compound wfe is a function 

of the denotations of the analogues to the parts. Hence, 

instead of introducing a new primitive as analogue for each 

wfe C(Of 1-(0 , we shall introduce such new primitives only 

for the atomic wfe's of 1(0 and we will construct the 

analogue to a compound wfe such as t <.j3 ,t} by introducing 

a new formation rule, say r 1, such that f(cx:.,/B) = r 1(oc ,,). 

Such a procedure is justified by the result of assumption 

A. 

In addition to providing the analogue expressions ex 
for evecy wte a: of t.. we also provide the means for 

expressing the relation between the denotation or cc. and the 

denotation of oc. ~us, although we do not follow the 

indirect discourse approach or 1dent11.'ying the two expres­

sions, neither do we completely ignore the relationship 

between their denotations. ~e relation will depend, or 

course, on what treatment or direct discourse we follow. 

That is, on what the Fregean semantical relation R is, such 

that we understand a wte a.. in an oblique context as 
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(ambiguously) denoting R(<XJ. When we discuss semantical 

considerations with respect t.o 1{1 we will make explicit 

at least two possibilities. 

12 • 1 '!he types of' "*11 

Since 1{0 is to be a sublanguage of -f<1 , we have in 

-/{ 1 the two simple types i, t of 1(0 • In addition, we in­

troduce two new simple types 11, t 1 (11 = 4, t 1 = 9) for 

wfe' s of k 1 which are analogues to wfe' s of 1{0 or the 

types 1, t. 43 By the same reasoning it seems natural to 

introduce a new type <(1, ••• ,z;_,~1 to correspond to each 

or the complex types <Z--1 , ••• J;- 1 ( 0> of 110 • We shall, how­

ever, take a different course. Although we consider 

expressions of complex type to be wfe's, our primary concern 

is with the wre•s of simple type. Another way of putting 

this is to remark that we understand our languages to have 

an essentially first order character. That is, they are so 

constructed that to add variables of simple types would be 

a natural step, but to add variable& of complex types might 

require considerable revision. Our essential requirement, 

then, is that we have 1n 'if 1 an analogue to every wf'e O'. ot 

1(0 of simple type. Thus 1t ~is, say, a one-place operation 

symbol ot 1(0 , the essential role or~ (the analogue to~) 
will be to combine with a (the analogue to a wf e <X. or 
simple type) to torm compound wte•s or the form 'f:ot. (that 

is, analogues to wte• a or simple-type ot the rorm {a). To 

put it more general]¥, if \ ie a wte (ot 1f0 ) ot complex 
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type <'Ci, ••• , -z;., '°>, it combines with wfe' a ot types 

---t'11 • ·~"r to form a compound wfe of type l 0 • Hence in view 

of assumption A:_ 'l mus.:_have a t~e which co~ .. 1nes with 

wfe 1 e of types c1, ••• ,[r (where i is 11 , and tis t 1) to -form a compound wre of type '[0 • In view of these considera-
~ X;:. -

tions we will assign the complex type <L1, ••• tr' ~to the 

analogue to a wre or type <iJ., ... , ~' ~. This procedure, 

which eliminates the need tor an additional type 

<'l:i1•••1"z.1(o>1 , will effect a considerable simplification 

or the type system. 

Dl2. The simple types or i/1 are 1, 11, t, and t 1• 'lbe 

complex types or 1{ 1 consist-of all finite sequences 

<ti•···•lz.•Z-o>, where ~ .... ,-z;_ are simple types ot 1(1 

and r>O. 

It will be convenient to be able to speak 1n general 

of the type or the analogue to a wf'e ot type t: 

Dl3. If Z: is a type of 1(0 , then the elevation of r ('f} 1s 

given 'bJ' the following: 

(1) the elevation or i is i1 

(2) the elevation ot t 1~ t 1 

(3) 1t 'lc,1 ••• , "Z;. are simple tn>es ot 1(0 , r>O, and 

f0 , ••• ,~ are their respective elevations, then the 
,,._ - ~ 

elevation ot <t1• ••• , t'r' co> is <'2i1 ••• , 'tr'?;)>. 

Although the elevation of each tJ'pe ot 1(0 is a tJPe or 1(1 

not all ot the new tnes ot 1(1 are tormed 1n this manner, 
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f'or example <11'1,t>lo .-*;ti.....~ i °'() T· 
12. 2 ib.e Well Formed Expressions of '1f 1 

As with 1( we will exclude all wfe's of certain com-o 
plex types, and further we will exclude all primitive 

descriptive constants of higher types (the higher types are 

the types of '*11 which are not also types of k 0 ). In the 

present case, as distinct trom 1(0 , there are important 

theoretical considerations, rather than mere considerations 

of ~am111ar1ty, belU.nd this decision. 

In addition to the analogues to the atomic wfe's of 

1(0 , we also introduce in 1(1 two new identity predicates 

(for wte's of types 11 and t 1), and two new predicates (the 

delta predicates) to stand tor the relation which holds 

between the denotation or a wte ot 1<.o (or simple type) and 

the denotation ot its analogue. (Further explanation ot 

the delta predicates is forthcoming.) 

Dl4. '!he atomic wte•s or 1{ ~ tall into the following cate--gories: 

(l) all atomic wte•s or 1(0 

(2) analogues to all atomic wte•s ot 1(0 , where 

?Psym2i..l!·Pl is the analogue to Opsymb (mip), 

Pred~_{m,p} is the analogue to Pred(m,p) 

001141, Neg1 are the analogues to Cond, Neg -
1S1fil, ~l{ll are the analogues to Id(i), Id(t) -

(4) the 1dent1t7 eigns tor wte•s ot eypes 11 and. t 1 
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IdLJ.1>' IdU1> - -
(4) the delta predicates for wre•s of types i 1 and t 1 

Delta(i1), Delta(t1). 

Dl5. '!he type of an atomic wte of 1(1 is given by the 

tallowing: 

(l) if a. is an atomic wre of 1(0 , its type remains the 

same 

(2) it a.. is an atomic wfe of 1(0 , of type C:, the type or 

the analogue to cxis the elevation of Z:-

(3) Id(11) has type <11,11,t> and Id(t1) has type 

<t1,t1,t> 

(4) Delta(11) has type <11,1
1
t> and Delta(t1) has type 

<t1,t,t> 

Dl6. ;a is a well formed expressio~ ,of ft l of type Z: it 

and only it: 

( 1) )3 is an atomic wf'e or 1< 1 or type '[, or 

(2) there are wte•s ~, °i•···•°i- ot 1{1 or types 

<t'1, ••·,'tr' t>, 'Zi, ... , t"r respectively and }3 is 

(~···~· 
1be bar notation ('i) tor the analogue to a wte o:. ot 

if0 can now be introduced 1n a precise way. 

Dl7. The analogue to a wte ex ot ·1{0 (ti) is given by the 

following: 

(1) OpsJ'Dlb (m, p) • Opsymb1 (m,p) 

(2) Pred (m 1p) • Pred1· (m, p) 

-
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(3) 

(4) 

{5) 

(6) 

'I'S. 

1<1 

(fond = Cond1 

Neg = Neg1 

if T = i or [ = t, Id (i) = Id1 ('L) 

if Yl_ is a wfe of 1<.o of complex type <~i 1••·1 Lr'~> 

and "1,i••·i~ are wfe's of 110 of simple types 
...... ,,,,,,_,... ~ 

Z-1, ••• ,-z; respectively, then r('~~·:-°l- = ~ o:.t···O}.· 

If ex: is a wfe of 1(0 of type L, then Ci is a wf e of -~ of type l. 

One muet carefully distinguish such pairs of constants 

as Id(i1) and Id1(1). The former is the identity predicate 

for wfe's of type 11 ; note that it has the type of a two­

place predicate of such wfe's, <11,i1,t>. In general, for 

each simple type <:'we will introduce an identity sign Id("l) 

of type <t','t,t> for wre•s of type t'. The latter ( = Id(l)) 

is the analogue to the identity predicate for individuals; 

note that its type <11, 11, t 1> is not that of a predicate 

at all, since when combined with wfe's of type 11 it does 

not form a sentence (that is, a wfe of type t), but rather 

the analogue to a sentence. In general, tor each atomic 

wfe of 110 , such as Id(i), we will introduce an analogue 

Id1(1), an analogue to the analogue Id2(1), an analogue to 

the analogue to the analogue Id3(i), etc. In this way, 

each atomic wre of 1{0 will ultimateJ.y generate an infinite 

hierarchy or analogues. But such wte•a ae Id(11) do not 

appear 1ri this hierarchy, instead, they stand at the base 

ot a hierarchy or their own Id(11), Id1(11), Id2 (11), etc. 
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Reference back to our conception or a language of di­

rect discourse adequate to oblique contexts may help to 

clarity what we have done. We began with a base language 

1(0 and added all the analogues to wfe's or the base language. 

In addition, we added some logical apparatus for the new 

wfe's (the new identity predicates and the delta expres­

sions} and allowed any sentential combination of the en-
,.., )..-'\ larged class of wfe 1s of type t (for example, Neg Deta(11 

---..--" Opsymb(lO) Opsymb (2o)i We thus have the apparatus ava1l-
J J 

able to express singly oblique contexts of the wre•s of /<0 • 

In order to make the situation a little more concrete, let 

us now introduce such a context by adding clauses to the 

preceding definitions which introduce the modal operator of 

necessity. 

(5) the necessity predicate,~' is an atomic wfe of 1{1 

of type <t1, t> 

13 • The Semantics of 1{ 1 

As indicated earlier, we Will provide two interpreta­

tions or 1(1, a syntactical interpretation, according to 

which wte' a ot the torm « will denote expressions of 1( 
0 

and an intensional interpretation. according to which wte•s 

ot the torm Ci will denote senses. 

14. '!he S;yntactioal Interpretation ot f( 1 

14.l Expressions and Syntactical Entities 

Under the 811\tactical interpretation, the universe ot 
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the type 11 will consist of all wfe's or 110 of type 1, and 

the universe of the type t 1 will consist of all wt"e's ot 1{0 

ot type t. '11lus, if o:: is a w£e of 1( 0 of simple type 1 ( t) , 

we can require that Ci (which will have simple type i 1 (t1)) 

simply denote ex itself. Accordingly, it seems natural to 

require also that 11. denote ~· when "l_ is a wre of ~o or com­

plex type. We will not take this course. Instead, ~ will 

denote a certain function (called "the syntactical entity 

corresponding to 1" or "Synt("C") which represents the com­

plex wte '>t: 
We recall (section 12.1) that the essential role of 

the analogue f to a wfe ~ or complex type ls to combine 

with the analogues~ •••• ,~ to wfe's Of:t•···Olf. of simple 

type to form the analogue r("{'··?'~ to the compound wte 

"' " "' ~<Xi ••• C\- or simple type. 'lhe requirement on analogues 

to wte•s of simple type tells us that each ~ denotes a:, 
and that f°i '\. r <>}. denotes ~"~I"\· .. "'~· Hence, since 

"'t"'i1"'t· • .''~ a 'f~"'·. ·"'~· the denotation or ~must combine 
" ~ ,..... 

with «.L•···•<>}. to torm ~O]. ••• ~· 'Ibis purpose is most 

simply served by requiring that ttdenote that formation 

'rule (section 2.1) which torms from each r-tuple <oe.i_, ••• ,~r> 

ot wte 1 a ot the appropriate types, the compound wte 

" ,.... "" 44 vt_O). ••• °i-· '!his formation rule is the syntactical en-

tity corresponding to "\:. For purposes ot uniformity, let 

ua also reter to a wte ex or simple type as the S7fltactical 

ent1tr corresponding to 1t1e1r. 
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DlU. If .JJ 1u n wt·o or ~1'0 , th~n ttau 3ntrrntic1_~l onttty 

cot·ror,pontl.lnc to /J (!.iynt( )J)) in 1;1ven by the fullowir1t~: 

( l) 11' /j 1u of eir1plc type, then :>yut (,13) 1u J3 1 tue l r. 
(:!) 11'?'0 , ••• 7;. are a1rnplo typen or 1,"'0 , no .. JS in or 

coMplex type <Z'i.1···,Tr' ~>, t'.nd w0 , ••• ,wr a.re the 

octn 01• nll wre' c or 1{0 or typcu ~· ••• , ~ renpuc­

tively, then Synt(j3) lo tho unique function trom 

(w1x ••• xwr) into w0 which t1r.nlgno tu cu ch <"J.• .. . oi> 
1 1 -'"'"'"" t"'\ n to domuln, the wfo }3 ~ ••• "r· 

Our trentmant or the denotntlon ot' ~ (rwr.ioly, !;yr1t(~)) 

la ln accord with our pl1u1 to hr1ve u wrc 01· complex type 

<'i, ... , Tr' ·z~,> denote a !"unction which nenlgns to euch 

r-tuple <y1, ••• ,y.;>, where yJ 1e an element or the un1veree 

of 't'j• an element of the universe of ~· 

14.2 Universe and Value for 1(1 

It we were to follow directly the pattern ot det1n1-

t1ona tor the semantical notions in ~, we would be led 

to introduce the notion ot a eyntactical model tor -/fi. 
Such a model might consist ot a couple <DR>, where D again 

represented the un1veree ot the type 1 and R aaa1gned to 

eaoh atomio wte ot 1(1 an appropriate denotation. But one 

ot our motivea 1n traneterring attention tl'Olll denotation 

tunct1ona tor if 0 to model• tor 1'o waa to 11.mplltJ' matte.rs 

b7 considering Ju1t tho•• eaaential pl&oea at Whloh one de• 

notation tunotlon ooUld d!tter trom another, n&MlJ 1n th• 
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assignment of denotations to descriptive atomic wfe's. (Ac­

tually we did not go as far in this direction as we might 

have, in that our models for if 0 also assign denotations to 

the logical, that is, non-descriptive, atomic wfe's.) Simi­

lar considerations lead to a simplification of the semanti-

cal notions for 
. ./) 
,, l. 

Note that in the passage from 110 to 1{ 1, no descrip­

tive atomic wfe's were added. 'lhus, the same notion of 

model will suffice for both languages, and the assignment or 

denotations to the new atomic wfe's can be accomplished 

through the new notion of value. Hence, for the syntacti­

cal interpretation of the language "/{1 we will introduce 

only the two semantical notions: the universe of a type, 

and the value of a wfe. 

Dl9. If Yrt == <DR> 1a a model for 1{0 , and Tis a type of 

1(1 , then the universe of t in 'rn with respect to the Syntac­

tical :l.nteryretat1on of ~ ( U.~ 1i'1 (!)) 1s given by the fol-

lowing: 

(1) the universe or 1 is D 

(2) the universe ot t is {T,Fj 

(3) the universe ot 11 is the set of all wfe' s or 1(0 ot 

type i 

(4) the universe or t 1 is tne set of all wre' s or ~o of 

t11>e t 

(5) it the universes ot ( 0 , ••• ,"(r are respectively 

uo, ••• ,ur and r>o, then the universe ot <L11 ••• , ~' ro> 
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is the set of all .functions from (u1x ••• xu) into u0 • 

Our definition or "the value of n wfe or 1(1u makes 

essential use of the earlier notion, the value of a wfe ex:. 

in the model Yft with respect to the language -f10 (Val~(a:)), 
which was introduced in DlO. 

D20. If hl_ = <DR> is a model :for 1{01 and a:. is a wfe of 

1(1, then the value of ex. in >11 with respect to the Syntacti­

cal intel'.l?retation of :1il (Va1j~1<i (ot)) is given by the fol­

lowing: 

( 1) if a: is an atomic wfe of ...{) then the value of ex is llo' 

R(cr) 

(2) if a:: is an atomic wfe or 1{,0 , then the value of ~ is 

Syn t ( ()'.) 

(3) if t' is 11 or t 1, and ~is Id(t) 1 then the value of ex. 

is the unique r such that: 
5 1< US, 111 

(4) 

(a) f is a function from (U.~ 1(t) x m ('())into 

{T,F} 

(b) 1.f <J31'h is in the domain of r I then f l/3I11 = T 

if and only it )3 = ~. 
~ ~ 

it <... is 1 or t, and ex. is Delta(t:), then the value or 
~is the unique t such that: 

'UsJ '"H1 -(a) f is a function from l~ m (t:) 
{T,F} 

x /J.:;(1 ('!:)) into 

(b) it <J3 1 X> is in the domain ot t, then t()3,X) = T 
tf & 

11' and on]Jr it Val >'Tl. 93) a X. 

(5) it a. is Nee, then the value ot ~ is the Wlique r such 
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that: 

(a) t is a function from the set of all wre 1 n or 1{ 
0 

of type t into {T,F} 
(b) if ¢is in the domain or f, then r(p') = T if and 

only if for all models n for 1{0 , Val~o (p') = T. 

(6) if~, )3 1 , •.• ,pr are wfe's of 1(1 of types <'S1•••1tr' 

t 0>, 'Zi1•••1t"r respectively, with values f, x1, ••• ,xr 
/\)3 ,,... ~ respectively, and a.is ri_ 1 ···~r' then the value of 

~is f(xl, ••• ,xr>· 

7!7. If ex. is a wfe of 1<1 w1 th type '(, and Yfl is a model 

for 1(0 , then the value of ex. in 11?. is a member of the uni­

verse of 'Lin /?1 (Val~1f1(~€.. U~f1 ('t')). 

TB. If er. is a wfe of 1{0 , and ifl is a model for 1fo, then 
I{. 

the value of ex in m is the same for 1<.o and 1(1 (va1,n(rs.) .. 
s,1{1 

Val "yyt (C1}). 

T9. If 'YYl is a model for 1{0 , and F is that function from 

the wf'e's of 1(1 which assigns to each such ex, the value of 

o:: in Yfl.. (Val~ 1<i( a:)); then < 1{ 1, F> is a Fregean semantical 

system. 

Our simple method of providing an analogue to every 

wte of 1(0 was Justified by Assumption A (section 12). 

The following theorem indicates that we have satisfied that 

assumption. 

TlO. If R is that function trom the wte's ot ~ which as-
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signs to each such ~ Synt(o:); then < /)'0 .. n> in a Fregeau 

semantical system. 

14.3 Metalinguistic Features of -;f 1 

Under the syntactical interpretation, 1(1 may be 

thought of as a formalized metalanguage for 1( 0 with the 

following features: 

(1) 'lhe object language, f 0 , is a sublanguage of the 

metalanguage. 

(2) '1'1.e metalanguage contains type dist!rictions which 

make it impossible to express certain propositions 

(for example, that the expressions of the object lan­

guage of different types are disjoint). 

(3) The metalanguage contains two denotation predicates 

{one for names of the object language and one for 

sentences of the object language). 

(4) Every name a: and sentence~ of the object language 

has a standard name in the metalanguage (namely, Ci:. 

and SJ respectively). 

(5) p-place predicates and operation symbols (p>o) and 

sentential connectives are not treated as wfe's ot 

the object language. 

(6) The metalanguage contains a validity predicate, Nee, 

tor sentences ot the object language. 

(7) 'lhe logical resources or the metalanguage are ver:1 

weak. 

1(1 d1ttera perhaps most strikingly' rrom tamiliar 
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formalized metalanguages with respect to points (2) and (5). 

In the more familiar metalanguages we have a single type 

for names or all wfe's or the object language and a single 

formation operation (concatenation). 'lhus we are able to 

form names of a wide class of expressions, in fact a wider 

class than the wre•s. Furthermore, we are able to express 

the fact that, for example, no sentential connective is an 

individual constant. In our form of metalanguage, the iden­

tity ot a pair of expressions can be expressed in the meta­

language only when the identity or their denotations can be 

expressed in the object language. 'lhe second ma.in depart­

ure trom the familiar form ot metalanguages is in the lack 

ot names for expressions ot 1(0 ot complex type. In their 

place, corresponding to eve?":f such expression "t we have a 

name Yi_ or a tormation rule which introduces~· 'l'hus 1{ 1 

treats ~ as syncategorimatical; that is, ~ is only indica­

tive ot a mode of combination ot its argument expressions 

rather than being a tull-tledged wte with a denotation ot 

its own. In this connection, note that 1{1 contains no de­

notation predicate tor expressions or complex type. In its 

treatment ot expressions or 1{0 ot complex tY'Pes, 111 pro­

vide~ a description ot il'o which is alternative to that 

given 1n section 10.2 with respect to the part-whole rela­

tion. But both descriptions share the feature that only 

that part ot the structure of the expressions ot the object 

language which is l'elevant tor semantical purposes ia ex-
:~ 



pressed. 

It is this relative poverty of expressiveness which 

actually provides /(1 its versatility. Recall that the de­

notation or Ci. was to be R( a) for some Fregean semantical 

relation R. We have kept the metalinguistic apparatus in 

1(1 minimal so as to be able to accommodate, in a natural 

way, Fregean semantical relations other than that which as­

signs to an expression the expression itself. In particu­

lar, we will soon provide a quite different interpretation 

or 1(1, one in which wfe 1s of the form o:denote concepts. 

If we had constructed 1{1 in accordance with concatenation 

theory, we would then be .faced with providing an interpre­

tation for the 11 concatenation11 or the sense or o:and the 

sense o.f )3 1 where cf')3 may not even be a well-formed ex­

pression. 

In this connection, we recall our purpose in con­

structing 1{1 : to provide a direct discourse language to 

treat singly oblique contexts of wre•s of ~· It is not 

intended to be adequate .for other more far reaching pur­

poses (although some languages adequate tor other purposes 

mar also prove adequate tor ours). For our purpose the 

most important features ot 1{1 are (l) and (4). 

It is worth considering (4} at slightly greater 

length. In what sense is aa standard name ot o!1 In many 

WQ'S a seems similar both to what Tarski has termed a 

structural descriptive name 45 and to a quotation name. 
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Like quotation names and (preownably) structural descrip­

tive names, it ditfe~s rrom what we may call contingent 

names in that the fact that a denotes ex.can be established 

on logical grounds alone. Expressions, lil{e every other 

kind of entity, can be named by names which require empiri­

cal investigation to determine their denotation (for exam­

ple, the name 'John's favorite sentence•). We widerstand 

the essence of the notion of a standard name to be the logi­

cal determinateness or its denotation. Thus, our claim in 

(4) is understood as justified by the following theorem: 

Tll. If oc. is a wre or :1 or simple type, and /7l is any 

model for 1(0 , then Valfn l (~) a ~ 

Theorem 11 can be slightly generalized as follows: 

Tl2. If' ex. is a wte of' 'f0 , and m is any model for 1(0 , 

then Val~ '1<1 ('a) = Synt ( ~ • 
In connection with theorems 11 and 12 it is interest­

ing to note that the universes of' the higher types are also 

logically determinate. 

Tl3. It 'Z: is a type of 1{ 0 , and 111,1/ are any models tor 

1(0 • then u.Jr,_1r1cB .. uS,{·r'f'J. 
Although every kind of entity is capable or being named by 

a contingent name like 1John's favorite ••• •,only those 

kinds ot entities whose existence 1s not itaelt a contingent 

matter can l.>e suoh that a given expression names them 1n 
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every possible state of affairs. It is readily seen that 

the notion of a contingent entity is quite problematical, 

depending, as it does, on the notion of a possible state 

ot affairs. However, it seems plausible to asswne that the 

distinction between necessary and contingent entities ap­

proximately parallels that between abstract and concrete 

entities. 'Ihus nwnbers, expressions (in the sense of type, 

not tol:en, see Peirce [l]), concepts, and certain sets are 
I I 

capable of having standard names like 10 1 , 101 , 'the neces-

sary proposition•, •Jv•; whereas for any name of a physical 

object, a set of physical objects, or a sense datwn we seem 

to be able to imagine a possible state in which such a name 

either would be denotationless or would name something 

other than that which it in tact does name. From this 

point or view, we may regard theorem l3 as expressing the 

tact that the universes ot the higher types consist or non­

contingent entities. 

15. 'lbe Intensional Interpretation of 1(1 

In giving an intensional interpretation to 1{1 , one 

ot the first questions which arises is, "What is a concept?" 

It we do not wish to take "concept" (or "sense" or "inten­

sion" we use them interchangeably at this stage) as a primi­

tive ot the metalanguage we must otter an analysis 1n terms 

which are acceptable. 'l'here are a number or distinct no-
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15.1 Principles of Individuation 

nie criterion which has been most discussed 1a prob­

ably that of individuation. 'Ihat is, under what circwn­

stances shall we say that two expressions have the same 

sense. 'lbe proposal herein adopted is that of Carnap (for 

what he calls "1ntensions 11 in a technical sense) that ~ 

expressions shall be said to have the same sense just in 

case the expressions are logically equivalent. 'lhus, if ex 

and }3 are wfe 's of 1(0 of type 1, then the sense of Q is 

identical with the sense of j3 just in case the identity sen­

tence, Id(i)~o:)3, is logically true in --J<a. Similarly, if 

r;t, 1/) are wfe' s of 1(0 of type t, the sense or <I is identi­

cal with the sense of If just in case the biconditional of 

<;I and 1jJ, Id(t)nfl,....lJ}, is logically true. 

This proposal is referred to by Church in [3] and [6] 

as "Alternative Two." 46 Other principles of individuation 

have been considered (three are mentioned in Church [3] and 

[6]). In particular, there seem to be reasons tor a tight­

er principle (that is, one which will individuate more 

senses) 1n certain contexts (tor example 1 the oblique con­

texts formed by using predicates like 'belief•). 'lhere is, 

however, at least one excellent argument 1n favor ot the 

present principle. It is clear. It seems very difficult 

to draw the line 1n a natural wa., at any other place. 47 

One may imagine two general methods tor producing 

tighter principles. First, restrict the logical operations 
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allowed 1n proving the equivalence. Looked at rrom a se­

mantical point of view, this amounts to narrowing the cate­

gory of logical signs. Principles produced by this method 

can probably be accommodated in the style or the present 

work. 48 A second method, initially quite appealing, is to 

identify only the senses or wfe's which are obviously logi­

cally equivalent. We might, for example, fix an upper 

bound to the length of the proof of the equivalence in some 

particularly natural system or logic. 'lhe primary diffi­

culty with this method is that it does not produce an equiv-

alence relation between wf'e 1 s having the same sense, since 

being obviously logically equivalent is not a transitive re­

lation. 'lbe natural treatment or a notion explicated by 

this method is in terms of a degree or synonymy which 1n 

turn would call for a notion of degree of' belief, here as­

signing different degrees to logically equivalent sentences. 

At any rate, we should think of different principles 

of individuation as simply producing different notions ot 

sense. Our immediate purpose is now to continue explicat­

ing one ot these notions. 

15.2 Empty Concepts 

A second important criterion tor distinguishing d11'­

terent notions ot concept is concerned with the possibilit~ 

or so-called empty concepts. Suppose we consider a name 

ot t7Pe i (that is. the denotation ot eris to be an individ­

ual) • .. Now, according to Frese, eveey name muet have a 
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sense,, so let Ci denote the sense of ex. However, not every 

name has a denotation. For example, the name "Pegasus" is 

ordinarily thought of as being denotationless. If a. is 

such a denotationless name, then Ci.will denote an empty con­

cept. Note that <i. is not denotationless; it denotes a cer­

tain concept, namely the sense or ex.. But this concept 

does not apply to anything, that is, it is not a concept of 

anything. 49 

Thus it is seen that the problem of empty concepts is 

closely connected with that or denotationless names. If 

we admit denotationless names and at the same time insist 

that every name has a sense, we seem forced to admit empty 

concepts. Two alternative proposals for treating the prob­

lem are immediately apparent. 

(1) Admit denotationless names and (thus) empty concepts. 

(2) Admit no denotationless names and no empty concepts. 

In general, alternative (2) is more convenient. It was in 

tact Frege who proposed that for the sake or simplicity in 

the syntax we should adopt rather artificial conventions 

which torce a denotation on otherwise denotationless names. 

However, trom the point ot view ot natural usage, alterna­

tive (1) seems superior. 

It has been argued that to grasp a concept is to know 

to what 1t would appl7 given al11' state of attairs, and thus 

1!" one does not know to what the sense or "Pegaeus" applies, 

one has not tu117 grasped the concept (or possiblt has not 
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grasped the full concept). Hence, the argument goes, a 

so-called empty concept is merely an incomplete concept 

(that is, only part or a concept). We shall adopt alter­

native (2) for purposes of logical simplicity. But it is 

worth mentioning that the above argument (except as a post 

facto analysis of the notion which has been formalized) does 

not seem completely satisfactory. One might equally well 

claim that to fully grasp a (full) concept is to know, 

given any state of affairs, either to what the concept ap­

plies, P.£. that it applies to nothing. 

As stated above, the present work is based on alter­

native (2). However, before going on we should mention 

that there are positions between (1) and (2). Let us call 

one of these (1.5). 

(1.5) Admit no denotationless names but allow empty concepts 

(which of course would not be the sense of any names 

in the language) as values of variables of types 11 

and t 2 • 

'Ibis alternative is adopted 1n Church [6].so A modifica-

tion of the systems or the present work to accommodate 

either alternative (1) or (1.5) does not appear. in prin­

ciple. to impose serious ditt1cult1es. 

15.3 'lbe Carnap Interpretation 

The preceding discussion or what it means to grasp a 

concept has already indicated a natural interpretation ot 

concept. '!bis interpretation, which was tirst suggested 
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by Carnap,51 but in a more exact way, is that a concept 

is a function from possible states of affairs to thingo in 

those states. Thus, for example, a concept of an indi­

vidual (that is, an individual concept) is a function which 

assigns to each (possible) state of affairs some particular 

individual in that state. A concept of a truth value 

(that is, a proposition, the sense or a sentence) is a func­

tion which assigns to each state or affairs a truth value~2 

a concept or a set of individuals (that is, a property, 

the sense of a one-place predicate) is a function ·which 

assigns to each" state of affairs a set of the individuals 

of that state.54 

Let us review some of the previous discussion to see 

how well this interpretation fits with earlier decisions. 

According to our notion or a well formed expression (ignor­

ing tor the present, problems connected with the occurrence 

of free variables), 

(l) Every wre has a sense. 

According to the principle or individuation, 

(2) 'lbe senses of logically equivalent wfe's are identical. 

According to the decision on empty concepts, 

(3) Every wte must have a denotation and no concept can 

be empty. 

Now let us consider a particular name, let CS:.a "the 35th 

president of the u.s.A." By (3), ~has a denotation in 

eve'f7' possible state of atta1rs. In the actual one oc: 
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happens to denote John F. Kennedy, but in others it may 

denote, oay, Richard Nixon, or some other possible indi­

vidual who does not exist at all in the actual otnte of 

affairs. By (1), ex: has a sense, let us call it "Sense 

(ex)". By (3) again, Sense (cc} is a concept of something 

in each possible state of affairs. In the actual state it 

obviously is a concept of John F. Kennedy, that is, the 

actual denotation of oc:. '!bus, what is more natural than 

to let Sense (ex) be such that for any possible state of 

affairs it is a concept of the denotation of ct for that 

state (which denotation must exist by (3)). It is now a 

simple step to let Sense (a) !?,! that function from possible 

states of affairs, which assigns to each state the denota­

tion of a: in that state. Suppose now that we consider 

another name, }3 1 which differs from a. but is logically 

equivalent. Repeating the previous argument, )3 has a sense, 

Se~s~ ~), a function from possible states of affairs 

which assigns to each state the denotation of )3 1n that 

state. From the hypothesis that ci.is logically equivalent 

top we conclude that for each possible state of affairs the 

denotation of oc. is the same as that or )3. Hence the func­

tions Sense (CJ.) and Sense <{3) are the same, 1n accordance 

with (2). 

15.4 States ot Affairs 

It 1s clear trom the preceding discussion that Wlder 

the Carnap interpretation the set or individual concepts, 
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proposition, properties, etc., ie determined by the set or 

"possible states of affairs''. And further, that if we 

consider distinct alternative sets of possible states or 

affairs, they will generate distinct alternative sets or 

concepts. 

We must now race the problem or a precise treatment 

or the notion state of affairs (or, more exactly, possible 

states of affairs). One method of doing this would be to 

treat the expression as a primitive and attempt to formu­

late axioms which would characterize the notion to a degree 

sufficient to establish certain general results about in­

tensional logic. It is, however, one of our main aims to 

show that intensional logic can be developed in such a way 

that its semantics can be treated in a purely extensional 

language,53 in tact in one of the familiar forms or set 

theory. Thus, we explicitly avoid the introduction of 

any "intensional" notions into the metalanguage. Instead 

we provide certain set theoretical entities to play the role 

ot states ot affairs. 

Since the sense of a wte a:. ot 1(0 is to be that func­

tion which assigns to each state ot atfairs S the denota­

tion ot o:in the states, each such state must determine a 

unique denotation tor each wte o::.. In addition, each state 

should determine a unique class ot individuals (the 1nd1-

V1duals existing in that state ot atrairs ). In tact, .each 

state ot attairs determines a unique model tor 1f0 • How 
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suppose that two states of affairs s1 nnd s2 determine the 

same model of 1f01 then the sense of any wfe of if0 will 

assign the same entity to s1 and s2 . Hence it seems 

natural to simply identify the states of affairs with the 

models which they determine.55 

We now turn to a second question in connection with 

states of affairs, one which has been largely ignored in 

the preceding. What is a P,OBsible state of affairs? In 

particular, does every model for 1(0 constitute a possible 

state of affairs, independent of which model we take to 

constitute the actual state of affairs? If a negative 

answer is given, it would be natural to characterize an 

intensional model for 1( 1 as a couple <m M> where Yrt is a 

model for 1(0 (the actual state) and M is a class of models 

for 1{0 (the 11 possible" states with respect to h'}). One 

such couple might be of the form <"»tfrYl}>. With respect to 

this model for 1(1, all true sentences of if 1 would be 

necessary. 'lbe question we are faced with is: should such 

possibilities be excluded on purely logical grounds? 

Church has indicated an inclination to allow such possi­

bilities, and thus to answer our initial question nega­

tively. 56 A nwnber ot other authors appear to be similarly 

1ncl1ned.57 But since they are dealing with indirect d18-

course forms or modal logic one must be careful in inter­

preting their remarks. Carnap has 1n general given a 

modified positive answer to our question in that he usually 
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has followed a procedure which amounts to specifying no me 

set of models (possibly not all models in our sense) and 

then treating these as the possible states independently or 
what is taken as the actual state.58 

We will follow Carnap's procedure. This decision was 

anticipated in the treatment of the necessity sign under 

the syntactical interpretation of 'H 1• There, a sentence 

of 1<0 was said to be necessary just in case it was valid, 

that is, held in everz model of 1(,. There seems no reason 

for providing a different treatment under the intensional 

interpretation. We assume that the class of all possible 

"individuals" forms a proper set in the set theory of our 

metalanguage. The class M0 of~ models ot 1(0 then also 

forms a proper set as will various other classes to be 

introduced later.59 

15.5 Concepts and Senses 

Given the set M0 or models for 1(0 we can now intro­

duce the set of individual concepts determined by M0 and 

the set of propositions determined by M0 • 

D2l. (1) f is an individua.l ,concept (with resP,eet to M0 ) 

it and only if t is a function on M0 which assigns to each 

<DR> t M0 an element ot D. (2) t is a proposition (witp 

respect t,o M0 ) it and onl.1' it t is a function on M0 which -
assigns to each l11~M0 a truth value. 

' ' .. '. "····· 
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For wte• s ~ of simple type, \·1e define "Sense" 1n accord­

ance with our earlier suggestion that the sense of ex. is 

that concept which assigns to each model Y11, the denotation 

of a. with respect to Yr/.. 

D22. If a. is a wi'e of i-(0 oi' simple type, then the sense 

of' <X (Sense(cx)) is that function on r.10 which assigns to 
W\ -Ko each u(i M0 , Valh't (al. 

Following this line of development, let us now con­

sider wfe 1 s or 1(0 of complex type. If~ is such a wfe, 

we call the function which assigns to each lrtE I40 , the value 

of \in Yrt, the natural-sense of' !t• Since wfe' s of complex 

type denote functions, such a natural-sense would be a con­

cept of a function, hence an ass1grunent or a function in n'l 
to each Yr\6M0 • But recall that in section 12.1 we decided 

to simplify the type system by rejecting a special type for 

the analogue to a wfe of complex type, and instead to have 

such analogues always denote functions on the universes 

or simple types. In conformity with this policy, ~ does 

not denote ~ itself under the syntactical interpretation. 

Rather, it denotes a certain function which represents the 

expression ~· Under the present interpretation, we will 

again treat~ as denoting not a concept or a function., but 

rather a certain representative thereot. 

Let us, tor the moment, restrict our attention to 

concepts ot functions trom individuals to individuals. 
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Among such concepts are the senses of all one-place opera­

tion symbols of 1(0 • Let us call f a ~atural-concept of a 

function, it f is itself' a .function whose domain is M0 and 

which assigns to each <DR>(: f.10 a function from D into D. 

Thus if ~ is a one-place operation symbol of 1{01 the 

natural-sense of ~ is a natural-concept of a function. Let 

us say that g is a function on concepts, if g is a function 

from the set of all individual concepts into the set of all 

individual concepts. If r is a natural concept of a func­

tion and g is a function on concepts, we say that g repre­

sents f, if for every model )11E M0 and individual concept x, 

(g(x))(YY\) = (f(Yrl))(x(YYl)). We shall also say of a func­

tion on concepts g, that it is invariant, if for all models 

Yrl.~M0 and individual concepts x, y, (g(x))(yyt) = (g(y))(Yyt) 

whenever x(»l) = Y(Yfl). 

It is now an elementary matter to establish the 

following results: 

(1) Each natural-concept of a function has a unique 

representative. 

(2) Every representative of a natural-concept or a .func­

tion is an invariant function on concepts. 

(3) Every invariant function on concepts represents a 

unique natural-concept or a function. 

(4) Not all functions on concepts are invariant. 

our method is to every'Where replace natural-concepts 

or functions by their representatives. 
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D23. IfL'°0 ,, ••• ,;_ are simple types or 1{0 , r>O, ~is a 

wfe or ~ 0 of complex type < lJ.1 .... , t;.1 ~, and each or 

c0 , ••• ,cr is either the set of all individual concepts or 

the set of all propositions depending on whether the cor­

responding element or ~, ••• ,'Z; is i or t, then the sense 

ot ~ (Sense (~)) is the unique g such that: 

(l) g is a function from(c1x•••xc) into c0 

{2) 1r YflE M0 , and <x1, ••• ,xz>. is the domain ot g, then 

(g(X11•••1Xr))(Yi1) • val~(1)(xl(yyt), ••• ,xr(Tfl.)). 
'Ibis definition embodies our decision to replace natural­

concepts or functions by their representatives, since it 

immediately implies that Sense(~) represents the natural­

senae or yt. 

The preceding definition oonsiderably simplifies our 

theory. '!he idea or such a simplification was introduced 

in Church [6]. UntortunateJ.3', the representation of 

natural-concepts of tunctions by invariant functions on 

concepts is there marred by two detects. 

First, the notion ot invariance used is too weak; 

it onl.J' requires ot a tunct1on on concepts g, that tor the 

actual state >?{, tor all individual concepts x, y, 

(g(x)) C"rrt> - (g(1)) (YYl) whenever x01l) a y()1l); rather than 

requiring it tor !ll Y>'t in M0 • Thus the equivalence be­

tween natural-concepts ot .tunct1ons and invariant tunotions 

ot concepts is lost. Ohurch•a axiont embod71ng the detective 

notion or invariance (16cc. .. )3).. in combination with certain 



other natural principles which the system 1s required to 

fulfill, can be used to p:t>ove theorems within the system 

which assert that there is only one concept of each object 

(for example, only one true proposition and only one false 

one). We discussed ea:t>lie:t>, the possibility of leaving 

such questions open by not assuming that the class of all 

possible states of affairs contains more than one member. 

Although our initial decision to make such an assumption 

may be somewhat questionable (Chu:t>ch, for example, ex­

plicitly opposes it) the contrary assumption, as embodied 

in the above mentioned results in Church's system, is 

surely untenable. 

The second defect in Church's representation or 
natural-concepts of functions raises a second difficulty 

with the invariance property, but turns primarily on the 

tact that the underlying logic of Church's base language 

(recall section 9) is that of the simple theory of types. 

We must therefore represent natural-concepts of second order 

functions whose domains are sets or !Unctions. What, tor 

example, is to represent a concept of a second order func­

tion r which assigns an individual to every function trom 

individuals to individuals? In accord with the general 

replacement principle, Church assigns an invariant function 

g whose domain is that or the representatives ot natural­

concepts ot functions from individuals to 1nd1v1duals and 

whose range is that ot concepts ot individuals. But such 
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a function will have in its domain all functions from con­

cepts of individuals to concepts or individuals, since the 

primary virtue of the replacement principle is its 1dent1-

.f'icat1on of the type <1,1)1 (concepts of functions) with 

the type <11,i1> (functions on concepts). It is easily 

seenO>y (4), (2) p. 68) that not all functions from con­

cepts of individuals to concepts of individuals represent 

natural-concepts of functions; thus our invariant function 

g contains in its domain entities which are not (and do not 

represent) concepts at all. Even if the first defect is 

repaired by revising the axioms to require the stronger 

notion or invariance (a revision which can easily be made), 

it is difficult to think or a natural requirement on the 

value of the function for those elements of the domain or g 

which are not concepts. One possibility is to require 

that an invariant function assign a designated element to 

all non-concepts in its domain, but this course would 

directly conflict with certain other basic principles ot 

Church's system. It the problem is left unresolved (as it 

1s 1n the article) and the invariance requirement is stated 

only with respect to concepts in the domain or g, we are 

again taced with the problem that a given concept of a 

(second-order) function will have more than one repreeenta­

tive, which, as betore, leads to contlicts with some or the 

leading ideas used in constructing the system. It would 

seem that it a system containing second order tunct1ons 1a 
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to be developed, the best course may be to foreGo the im­

mediate simplification which arises from the replacement 

principle in favor of a syotem with a more complicated type 

structure but also a more natural interpretation. 

15.6 Universe and Value for /)i 
As in the case of the syntactical interpretation of 

151 , we need not introduce a new notion of model. Instead 

we simply introduce a new notion of value under the Inten­

sional interpretation of 1(1 (Val~1(1 (~) defined in terms 

of the notion of sense for wfe's of 1{0 • Note that the 

latter notion was defined (as was Val~1{1 (o:)) in terms of 

the notion of value for wfe 1 s of 1{0 (Val*m'_ (er)). It is 

convenient to first introduce the universe of a type of /111 

under the intensional interpretation. 

D24. If Yrl_ = <DR> is an element of M0 and 't:' is a type of 

';f1, then the universe of J:: in !rJ. with respect J.o the Inten­

sional interpretation or the language -&1 (tfm 1 (L)) is 

given by the following: 

(l) the universe or i is D 

(2) the universe or t is T,F 

(3) the universe or 11 is the set ot all individual 

concepts 

(4) the Wliverse or tl is the set or all propositions 

(5) if the universes or 't'0 , ••• ,~ are respectively 

u0 , ••• ,~ and r>O, then the universe of <T1, ••• ,Tr, l;,). 
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is the set of all functions rrom(u1x···xu) into u0 • 

D25. If Yf\. = <DR> is an element of f.10 , and a: in a wre of 

1(1, then the value of 0:.. in lY1 with respect to the Intension-
• 1{ 

al interpretation of 1(1 (Val!~ l(~) is given by the 

following: 

(1) if a: is an atomic wfe of 

R(aj 

A.I then the value of ex. is IJ o' 

(2) if ex: is an atomic wfe of 1(0 , then the value of Ci: is 

Sense (ex) 

(3) if C:: is 11 or t 1, and ct.. is Id {Z:), then the value or ex.. 

is the unique r such that: 

(a) f is a function from (U.~;tl(z.:) x Ll~l('L)) into 

tT,Ff 
(b) if <g,h) is in the domain of t, then f(g,h) g T 

if and only if g a h 

(4) if '7::.. is 1 or t, and a: is Delta('f), then the value of 

«.is the unique r such that: 

( 11 I,f< l ,...... I 1i1 :\ 
(a) f is a function from V\.hl, ('L) x u. m ('t:); into 

f T,F} 
(b) it <g,x) is in the domain ot f, then f(g,x) • T 

it and only if g(}71) • x 

(5) 1.t oc is Nee, then the value ot ex. is the unique t such 

that: 

(a) t is a function trom the set or all propositions 

into { T,F} 

(b) it g is in the domain ot t, then t(g) • T 1t and 
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only if for all yt E M, c(f'l) = T 

(6) if ~,~1 ..... ,,)3r are wi'c's of 111 of typea 

<t11 • • • ,[r, tc,>, t"1 , ••• ~ respectively with values 
f I r ,,...... ;-. 

, x1 ,, •.. ,xr respectively, and ex. is '1. .J3i • •• J3r' 

then the value of ~is r(x1, ••• ,,xr). 

'Ille following are the counterparts to theorems 7-10 or 

section 14.2. 

Tl4. If ex is a wfe of -/{1 with type -C,, and Y7l c; M0 , then 
I, 1\'1 11 I,1~1 

Val il'l_ (ex} '9 ~ rt\ ('t} 

Tl5. 11' oc is a wi'e of 1{0 • and f1l.' M0 , then Val~(ct.) = 

Val~i<l(or) 

T16. It vYl' M0 , and F 1s that function from the wre•s or 
I, 1(.l Al f,1 which assigns to each such ,;., Val yyt ( o:) ; then < fJ 1, F> 

is a Fregean semantical system. 

Tl7. If R is that function from the wf'e's ot 1(0 which 

assigns to each such a, Sense (aj; then < 1ro1 R> is a Fregean 

semantical system. 

15.7 Metalinguistic Features of -f<1 
As with the syntactical 1ntel'pretat1on of ·1( 1, under 

the present interpretation we may also think ot ~ as a 

kind ot tormal1zed metalanguage tor R0 • But here the 

departure trom conventional metal.al'lguages is even greater 

than before. We now have no means tor epeaking directly ot 
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the wfe 1 s of t'0 ; we can speak directly only of the con­

cepts they express. It is not uncommon for a metalanguage 

(at least informal metalanguages) to include the means to 

speal<: of the senses or meanings of the well formed expres-

sions of the object language. This is done when we ask 

whether two expressions of the object language have the 

same meaning or whether everything expressible in one part 

of the object language is expressible in another part of 

the object language. But this is usually done indirectly 

by using names of the expressions and an operation expres­

sion such as 'the meaning of'. In the present treatment 

of ~owe speak directly of the concepts without mediation 

by way of the expressions. 60 

Some insight into the present interpretation can be 

gained by comparing, under the two interpretations, those 

features (enumerated in section 14.3) wherein ~l resembles 

a formalized metalanguage for -1( • ~e inclusion of the 
0 

object language in the metalanguage is of course unaffected 

by the interpretation, as are the features related to type 

distinctions mentioned in (2)(page 53). 

In place or the reading rthe name «denotes the 
, I'\ ,.... 

individual )3 for Delta(11) oc }3 1 we now read this wte 

rthe individual concept « 1a a concept or the individual 

;,i.61 
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Similarly, we replace the reading rthe sentence 'I denotes 

r 1 ,.... " 
the truth value of Delta(t1 ) 'Ir by rthe proposition 'I 
is a concept of the truth value r 1• In the case of 

Delta(t1 ), the second argwnent expression, r, must be 

a sentence. Hence, we might instead have introduced a 

one-place predicate which when applied to a wte 'I ot type 

t 1 forms a sentence Tr(,P') and which is such that Tr('i) is 
/""- "" 

true just in case, Delta(t1) r/ r is true whenever r is 

true. The wfe Delta(t1 )1"'\{'r would then be equivalent to 

the material biconditional (Tr(¢) = r). The syntactical 

interpretation would then provide the reading rthe sentence 

'I is true, for Tr(¢) and the intensional interpretation 

would give the read1ng_r:th~. proposition ¢ is a concept of 

Truth 1• 62 Within the very limited resources or 1(1 we can 

only name propositions which are expressed by sentences or 

t'0 , and similarly we can only name individual concepts which 

are expressed by names ot 1(0 • 

Tl8. Ir oc:.is a wte or 1(1 of type 11 (t1), then there is a 

wte p ot Ka ot type 1(t) such that G'.. is Jr· 

'lhus, 1n the case ot 1f 1, we could use the reading r the 

proposition Si is expressed bl !3- true sentence' tor Tr(fl), 

and rthe 1hd1vidual concept ex.is expressed by a name ot the 

1nd1v1dual )3,, ~or Delta(11)"' ex). However, when we turn to 

richer languages with variables these readings will no 

longer be available, since the variables will range over 
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concepts which are not expressed by any wfc. 

In general, the question of the truth of a given 

sentence or the denotation of a given name is an empirical 

one. 63 That is, although a given sentence may be true in 

the actual world, there are usually other possible states 

with respect to which it ia false. And similarly, the 

question of the truth value or which a given proposition 

actually is a concept and the individual of which a given 

individual concept actually is a concept are also empirical. 

That is, although a given proposition may actually be a 

concept of Truth, there are usually other possible states 

with respect to which it is a concept of Falsehood. 'Ibus, 

just as our fundamental notion or the relationship between 

an expression and its denotation is a relative one (the 

denotation or the expression <X in the model nu' so is our 

fundamental notion of the relation between a concept and 

that ot which it is a concept. It will be convenient to 

introduce a brief way or expressing this relation. Let 

us call it the relation ot Determination. As with denota­

tion, we shall speak or the Determination of a concept, and 

say that each such concept Determines a unique entity (its 

Determination). 64 Note that under our treatment ot inten­

sional entitiee, each concept ~ a certain eubrelation ot 

the relative notion of Determination. That is,, the Deter­

mination or the concept x in, the model m_ is just x cm). 
'lbe absolute not101s ot denotation and Determination {as 
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when we speak simply of the {actual) denotation or Deter­

mination, without mentioning a state of affairs) can be 

introduced in terms of the relative notions with the help 

of the absolute notion of state of affairs {or model). If 

we can speak simply of the actual state 111.*, then the 

absolute denotation or x (or Determination of x) is just 

the relative denotation {or Determination) with respect to 

'Yrl*. It seems clear that Determination is the natural 

intensional counterpart to the syntactical relation denota­

tion. 

Returning once again to our reading or Delta("t)~a)3, 
we now provide the readings ro:. actually denotes/31 under the 

syntactical interpretation, and ro:: actually Determines )3, 

under the intensional interpretation. It may therefore be 

s~en that we could have expanded on the third feature of 

~l as a formalized metalanguage for j/.0 (section 14.3) by 

remarking that the denotation (Determination) predicates 

have the sense of absolute denotation (Determination).65 

We turn now to the fourth and perhaps most important 

metalinguistic feature of 1(1 (section 14.3). For every 

name or sentence r.:1- or ~.. 1( 1 contains an analogous wfe 

0::... Under the syntactical interpretation, Ci provides a 

standard name of ex (theorems 11 and 12) • Under the inten­

sional interpretation, Ci.will provide a standard name or 
the sense or oc. Thereby, we also partially fulfill one ot 

the basic requirements suggested by Church66 for a language 
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based on Frege 1s distinction between sense denotation; 

namely, that for each wfe ex (without free variables) we 

provide a wfe )3 which denotes the sense of o:. The follow­

ing theorem is the counterpartl to theorems 11 and 12 • 

..u 'WJ tralI~ 1{1 (~ Tl9. If ex: is a wfe of n 0 , and ''~ f M0 , then v, , 'l v-1 = 
Sense {~. 

As indicated earlier, standard names are possible only for 

non-contingent entities. The following counterpart to 

theorem 13 indicates that concepts are such entities. 
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CHAPTER 3 

THE HIERARCHY OF LANGUAGES 1<n 

We now begin our formal development of semantical 

systems for oblique contexts. The motivation for the par­

ticular line we take was given in the preceding chapters. 

Although formal definitions for some of the central notions 

have been given in Chapter 2, the following developments 

are self-contained. '!be task of the present chapter is the 

construction of a hierarchy of languages 1<n with syntacti­

cal and intensional interpretations, thus generalizing to 

arb! trary TI the construction of Chapter 2 for 0 and 1. 

In defining the semantical notions for the language 

1(n~l we will make essential use of those notions for the 

language 1(n. In the following chapter, we will consider a 

single language, 1fw1 which includes all or the languages in 

the hierarchy. But the semantical notions for 1fw are again 

defined with reference to the corresponding notions for the 

languages fin. Thus, the stepwise procedure or developing 

the hierarchy plays a vital role in our understanding or 
these notions. 'Ibis procedure correspond! to the policy or 

language levels, that or always distinguishing object and 

metalanguages when semantical notions are considered. 67 

In contrast to the hierarchical dependence or the se-
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mantical notions, in the description of the languages them-

selves, that is, the notions of type, well-forr;ied expree­

sion, atomic well-formed expression, etc., it seemn more 

natural to first introduce the general notions for the lan­

guage 1r'tiµ and then subdivide them for each of the languages 

1in• Thus we will first define such notions as ·c is a sim­

ple type and the rank of the type k• and then, making spe­

cial use of the notion of rank, we will define ?: is a sim­

ple type of ~· 

16. The Language Nn 
16 .1 The Types of K'n 

As in Chapter 2, the simple types fall into two hier­

archies (1 and t), and the complex types consist of finite 

sequences of simple types. The simple types are identified 

with numbers, although we continue to use the nomenclature 

" 1 j " and 11 t j " • 

D26. If j is a natural number, then 

(1) 1j = 2J+l 

(2) tj == 3J+l 

When the subscript to a type symbol is "o", we shall often 

omit it, writing 11 1 11 for ''1 " and "t" for "t '' 
0 0 • 

D27. 

·c i> "r is a simple txpe if and only if r S:ll 1 J or t: = t J 

tor some natural number J. 
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where ( 0 , ••• , t; are simple types and r > o. 

(3) t' is a type if and only if T is a simple type or 't: 18 

a complex type. 

If C: is a type, 

1ng: 

(1) j the rank of 1j = 

(2) j the rank of tj = 

(3) if i-;_,, ••• ,z; are simple typee with ranks k0 , ••• ,kr 

respectively, and r > o, then the ranl< or 

<~1 , ••• ,'tr,io> ~the maximum of: k0 , ••• ,kr. 

If a wfe ()(.has type?:, the type or the analogue to ex. 

will be the elevation oft'; similarly, the type of the ana­

logue to the analogue to cc.will be the elevation of the ele­

vation of 'C, that is, the second elevation of't. In this 

way we are led to the general notion, the k!h. elevation of 

the type T. 

D29. If 7: is a type, and k is a natural number, then the -
k!!!. elevation of r is given by the following: 

(1) the k!h elevation of 1J = ij+k 

(2) the k~ elevation of tJ = tJ+k 

(3) it T 0 , ••• ,-z; are simple types, r > o, and~' •••• ~ 
are the~ elevations of 't0 , ••• ,~ respectively, 

then the~ elevation of <'ZJ.1•••1'2;1?;,> • 
~' ... ,'(~,"¢>. 

The notions or rank and elevation are related 1n the follow-
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ing simple way. 

T21. If t"1s a type, and k is a natural number, then the 

rank of the kth elevation of?: is the rank of(., plus k. 

Note that the 0th elevation of Z- is just?: itself. It 1a 

often convenient to be able to speak in a simple manner of 

the first elevation of a type. For this purpose we use 

the superscripted wiggle (1;), which is the counterpart to 

the superscripted bar (0:) for the (first) analogue to a 
-wfe. We also sometimes speak of(;'" simply as the elevation 

of r. 
-D30. If 1:' is a type, then 'Tis the 1~ elevation of T. 

We now introduce the restricted notion, tyPe or 1<n' 
-

in terms of the general notion and the notion or rank. It 

will be seen that the rank of a type is the lowest level 

in the hierarchy at which the type appears. A similar 

remark applies to the notion or rank for wfe 1s, which will 

be introduced in the following section. We will not 

separately define simple type of tin and complex tyPe or 

'f{n, but will understand these phrases to mean: a eimple 

type which is a type of 1(n' a complex type which is a type 

or -/{n. '!be same method will be followed in the tollow1ng 

section where we simply detine wre or 1f n without separate 

definitions or atomic wte of -/jn' and CO;Round wte of ffn• -
D31. :r is a tyPe or 1(_ 0 it and only it T' is a type and the -
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rank of 7: is less than or equal ton. 

The following theorems follow immediately from the 

definitions and theorem 21. 

-T22. If 1:. is a type or H n' then Y is a type of -1( n+i • 

T23. · r is a type of "H n if and on1y if f is a type of 

lfn+1 • 

'1'24. Not all types of 1( n+l (for example, <in+l't>) which 

are not also types of f( n have the form Z for some type r 
or fn. 

T25. <Li, ... ,(r' ~> is a complex type of -/( n if and only 

if '[0 , ••• , 'l; are simple types of 1{ n and r)O. 

'lhe following theorem provides a useful form of induction 

over the types of 1<n+i· 

T26. ?: is a type of 1( n+l if and only if?: satisfies one 

of the following mutually exclusive conditions: 

(1) r is a simple type of ~ 
(2) "[ = 'Ci', tor some simple type 7,1 or 1f n 

(3) ta <Zi1 •••I i;.1 91 for SOMe Simple types '°' • • • 1lr 

or 1(n+ 1 and some r>O. 

16.2 The well Formed Expressions ·or "'k'n 

The atomic wte•as are introduced with the tollo\rling 

considerations in mind. We begin with the descriptive 
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constants of 1( 0 , namely (1) the p-place operation symbols 

and (2) the p-place predicates. We then add the following 

logical signc: (3) the material conditional sign, (4) the 

negation sign, (5) an identity predicate for each simple 

type, (6) a delta predicate for each higher simple type 

(that is, each simple type other than 10 and t 0 ), and (7) 

the necessity predicate. Finally, for each of the atomic 

wfe a:so far introduced, we must add an analogue, an 

analogue to the analogue, an analogue to the analogue to 

the analogue, and so on; to put it more generally, we must 

add a JJ?.h analogue to a:.. for every natural number j. In 

this way, each of the atomic wfe's introduced in steps (1)­

(7) generates a denumerable hierarchy of atomic wfe's of 

which the original wfe may be considered the Oth member. 

For definiteness, we may identify all expressions with 

finite sequences of numbers in the manner of section 10.2, 

being careful to distinguish an atomic wfe from its j~ 

analogue. 

D31. It m, p, J,?::. are any natural numbers, then 

(l) Opsymbj(m,p) = <2m+l.3p+l.5J+1> 

(2) PredJ(m,p) • <3m+l.5p+l.7J+1> 

(3) CondJ • <SJ> 

( 4) Negj a <7j> 

(5) Idj ('t) • <2t+l.3J+1> 

(6) Deltaj(t) • <2t+l.5j+1> 

(7) Nee J • (llJ+1> 
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,.... 
D32. If x and y arc finite sequences, then x y 1e their 

concatenation. 

When the subscript to the symbol for a wfe is 11 0 11 , we shall 

often omit it, writing 0 Pred(m,J)'1 for 11 Pred0 (m,p), and 

11 Cond 11 for ncond0 ", etc. Opsymb(m,p) is the mth p-place 

operation symbol, Pred(m,p) is the mth p-place predicate, 

Cond is the material conditional sign, Neg is the negation 
Y'": 

sign, Id(i:} is the identity predicate for type Z:, Delta('C') 
,..,,_ 

is the delta predicate for type'L, and Nee is the necessity 

predicate. 

The wfe Pred/m,p) is the j..1ill_ analogue to Pred(m,p). 

Thus, the type of Predj(m,p) is the jth elevation of the 

type of Pred(m,p). Types are assigned to the other atomic 

wfe 1 s in the same manner. 

D33. ex.is an atomic wfe if and only if there are natural 

numbers m, p, J, and a simple type C: such that o:: is one of 

the following: 

{l) OpsymbJ(m,p) 

(2) PredJ(m,p) 

(3) CondJ 

(4} NegJ 

(5) IdJ ('t) 

(6) DeltaJ(~ 
(7) Necj 

D34. It ex. is an atomic wte. then the kth analosue to <:¥.is . 
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given by the following: 

(1) the k!h analogue to Opsymbj(m,p) is OpsyrnbJ+k(m,p) 

(2) the k!!!_ analogue to Predj(m,p) 1s PredJ+k{m,p) 

(3) the kth analogue to Condj is Condj+k 

(4) the l<:!!:! analogue to Negj is Negj+k 

(5) the kth analogue to Idj(t') is Idj+k(Z-) -
(6) the kth analogue to - ........ 

DeltaJ (t') is Deltaj+k('L) 

(7) the k1ih analogue to Necj is Necj+k 

D35. If a:.is an atomic wfe, the type of o: is given by the 

following: 

(1) (a) the type of Opsymb(m,O) is 1 

(b) if T1, ••• ,zp are each 1, and p>O, then the type 

of Opsymb(m,p) is <li1•••1Cp1i> 

(2) (a) the type of Pred(m,O) is t 

(b) if i-1, ••• ,Gp are each 1, and p)O, then the type 

of Pred(m,p) is <T1, ••• ,'lP,t> 

(3) the type of Cond is <t,t,t> 

(4) the type of Neg is (t,t> 

(5) if "C is a simple type, the type of Id('t) is <T,t", t> 

( 6) if t:: is a simple type, the type of Del ta (i=) is -<Z, t, t> 

(7) the type of Nee is <t1,t> 

We introduce the notions or a wre and the type ot a wfe by-

a simultaneous recursion. 

D36. oc..1s a wte or tlPe t 11' and onl.y if' either 



(1) o:. is an atomic wfe of type "t, or 

(2) there are 11 )31, ••• ,_A., Y1, •.• ,z-r such that 

131, ••• ,J3r are wfe's of the simple types T1, ••• ,z;. 
respectively, ~ is a wfe of type <f1 , ••• , (r,D and ex. 

n r I' 
is ~ J31 ... 'f3r· 

D37. a:. is a compound wf e if and only if o: is a wf e and o::. 

is not atomic. 

Since we have already introduced the k!!:!, analogue to an 

atomic wfe, it remains only to do the same for compound 

wfe's. 

D38. If '(0 , ••• , Tr are simple types, r)O, ~;Cl}, ••• '°i- are 

wfe's of types <'t'1, ••• ,Tr,t"o>, ?:1, ••• 1 <;. respectively, k 
k k . k 

is a natural number, and ~, o:..i_ , ••• ,exr are the kth 

analogues to ~' <Xi1••·1~ respectively, then the kth 
I'\ /"'\ /"\ J< {"\ k I"\ r\ k 

analogue to \ ~ • • • ~ is .\. OJ. • • • ~ • 

1lle elevation of a type and the analogue to a wfe are re­

lated 1n the following simple manner. 

If ex. is a wre or type "'C, then the type of the j th -
analogue to ct.is the jth elevation of'[. -
We can now introduce the bar no ta ti on . (Cij in a precise way. 

We sometimes speak of ex as, simply, the analogue to ex. -
D39. It ex.. is a wfe, then Ci. is the let analogue to ex. -
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The rank of a wfe is now given in terms of 1ta type. 

D4o. If o:: is a wfe, the rank of ex. is given by the follow­

ing: 

( l) if ex: is an atomic wr e of type T, then the rank of ~ 

1s the rank of 1:. 

(2) if ~' )31, ••• 1J3r are atomic wfe' s of types 

<?i1•••1Lr1t0>, 'f1, .•• ,i;;, respectively, with ranks 

k0 , k1, ••• ,kr respectively, and r>O, then the rank 
l""I I" ""' 

oi' 1 'J3i • · • /3r is the maximum of: k0 , ••• ,kr. 

We now define wfe of i(n with reference to the notion 

of rank. 

D4l. ex is a wfe of j(n if and only if ct:. is a wre and the 

rank of ex.is less than or equal ton. 

The following theorems either follow immediately from 

the definitions or require a simple induction on the wfe 1s. 

':128. Each wre has a unique type. 

'I29. All compound wre•e are or simple type. 

~o. It ex. is a wfe or 1tn.1 then ~is a wfe of ifn+i • 

T3l. ( l) There are wre 1 s of 1r' n+l or type t which are 

not wfe 1s ot ~· 
(2) All wt'e'a ot type 1 are wte•s ot ~· 

T32. CX.18 a wte ot 1<n or typer it and onJ.y if Ci is a wte 
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or 1i n+l or type r. 
The following theorem illustrates the limited resourcea of 

the languages in our present hierarchy. All wre•a of the 

higher types have the form a. 

"""" T33. }3 is a wf e of 1( n+ 1 of type i' if and only if there is 

a wfe ex of 1J n of type l such that }3 is 0:. 

Proof by induction onJ3. 

The following theorem provides a useful form of induction 

of the wfe' s of 1(n+i • 

T34. a: is a wf e of 1( n+ 1 if and only if o:: satisfies one of 

the following mutually exclusive conditions: 

(1) 

(2) 

(3) 

oc is an atomic wfe of ~ 

o:1s)3, for some atomic wfe}3 of j(n 
"'""" Q'. is Id(l:), for some simple type ?: of 1f n 

( 4) ex is Del ta cf> I for some simple type "l or If n 

(5) ocis Nee 

(6) there are ~, )31, •• • 1Jr1 ~, ... ,Tr such that r)O, 

~, )31, ••• ,Pr are wfe' s of #n+l of types 

<r1, ••• ,t'r, f'"o>, ( 1, ••• , 'tr respectively, and a:. is 
~ r.. I\ 

~Pl • • • far· 
The following abbreviations provide a more familiar 

notation. 

D42. If j is a natural number, then 

(1) (fl :=>J"l/') • Cond/';~ 
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(2) "'J'I = Neg J$i 

(3) (~&j 1') = -j (¢ :JJ /Vj )J') 

( 4) (¢vJ if') = (/VJ¢::> J ~) 

(5) (¢S:j)JJ) = Idj (t(-.f/Lf 

D43. If j is a natural number, and the type of both cx:.and 

p is the j th elevation of the simple type 'Z:; then 
,..... r' 

(ex. ==JJ3) = Id j ('t) a. )3 

D44. If j is a natural number, the type of a1 is the jth 
,._ 

elevation of the simple type?;, and the type of }3 is jth 

elevation of the simple type 1:, then ~J ( ~ ,)3) = 
/yAJ I\ /""\ 

Deltaj ('Z:) °i )3. 

D46. If j is a natural number, Pj = Predj(o,o). 

D47. If J is a natural nUlRber, and the type of ¢1 is the 

J~ elevation of t 1, then Tr j¢1 = ~J (¢1 , (P j :JJP J)). 

We follow the general practice or omitting the sub-

script when it is "o". Hence we write "( o:: -= )3) 11 , "(ft:::>)//) 11 , 

etc. 

T35. If ¢,If are wfe 1s of type t, ¢1 is a wfe of type t 1, 
,,._., 

c:t., J3 are wte 1 s of type ?:, and <Xi is a wf e of type 'l, then 

all of the following are wte's of type t. 

(1) (~~V'J 

(2) "" 
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(3) (fl& 1f> 
(4) (flv~) 

(5) (¢:=.~) 

(6) (ex.- )3) 

(7) 6,.( cx:i. ,p) 
(8) Nfi1 

(9) p 

(10) Trfl1 

T36. If fl, 11', [11, a:,)3, <X:i_ are as in the hypothesis or 

T30, and their j~ analogues are flj, 1jJ j, ¢1 j, ex. j, }3J, °l_ J 

respectively, then each or the following is a wf'e or type 

tj and the j~ analogue to the corresponding wfe or T35: 

(1) (fij:Jj'\fj) 

(2) lv'jjij 

(3) .(Jij & j yj) 

c 4 > ( ftj vJ ll'J > 

(5) (flj :::J lpj) 

(6) (ocj =-JJ3J) 

(7) ~j (~ j ,J3J) 

(8) Njftlj 

(9) PJ 

(10) Tr j,1 j 

The following theorem provides a useful form or in­

duction over sentences ot 1(n+1• 

T31. Ji is a wte of i(n+l or type t it and only 1t fl 
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satisfies one of the following mutually exclusive condi-

tions: 

(l) there are natural numbers m,p and wfe's <X":i.i••·i~ 
r'\ A ,-. 

of type 1 and¢= Pred(m,p) C(l ••• °!> 
(2) there are wfe' s 1/1, -X. of 1( n+l of type t and ¢ is one 

of the following: (a) (lf'::>X,), (b) Nljl, (c) (1/)aJ.) 

(3) there are wfe 1 s r:~.;13 of kn' both of simple type L; and 

and ¢ = (oc =-= Jn 
( 4) there are wre 1 s ex: ;p or~, both of simple type 1, 

and <I = ( ~ == )3) 

(5) there are wfe's ex 1)3 1 both of simple type 'l, such 

that a:.. is a wfe of 1(n' )3 is a wfe of 1f n+l' and 

Si = _A(Q: 1)3) 

(6) there is a wfe tf of 1(n of type t and ¢ = N 1P 

Proof using theorems 31 (2), 32-35. 

17. 'lbe Interpretation of 1(0 

We assume that we have available an infinite proper 

set consisting of all possible "individuals". 'lbe models 

for ~o will all draw their domains from this set. We can 

simplify the definition of model for f( 0 by first introduc­

ing two subsidiary notions: the universe of a type or 1\0 

1n a domain of individuals D, and the identity function on 

the set K. 

D48. If 'tis a type of j( 0 , and D is a set, then~ 

universe or~ in D is given by the following: 
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(1) the universe of 1 is D 

(2) the universe of t is \T,F} 

(3) if r0 , ••• ,yr are simple types of -/(0 , u0 , ••• , ur are 

their respective universes, and r)O, then the uni­

verse of <t'1, ••• /[r,(0> is the set of all function 

from {u1x· • •XUr) into u0• 

D49. If K is a set, then the identity function on K is 

that function from Q{x.JO into tT,F] which assigns T to a pair 

(XY) if and only if x = y. 

D50. m is a model for 1f 0 ('flt G M0 ) if and only if there 

are D, R such that: 

(l) ffl. = <DR> 

(2) D is a non-empty set of individuals 

(3) R is a function whose domain is the set of all atomic 

wfe's of 1(0 and which assigns to each such wfe of 

type t' an element of the universe oft: in D. 

(4) if u, v are truth values, then 

(a) R(Cond)(u,v) = T if and only if u ~For v = T 

(b) R(Neg)(u) = T if and only if u = F 

(5) if Tis a simple type of 1{0 , then R(Id(T)) is the 

identity function on the universe of "tin D. 

D51. It ex. is a wfe of k 0 , and rYl. • <DR> is a model tor 

1{ o' then the value or 0: in m with respect to 'Ko 
~o -(Valm_(cq) is given by the following: 

(l) it a:. is atomic, the value of a::.• R(cq 



(2) if ~' p1, ••• f3r are wfe' a of 1{0 of types 

<7i1•••,lr1'Co>, Z'"'i1•••1'<"r respectively with values 

f, x1, ••• ,xr respectively, then the value of 
" /'\ /"" 

Yl_ Pi · · · far = f(xl' • • • ,xr) • 

We can now introduce the universe or a type in a model. 

D52. If 't is a type or -1{0 , and Yr/= <DR> is a model for 

ifo' then the universe of r in m. with respect to ~ 

(~('l:)) is simply the universe of '"Lin D. 

The partial adequacy of our definitions of universe and 

value are shown in the following theorem. 

T38. If a:. is a wfe or 1(0 of type '[, and 17l' M0 , then 
1{o U.j(o( 

Val l1\ (a.) ' '1Yl 'Z:') • 

Proof by induction on a:. 

18. 'lb.e Syntactical Interpretation of 1(n 

Following the pattern of section 14, we first intro­

duce the sl!ltactical entity ,corresponding to the wfe cc with 

respect to the language 1(n. 

D53. If Cf. is a wfe of fin' then the syntactical entity 

corresponding to cc.with respect to i{n (Synt'Kn(crJ) is 

given by the following: 

(1) 

(2) 

1< 
if ex. is of simple type, then Synt n(cx) = o:. 

if C:0 , ••• ,tr are simple types of i(n, r>O, 'l.is a 

wre or 1{n or complex type <z:-1, ••• ,rr,tct>, and 
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w , ••• ,w are the sets of all wre•s of 1fn of types 
o r K 

T.o•···•Lr respectively, then Synt 1 n(i) ia that 

function from(w1x···xw~ into w0 which assigns to 
(\ ;"""\ ""' 

each <J3l' •• • •)3? in its domain, the wfe ~ }31 • • • '3r· 

The first part of the following theorem is the main step in 

showing that the semantical relation which assigns to each 

wfe ex. of 1(_, Synt1<-,,(~ yields a Fregean semantical system. 
n 

T39. If la' ... ,~ are simple types of f"(n' r)O, and 

~' OJ., ••• , O)_. are wfe 1 a of ffn of types < '21, ... /l;., 'Ca>, 
z-1 , ••• ,(r respectively, then 

"'Hn r. I""\ n -1< n 1< n 
( 1) Syn\•("! <Xi •" <:\-) = Synt (~)(Synt ( oC:i_), ••• , 

Synt n(~)) 
I" "' ,.... 'Kn 

(2) ¥t_ °1. • • • o:.r = Synt <q) ( ~, .•• , ~J 

'Ihe universes of the higher types consist of syn­

tactical entities. '!he definition makes use of the cases 

of theorem 26. 

D54. If "tis a type of kn' and Yfl' M0 , then the universe 

of ?;: in !TI with r.~spect to the Syntactical 1nteryretat1on 

of 1fn (U..8;,,"'lfn('t)) is given by the following: 
- ··~ s~ * 

(1) if n == o, then Ll>h n(t)) =Llm(i:) 
(2) if n • m+l, then 

(a) 1t 'L is a simple type or 1(0 , then U..8;!{,n('r) • 

U~C'tl 
(b,) it 'C is a simple type of 
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the set of all wfe' s of 1i m of type ?: 

(c) if 7::, .•. ,t'r are simple types of 1(, r > o, and 
0 . s .. f. n 

l = <Zi ,· . .. , Tr,~>, then L(. rn""l't) = the set of all 

functions from~~n(1]_)x .... xU~71{'l;.)) into LJ..S~n(Z:,). 
'Ille universes of the higher types consist of non-contingent 

entities. 

T40. If 111,f'i 'M0 , and?: is a type of 1<n, then 

tl~ni-l(i) R t/~n+l(1j, 
Proof by the definition. 

We now introduce the notion of value, the definition makes 

use of the cases of theorem 34. 

D55. If ex is a wf e of 1r' >1' and 'fYl 'M0 , then the value of o:: 

in with res ect to the s tactical inter retation of 

(Val~"(o1) is given by the following: 

(1) if n = o, then ValS~1l (ex.) = l/alfri>(o:.) 

(2) if n = ln+l, then 

(a) 

(b) 

if a::. is an atomic wfe of 1{0 , then Val S~., (ex) • 

Val~(~ 
if CJ.. is an atomic wre or f{'ml then Val ~.i 11n (Ci:) = m 
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(c) 

Synt~ (o:) 

if 1: is a simple type of i(.,,, then ValS;J(P\(IdrE)) -= 

(d) 

the identity function on ll~(f) 
1rt 1s a simple type of 1("111, then 

S.;'H . -Valn'l h (Delta((j) i=i the unique r such that: 
fJ1S1't .. S1{ 

(1) f is a function from\c.A.1ft ('t) X U.ni_ l\(t-)) 
"!'' ·~ _-;_, -~ 

:- ;if_ ;~.V, 

• ' 5 :: ;'_,::::)}~ii 



(e) 

into {T,F} 

(11) if <~,X> is in the domain of r I then r(}3,X) -
s 1< 

T if and only if Val-J,n m (j3) ~ X 

Si< "t.. 
Val itl,_11 (Nee) = the unique f such that: 

(1) f is a function from the set of all wfe's 

of1{ of type t into {T,F} m 
(11) if ¢ is in the domain of f, then f(~) = T 

s 1i 
if and only if for all 1f..' M0 , Val n. m(p') = 

T 

(f) if ~, ••• ,t'r are simple types of 1fn, r>o, and 

~, ~1 , ••• ,ar are wfe'a of 1fn of types 

<'4, ... ,rr,c0 >, (1, ••• ,'t'"r respectively, then 

s.,11'1)(" I"'\ "'\) 
Val [fl. 'rt o:1 • • • o:r = 

$.) WH n ( ) ( SJ 1i n ( ) ~ 1< n ( ) ) 
Val m ~ Val ?l'L "1 I ••• ' Val 11t o:r • 

'1'41. If ex is a wf e of j(h of type '[, and 

Va15Jt1n (ct) 'L{~" (C:). 

Proof by induction on ex.. 

The wre a provides a standard name of the syntactical en-

tity corresponding to a:. 

T42. 

(1) 

(2) 

(3) 

If a. is a wfe of 1<n1 and 'm 'M0 , then 

va15) r<.,..,. 1 ((i) D Synt 1< )") ( oQ 
f1L . s~ 

if OC.18 or simple type, then Val '?>{, f 1 (';) D 0:. 

if Yl 'M0 , then Vals, ~+1 ((i) • Val~n-tl («) 

Proof: ( 1) by induction on ex. using '1'39 tor the 1n­

duct1 ve step; (2) and (3) by (1). 
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T43. It Ji is a wte ot 1( n+l ot simple type i;, and 1>1.' M0 , 

then Val~ n+l(OC:J.) is a wfe of -/{ n of simple type T. 

Proof' by theorem 41. 

'llle follow:hlg theorems relate the semantical notions 

for 1(n under the syntactical interpretation to those for 

fn+1· 

'144. (1) If o: is a wre of 1rn of' simple type, then 

syn.J<ncc:4 = o:. = synt1f n+l(o-J 

(2} If' yt is a wfe or ~n of' complex type <ZJ.1•••1"r1t'0>, 
and w1(n), ••• ,wr(n} are the sets of all wf'e's of 1{ n 

of' types ( 1, ••• , z; respectively, then 

Synt1<n(~) = Syntt<n+l(~)1 (w1 (n)x•••xwr(n))69 

(3) It ~is a wte ot 1{n ot complex type, then Synt-Hn(fl.)~ 
Synt n+l(tt) 

Proof': (1) and (2) by the definitions; (3) by (2). 

T45. If' Yn.' M0 , then 

(1) it 't is a simp~e type ot "k0 , U. ::n._t<n('t) = U. :;;tn+l("[) 

(2) it ::C is a simple type ot 1{n, u_Si?tn(:() €:. U..~n+lfe) 
(3) 1r. !"0 , ••• ,t;. are simple types of' "1<n' and r>O; then 

u:s,1{ n 
if f' nt {<'ZJ.•··••lr•'a>), then there is a 
g ' ll~n+lC<LJ. •••• , z;., ?(,>) such that r ..:= g. 

Proof': (l) by the det1n1t1on, (2) by T30, 

(3) by (1) and ('2). 
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'1'46. 

(1) 

(2) 

If m. ~ M0 , then 
-.Un S ,,-Jf n 1.f o; is a wf e 

Val ~n+ 1 (a.) 

if :\is a wfe 

Val~n+l(1) 

of q of simple type, Val /17.. (aj ir=i 

~ S~n c 
of /1 n of complex type, Val '1ft (~) -

Proof bY, cases: n • O, or n • m + 1 for some m. In 

the first case, the 11 £ 11 of (2) can be strengthened to 

11 ="; (2) is then proved by T29, D55 (2) (a), and ( 1) is 

proved by induction on q. In the second case, the proof 

is similar using the cases of T34. 

19. The Intensional Interpretation of 1(n 
We first introduce the general notion of a'(-concept, 

where "'tis a simple type. Our earlier notions of an 

individual-concept and a proposition will then correspond 

to 1-concepts and t-concepts respectively. 

056. If 'Z: is a simple type, then the 1:-concepts are given 

by the following: 

(l) if C::. is a simple type or 1{0 , then r is a t:-concept 

if and only if t is a function whose domain is M0 

and which assigns to each Ylt' M0 an element ot Ll~'t:) 
(2) if 't is a simple type, ot +( n' then t is a f-concept 

if and only if f is a function whose domain is M0 

and which assigns to each l'Yi G M0 a 'L-concept. 

1he universes tor each type under the intensional interpre­

tation are now introduced in the natural way, with concepts 
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here playing the role played by syntactical entitieo under 

the syntactical interpretation. The definition maken uoe 

of the cases of theorem 26. 

D57. If 't' is a type of 1< n' and Yr{_ E M0 , then the universe 

of 'tin ?J1. with respect to the Intensional interpretation 

dn (Li.1-hf. n('C)) is given by the following: 
- I 1< ~ 

(1) ir n = o, then U m n(-t) = U~Cej 
(2) if n = m + 1, then 

( ) r-r j'.I L(.I ~ n (""" = a if ~ is a simple type of 10 , then ul ~' 

(b) 

(c) 

li~<-c;) 
Al 1 ,I,"'Hn ....... 

if 1: is a simple type of fl m" then tA. nt ('t') = 

the set of all 't'-concepts 

if "[ 0 , ••• , Tr are simple types or ~n' r)O, then 

u_1~n(<T1 , •.• , c;_, T0 >) = the set or all functions 

from (Ll.1~ncr1 )x .. ·xLPA~cz;.>) into tf~n(lol. 
'lhe universes or the higher types consist of non-contingent 

entities. 

We now introduce the notion or value. The definition usea 

the cases ot theorem 34. 

D58. It a:-ie a wte of 1{n' and fll., M0 , then the value or 
cx..in with res ect to the Intensional inte retation ot 

I 
~ (Val-;,,_ n(cx)) is given by the tollow1ng: 
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(l) 
(2) 

I,"'Kn(-' -:ko( ) if n -= o, then Val 7fl.. 'V-1 a Valin. o:. 

if n • m+l, then 

(a) 11: o::is an atomic wfe of 1<0 , then va11~n(a}. 
Valfn{~ 

(bl) if ex.is an atomic wfe of 1{m of simple type, 

then Val~n(CXJ = the unique f such that 

(1) f is a function whose domain is M0 

(11) if n' M0 , then fO/J a ValI~m(a} 
(b2) if T0 , ••• ,~ are simple types of 1<m,r>01 -rt_ 

(c) 

(d) 

is a wfe or 1(m ot complex type <?1, ••• ,-z;.,~, 

and c0 , ••• ,cr are the sets of all 

'2';,-concepts, ••• ,'l;.-concepts respectively, then 

Val~n(~) a the unique f such that 

(i) t is a tWlction from (c1x•••xcr) into c0 

( 11) if »1 ' M0 , and <g1 , ••• ,gr> is in the domain 

oft, then f(g1, ••• ;gr)(m a 

I/<m( Val n ~) (gl (11.) I ••• ,gr(1U). 

it 'l is a simple type or 'Hm' then 
I,11n ~ I ~ ,.,._ 

Val 7ll.. (Id(t')) • the identity function on U1rt_ (~ 
it T is a simple type or /1m, then 

I,ifn ~ 
Vall7l. (Delta tt)) -= the unique t such that 

( . J ,1,1<n ,,,._ /1I,11'n 
1) t is a tunction trom (tA-m. ('C) x fYl <'Z1) 

into f T,Ff 

(11) it <g,x) is in the domain or r, then 

t(g,x) • T 1f and only it s(71l) • x 
( I,1<n 
e) Valm (Nee) •the uniqu• t auch that 
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(1) r is a function from the set of all 

t-concepts into {T,F] 

{11) if g is a t-ooncept, then f(g) = T if and 

only if for all rt ~ M0 , g ('r}.) ;;: T. 

(f) if r01 ••• ,tr are simple types of -J{n' r)O, and 

~' °1_1••·i~ are wfe 1 s of 1{n of types 

<'li1•••1L;;.1~>, z-1 , ... ,(r respectively, then 
I,1( A ,...., .....-. 

Val ~ n (lj_ °'J. • • • °"r) = 

Val~ n(1) (Val~n(<i:i_), ••• , Val~n(o.n)) 

The notion of sense can now be introduced. We will estab-

lish in theorem 49 that under the intensional interpreta­

tion the value or a::. is the sense or ct.. 

D59. If oc. is a wfe of f<n' then the Sense of o:: with 

respect to t(n (Sense'Kn(cx)) is given by the following: 

(1) if ex. is of simple type, then Sense1fn(~ = the unique 

t such that 

(a) t is a function whose domain is M0 

(b) if YI.' M0 , then f(n) = Val1n_1fn(rx'J 

(2) if t"0 , ••• ,'Cr are simple types of 1(0 , r)O, ~is a 

wre of 1fn of complex type <T1, ••• ,(r,~> .. and 

c0 , ••• ,cr are the sets of all "(0 -concepts, ••• ,"z.­
concepts respectively. then Sense'Kn(i) • the wiique 

r such that 

(a) t is a tunction from (c1x· • •xc~ into c0 
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(b) if "fl S M0 , and <s1, ••• ,gr> is in the domain of 

f, then f(g1, ••• ,gr)(Yl) c 

va1ti_1<nc1·) (g1 ('}'!), ••• ,gr('ll.)). 

n-ie second part of the following theorem provides the main 

step in arguing that the semantical relation which assigns 

to each wfe ex.of 1{n, Sense kn(cx) yields a Fregean 

semantical system. 

T48. (1) If ex: is a wfe of 1~ n of simple type, and n C: M0 , 

1< I 11 
then Sense n(cx) (11) = Val 'fi. n(~ 

(2 ) If lo' . .. , 'tr are simple types of Kn, r)O, and 

~I d._i I••• J ~ are wfe IS Of 1-<n Of types < rl I••• 1;1 To> I 
1n( '"1tn( ) <o••••it'r' respectively, then Sense ~)(Sense ~ , 

kn t' n "' "' I"\ ••• ,Sense (°!-)) =Sense (~ ~ ••• cxr) 

Proof: (1) by the definition, (2) by showing that 

both sides of the equality are 'to-concepts and then using 

(1) to show that they have the same value for a given 

11.' Mo• 

We now easily show the required result for the value of ~ • 

T49. If cx.1e a wfe of Wn' and 17! 9 M0 , then va11~n+1 (Ci) = 
Sense1f n( er). 

Proof by induction on cx:.using '1'48 (2) for the in­

ductive step. 

1\1.e values of w!'e 1s are in the appropriate Wliverse. 
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'1'50. If a:. is a w1{ of 1(,, of type T nnd fn '1~0 , then 

ValI+,f n(a} ' U.Im n('l') • 

Proof by induction on ex. 

All wfe's of the higher simple types denote concepts (those 

of higher complex types denote representatives of natural­

concepts). 

T51. If <Xi is a wfe 
I, Wn ) then Val i'Yl... (<Xi is 

Proof by 'ISO. 

of i{n+l of simple type f,' and m ~M0 , 
a r-concept. 

We now turn to theorems relating the semantical no­

tion tor -kn under the intensional interpretations to those 

for '1(n+i• It will be evident that none or the subtleties 

of the syntactical interpretation (for example, theorems 

44(2), 45(2), 46(2))have counterparts under the present in­

terpretation. In tact, theorems 52-54 suggest very strong­

ly the natural construction of the language 1fwot the 

following chapter. 

~ ..AJ 1M 11I1 1{ n 
T52. It t is a type of r,n' and ''L EM0 , then CA.. n1.. ('t) • 

U..I~n+l(L) 
Proof by cases using T'26. 

~ I,1( 
'153. It ex. is a wte of "n' and Y)l'M , then Val W> n(o:) .. 

I 1( ' 0 /TC.,. 

va1m n+lc~ 

Proof by induction on n. In the inductive step, 

proof is by induction on a: using the cases ot 

T34 and making use ot '.IS2. 
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'I54. If o:. is a wfe of f( n' then Sense ifn(o:) = Sense* n+l(oc) 

Proof by '153. 

20 Some Adequacy Theorems 

The following theorems indicate that the formal treat­

ment of the logical signs of our languages is in accord 

with the informal exposition. Theorems 57-59 also provide 

a succinct comparison of the two interpretations. Theorems 

55-58 follow directly from the definitions. 

T55. If ~ and 1f are wfe' s of 1{ n of type t, and /n9M0 , 

then 
S.,1< n S 11 n 

Val 1'">1.. (~~ 1f') == T if and only if, if Val +rt_ (~) = T 
.SJ if n( u.>) then Valm 7 = T 

I,'"'kn I,~n 
Val frl (~:-J!p) = T if and only if, if Val Jn. (JJ') a:: T 

I,~ n ilJ 

(1) 

(2) 

then Val lrL ( ; ) 
(3) ValS~ n(,...,¢) = T if and only if, it is not the case 

that ValS_,;t n(") = T 
I :f{' . 

Val fn_"_1(/\/ 'I_) • T if and only if, it is not the case 
I, ""Rn 

(4) 

that Val m_ (;/) • T 

(5) Val~ n(fl&fl = T 11' and only 11', Val ~n(fl) • T 

and Val~n(y) a T 

(6) 

(7) 

(8) 

I,1{n ·tl)ll I,fn 
Val m (~t» T) • T if and only if, Val Y>1.. (j!J') a T 

I, 1'.n 1tJ 
and Val ffL ( T ) • T 

Val~ n(flVl//) .. T 11' and only 11', Val w n(fl} • T 

or Val~ n("'q') • T 

val;;t n (flV lf) • T 11' and only 11', Val;;:! n (ft) • T 
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I, 1( n W 
or Val 117_ ( 1 ) • T 

{9) va15~ n(¢::=.~) = T if and only if, 

£.J 11 n{I J)) if and only if Val Yn.. ~ = T 
I, 1( n 

{ 10) Val lYl (~;3.'l.p) = T if and only if, 
I, '1< n 

1.f' and only if Val l?t ( 'f) = T 

I, 'i( n 
Val ht_ {$1') = T 

T56. If fJ.. and )3 are wfe 1s of 1{n of the same simple type, 

and rY/'M0 , then 

51in )3 skn(,.,...\ (1) Val :.> {ex:== ) = T if and only if Val m ~ = 

Val S; ·I( n(~) 
I~n I,,~n 

{2) Val :rtL ~ (ex-= )3) = T if and only if Val frt. (a=) 1::11 

I, '1) 
Val 1it n {j3) 

157. If <Xi and )3 are wfe 1 s of ~ n+l of the simple types 't' 
and !: respectively, and rn. 'M0 , then 

(1) Val~ n+l(C:.(;{, )3)) = T if and only 1f 

Val~ n(va1h. n+l(«1)) = va1Sn{n+1 ~) 
(2) va/~1(A(ClJ.• Jll = T 11' and only 1f 

I. '1(. l I -1( 1 
Val »i_ n+ ( <X]_) (f>U = Val m n+ Cft) 

T58. It ft1 is a wte ot 1( n+l of type t 1, and /1( 'M , then 
5 'k 0 

(1) Val in_ n+l(NJ1i • T it and only if tor all 'fl.. 'M0 , 

Val; :n(va11,f n+l(~1)) • T 

(2) Val Tri. n+l(Np'1 ) -= T it and only it for all 'YI 'M0 , 
I 1< . 

Val m n+l(J1'1 ) ("n) • T 

'159. It ~l is a wte of -f<n+l or type t 1 , and l1t 'M01 then 

(l) ual ~n+l(tnwd.· -1) T 4 P d if 
y, , '" ~,,.--,, • .u. an only . 
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= T 

Proof by D47, T57, T55(1) and (2). 

'I60. If a:. and )3 are wfe 1 s of -X n of the same simple type .. 

and m. 'M0 , then 

(1) Val Sit_ n+l(A (<i,))) = T if and only if Val Sil(_ n(aj = 

Val syt n(/3} 
I,·1( +l I,, "If n 

(2) Val}'\\.. n (A {Ci,~)) = T if and only if Val Y1l (o:) -= 
I,,1< n 

Val nt 93) 
Proof: (1) by T57{1), T42(2), '!46(1); 

(2) by T57(2), '!49, '!48(1), '153. 

'l.'61. If p is a wte ot 1(n of type t, and »l, EM0 , then 
s 'I< 

(1) Val~ n+l(N~ a T if and only 1r for all 7/.GM0 , 

Val ~~n(st) a T 
I,1<n+l 

(2) Valm · (N~ • T it and only 11' for all 'Yl'M0 , 

I, 1( n 
vain <st> - T 

Proof: (1) by T58(l), ':Pf-2(2); 

(2) by T58(2), 149, '.M-8(1). 

If st is a wte ot 1f n ot type t, and 1'1 'MQ! then 

(1) Val ~n+1 (Tr.J) • T it and only 11' Vals~ n(jt) • T 

( ) I, ~n+l ) I,-Kn 
2 Val m.. ( 'hJ a '1' it and only 1r Val nt.. (Ji) • 'l' 

Proof': (l) by T59(1), '142 (2); 

(2) bJ' '1'59(2), tN9, 'N8(1). 
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Note that 1n view or T33, theorems 57-59 represent no more 

general a case than do theorems 60-62. However, in the 

language ~W' which contains variables, counterparts to all 

the preceding theorems (57-62) will still hold, whereas '1'33 

will fail. Thus both sets (57-59, 60-62) were stated here 

as illustrative of what is to come. It is also interesting 

to note that only theorems 57-59 reveal the differences be­

tween the syntactical and intensional interpretations; the­

orems 60-62 reveal the similarities. In the latter connec­

tion, we add theorem 63 to emphasize a point made in note62 

on the two interpretations or truth. The followl.ng defini­

tions of validity are introduced for the sake of theorem 63. 

D6o. If ~ is a wte ot 1f 0 of type t, then i is valid under 

the SX,ntactical intw:re.tation or 1{ _ ( '=-= $6') 1!' and only 
S ll ~'~n 

if' for yt 'M0 ,, Val fl n(jt) = T 

D61. If ~ is a wre or -Kn ot type t,, then V is valid under 

the Intensional interpretation or tf ( ~. SI) 11' and only . -I 1? !! 'I, "'X n 
if for all n, 'M0 ,, Val n n(fl) a T 

T63. It ~ is a wf e ot 1{n or type t, then 

(l) ~ (Tr .,:;;.¢) 

(2) t7n (Tr .,g.fl} 

Prootr (1) by '1'62(1), '.IS5(9), 'N6(l) 

(2) by 'n52(2), '1'55(10), 'l'53 
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CHAPTER 4 

THE LANGUAGE '1-(GJ 

In the preceding chapter we constructed a hierarchy 

of languages 1(n. 'lhe purpose of '1<1, it will be recalled, 

was to provide a direct discourse treatment for singly 

oblique contexts of 1<.0 • Similarly, "1<.2 can be used for 

doubly oblique contexts of 1(0 , 1<3 for triply oblique con­

texts, and so on. 'lhus for contexts of 1{0 of any degree 

of obliquity, there is some language 1n the hierarchy with­

in which a direct discourse treatment can be given. How­

ever, since a development 1n accordance with the method or 

indirect discourse allows contexts or arbitrary (finite) 

degree within a single language, it seems desirable to at­

tempt the same for the direct discourse method. This is 

done by constructing the language 1{w• 

21. 1\le Language 1( (A) 

Given the notions of type, wre, etc. tor each of the 

language~ --Xn' and keeping in mind the fact that each lan­

guage or the hierarchy is included in its successor, we 

could simply introduce the corresponding notions for -1~w by 

taldng unions. But recall that our method or introducing 

these notions ro~ the language 1f n was first to give a gen-
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eral formulation and then subdivide using the idea or rank. 

Thus the appropriate notions for 1fw were already introduced 

in sections 16.l and 16.2. The following theorems verify 

that the same results would obtain if we were to take 

unions. 

~4. (1) ?: is a type if and only if there is a natural 

nwnber n, such that 'r is a type of 1fn 
(2) oc. is a wfe 1f and only if there is a natural number 

n, such that a:. is a wfe of -If n. 

Proof by the definitions, using the facts that every 

type has a finite rank, and every wfe has a type. 

When we form the language f.w, which contains variables, new 

wte's will be introduced. For thj.s reason, we now identity 

our \Ulrestricted notion or well formed expression with that 

of well formed expression of 'flw• Since no new types are 

introduced in o(G.>, there is no need for a similar restric­

tion ot the notion of type • 

.D62. c; 1 a a wte or 1/GJ if and only it ex.. is a wf'e. -
T65. Olis a wf e ot 'i{w or type C: 11' and only it there is 

a natural number n such that cc. is a wte ot -/(n ot type "'C. 

Proof by D62 1 '164. 

'!he following theorem shows that 1fr.u is closed With 

respect to the bar function. That is, every wte or 1{w has 

an analogue in 1fw 1his is one ot the essential proper-

111 



ties, lacking in the languages 1{n' required to provide 

a direct discourse treatment of arbitrary degrees or 
obliquity. 

T66. ~ is a wf e of if w of type C: if and only ll G:.1s a wf e 
l"'-

of 1{GJ of type ?: . 

Proof by T65, T32. 

The restriction (which will no longer hold for the 
,..,._ 

language J..u.) that all wfe' s of types C: have the form Ci. 

applies to -Hw as it does to the languages ffn. 

T67. }3 is a wfe of 1/GJ of type f if and only if there is a 

wfe ex of iffAJ of type 't such that j3 is Ci. • 

Proof by '1'65, T33. 

22. The Syntactical Interpretation of 1(6.) 

In view of theorem 44, which links Synt1(n(o1 to 

Syntj(n+1{cx), the notion for i(6J can be introduced in a 

simple fashion. 

D63. If O' is a wte or ~ of rank n, then the syntactical 
=R 

entity corresl!onding to ex with respeo.t to j{tM (Synt "'(aj) 

is given by the following: 

(1) if a. is or simple type, then Synt "'fiw(~ • oc; 

(2) it' ~ is ot complex type, then Synt iLc~) • 
U Synt1fm(n) 70 
m>n (. 

Since by theorem 45, the universe of a simple type 
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with respect to 11n is included 1n the corresponding uni­

verse with respect to ~l' we can form the universe with 

respect to -fft..J simply by taking the union or the universes 

for each of the 11~. However, the relationship between the 

universes of a complex type with respect to languages frn 
and 1{n+l is somewhat more complicated. In fact, if we 

build up the universe of a complex type with respect to ~ 

from the corresponding universes with respect to the j(n 

in the natural way, the result would be that the universe 

of <LJ.. 1 ••• ,~,To> would not consist of !!11 functions from 

(u1x •••xu) into u0 (where u0 , ••• ,ur are the universes of 

z-0 , ••• ,Tr respective~ but only some of these functions.7 1 

We shall avoid these complications (which do not arise at 

all under the intensional interpretation) by introducing 

the universe of a complex type directly as the set of all 

such functions, rather than by way of the corresponding 

universes for the languages 1(n. Such a procedure can work 

no harm, so long as we exclude from our languages both 

variables or complex type and primitive descriptive con­

stants of higher types. For the universes of the types 

are introduced primarily for heuristic reasons. We see 

what values a variable ot the given type might take, 1t we 

had such variables; and we see what entities an arbitrary 

descriptive constant of the given type might denote~ if we 

had such constants. iJhus an insight is supplied into the 

ontological presuppositions ot our languages, or, more 
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properly, into certain natural extensions or our languages. 

But when, as in the present case, such extennions involve 

a considerable increase in complexity, we will satisfy our­

selves with a simpler treatment adequate for the special 

case before us. 

D64. If 't is a type or rank n, and m. ' M0 , then the uni­

verse of 't in /?1 with respect to the Syntactical interpre­

tation of '-fl ( U ~'*w (TJ) is given by the following: 
~ 11c.. 11S 1'i U 11S 11m 

( 1) ii' "t is a simple type, then IA. r1l. ~(C:) == LA m_ ('C) 
m>~ 

(2) if 't0 , ••• ,z1 are simple types, r)O, and 't"= 
I JS' "f(~ < ZJ. 1 ••• , ~' 9, then vt. m_ ('C) = the set of all rune-

('' S :fl4l US "!<, ) I I S,~cv t1ons from fA..,;.,. (11_)x• • •x .,/t ~(11) into CA.. ht (~). 

By theorem 46, the value or a wfe cxor simple type 

remains constant for all languages 1f m' where m is greater 

than or equal to the rank of oc., that is, where ex is a wte 

ot "t m• '.lbe values of a wf'e '1_ of complex type form an 

inclusion chain, that is, starting with the value or Y( in 

1(n (where n is the rank of ~) each value is included in 

that tor the succeeding language. Thus we are led to the 

following definition. 

D65. If ex. is a wte of 1fGJ ot rank n and Yll' M0 , then .!?.h!, 

value of o:. in m with respect to, the Syntactical 1nterpre.­

tat1cm of'~ (Va1~n(o:.)) is given by the following: 

(l) 1t ~is of simple type, then Val~c.>(~ • Val~n(~ . 
(2) 1!' i is of complex type, then Val~'fb(~) • 
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L) Val s;Xm( ) 
m~n Yl( ~ 

T68. If ~ is a wfe of i{(,J of type ?:, and Yfl. 6 M0 , then 
S' 1{l.l I IS , 1{4' ~ 

Vnl -nt (ex) g LA.. }7t ( ~I 

Proof by cases: (1) if 'l is a simple type, proof is 

by D65 (1), D64 (1), T41; (ii) if "t' is a complex type, 

proof is by D65 (2), D64 (2), '!'41, D54, and set theory • 

.1J 'lltf s , '-HG) c~ 
'lb9. If ex: is a wfe of nt», and ''l.' M0 , then Val V-J = 

Synti{W(~. 

Proof by T64 (2), D62, D65, 'N-2 (1), D53, D63. 

23. The Intensional Interpretation of '1-r(AJ 

The constancy, indicated in theorems 52-54, between 

the semantical notions tor the intensional interpretation 

or ~n and those for the intensional interpretation or 1(n+l 

allow us to frame simple definitions for the corresponding 

notions in ifw. The difficulties alluded to in connection 

with D64 do not arise here. In fact, a definition which 

separates clauses in the manner of D64 would be equivalent 

to the following. 

D66. If t' is a type or rank n, and »l' M0 , then the uni-

verse or in with res ect to the Intensional inte re-
-U I I 

tation of Jlj,J ( u. m (~)) is Ll »t n('Z:.) 

D67. If' a:.. is a wf e of 1~ ot rank n, and Y1l ' · M0 , then ~ 

value ot ((.in m With respect, to the Intension~l 1nte;rpre• 
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J.J I 15. I,1fn (-' tat1on of n JI;:> (Val ,.;,_(£){ex)) is Val m. v-J • 

.D68. If ex is a wfe of Nw of rank n, then the Senne of o.. 
-M 1{ 

with respect to O:'G.J (Sense I~( ex)) is Sense nc ex). 

As explained earlier, the sense of a wfe of simple type, 

assigns to each model the value of the wfe in that model. 

'J!70. If ex is a wfe of 1{GJ of simple type, and n g M0 , 

then Sensef{W(~(/l) = ValI~1<w(a). 

Proof by D68, D67, ~8 (l). 

We also obtain the appropriate theorems about the value or 
the analogue to a wfe and the relation between the values of 

wre•e and the universes of their types • 

...u ~ I,~ 
'1!71. If ex is a wfe of r.~, and 111 Q M0 , then Val m_ (cq = 
Sense 1fuc er) • 

Proof by D68, D67, T49. 

'r72. If ex is a wte ot 1{4J of type T, and i1l. g M0 , then 

Val ~1iw ( <¥-) 9 Lt ft" ("CJ , 

Proof by r£J7, D66, '150. 

24. Logical Axioms for 1(~ 

Let us provisionally distinguish our logical signs 

into two groups! The signs from "extensional" logic, 

namely, Cond, Neg, Id(t), Id(i)j and.the "special" signs 

Delta (t'), Idfij, Nee, ."&.. We first turn our attention to 
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the former group which we will henceforth call the purely 

logical signs. All sentences of 1f{,) whose validity depends 

solely on the interpretation of these signs are derivable 

from two sets of axioms, the tautologies and the identity 

axioms. Tautologies are defined in terms of truth evalua­

tions; the identity axioms are defined in terms of substi-

tution. 

D69. f is a truth evaluation for 'f_f!) if and only if: 

(1) f is a function from the set of all wfe 1 s of "'/f.; of 

type t into f T,F}, 

(2) if fl,lf are 1n the domain off, then 

(a) f (fl::>ll'J = T if and only if, it f(¢) =- T then 

f ("'t') = T 

(b) r(11fi) = T if and only if, it is not the case 

that f (fi) = T 

(c) f (fl:S.lf} = T if and only if, f(~} = T if and 

only if t (lfl) = T 

rrro. st is a tautology of 1(~ it and only if 

(l) ~ is a wre of 1fw of type t 

(2) if t is a truth evaluation for 1(~, then r(~) • T. 

Itll. It a:., ) are wte ts of ~t..J of the eame simple tY])e, 

and t', b are wte•s ot 1iw ot the sagie s1mpie t1}le, then 

6 is a result of substituting a:. for }3 at none or more places 

in L (Sub~(o:. ,)3,1;6)) U and onJ.7 its 

( 1) 't' • )3, and e1 th er 6 • ~ or 6 l:;J )3 ; or 
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(2) r r )31 and either 

(a) 0 i3 atomic and fr= 4 I Or 

(b) there are r, and simple types, 'l0 1• •• ,'tr, 1• 
µ1, ••• 1Jlr' Jll 1 ••• ,µ~ such that r)O, ~ is a wfe 

of 1<~ of type <'Zl. 1 ••• ,~r'~>, Jli1•••1µr are wfe's 

of types 'tii•••i?;.. respectively, if l ~ j ~ r then 

Sub 1fcu( ~ 1)31Jlj 1>1j), t' = ~}.i11'\ • • ·"µr' and 
r' " r r-
0 = ~ '1:1. • • • Jl~· 

The identity axioms consist of all instances of Frege's 

Law; which incorporates Leibniz' Law, Euclid's Law, and 

interchange of material equivalents, and all instances of 

the Self-Identity Law. 

'ff72 • @' is an instance Of Frege IS Law in 1{!1) if and Only if 

there are c:x. , )31 'r, 6 such that: 

(1) cx.,p are wfe 1 s of 1{(,J of the same simple type 

(2) t',& are wte 1 s or 1((.1.) of the same simple type 

(3) Sub-1\,(~ ,13,t;6) 
( 4) ~ is ( ( ~ =- )3) ~ ( 1- 6) ) • 

D73. i is an instance of the Self-Identitl Law in tr'-"' if 

and only 1f there is an ex. such that: 

(1) cc is a wre or if(;.) of simple type 

(2) fi is (a. - ct). 

1174. fl is a Logical Axiom of 1{ it and only 1r 
"{,J 

( l) '! is a tautology of 1fWI or 



(2) fl is an instance of Frece's Law in 1f(J), or 

(3) fl is an instance of the Self-Identity Law in 1{GJ• 

We now introduce the notion of validity under the two 

interpretations of fllAJ, and show that all logical axioms 

are valid. 

rf(5. ft is valid under the Syntactical interpretation of 1{!!} 

( ~fl) if and only if: 

(1) fl is a wfe or -Kt..i of type t 

(2) for all 1'(, g M0 , Val sn1(GJ ($1) = T. 

st is valid under the Intensional interpretation or"H 
MJ 

( ~ ~w S/) if and only if: 

(1j ¢ is a wfe or 1fw of type t 

(2} for all Yl. 9 M0 , Val I Yi_ 1<r,, ('I) • T. 

T73. 
(1) 

(2) 

(3) 

(4) 

(5) 

If '!,Y are wte' s of 1{(AJ of type t, and m 9 Mo' then 

Val~4.'{SJ'=>lf) s:: T if and only if, if Val~~(p) • T 

then Val~"-"('f? a T 

Val}!i_"(;;:,11') = T it and only if, if Val~t..J(ft) • T 

then Val ~AJ{lf) a T 

Va18{f_6J~) • T 1t and only if, it is not the case 

that va18~(fl') - T 

Val1m~(.v'!) .. T 1t and only it, it is not the case 

that va11•*""<st> • T 
"k 17l 

va18-m_~(;& Y') • T 1t and only 1r, Val~(jt) - T and 

va1~*"N') • T 
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( 6) Val r;:.6) (¢&"11) = T 11' and only if, Val 11'f"'(fl) = T and 

ValI,1~w(lf) 1r:1 T 
~ ~ 

(7) va1%15'cJ(¢vf) = T if and only if, Val~"(r/) = T or 

Val 8-n, 'i(w(lr) = T 

(8) Val~'"HCJ('/Y'l/1 = T if and only if Val~"('/) = T or 

Val~w(~ ~ T 

{9) Val~4'(¢~~ = T if and only if Val~w(¢) = T if and 

only if Val~W{l/1 = T 

( 10) Val ~'1<.cu( f/:.'>f) = T if and only if, Va 1 ~'ff '4) ( )t) = T if 

and only if Val ~~('t'J • T 

T74. 

(1) 

(2) 

Proof by D65, D67, '?55. 

If 'I is a tautology of -f{IU, then 

L " 's,1<w 
~ )t 
I,i(w 

Proof: (1) by T73, ~8 the function which assigns 

to each sentence~ or 1(fAJ, Val~~("), is a truth evalua­

tion. Hence if ~ is a tautology, va18n,_'1\i(") = T for all 

Yf(E M0 ; (2), similar using '173, T72. 

'1'75. If «. ;}3 are wte' s or ~ or the same simple type, 

t',6 are wte•s ot Jfu ot the same simple type, 

Sub~(~ ,-y,, tio), and Yrl G M , then 

(1) ir va1W' .. (a) .. va18J.Ql), then Val~"'hi .. 

Val~~6) 
( 2) if Val~ it., ( tX) • Val 1m."4., (J3) , then Val 3?i "1L (t') • 

l.20 

, ', •t ·-~ 
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va1~w(6). 

Proof by induction on 't'. 

'r76. If '1-,') are wfe's of 1f&; of the same simple type, and 

P11_ ( M0 , then 

( l) Val~(.) ( oc =- J3) c T if and only if va1W(>){ o.:) = 

Val~~(B) 
(2) Val~"'\,(oc.--= )3) = T if and only if Val~ (ex) -= 

Val~w (3). 

'1!77. 

(l) 

(2) 

Proof by D65, D67, T56. 

If ft is an instance of Frege•s Law in ~. then 

I 'I s, 1{li> 

-'I 
I, 1{<..> 

Proof by T75, T73, T76, JY75, Tf(6. 

'178. If' fl is an instance of the Self-Identity Law in 11~, 

then,, 

(l) l j{, ~ s, c.J 

(2) ~, 
I, nr.i) 

Proof by T'(6, D75, UT6. 

'1!79. It ~ is a Logical Axiom of Kw, then 

(1) 

(2) 

Is, "Hf.t); 

II, 1$'6> ft 
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Proof by 'IJ(4, T"f5, Tt(, '178. 

We now introduce the notion of a modus ponens conae-

quence of a set of sentences A. 

r:rr1. g is a modus ponens consequence of A Gm.s,A ¢) if and 

only if: 

(1) A is a set of wfe 1 s of ffw of type t 

(2) there are S and n such that: 

TBo. 
(1) 

(2) 

(a) S is a finite sequence of length n~I 

(b) Sn == '/ 

(c) if' O ~ m ~ n, then either 

(i) 8ni ' A, or 

(ii) there are j,k < m, and Sj ~ (Sk.:JSm) 

If fl, tp are wf'e' s of 1f w of type t, then 

if ~ (f1:>1p) and } ~, then ~ 1f 
s,1((,.) s, ~ s,11w 

if ~ (fi::::Jql) and I fl, then ~ 1¥ 
I, 'ffU> I11<w 'I,1)4.) 

Proof by T73, 1175, D76. 

T81. If A is the set or Logical Axioms of 1/rAJ, and 

(l) 

(2) 

t. fl, then 
MP,A 

1s ;ffw st 
~,114)¢ 
Proof by induction on the length of the proof ot st 

using 'n91 T8o. 
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25. Completeness and Decidability of /{0 

We first introduce the notion of validity for formulas 

of 1{0 , and show that it coincides with validity Wlder both 

interpretations for such formulas. 

ura. ~ is valid in 1(0 ( J 1fo· $1') if and only if: 

(1) ~ is a wfe of 1(0 of type t 
f<t 

(2) for all 1l, Q M0 , Val n(fl') c T 

T82. 

(1) 

(2) 

If ~ is a wfe of -;f 0, then 

if and only if 

if and only if' 

Proof by D65, D67. 

The following theorem establishes that validity under the 

two interpretations agrees for formulas or 1<o· 1.bat this 

is not the case, 1n general, tor arbitrary formulas or 

will be shown in theorem 95. 

T83. If~ is a wre of ~' then/s,1iw; if and only it 

-;. 
I,-J(w 

Proof by T82. 

~e following two theorems are well lalown from the 

11te:raature72 nie second will be called the completeness 

theorem for 'fo. -
'1'64. It fl is a wte ot '#0 , and A is the set ot Logical 
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Axioms of -fl&l 1 then ~ ;I only if IMP, A i 

T85. If fl is a wfe of 1<01 and A is the set or Logical 

Axioms of "H(,a), then ~ "' it and only if /MP, A fl. 

Proof by T84, T81, T82. 

The decidability of ~ is also well known,72 but we will 

give an argument differing slightly from the familiar 

forms. Our argument depends primarily on T. First we must 

introduce the notion of an instance of a formula of -1(0 • 

For this purpose we define some auxiliary notions. 

ff(9. If b is a wfe of ~ ot simple type, and <Xi, ••• , °i> 
are wfe 1s of 1{0 of type i, then &COJ.•···•<>J>l is the 

result of simultaneously replacing all occurrences of the 

J!t!, individual constant (Opsymb(j,o)) in 6 by~· for all 

l '= J ~ p. 

D8o. t is a substitution runc,t1on for 11-o if' and only if: 
-

(1) r is a function whose domain is the set of all 

predicates and operation symbols of ~ 

(2) t assigns a wre of 1{0 of type 1 to each operation 

aymbol or '*o 
(3) t assigns a wfe ot -1(0 of type t to each predicate 

or t'o 
D81. 6 ia a 1l, instance ot L it: -

(l) 'fie a wte ot 1{0 ot simple type 
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(2) there is a aubetii\ltion function for ~' f, such that 

6 is the result of simultaneously replacing all 

occurrences of r('ai"' • · • ""~ in t' by f ( ~) [ <X_i., ••• '°t> l, 
where ~is a p-place predicate or operation symbol 

and CXJ..t ••• ,~ are wfe's or ~ or type i. 

T86. If fl is a wfe of 1(0 of type t, Lf' is a 1<( 0 instance 

of f/, and ~ f/, then ~ 't/'. 

Proof by induction on fi. 

D82. ¢ is a contingent identity disjunction if and only 

if fl is a disjunction each of whose disjuncts has the form 

(a: ::m:r )3), where a:.. •J3 are distinct wfe 1 a of 1( 0 of type i. 

T87. If; is a contingent identity diajwiction, then 

neither ¢ nor N'¢ is valid in '1(0 • 

Proof: Alfi can not be valid since ft holds in any 

model <DR:> where D contains only a single element. To show 

that fi is not valid, construct an Yl, 'M isomorphic to <D,R> 
0 

where D is the set or all wfe's of '1f0 of type 1 and where 

R(Opsymb(m,p)) = Synt 1(. (Opsymb(m,p)). Then if ~is a wfe 

or ~ or type i, va1fn'~ It> (a) a or. thus each disjunct in 'I 
will be false, and hence so will ¢. 
The following theorem is related to a result of Quinee 73 

to the effect that a formula of the predicate calculus has 

a contraval1d instance just in case it is falsifiable in a 

model whose universe contains a single element. 
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T88. If ¢ls a wre of ·fi0 of type t, and ¢is not valid 1n 

...fl then there are ~ X such that : 
fJ o' 

(1) 

(2) 

(3) 

tf' is a i{ 0 instance of ¢ 

FrE ('~ :) "',! ) 
0 

/:(. is a contingent identity disjunction 

Proof: Since ¢ is not valid, it must fall in some 

<D,R>SM0 • In fact <D,a) can be chosen to satisfy the fol­

lowing conditions: {a) Dis finite, (b) for each element 

XGD, there is a wfeJ3x of 1(0 such that Val~~(flxl = X. 

Form the instance lf' of <j as follows. If '1( is a p-place 

predicate occurring in¢ and R{~) = {<xi, ... ,x~, ... , 

<x~, ... ,x~}, then replace '1_"~ ••• /\ ~P by ( ((OJ.::== J3xi)&. • • 

& (a._===-:: J3 1)) V ••• V( ( °1. = ~xm)& ••• &: ( ct.p==== )3xm)) ) • If ~ is 
P xp 1 P 

a o-place predicate, replace it with either ($ ===~) or 

/'I (o =&) (where ~ = Opsyrnb(o,o}) depending on whether 

R(~) = T or F. '!his replacement does not affect the truth 

value of <j, hence lf is also false in <DR>. Form X as fol­

lows. First put 1fl into conjunctive normal form. Since '1P 

contains no predicates (other than identity) each conjunct 

will be a disjunction or wfe' s of the form (a:.--=== )3). Now 

any conjunct with a disjunct of the form (OC. =-- o:) will be 

true, hence since 'f) is false, one of the conjuncts must 

not contain any such disjwict. Let X.. be the first such 

conjunct, then X- will be a contingent identity disjunction 

which is implied by "f. 
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T89. If ¢ is a wfe of lf0 of type t, and A is the set of 

logical axioms of 11w, then ¢ is not valid in -/{0 if and 

only if there are f, 1- such that: 

( 1) IJ) is a 1{ 0 instance of ¢ 

(2 ) IMP, A (tf =>X) 

(3) X is a contingent identity disjunction. 

Proof: from left to right by T88, T85; from right 

to left by T87, T85, T82, TSO, T86. 

T90. The set of all valid wfe 1 s of ·1(0 is decidable. 

Proof: By T85, T89 we can enumerate both the given 

set and its complement within the class of wfe's of 1'f'o 
or type t. 

26. Additional Axioms for 1ftJ 
We now turn to axioms (or, more exactly, axiom 

schemes) governing the special logical signs of our direct 

discourse languages. Namely, those introduced in the 

languages if n+ 1: Del ta (1:°) j Id (:c) I Nee, and all wfe Is a. 
In the present section, we formulate the remaining axioms 

and establish that all theorems are valid. 

Our first set of axioms links the delta predicates 

with the bar notation. 

D83. fl ie a Delta Axiom ot if/JJ if and onl.y if there are 

ex ,p such that : 

(l) « 1'p are wte•s or 1/fJ> ot the same simple type 
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( 2) $1 iS (~ (OC I )3 ) = ( 0( £93 )3) ) • 7 4 

It follows from theorem 67, that formulas of 1(~ 
NH 

whose main connective is Id(t;), have the form, (a:=- j3). 

Thus, such formulas reflect our principle of individuation 
,..,,., 

for the entities in the universes of the types (;'. We now 

introduce the axioms governed by these principles. Under 

the syntactical interpretation, the universe of the simple ,..,,. 
type 1: consists of wfe 1 s of type C:. The denotation of Ci. 

is simply ex:.. Thus Ci and., have the same denotation just 

in case o:: is the same wfe as ) • 

D84. st is a Syntactical Individuating Axiom of 1({JJ if and 

only if there are c:t:.,'p such that: 

(1) cx. ,J are wfe's of 1f0 or the same simple type 

(2) if rs.= fj, then ~ is ('a.-= )3) 
(3) if a.~ )3, then fl is ~(«..=-fl) 

Under the intensional interpretation, the universe or the 

""""" simple type ~ consists of concepts. The denotation or Ci:. 

is now the sense of a:.. Hence the problem or the identity 

or the denota t1ons or ex and J3 reduces to that or the iden­

tity or the sense or o:. and the sense of )3. Here it will 

be recalled (section 15.l) that we decided to equate the 

senees ot a: and ')3 when ex and ,,B are themselves logically 

equivalent. ~at is, when (a.-- )3) expresses a necessaXT 

proposition. 
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D85. ¢ is an Intensional Ind1 vidua ting Axiom of i(MJ if and 

only if there are ex: ;'/3 such that: 

( 1) c.x ,)3 are wfe 1 s of if(,,) of the same simple type 

( 2 ) 'I is ( N (ex. :.a )3 ) == (oc == /j) ) 

We will introduce a number of axioms on necessity. 

The modal axioms of the first four kinds are the familiar 

principles of the modal system s5.75 The last two kinds 

of modal axioms are required to prove of a contingent 

sentence (proposition) that it is not necessary. 

D86. ¢ is a Modal Axiom or ~ if and only if there are 

wf e's ·ti', Y. of 1{1.J of type t and 'I sa t1sf 1es one or the 

following conditions: 

( l) ~ is (N("'f :> X) :::;) (Nlp ::> NX)) 

(2) ~ is (Nl'=> "¥') 

-= (3) ~ is (NY~ NN'f) 
-(4) ~ is (NN\f=> NN'Nf) 

(5) X is a 1( 0 instance or .1P and ; is (N\(? ~ 

(6) 11' is a contingent identity disjunction, and ~ is 

"'NY 

This completes our list or axioms for 1f w· Note 

that the axioms given tor the two interpretations d1tter 

only with respect to the individuation axioms (D84, D85).76 

We will now establ1s}1 that all or the_axioms are valid 

under the appropriate interpretation of 11". 
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T91. 

(1) 

(2) 

If '/ is a Delta .Axiom or if'->, then 

tt fl 
J fl 
I,1{~ 

Proof by D65, D67, 'RSO, T73, T76. 

An immediate consequence of the preceding theorem shows 

that a certain intuitive criterion of adequacy is fulfilled. 

T92. 

(l) 

(2) 

If ex. is a wfe of 1<ev or simple type, then 

) ~(0: ,o:) 
s;1<<...> 

I, 
~ -6,(0C ,c4 

Proof by T91, T73, 'I.76. 

The following theorem states three important properties ot 

necessity: first that N~ is true just in case ~ is valid, 

second that when ~ is valid, ~ is valid, and third that a 

formula or the form ~ is logically determinate in the sense 

that either it or its negation is valid. 

'1'93. If ~ is a wfe of 1f w ot type t, then 

(1) it Yfl' M0 , Val~tJ(~) =i T it and only if 

(2) it nt' M0 , Val~(NJ) • T if and only if 

(3) 

(4) 

it I ;-x f!, 
s, w 

1r I ~ ;, 
I, tc.l 

then 

then 
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(5) either J--= N~ or I llN;I 
s, 1fw S,1fw 

(6) either 1 Nfl or I=-=-= llN-;f I 

I,1iw I,1{UJ 

Proof: (1), (2) by D65, T>67, '!bl; ( 3 ) , ( 4 ) by ( 1) I 

(2); (5), (6) by (1), (2), 'J.73. 

w 
Properties of Id(-Z:-) which correspond to those of Nee given 

in the preceding theorem are given in the following. 

T94. If ~ ;13 are wf'e 1 s of i(Q of the same simple type, 

then 

(l) 

{2) 

(3) 

{4) 

(5) 

(6) 

m s,i<o (- Tr) if )3 if "l ' M0 , Val ex.=-= p = T if and only ex = 
Y'n I' 1<4) (- ff) if "< E M0 , Val a: =-.? = T if and only if 

I (o:: - )3) 
I,'Kw 
} (Ci - /3) if and only if a: = J3 
s,~ 

~ (Ci-= )3) if and only if I (ex - )3) 
'r.;~t..J I,'1fu 
either~ (0: ::s: $) or J ,..v(Ci: - ~) 

s,-Xw s,1(; 
either) (ex -- J) or I #(Ci-= f3> 

I,"15w I,"Xw 

Proof: (1) by 'J!l6, 'lbg, D63; (2) by '1:(6, '171, '170; 

{ 3) I ( 4) by ( 1) I ( 2) j ( 5) I ( 6) by ( 1) I ( 2 ) I T"f 3 • 

'Ihe preceding theorem provides a convenient proof of the 

fact, asserted 1n connection with theorem 83, that validity 

under the syntactical interpretation or 1'fw and validity 

under the intensional interpretation or -t(w do not, in 

general, agree. In tact, neither implies the other. 
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T95. Let S1 be Pred(O,O). Then 

(1) (~ =-= NN~) is valid under the intensional interpre­

tation of 1tw but not under the syntactical interpre­

tation 

(2) /ti(¢ == 11..vSJ') is valid under the syntactical interpre­

tation of ~ffw but not under the intensional interpre­

tation. 

Proof: (1) by T94, 'r73, '1.76; (2) by (l), T94. 

We can now establish the validity of the remaining axioms. 

T96. 

(2) 

'ffl. 

(l) 

(2) 

(1) If ¢ is a Syntactical Individuating Axiom of Jf(c), 

then /=-=- ¢. 
s,-HtJ 

If fl is an Intensional Individuating Axiom of i(.,, 
then \=-=-= ¢. 

i,1<t..J 

Proof: (1) by Tg4, '!73; (2) by T93, T94, '!73. 

If st is a Modal Axiom of 1(,, then 

J=-!1 s,-H(J 

' fl I,1<41 

Proof by the cases of D86: (1) by '1'93, '.173, T8o; 

(2), (3), (4) by T93 1 'J.73; (5) by T93, T82, T86, 'J!73J (6) 

by T93, T82' 1·f!lr' T73 • 

'lhe theorems of j(Js) are the consequences or the 

axioms by two rules of 1nterence: modus ponens, and modal 

generalization. The latter leads trom a theorem $1 to the 
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theorem N~.77 We next define our new notion of consc-

quence. 

D87. fl is a consequence of _1!__ by modus ponens and modal 

generalization if and only if 

(l) A is a set or wfe's of 1{~ of type t 

(2) there are S and n such that: 

(a) S is a finite sequence of length n+l 

(b) Sn = ; 

(c) if O ti:. m ~ n, then either 

(1) 

(ii) 

(iii) 

, 
Sm E A, or 

there are j,k < m, and SJ = (Sk?Sm)' or 

there is a j(m, and Sm m N'SJ· 

DBB. Let A8 be the set of all fl satisfying one of the 

following conditions : fl is a Logical Axiom of 1(,, ; is a 

Delta Axiom of 1fw, fl is a Syntactical Individuating Axiom 

ot 1{,,,, ; is a Modal Axiom of 1(,. Then )-' is a theorem or 
the Syntactical interpretation or ii(,,,) ( \s 1t VJ) if and only 

- ' w 
it LI' is a consequence of A8 by modus ponens and modal 

generalization. 

D89. Let A1 be the set or all , sat1sty1ng one or the 

following cond1t:lons: fl is a U>gical Axiom ot 1ffAJ 1 'I is a 

Delta Axiom of 1-(~, ; is an Intensional Individuating Axiom 

ot ~, ; is a Modal Axiom or 71r.J • Then '1jJ is a theorem 

ot the Intensional interpre~tion or 11~ ·( ~ lp) it and 
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only if lf is a consequence of A1 by modus ponens and modal 

generalization. 

'!he following theorem, which asserts that all theorems are 

valid, provides half of the completeness argument which 

will be finished in the following section. 

T98. 

(2) 

(1) If~ '11 then / 'I 
,~,1f4> s,1<t.J 

If /1 ~ fl, then/ 'I 
I IJ I,~ 

Proof by induction on the length of the proof using 

cases ·(1), (11), (iii) or D87: case (1) by "1:(9, '1'91, '1'96, 

T97; case (ii) by T80; case (iii) by T93. 

27. Completeness and Decidability of 11(» 

'lhe crucial lennnas for both the completeness and the 

decidability argument are theorems 102 and 103. 'lllese 1n 

turn depend on theorems 99 and 100. 'lhe latter indicate 

the general idea or the arguments. Each formula of rank 

n+l is shown to be provably equivalent to a formula ot rank 

n. By this process each formula or -ff't.J is reduced to a 

formula of 1(0 Where we can apply the results or section 25. 

T99. Let n be any natural nwnber such that all wfe • s V' or 
i(n ot type t satisfy both of the following conditions: 

(1) it ) '\f , then Is 1?. · 1/) 
s I 1(/.U I CJ 

(2) 1f it is not the case that J VJ , then )! ~ .Nlf'P. 
s,~ I tJ) 

'!hen 1f ~ 18 any Wte Of 1( n+ l Of tne t I there 18 8 r 8U0h 
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that: 

(3) r is a wfe of 1( n of type t, and 

(4) ~ (¢:::r> •s,"tf w 
Proo.f: Assume the hypothesis and assume that ~ is a 

w.fe of 11 n+l of type t. We show that there is an appro­

priate (1 by induction on S1 using the cases of T37. 

Case(l): S11sawfeof 1(0 ,henceof/Yn. Let r=¢. 
Case (2): by the inductive hypothesis and the logical 

axioms there is an equivalent r of the same 

structure. 

Case (3): subcase (1) ct.= )3: by the individuation axioms 

J.-.__ '/. Hence, let ri be any tautology. is, 1fw 

subcase (ii) ~ f ~: by the individuation 

axioms ~Nj1. Hence let f1 be the negation of 

any tautology. 

Case (4): argument as in Case (1). 

Case (5): by the delta axioms ~ {fl:=. (oc == )3)). Hence,, 

using the logical axioms, it suffices to show 

that there is a 1f provably equivalent to 

(«.:am )3>. 

aubcase (1) the type of ex is 1: argument as 

in Case (4). 

sub case (11) 
'llY' 

the type or a:. is C:: argument as 
in Case (3). 
sub case (111) the type or ex. is t : argument as 
in Case (2). 
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Case (6): subcase (1) 1~ 1/1: by the hypothesis or the 
i:J , • 1r (A) 

the theorem, ts,=Rl.t.> 1f. Thus by modal generaliza-

tion l--n- N)j', that is Is R fl. Hence, let r 
l~11'5w I W 

be as in Caae (3)(1). 

subcase (11) not ~ lf: by the hypothesis of 
IU 11"14, 

the theorem 1---r-N'N\f' that is, (7!""'!lrNfl. 
I:::>,"(({.() ....,,,\:...., 

Hence, let r1 be as in Case (3) (11). 

TlOO. If '~' and '~' are replaced in theorem 
s,1{W I W 

99 by ·~· and '~' respectively, the result is also 
I,1>w 

true. 

Proof is aa for T99 with exception of Case (3), which 

is as follows: 

Case (3}: subcase (i) \:-: {o: aa )3): by the hypothesis 
l:, -fft.J 

TlOl. 

then 

of the theorem, modal generalization, the indi-

viduation axioms, and the logical axioms/t,"R'(..Jfl. 

Hence let fl be any tautology. 

aubcase (ii) not } 1< (a. =-= )3) : by the 
I" c.u 

hypothesis of the theorem, the individuation 

axioms, and the logical axioms hi.--.- ~. Hence, 
•.L11<w 

let r be the negation of' any tautology. 

If A is the a et of logical axioms ot -Kw, and ~ ; , 

(1) ;..__'I 
,~ '"X4> 

(2) ~1' 
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Proof by induction on the length of the proof of ~. 

Tl02. If n is any natural number, and lp is a wre of *n 

of type t, then 

(1) 

(2) 

if' ) lp, then Is 1<. lp 
S,-'/fc.; I w 

if it is not the case that then 

Is w. .vlf? 
I l.J 

Proof by induction on n. Case (1) n = 0: (1) by 

T82, T84, TlOl. To show (2), assume the antecedent of (2). 

Then by T82, T89, TlOl, and modal axioms of kind 5 and 6, 

there are r Ix. such that cr (r :>X), Is 1?, ~NX., 
I f..J J Ci,) 

lq (N1f":::> NX). But then by modal generalization on ( r :::> X) I 

modal axioms of kind 1, and logical axioms '---- llN"\p. 
I~, 'n'cJ 

Case (11) n = rn+l: assume the antecedent of the theorem. 

'lhen by the inductive hypothesis and T99 there is a r such 

that r is a wfe of 11 m and (A) I )s,'1() C'-¥ ~r). To show 

(1), assume the antecedent of (1). Then by T98 and (A}, 

I r. Hence, by the hypothesis of induction Is ~ r, 
s, 1feu I W 

therefore by (A) n- Y . To show ( 2), assume the ante-
, w 

cedent or (2). Again by T98 and (A), not / I'. Thus 
s,-X(A) 

by the hypothesis of induction IS1(. #NT'. But by (A), 
I W 

the logical axioms, modal generalization, and modal axioms 

of kind 1, Js, 1W (N\P.:> Nfi). Hence, by the logical axioms 

~NN"f. 

T103. It 't-:-' and ~' are replaced in theorem 102 by s I n4) I~ 1'1\(_J 
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'I--=-=' and ·~· respectively, the result is also true. 
'1:1 "'Kw I (...) 

Proof ie as for Tl02 but using TlOO in place of '1'99. 

'.lbe following is the completeness theorem for 1(w. 

Tlo4. (1) } ¢ if and only if /s 1f ¢ 
s,1tw ' w 

(2) )-=--=: fl if and only if /I -X ¢ 
'I,1f'-> I W 

Proof: (1) by T98 (1), T102 (1); (2) by T98 (2), 

Tl03 (1). 

T105. 

(2) 

(1) 'lbe set of all ¢ such that f fl is decidable. 
s,1<w 

The set of all ¢ such that ~ ¢ is decidable. 
'r I 7(1.iJ 

Proof: By Tlo4, Tl02 (2), T103 (2) we can enumerate 

both the given sets and their complements within the class 

ot wi'e' s or ~ of type t. 

28. Comparison With Indirect Discourse 

For purposes of comparison, let us now consider a 

system of modal logic developed by the method or indirect 

discourse. We call the language, fi.d.. All well formed 

expressions of 1{1.d. have type t. The atomic formulas 

are sentential constants, thus identity does not occur. 

We introduce the wte•s of if i.d. by a recursive definition. 

D90. ¢is a wte ot ~i.d. if and only if p satisfies one 

ot the following conditions: 

(1) there is a natural number m such that p-·1s Pred (m,o) 
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(2) there are wfe's of ~i.d. 1JJ,X. such that 'I is ('tf'::>X). 

(3) there is a wfe of Jfi.d. 1Jl such that'/ is /\/if. 

(4) there is a wfe of 1{ i.d. If such that fl is N f. 

Our axioms will be such as to allow a natural interpretation 

of 11~.d.· Donald Kalish has dubbed this system s13.78 

Let us imagine that tautology of tt'i.d. is defined on the 

pattern of D69 and 1170. Then we can succinctly introduce 

the axioms of S13. 

D9l. g is an axiom of Sl3 if and only if there are wfe's 

of 1(1 .d. lf, X such that fl satisfies one of the following 

conditions: 

(1) fl is a tautology of "°R1.d •• 

(2) fl is (N(\l'~X)::J (Nlf::> N/(.)). 

(3) ¢ is (N \l1.::> 1}'). 

(4) fl is (Ni}'::> NN tp). 

(5) fl is {hN~~ N A"N'j}). 

(6) 1/'1s also a wre of --K0 , 1f is not a tautology, and 

'! is NN "f. 

Axiom schemes {1)-(5) are the axioms of the more familiar 

Lewis system SS. Axiom scheme (6) adds ~N~ tor modal tree 

non-tautologies 1P. Note that the first clause in (6) 

requires that 1f does not contain Nee. 'lbe notion or a 

theorem of Sl3 (written 'I Sl'S') is defined with respect to 

the interence rules modus ponens and modal generalization, 

only here the latter rule leads tromst to N~ rather than 
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to N.,. We now introduce the value of n wre or -1<1.d.· 

092. Ii' 11s a wi'e 01' ~1.d,' and m' ;o• then the value 

of fl in >n with reopect to '1f 1.d. (Val ~.d. (p')) is given 

by the following: 

(1) Val~i,d,(1) g {T,Ff 
1(1 d 1(, 

(2) 

(3) 

(4) 

(5) 

if st is Pred(m,o) then Valnt • •(¢) =Val~(¢) 

if st is P·Y==> :X) , then Val~· d • ( p') -= T if and only if, 

11' Va1)•d• (1!1 a T then Val'fii,d, (X) • T 

-1< 
if ¢ is #£P, then Val~• d • ( yf) = T it and only 1r it 

is not the case that va1"1kd· ('+') a T 

if, is N1fJ, then Va11A•d•(p') = T if and only if for 
1(. 

all Y1_' M0 , Val ~.d. ("f? a T. 

We define validity in 1(i d (written •I.:....:•) 1n the usual 
• • ""1l1~d. 

way. We can now state the completeness theorem for '-*'i.d. 

which was first proved in Carnap [3]. 

T106. tsn- ; if and only if /::fr, ~ 
1.d. 

It the sentences ot lf1• d. are understood as denoting 

truth values, N; is certainly an oblique context or ,. Thus 

translation into ~ should Just amount to replacing ; in 

such contexts by its analogue J. 

D93. It'! is a wte ot --K1.d.' then the translation ~F « 
into direct discourse (Trans(jl')) 11 given by the following. 

(l) 11' m is a natural number, Trans(Pred(m,o)) • Pred(m.o) 
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(2) it ~, X are wfe 1 s of 1<1.d., then Trans(1f:> X) = 

(Trans(¥) ::::> Trans(;(} ) 

(3) if lf' is a wfe or 1f i.d., then Trans (..Vlf) = 

11( Trans (1'}) 

( 4) if 't' is a wfe of "'X1• d., then Trans (N )/)) = 
N Trans (;pj • 

Every wfe of' ft'i.d. has as its translation a wre of' 1fw· 
The following theorem indicates that our translation is 

correct. 

Tl07. If 11s a wf'e of' -r1.d. I and m E Mo' then 

(1) Val ~.d. (fl) = Val~ 1t'ru(Trans(fl)) 

(2) Val~d. (Sf') = Val~~ (Trans(S')) 

( 3 ) M <I if and only 11' l 1<, Trans (fl) 
1.d. s, (A,) 

( 4) !.-= fl if' and only if' I Trans (fl) 
'"1.d. I;"/W 

(5) f-m3 <I it and only if' ls,1~c.;T.rans($1') 

( 6) \--m- <1· if and only if' (~ Trans (<I) 

Proof': (1), (2) by induction on $1'; (3), (4) by (l), 

(2); (5), (6) by (3), (4), Tl06, Tl04. 

'lheorem 107 provides us with another large class of' 

sentences with respect to which our two interpretations 

or 1({,J agree. 

Tl08. It ; - Trans(l.f) tor some wte 1.1' of' 1"11.d., and 
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CHAPTER 5 

THE LANGUAGE ;( (....> 

A full development of the material of the preceding 

four chapters would provide a treatment of at leaet the 

following topics. A language iw1 modeled on 1f6J, but 

based on the full first order predicate calculus with iden­

tity and description, can be constructed. The comparison 

of i.w to an indirect discourse development of quantified 

modal logic raises a number of new and interesting ques­

tions. In particular, the problem of translating s~ch lan­

guages of indirect discourse into cf w can be shown to in­

volve far greater difficulties than those concerned with 

the translation or *1.d. into liw. The translation prob­

lem leads one to consider some versions or essent1al1sm. 

The notion of the essence of an entity x can be roughly 

explicated as that concept which is a concept or x in every 

possible state of affairs. Various essentialist interpre­

tations of Aw are possible, with interesting relations to 

different systeme or quantified modal logic. An investiga­

tion in this area reveals the exact extent ot support for 

Quine•a often repeated claim that quantified modal logic 

presupposes esaentialism. 

The full development or these topics exceeds certain 
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limitations on the present worlc. However, the construction 

and intensional interpretation of //JJ are so centrally re­

lated to the aim of providing a foundation for intensional 

logic that it seems important to include at least the 

following abstract of that development. 

29. Syntactical Interpretations 

The language J.w differs from 1{~ in the presence of 

variables of each simple type and the two variable binding 

operators: the universal quantifier, and the description 

operator. Thus the base language ~' upon which the hier-o 

archy leading to i.w is built, is the full first order 

predicate calculus with identity and descriptions. 

If the syntactical and intensional interpretations of 

the hierarchy of languages 1(n are compared, it will be 

noted that the intensional interpretation offers several ad­

vantages by way of simplicity. Under the intensional inter­

pretation Nee can be dropped as a primitive constant and re­

introduced by definition as suggested in footnote 76. Under 

the intensional interpretation, the universes or a given 

type with respect to -/(n, 1f n+l' and 1{0 are all the same. 

Also, under the intensional interpretation, the value (deno­

tation) and sense of a given wfe or 1}n remain constant for 
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1f n' 1( n+l' and 116)• 
The difficulties connected with the relation between 

the universes of a given type with respect to the syntacti­

cal interpretations of 1(n and -kn+l would be multiplied 

with respect to ~6J' seeming to require not only a new hier­

archy construction but the ramification or each higher sim­

ple type of 1icv into orders. Note that whereas a variable 

of type t 1 in f.. 1 takes as values any wfe of i 0 of type t, 

a variable of the same type in !.2 draws its values from 

the wider class or wre•s or ~1 or type t. Hence the natu­

ral course seems to be to divide the type t 1 of ;/<;J into 

the types [t1,o], [t1,1], [t1,2], etc., where ~n+l would 

contain variables or types [t1,o], ••• ,[t1,n]. The language 

-/:.U.J could then be, as before, the union or the languages 

~n• 'lhis problem does not arise under the intensional in­

terpretation of J.(,,.l. Further simplifications available to 

the intensional interpretation of ~l.J but denied to the syn­

tactical interpretation concern the fact that if cx.and)3 

differ Just by rewrite or a bound variable, Ci. and p must 

have distinct denotations under the syntactical interpreta­

tion but will have the same denotation under the intension­

al interpretation (since c:x and p1 being logically equiva­

lent. will have the same sense). 

For the above reasons~ and others, we leave the syn­

tactical interpretation or a direct discourse language 

based on the full tirst order predicate calculus to tuture 
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developments. For the present we content ourselves with an 

intensional interpretation or ;/.lJ, hoping the contents of 

Chapters 2, 3, and 4 to have supplied sufficient Justifica­

tion for our earlier claim of an essential similarity be­

tween different direct discourse treatments as opposed to 

the fundamental differences between direct and indirect 

discourse treatments. 

30. The Language l.w 
The type structure or ;fu.J remains that or 1<w• The 

new atomic wfe's consist of an infinite supply of variables 

of each simple type. The variables or each type are ordered 

so that we can speak of the rnth variable of type 'C. We 

also add two variable binding operators: The Universal 

Quantifier, and The Description Qperator. The variable 

binding operators have no types, and thus are not wre•s. 

'Ibey are the only syncategorematic expressions of our lan­

guage. 'Ihus, the atomic wfe's of /:."1 consist or all the 

atomic wfe 1s of 11(,.) plus the variables. 

'lbe well-formed expressions o~ i.tJ consist of the 

atomic wf'e's of 1.w plus compound wfe's of;(~ formed in 

one of the following three ways. 

(1) It ~' <Xi, ••• ,~ are wte' s ot ~(,J or types 
r""o I""\ '""' <?i' • • • 1 z;,,9, S, ... , t"r respectively, then Yt_ ~ ••• °t-

ie a wte ot ~ ot type 11,· 

( 2) If' « is a variable ot f..tJ, and fJ is a wte or /l.AJ ot 

type t, then 'l'he Universal Quantifier'""' <i"{I is a wte ~· 
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J...w of type t. 

(3) If oc is a variable of fw of type L, and 'I is a wre 
f_ A~ or ""{4) of type t, then The Description Operator cx:.jt 

is a wfe of /.0 ot type T. 

Note that all wfe 1 e or 1l are also wte •a of' ;f 0. 

We carry over all the abbreviations of D42-D47 and 

add the following: 
u ~~ 

(l) va..fl = The Universal Quantifier ex; 

(2) la~ = ~e Description Operator"'c£9' 

(3) 3o:.fi = NVo<.Nfl 

1.he set of tree variables of the wfe oc:ia defined in 

the usual way. The order of the variables allows us to 

speak ot the n~ variable of type?: not tree 1n ex. A wi'e 

without free variables is said to be closed. 

Our treatment or descriptions follows the method of 

Frege as modified by Carnap. For each simple type l: we 

choose the distirysuished constant of type I in accord with 

the following. 

(l) 'lhe distinguished constant ot type 1j is Opsymb3(o,o) 

(2) ihe distinguished constant or type tJ is Pred3(o,o) 

An improper description ot type 1: will then have the same 

denotation as the distinguished constant or type "C 

31. "!he Intensional Interpretation ot J'..w 
When h1 'M0 , and "tis a type the, up1verse ot i- in Yrl, 

with re,s;eect to 4 ( t(7'l(!:)) remains as it waa tor t{G.J• 
on}1' the .closed wte•a ot J:t,D can be said to have a 
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denotation properly spealting. But for wfe's containing free 

variables we can introduce a kind or quasi-denotation rela­

tive to an assignment or values to the variables. 

If rtl E M0 , then 4, is an assignment to variables for "'Yf1 if 

and only if a_ is a function from the variables or ~W' 

which assigns to each variable of type"C an element of the 

universe of "'C in rn. If CL is an assignment to variables 

for Yli, cxis a variable of type "C and xis an element or 

the universe of r in m, then a.~ is that assigrunent to vari­

ables which is exactly like ,Z except possibly for ex, to 

which it assigns x. 

When 'frl ~ M0 , a. is an assignment to variables for rfl, 
and (X iS a wfe Of J..t.J.) I then the Value Of CX, in m I a.. With 

respect to the intensional interpretation of f, tu (Val?n a_f or)) 

is given by the following. 

(l) 

(2) 

(3) 

(4) 

If O:.is an atomic wte or l.w other than a variable, 
I, 1i'. 

then Val ma.( cc) a Val 'flt w ( ~ • 

If ex.is a variable or iw, then Valh\.o...Ccrl = a_ccr). 
It~' °l,1•••1C\- are wte's of l..(.J of types 

<Zi1•••1i;.1tc,>1 t'1, ••• ,'l; respectively, then 
( /\ r\ r-

Val;-n a.. 1l. cx.i_ ••• ~) • Val-ma. ( ~) (Valm~ °'],), ••• , 

Val f'rta..-( Cl'r) ) • 

If ~ is a variable of iw ot type T, and Si is a wte 

or~ ot type t, then Valma._C'V' o: ft) • T it tor all 

x' L{llL('C) I Val m<''I> - T; otherwise Valrn.11._<Y oc st> -
F 
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(5) It ex. is a variable of "W of type L, and $1 is a wte 

or ~W or type t, then Val">"na...(Lcx:. SJ') =- the unique 

x' {l'h\ ('t) such that Val i11~{1') = T, if there is such 

a unique xi otherwise Val?rt a_ (Lcx..jl) = Val rn_aj the dis­

tinguished constant or type '2:"). 

It follows easily that the value or a wfe is 1n the 

appropriate universe and that the values of the wfe's or--Ncv 

remain as they were. 

32. Senses and Quasi-Senses 

Just as we can only speak of closed wfe's as properly 

having denotations, we can only epeal< or closed wfe's as 

properly having senses. But on analogy to quasi-denotations 

we can assign quasi-senses to wfe 1 s which contain free vari­

ables. Here we must relativize to an assignment ot senses 

to variables. We need not introduce any new functions here 

since we can again make use or our assignments (or denota­

tions) to variables. Let il.. be an assigrunent to variables, 

then we may think or a._ as assigning senses to variables 1n 

the following way. It ex. is the m tl! variable or type 7:, 

and p is the m !tl variable or type 'F, then 0... assigns as 

sense to oc;_ the concept a ( )3) • 
'!he matter can be put more easily it we introduce one 

ot the clause 1n the definition ot the bar twict1on tor~. 

It OC.18 the tntE variable ot type ~ then a is the m'lfil vari­

able or type ::C-. How let '((. be 8n7 assignment to variables 

and ?t be 8.111' model 1n M0 • '.then the reduction ot ~ to 2t. 
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(a·n) is that function on varinblos which ano1gns to each 

variable ex, a.(~ ('Yl). Note that alt ia an assignment (of 

denotations) to variables for rl. 'Ille (quasi)-aense or a 

variable cc relative to an assignment~ will be that func­

tion which asoigns to each n' M0 , a.ft( cq. Following this 

pattern, we can introduce the relativized notion of sense 

(or quasi-sense) as follows. If o:.is a wfe of I.I,).) of sim­

ple type, and (}_ is an assignment to variables, then ~ 

sense of ex relative to 0..- (Senaea_(o:)) is that function on 

M0 , which assigns to each n ( M0 , Val '°n (l~cx). If l is a 

wfe of lw of complex type, then 7 must be an atomic wfe 

of 1fc.u· Hence 'rt cannot contain any free variables, and 

the sense of yt can be as it was for 1{~. 

If a. is a closed wfe of ~VJ, 1 ts value in a model is 

unaffected by the choice of assignment and similarly its 

quasi-sense is unaffected by the choice of assignment. 

'nlus for such wfe's we will sometimes speak simply of their 

senoe (rather than quasi-sense). The above definitions im­

ply that the senses of all wfe •a of 1{(,J remain as they were. 

33. The Bar Function in lw 
We now extend the definition of the bar function to 

cover all wfe' s ot lw. The poss1b111 ty of defining \I a. P' 
and L, ex. 9 w1 thout introducing two whole hierarchies of" 

variable binding operators (namely, the Jt!!. analogue to 

The Universal Quantifier, and the Jt.h analogue to The De­

scription Operator, for each J) very greatly s1mpl1f1ee the 
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structure of i'CJ . 79 A few fundamental theorems are stated 

without proof. 

The following defines the analogue to a wfe ct:.. of ri w -
(ex). 

(1) If ct.. is an atomic wfe of -kv.;, ct. remains as before. 

(2) If ex is the m th variable of f.0 of type "C, then 'a. 1a 
th ~~ 

the rn - variable of lw of type l:. 
A /""'\ /'"\ .p 

(3} If ~ ~ ••• <\. are wfe 1 s or Aw of types 

<'l1 , •.• ;z-r,~>, ti1•••1t;, respectively, then 

~"'cx{1 · .. '&r is 1"~ ... "Cir• 

( 4} If ex is a variable of /..(J, and </ is a wfe of icu of 

type t, then 

?a:.<11s LJ3 1 (tiO:.N(jJ 1.::> 1~) & 
Vt). Ctl<i.N (¥]_;j1¢> ::q-iCfi='1 /31> > >, 

where )31 and ti_ are respectively the first and second 

variables of type t 1 which are not free in ~ and which 

are different from tX (if oc happens to be of type t 1 ). 

(5) If o: is a variable of~ of type <:;, and 'I is a. wfe 

of X(,,J of type t, then 

Lex., is 

G J3 N (Vex: (p>:( ct=- J3) )v(w3)3 V cx(i:J a ( C( =- )3)) A ( )3 - ~)) ), 
where J3 is the first variable of type "( which is not 

tree in ~ and which is different from ex, and ~is the 

distinguished constant ot type c;:. 
It is beyond the scope of this abstract to give a de­

tailed proof or the adequacy of clauses (4) and (5) above •. 
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but some insight into the idea involved may be gained from 

the following remarks. The argument, of cour3e 1 1E by in­

duction. 'lhe right hand side of (4) may be rend as follows: 

"the proposition which is first, true only in models for 

which ~ denotes a true proposition under every assignment 

to a:, and second, the strongest proposition satisfying the 

first condition". Also, from the inductive hypothesis, it 

can be shown that the wfe V<:1-~ is tr~e in f1l if and only 

if for all assignments of a concept of the appropriate kind 

to a, ~ denotes a proposition which is true in 111. The 

right hand side of (5) is formed by taking the wfe 

( L a. 'I = j3) and eliminating the description. This results 

in an equivalant wfe r. Hence, G ;B N7i'" (the right hand 

side of (5)) is equivalent to L J3 N ( L ex¢' m:: )3), which by 

the individuating principle for 1ntens1ons is equivalent to 

{., J3 (C ex ¢ = ]3) , which is equivalent to L oc. ¢. A more 

systematic development leads to the following fundamental 

theorem on the adequacy of ;f (J). 
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If we recall that Ci: is a standard name of the concept ex­

pressed by ct., we may call the wfe'a alluded to above cont1n­

s;ent names of concepts. For example, let P be Pred(o,o) 

nnd let -p1 be a variable of type t 1• Then 

l1), ( (P~ (Pi :::=:c(P5P')) )V(N'P& {p1 ===N (P.:>P))) ) denotes the 

necessary proposition if P is true, and the impossible prop­

osition if P is false. If we call the wfe in the example 

"f11", we see that N¢1 is equivalent to P. Hence,, in con­

trast to theorem 93 for 1fcJ, neither N¢1 nor ,v N$11 is val­

id. 'Ihe availability of such wfe's as ¢1 in J..l.D allows us 

to now treat informal arguments closely related to that 

given 1n section 8 in connection with the comparison of 

direct and indirect discourse treatments of obliquity. 

34. The Incompleteness of /:.(J 
The valid wfe' s of It;) under the intensional inter­

pretation do not form a recursively enumerable set. Thus, 

according to the usual notions of axiomatization, they are 

not axiomatizable. The proof of non-axiomat1zab1lity is 

simple. If ¢ is a sentence of the first order predicate 

calculus (or, more exactly 1 the sublanguage of ;;("' , /... 0 ) 

and¢ is not valid, then N'Nfl is valid under the intensional 

interpretation or ~VJ (see theorem 114(8) below). 'lbere­

tor~ a complete axiomatization would allow us to enwnerate 

both the validities and invalidities or first order logic, 

thereby providing a decision procedure contrary to Church's 

theorem. 
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35. Some Valid Formulas of t w 

All the usual logical principles of the first order 

predicate calculus with identity and descriptions are avail­

able in cfw, subject only to the restriction that the formu­

las in question be well formed according to our type rules. 

Leibniz' Lo.w (in fact, Frege 1s Law), existential generaliza­

tion, W1iversal inDtantiation (sometimes called "specifica­

tion"), are all valid irrespective or the occurrence or 

placement of modal signs. In addition, if ¢ is a valid 

formula of i.c:J, so are N~ and 'i a::¢. Thus modal generali­

zation and universal generalization are both validity pre­

serving inference rules. Modus ponens, of course, remains 

a truth preserving inference rule. For those who treat 

extensionality as a property ot theories which obey Frege•a 

Law (in its many forms), we can show that ~tJJ• wider the 

intensional interpretation, is fully "extensional". 

Corresponding to the set or Delta Axioms or 11(,J, we 

now state two separate schemes. '!he complication is due to 

the fact that a wfe may contain free variables. If <$. is a 

variable, CX.is simply another variable. No special require­

ment is placed upon assignments to variables which would 

make .A(Ci,o:) valid in such cases. Thus, the counterpart to 

the Delta Axioms requires an additional hypothesis. As be­

fore, we will use the symbol " lt,lCJ 11 to indicate validit1 

under the intensional interpretation or -.'"". 
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(1) if the free variables of oc.are 61, •• .,Sn, then 

1--:. (A(ri,01)& ... ~A c;r;; .. an)~ <~<a, )3>=<~ -)3)) > 
'I, l:.w 

(2) if oc is closed, then I t. (~(a, /3) :=: (ex: ~3)) 
I' (,,) 

The loss or theorem 67 requires separate statement of the 

principles that (1) Delta(~ denotes a function, (2) there 

are no empty concepts, and (3) everything falls under at 

least one concept. Bo 

Tlll· It,,~ are variables o:f I(,,,) of type r, and Q"l is a 

variable of f.u; of type ~' then 

( 1) 11' 'lw ( ( ~ ( ~, )3) & A ( °l • ~) ) -:::> ( /3 =-- t') ) 

<2> 11 ,1"' VOJ. 3 )3L).(~, )3> 
(3) ll,~w= VJ3 3 Cl)_ A(~, )3) 

The principle of individuation for concepts can be 

expressed in /fJJ in the same form as in 1(tu• 

Tl12. It ct, 'J3 are variables or ~LJ) of the same type, then 

liZ, CN (ex . )3>=-<a~ )!>> 
In connection with the preceding theorem note that (cx:---)3) 

is simply ca --1/J>' and that the whole wf'e can be uni-

versall.y generalized with respect to the variables CX, ft· 
As indicated in footnote7&, Nee could be introduced 

in ;(GJ b~ an axiom or definitional rorm. This tact 1s veri­

fied in the tollowing theorem. 

Tll3. Let 1'1 be the tirst variable or type t 1, and let P be 
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be generalized to l(.J) without adding some restrictive hy­

pothesis (for example, that the wfe's are closed). 

Tll4. If ~ .. 'if are wfe' s of iw of type t, then 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

I 1 ( N (?.? ip) .::> (N~ :;> N°1p1) 
I, w 

if ~ is closed, then {::=-F (N~::> fl) 
I ,J..Uj 

if the free variables of ¢ are cS 1, ••• , £ n-' then 

It 14.l ( ( .6. (;,1,c:l 1 l& ••. t ~ (3"n ,On)).:::> (NJI ;:,jt)) 

lt .. ::<CA) (~::>Tr ,) 

if ¢ is closed,, then ~(N~::> NNT/) 
II,ttw 

if ~ is closed, then lr,i.,;}tl~.:J NNJ.J'~) 
if ~ is closed, and 1f is an instance ~ obtained by 

proper substitution on predicates and operation sym­

bols or 1( 0 , then I=:-.- (Nj7;:) N\?) 
'l, I:.{,) 

( 8) if ft is closed, and not ~ .. ;w <f, then Ji,lw f'I~. 
Finally, we come to some principles which combine mo-

dality with quantification. 'lheorem 115 asserts the validi­

ty of some principles whose indirect discourse counterparts 

have frequently been assumed by modal logicians. 

Tll-5. It ¢ is a wfe of iw ot type t, and a.. is a variable 

of f.(J)• then 

( 1) /r,z= ( \r'-;_ ~a N 'flo:. ~) 
(2) /~ (3 oc ~='N '3« j1) 

'Ihe tollowing theorem asaerts the validity of a prin­

ciple to which, it seems., no previous modal logician has 

given assent. 81 
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Tll6. If tj in a wfe of i0 or type t, and ~is a variable 

of ic.:i , then II,/ tv ( N 3 ex:. j1 :> 3 ii:. N~) 
The proof or theorem 116 goes roughly as follows. Asswne 

that N 3 o:., is true, then 3 o: f1 ia true in every model. 

Hence, tor each model )1. there is some entity 17.oc. which when 

talcen as the value or the variable ct.. makes ~ true in n. 
Let f be that function on M0 which assigns to each Y1'M0 , 

nor.. Note that t is a concept; in tact, t is in the uni­

verse of the type or ex. But now if f is taken as the value 

of <X:,, will denote the necessary proposition; hence~ 

will be true, and therefore ~ <X. ~ is true. 

Let us now look at the kind or argument that might be 

given for rejecting the principle of theorem 116. One 

might argue that al though in every model 'Yl there is some­

thing which when taken as the value of o: makes 'I true 1n Yl, 
that thing might vary from model to model. Therefore it 

might still be the case that no single th'-!!& would be such 

that 1n every model it had the property expressed by ;. 

When put in this way the presupposition of the argument 

comes clearly to light. The variable Ci:.. is to range only 

over concepts which pick out the same thing 1n each model. 

Thus the universes ot concepts are to contain only essences. 

'Ibis is eesentialism. 
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NOTES 

l. We will use the following expressions in speal<:ing 
about functions. Let r be a function, then the set ot 
entities to which r is applicable is called the domain 
or r, the set of values obtained by applying r to an 
element of its domain is called the range ot f. If f 

is a two-place function which is applicable to any 
pair of entities <z,y) when z is an element of A and 
y ie an element of B, then A is called the first do­
main of r and B is called the second domain or f. 
Functions or more than two places are treated s1Jn1-

larly. Alternatively, we may use the notation 11~11 

tor the set of all couples (Z,Y> where z is an element 
or A and y is an element of B, and say of a two-place 
function whose first domain is A and whose second do­
main is B that 1 ts domain is (simply) (AxB). If t is aey 
function whose domain is A and whose range is included 
in C (that is, ever:1 element or the range of f is an 
element of C although C may not coincide with the 
range of r), we sometimes say that t is a tunct1on 
from A into c. ~us, it f is that formation rule 
which assigns to every pair or sentences their con­
junction, and A is the set of all sentences, then we 
would say that r is a !'unction .from (AxA) into A. A 
function is said to be 1-1 it it always assigns dis­
tinct elements ot its range to distinct elements ot 
its domain. 

2. ibe term ''construction" is taken trom the abstract 
CutTy [l]. 
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3. Church [7 L p. 32. 

4. In general, if we identify a type with the aet or 
wfe's having that type, E, T and A are determined by 
F alone as follows: E c the union or the domains or 
the elements of F, T(~ = the domain or any element of 

~ 
F which has <X in its domain, A = E.,, j the wi1on of the 
ranges of elements of F. '!be only requirement seems 
to be that every wfe occur as a part or some other wre. 

5. In particular, for certain metamathematical purposes 
and 1n the field of pragmatics, it is often natural to 
impose additional recursivity conditions, for example, 
that there be an effective way of determining the type 
of each wfe. 

6. We adopt the practice or using "part" for elements 
with respect to the structure with which we are pri­
marily concerned,, and "piece" for elements with 
respect to other possible structures. Hence, what is 
a part from one point of view is merely a piece from 
another. Those pieces or expressions which are 
semantical elements, we call parts and we imagine the 
formation rules or a language to be constructed so as 
to reflect these ideas. 1bus expressions which are 
thought ot as syncategeramatic would not occur as 
wte•s, hence not as a part of any wre though ot course 
they may be pieces or wte•s. 

7. Note that we can define the relevant substitution 
notion as follows. Let C be a oonstruct1on ot J3• 
ihen S (which we call the structure of C) is to be a 
sequence or the same length as c and such that 1t en 
is atomic, Sn • n; if cm is the result ot app].ying a 
formation rule t to <Cm , ••• ,emf>' Sn• <t, m1, •• ~mj> 
(our earlier requ1remenis assure that s is unique). 
O is now said to be the r,esult ot 1uba.tit9tg ope or 
more occurrences ot 1' tor « .in )3, Just 1n caae 6 can 

''·-
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be obtained as the last element of some sequence D 
where: D has the same length as C; if Sn = n and 
en I ex, Dn Cl Sn; if Sn = <t ,ml' ••• ,mj> and en r 0:., 

Dn = f(Dm1, ••• ,Dmj); if Sn= a:, Dn = oc or Dn m 'f; 
ror some k such that Ck: c ct- , Dk = '6. 

This notion of substitution, given in terms or 
the structure of a wfe, has certain advantages over 
more familiar forms in that it automatically talces 
account of 1diosyncrac1es in the design of the wfe's. 
For example, a formation rule f which when applied 
to a two-place predicate and two terms yields the 
corresponding formula may have the feature that 

r ( ' F' 1 x 1 'y ' ) = 1 F ( xy) ' and f' ( ' - 1 • x 1 • y 1 ) = ' ( x = y) '· 
It is clear that the most useful substitution notion 
would have the substitution of 1F1 for '=' in 
'(x = y)' be 'F(xy)' (that is, substitution of 'F' 
for t =I in f ( t F' , 1 x t , I y I ) is f ( I FI I Ix I I I y' ) ) 

rather than '(xFy) •. 

8. Carnap [4], pp. 121, 122. 

9. The best expositions known to us of Frege•s semantical 
ideas are to be found in Carnap [4], especially pp. 
118-133, and Church [7], especially pp. 3-31. In the 
latter, the inchangeability principles are mentioned 
on pp. 8, 9. The present discussion involves a con­
siderable generalization and development of what is 
explicitly found in Frege. In addition, we deviate 
trom Frege in a tew points, especially with regard to 
hie notions or an unsaturated (ungsattigt) expression 
and a function. 

10. OUr general notions or a language and a Fregean 
semantical system can be given so as to apply to 
languages containing variables and arbitrary variable 
binding opera tors. However, certain add1 tional 
1Ubtlet1es are thereby required eo that it seeme best 
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for purposes or the present informal discussion to 
th1nlr of our languages as not containing variables. 

11. 'Ihe first precise development of semantics occurs 1n 
Tarski (l] where the notion of satisfaction is intro­
duced and shown to be a fundamental concept of 
semantics. 

12. 'Ibis point is due to Frege [3]. 

13. It should be noted that even the restriction suggested 
in footnote 10, that we exclude variables from the 
languages presently under consideration, does not 
prohibit us from introducing a constant desc, such 
that if C(. ,)3 are wf'e or the type name and ¢ a wre or 
the type sen terce, then g ( oc:. , J3, ¢) = desc" 1 ( r"a:.)f f°'' ) •, 
g(oc, ]3 1 ¢) is a wfe or the type name, and 
rden(g(o:::, }3 1 ¢)) = the unique x such that either ¢ 
is true and x = rden (a.) or ¢ is false and 
x = rden (t3). Expressions or this form will play an 
important role in our constructions. Many expressions 
of English might plausibly be claimed to have this 
form. For example, statements about the future where 
there are only two possibilities ('The next president' 
uttered after the nominations), statements or the torm . 
'the other ••• ', etc. 

14. Note that Cl still allows other possibilities. For 
example, we may divide the sentences into four 
equivalence classes: true sentences with names as 
parts (T+), true sentences without names as parts 
(T-), false sentences with names as parts (F+). ralae 
sentences without names as parts (F-). Corresponding 
to such formation rules ae oond (oond(Sl','t') • '"(tt·::np),) 
we would then take the semantical operation with the 
truth table 
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R(Jf) 
T+ 
T+ 
T+ 
T+ 
T­
T­
T­
T­
F+ 
F+ 

F+ 
F+ 
F­
F­
F­
F-

R(~) 
T+ 

T­
F + 
F­
T+ 
T­
F+ 
F­
T+ 
T­
p+ 

F­
T+ 
T­
F+ 
p+ 

oond* (R(fi)R(~)) 
T+ 
T+ 
F+ 

F+ 
T+ 
T-
F + 
F-
T+ 
T+ 
T+ 
T+ 
T+ 
T-
T+ 
T-

15. The argument given above that sentences or differing 
truth value can not have the same denotation (in 

languages or appropriate complexity) uses a construc­
tion from Church [l]. !Ihat the language contains no 
oblique contexts is implicitly assumed therein. 

16. Prege seems to have at times believed (see, tor ex­
ample, Frege (1)) that in an expression like 'Fa' the 
denotation ot 'F' must be something incomplete or "Wl­
saturated" which- "hen plac~ in proximity with the 
object denoted b~ •a• immediately absorbs it and tonne 
a new object (here, a truth value). One of his main 
arguments (given at the end or Frege [2]) was that 1t 
'F' in 'Pa' simply denoted an obJect (tor example, a 
set or ordered couples) then there is nothing to hold 
the compound expression 'Pa' together, that is, 1Fa 1 

would not be a sentence with a single denotation but 
rather just a string ot expressions each with ita own 
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denotation like 'John, Fred, Bob'. A similar argument 
is given in Church [7], pp. 32-35, against the pos­
sibility of eliminating all connectives (but compare 
his footnotes 87 and 9ct Here we see again the d1.ft1-

culties involved in attempting a semantical analysis 
simply with reference to the expressions themselves 
and ignoring what we have taken as the essential 
ingredient in a language, namely the structure on the 
expressions. If the compound expression 'Fa' is 
simply thought of as a token obtained by pushing the 
token 'F' next to the token •a•, the unity or 'Fa' is 
lost. Similarly, once one realizes that the expres­
sion 'Fa' is a new abstract object, related to the 
abstract objects 'F' and 'a' by certain formation 
operations,there seems no longer any reason for the 
denotation of 'Fa' to be obtained: simply by pushing 
the denotations of 1F1 and 'a' together. Rather, we 
would expect the denotation or 'Fa' to be a new 
object related to the denotations of 1F1 and 'a' by 
certain regular semantical operations. 

17. Interestingly enough, for languages of appropriate 
complexity an extension along the latter lines would 
again give us the relation of denotation. However, 
this symmetry- does not hold in general tor extensions 
1n accord with Cl and C2. 

18. We gave Cl and C2 in application to the extension to 
sentences or the particular semantical relation 
restricted-denotation. However, the general torm ot 
our criteria tor an arbitrary- relation being extended 
to an arbitrary- type ot wte is clear. 

19. Church, although he apparently conceives ot the matter 
much as we do, adopts the practice of speaking ot 
sentences as names. He writes, "An important advantage 
ot regarding sentences as names 18 that all the ideas 
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and explanations of 9901-03 can then be taken over at 
once and applied to sentences, and related matters, 
as n special case. Else we should have to develop 
independently a theory or the meaning of sentences; 
and in the course of this, it seems, the developments 
of these three sections would be so closely paralleled 
that in the end the identification of sentences as a 
kind of names (though not demonstrated) would be very 
forcefully BW)lliested as a means of simplifying and 
upifyipg the theory. In particular we shall require 
variables for which sentences may be substituted, 
forms which become sentences upon replacing their free 
variables by appropriate constants, and associated 
functions or such rorms--things which, on the theory 
of sentences as names, tit naturally into their proper 
place in the scheme set forth in §902-03. (Church 
[7], p. 24; underlining added.) It 1s our feeling 
that such a practice, even after the underlined remark, 
tends to provide an already unfamiliar theory with an 
unnecessarily exotic flavor which is not likely to 
facilitate its acceptance. 

20. On Frege's terminology and its English forms see 
Carnap [4), p. 118, footnote 21. Also, in this con­
nection, see Church [4), p. 47, lines 11-14, on the 
rendering of 'Gedanke' as 'proposition• rather than 
the misleading 'thought' adopted in Frege (4]. 

21. 1.bus obliquity is indicated by a failure of extension­
ality. 

22. Por an early source see Quine [3]. For one of the 
most recent and richest sources see Quine [6). 

23. For example, the attitUde ot Quine [2] (1947) "When 
modal logic 1e extended to include quant1t1cat1on 
theory, ••• serious obstacles to interpretation are 
encountered" is echoed 1n Quine [7) ( 1961) 11 confusion 
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of use and mention • • • oeema to be a suota1n1ng 
force [for modal logic], engendering an illusion of 
understanding. 11 

24. It is often said that in the development of mathe­
matics no non-extensional contexts arise. On the 
contrary, the rWldamentally important incompleteness 
result of Godel [2] turns on his d1~covery of a pre­
cise treatment or such contexts as rthe sentence S 
says that )t,. Numerous "philosophical interpretations" 
of his result have foWldered on the non-extensionality 
of this context and the subtlety of Godel 1 s {exten­
sional) treatment. 

25. Carnap [4], p. 141. Here as in other formulations 
(for example, Carnap [1], ~7) there is a proviso to 
the effect that only non-extensional systems useful 
for scientific purposes are included. For the view 
that there are no such systems see Quine [6], 
especially §45. 

26. 'lhia insistence may take one of the following forms: 
(a) We may insist that eince planets have no 

syllables, (1) and (2) both denote zero. 
(b) We may insist that although (1) and (2) are gram­

matically correct, as a matter of fact, they have 
no denotation. ('Ihus, assimilating (l) and (2) 
to·:- 0 the number or feathers 1n the wings or 
Pegasus".) 

(c) We may insist that (l) and (2) are granunatically' 
ill-formed, and hence meaningless. 

27. Perhaps Frege was led to this position by his strong 
insistence on Frege•s principle. Indeed, something 
close to that requirement seems almost to be a pre­
condition ot any semantical treatment that we would 
call an "analysis". 
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28. Note that in view of the possibility or ambiguities, 
we must specify more exactly our use or ouch terms as 
11 oblique'', "extensional." In general we uae these 
terms with respect to the ordinalj[ denotation of ex­
pressions. Thus we shall continue to speak of (1) 
and (2) as indicating that the context is oblique. 

29. It is interesting to note that in Carnap [l] (1934, 
especially §§63-71) we already find a fairly extensive 
analysis of oblique contexts in terms of ambiguity, 
here considering the specific case of an expression 
denoting itself. The possibility of analyzing all 
oblique contexts in this wa1 is made the basis for the 
thesis of extensionality. There follows an illuminat­
ing discussion of indirect and direct discourse 
(referred to by Carnap as the "quasi-syntactical" and 
"syntactical" methods) with special reference to the 
logic of modalities. 

30. Another method or treating oblique contexts is just to 
eliminate them as contexts (as in the parenthetical 
remark about 'Hesperus' not being a part of 'Hes­
perus1 •). We may preserve the symbolic form, but 
avoid the dift1oulties by restricting the part-whole 
relation. However, since such a method completely 
eliminates the piece from the field of any transforma­
tion rules, it does not in general provide an adequate 
treatment. 

31. This argument is due essentially to Church [6], foot­
note 23. But there, as 1n oormnentariea such as 
M3"h111 [l], p. 79, it is not clearly emphasized that 
direct vereus indirect discourse ie at the heart ot 
the matter. 

32. 1he numerals enclosed 1n parentheses are introduced as 
abbreviations to refer to the expressions ther enumer­
ate. 1bus, (9) • 'John's tavorite sentence 11 
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necessary•. The displayed expressions function 
autonomously. 

33. See. for example, Quine [7]. p. 329, in which Quine 
admits (and corrects) the error, but incorrectly at­
tributes it to Church. 

34. For an example of the latter kind see the assertion 
in Smull.yan [l], p. 31,, that the truth of "~ere is 
an x, such that x nwnbers the planets and it is neces­
sary that x is greater than 6." is simply a matter 
of "brute fact". 

35. For example, in Church [5]. ~e distinction between 
direct and indirect discourse seems to have been lit­
tle noticed, the partisans or each taking their 
method for granted. 

36. Such systems were tirat developed in Carnap [3], [4] 
and Barcan [l]. 

37. The terms "complex" and "compound" are not used inter­
changeably. Well formed expressions are either atomic 
(that is, without parts) or compound (that is, having 
parts). T.YPes are either simple or complex. Compound 
wfe's are constructed by combining a wfe or complex 
type with one or more wfe 1 s or simple type. 'lbe wfe's 
or complex type include p-place predicates and opera­
tion symbols where p)O, and sentential connectives. 
All wte•s ot complex type will be atomic. 

38. Thus,, the simple types are just nwnbers. But the 
notation 11 1 and 1 t 1 seems somehow leas contusing 
than the use ot nwnerals. 

39. We will later introduce further atomic wte•e, tor 
example, Ops;ymbJ(m1 p) tor arb1traey natural numbers .;S. 

'!here, as here. we tao1tl7 make the natural aaewap­
t1ons about diatinctnese of atomic wte•a. 
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40. ~o identity aign for truth valueo is simply the 
material biconditional, that is,the familiar two­
place sentential connective often written '=:'• It 
is clearly natural to have an identity predicate for 
each universe of entities. Our method of assigning a 
type to each constant (including logical signs) re­
quires that we use distinct identity signs for 
distinct universes. 

41. 'lb.us we exclude such expressions as desc of note 13, 
which would have type <i,1,t,1). 

42. We write 'T' ror 'Truth' and 'F' for 'Falsehood'. 

43. Another method would assign the type i also to the 
analogues of wre•s of types i a~d t, and introduce 
two one-place predicates, say "T 111 and "Tt111 , applic­
able to all wfe's of type 1, which would mark the 
difference otherwise indicated by the types 11 and · 
t 1• In this way we would obtain a first order theory. 
(Such reductions of many sorted theories to first 
order theories have been discussed in Montague [l], 
Quine [5f' and Wa~2 [1]). However, in the present 
case,, "T ln and "T 11 would ha.ve to be treated as 
logical signs, and thus we could not be assured of one 
ot the main benefits of such tormalizat1on, the 
completeness theorem ot Godel [l] (at least not under 
our intended interpretations). Also,, since the type 
distinctions in 1<1 reflect certain intuitive onto­
logical distinctions in the subject matter, the torm 
ot language in which wte'a ot types 1, 11, and t 1 are 
distinguished provides a useful device ror tirst 
1nveet1gat1ng the foundations ot intensional logic. 

44. 'Ihe same purpose could be aoh1eved by having i denote 
~· But this would involve introducing semantical 
operations ot other forms than the tamiliar applloaticn 
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of fWlction to argument. It al8o violates our simple 
understanding of wfe's or complex type as denoting 
functions, or alternatively it leads us to introduce 
\ as having a type distinct from but parallel to the 
type <ti, ... , t'r1 Zo> and to introduce new .formation 
rules to accommodate such wfe 1 s. 

45. Tarski [3],, p. 156. 

46. Church suggests how we may partialJ.y express the prin­
ciple in the language 1~ 1• Let oc and J3 be wf e' s of 1{0 

of the same simple type ?: (that is, both of type i or 
both of type t) • Let us write ' (ex: - )3) ' tor 
'Id ( l: )"' cX',l3 1 • To say that ex. and ,P are logically 
equivalent is to say that (a: ma )3) is valid. This is 
to say that the proposition expressed by (ex..- J3), 
namely the denotation of (cx-=)3) under the intension­
al interpretation of -H1, is the necessary proposi t1on. 
In other words, writing 'N¢1 • tor Nec""¢1 •, N(cx..m: )3) 
is true. We can easily express the fact that a:. and fl 
have the same sense, by (Ci =-= ]!) . Hence, writing 

/\ ,... 
1 (; m;;lf')' tor 'Id(t) jt t/)1 , we can express the prin-
ciple of individuation by: 

(N(«-= ]3) 5 (oc - jj)) 

In view of our det1n1t1on or the bar function, 
(«-= )3> -= I\('t)"rfJ. 'lberetore the conditional trom 
right to left is merel;r an instance of Leibniz' Law 
plus the principle: N( ex - 'OQ. Hence. writing 

' (fl? lJI) • tor 1Cond"';l\.4'', the essence or our principle 
ot individuation is: 

(N(a_-JO ::> CCi-,BJ) 
47. An interesting discussion of this point may be towid. 

in Carnap [6], ~91 VIII. 

48. '!be method. would be to narrow the relation or logical 
equivalence b7 adm.1tt1ng "logicalJ.y 1mposs1ble" models, 
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that is, models which, for example, assign variant 
truth functions to Neg so that ~ and Ner{'Neg"¢ no 
longer have the same value in every model, and hence 
are no longer logically equivalent. 

49. If we were to enrich our language by the addition or 
variables and quantifiers, we could express the fact 
that ex. denotes an empty concept as follows: 

N 3 x~(OC.,x) 

where we write 'N'/' for 1Neg¢' and '~(a ,)3)' for 
Del ta ( i 1 )""Ci)3 • 

'Ibis possibility immediately suggests a treat­
ment of "existence". Namely, to translate a sentence 
or the form, "Pegasus exists." by (3x)b("Pegasus" x), 
and "Pegasus doesn't exist." by N (3x)A("Pegaaus" x). 
Thus, we consider the context rcx.exists, as oblique. 
"Pegasus" might then be considered to be denotation­
less, and similarly for any compowid expressions ot 
which it (though not, of course, "Pegasus"} is a part. 
Hence if ex. is a name, the sentence (3x) ( o:..~ x) will 
be either logically true or denotationless according 
as C3x)~(<i:.x) is true or false. Such a treatment 
makes 11 existence 11 a predicate, but or concepts rather 
than individuals. 

50. According to alternative (1:5), if ct.is any name or 
type 1 and x ie a variable ot the same type 
(3) 3x (x -= ~ 
is valid. But it y 1 is a variable of type 11, 
(4) \f l'1 3 xA(711X) 
is not valid. Note that according to proposal (1), 
(3) ma.7 tail for names of type iJ and according to 
proposal (2), (4) 1s valid. 

51. In Carnap [4] (1947), p. 181. 
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52. Carnap defines a proposition aa a set of states of 
affairs. Our notion may be thought of as the charac­
teristic function of a proposition in his sense. The 
present notion fits more immediately into a unified 
treatment. 

53. Another aim, secured by adopting the method of direct 
discourse, is that the '1intensiona1 11 object languages 

should be completely extensional (in the sense of 
section 6). 

54. In Tarski [3] (1950) the notions or arithmetical class 
and arithmetical function are introduced. These no­
tions, which correspond to propositions and proper­
ties which are expressible in first-order languages, 
have proved quite tr~itful in the investigation of 
mathematical systems. 

55. Other analyses are possible. For example, we might 
identify states of arra1rs with ordered couples con­
sisting of a number and a model. 'Ibis would avoid the 
intuitive objection to the identification of states 

, 

or affairs with models, namely', that intuitively 
distinct states might determine the same model ot ~0 • 

~ua, a proposition which is not expressible in 1(0 

might hold in one state and fa11 in another, both ot 
which determine the same model of 1<0 • Actually• our 
method is at least partially immune to this objection. 
For suppose, what seems reasonable, that in accordance 
with Leibniz' principle of identity ot 1nd1soernibles 
we identify "completely isomorphic" states (in some 
intuitive sense or "completely isomorphic" adequate 
to Leibniz' principle). Then each state ot attairs de­
termmes not a unique model m ot 1-<o but rather an 1so .. 
morphism class M or auch models. Hence, since we do 
not identif'y isomorphic models, our method can be 
thought or as representing each state ot attaire by a 
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unique element of the isomorphism claaa which it 
determines. Accordingly, we will admit propoa!tions 
(and other intensional entities) which have different 
values for isomorphic models. 

56. Church [6], p. 22. 

57. In particular, there has recently appeared some inter­
esting work interpreting necessity in terms of rela­
tions between models. 'lhese relations determine which 
models are "possible" relative to others. The first 
work along these lines seems to have been reported by 
Iiiontague in a talk delivered to the Annual Spring 
Conference in Philosophy at the University of Cali­
fornia, Loa Angeles, in 1955 (later published as 
Montague [2]). More recently, Hintikka [1) and 
Kripke [l] have reported interesting results relating 
different relations between models to the familiar 
modal calculi s1-s5 or c. I. Lewis. 

58. See, for example, Carnap [4]. 

59. '!bis method or assuring that notions to be introduced 
determine legitimate set theoretical entities was used 
in Tarski [3], p. 706, footnote 3. 

60. The possibility should also be considered of forming 
a language closer to ordinary metalanguages by combin­
ing the teatures ot both interpretations of 1(1• We 
simpl.J' duplicate the new wte 1 a which are added to 1(0 

and assign the syntactical interpretation to one set 
or new expressions and the intensional interpretation 
to the other. Suppose we assign the types !~, t~, 
etc., to wte•s receiving the syntactical interpreta­
tion, and the types 1i1 ti, eto., to wte•s receiving 
the intensional interpretation. We could then intro­
duce an operation sJmbol S or type <t~1 ti;> where the 
wte (s(cx) - ft) would be true just 1n case }3 denoted 
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the sense of the sentence denoted by ex. Languages 
(or more properly speal<:ing, semantical syotema) which 
contain certain wfe's with a syntactical interpreta­
tion and other wfe's with an intensional interpreta­
tion, we call dual lanaua.ses. Such languages seem 
worthy of further study. However, their structure 
becomes rather intricate as we move to languages 
capable of treating doubly, and triply oblique con­

texts. 

61. The exact use of' corners (r,1) here may be made clear 
by an example. If J3. == 'John', and ex.=~= 'John1 1 , 

then: r the name a:. denotes the individual )3 1 = 1 the 

name John1 denotes the individual John' and 1 the indi­
vidual concept a: is a concept of the individual )31 : 

'the individual concept John1 is a concept of the 
individual John'. 

62. The two interpretations of Tr(,) are of interest with 
respect to the controversy over whether truth is a 
property or sentences or propositions. 'lbe precise 
definition or truth as a property or sentences (for 
sentences ot a wide class of languages) was first 
given 1n Tarski [l] (1936). We are unaware of any 

precise definition or truth as a property- or proposi­
tions before the present work. Most or the polemics 
1n this controversy seem to have come from the de­
fenders or truth as a property ot propositions, per­
haps in reaction to the success ot Tarski's theory 
(see, tor example, Kneale and Kneale [l], Strawson 
[l], and many others). The importance imputed to 
the "proper" solution or this 11 controversy11 seems to 
us surprising 1n view ot the essential 1aomorph1sm 
between the two notions. For example, all eentenoes 
ot the to:rm (Tr@) ;;; ;> are valid under both inter­
pretations. Further compar1eons ot the two notions 
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of truth occur in Chapter 3. 

63. 'n1e exceptions are logically determinate sentences 
and standard names (in the sense introduced in section 
14 .3). 

64. Church has used "determines" in this way in Church 
[7], p. 6; he also uses 11 characterizes" 1n a similar 
way. The temptation to simply use 11denotation 11 for 
this relation, also, is quite strong; and Church [3], 
(6] does use the suggestive expression '~' tor this 
relation. Carnap also sometimes uses the same expres­
sion tor both denotation and Determination. In 
Carnap [6], section 9, III he writes, 11 the properties 
P and Q ••• have the same extension" although his 
main use or "extension" is in the context "extension 
of a designator" rather than "extension of a property". 

65. 'lh1s, 1n fact, was the sense 1n which udenotat1on" 
was originally used 1n section 4. 

66. Church [6], rootnote 13. 

67. See, for example, Tarski [2], section 9. 

68. Note the difference between the identity a1gn "=11 

{read "short equals") which is used to define "-" 
(read "long equalsu). 'Ihe former is simply a short­
hand in English for nis identical with"; the latter 
is a special sign of our theory used to denote a cer­
tain formation rule or our constructed languages. 

69. When t is a function and A is a set included in its 
domain, we write 11 t1A11 {read "t restricted to A0 ) 

70. 

tor that :!'unction g whose domain is A and which 1e euch 
that tor x' A1 g(x) • .t(x}. 

When s(n) is a aet 
ot g(n) tor n suoh 
set containing all 

tor eaoh n such that Fn, the union 
that P(n) ( U g(n)) is the least 

f(n) 
such g(n). 
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71. There is an exception, this is not true when 
<r1 ..... , rr .. ro> is a complex type of 'ko· 

72. For example, Ackerman [l]. 

73. Quine [4]. 

74. 'lhe validity of the Delta Axioms suggests that we 
might have introduced '.A(Ci:. .. ,B) • by definition (as we 
did with 'Tr(SJ)', '(~ & 'o/) 1 , etc.), thus eliminating 
all the atomic wfe 1 s Delta (~). We could indeed have 
taken such a course successfully in 1<w, but this is 
due only to the poverty of this language as expressed 
in theorem 67. When we turn to the language /...w, 
which contains variables of all simple types, wfe's of 
the form ~( ~,)), where ~ and )3 are variab lea or 
the appropriate types, will not be equivalent to any 
Delta-free wf'e. 

75. S5 is the strongest of a number ot systems or modal 
logic developed in Lewis and Langford [l], from sug­
gestions 1n Lewis [l]. 

76. Not all ot the axiom schemes, as given, are independ­
ent. In tact, all modal axioms ot kinds 1-4 are 
derivable from the remaining axiom schemes (which are 
independent) using the intensional individuating 
axioms, and modal axioms or kinds 2-4 are derivable 
trom the remaining axiom schemes (which are inde­
pendent) using the syntactical individuating axioms. 
1'he stronger result from the intensional individuating 
axioms depends on the tact that those axioms allow one 
to prove (~ ;;; (JI - (P=>P)) ) • where fl is &JlY' wte ot 
1fw ot type t and P is Pred.(o,o)'." 

'lhie result shows that under the intensional 
interpretation, ·~· could have been introduced b7 
det1nit1on (as were ''IT('P') •, ' (ft & ll') '• eto.). In 
tact, the tollowing general det1n1t1on (not dependent 
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on theorem 33) oould be c1vcn. 
Dct1nlt1on Ir fl'1 10 n wre or typo t 1, then 

Ufi1 • CS11 - (P3t')}. 

Juot this method io uaed to introduce nccooo1ty in 
Church (6]. But ouch a courne would not provide the 
dcoircd propcrtieo or ncceno1ty undor the oyntnct1onl 
interpretation. 

77. 'nle inference rule or modal ccnoral1znt1on hno n 
oliehtly different chnractor rrorn thnt or moduo poneno. 
Whet'cno modus ponenn 1o truth preoerving (that in, 
whon applied to true nontoncoo 1to ronult in nlwayn 
truo), rnodnl gonornli~tion 1c only vnl1d1ty prooorv-
1ng. If it is doo1rod to nvo1d 1nrerenco ruleu which 
nrc not truth prooerving, an equivalent nyatom cun be 
obtained by dropping the rule or modal genernl11...n­
tion, roplncing each axiom ti by the new axiom 1'1 and 
retnining modal axiom (2) (n\ii=>'I'). 

78. In a talk, "Modal Logic Explored Semantically," to 
the UCLA Logic Colloquium (1959). A sl1ghtl7 d1tter­
ent tormulation ot an equivalent system MPC wao given 
in Carnap (3]. Both Carnap and Kal1eh provided 

cOt:Dpleteneoe theorems and decision procedures. 

79. It_1a interesting to note that 1n a development ot 
1ntena1onal logic based on the simple theor;y or tJpea 
(~ch a!_ in Church (6)) w1 th the types <Z:-0 .. : ·:. 'f;;, 
<?(, ••• ?:z> diatingu111hed, a eird.lar 1ntroduot1on ot 
the bar tunot1on ia possible. 'l\) be epec1t1o, 1t the 
language oontaina (aa 1n Church (6]) the eqle 
variable binding operator ')\' plue twiot1on qm'bola 
U, D (to be applied to- lUbda apreaa1on•) OOl'N8Pond• 
1ng to the universal quantitier and deaol'1pt1oa 
open.tor- the bar lunation can be adequat•lr d•tined 
Without 1ntl"Oduc1ng new operator• 'Ai•, •t.2 ', •to., 
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or new logical constants U(j)' D(J)• 
Bo. The principles of theorem 110 correspond to axioms 

11-15 of Church [6]. The principle of theorem 111 
(1) corresponds to Church's axiom 17. Church's sys­
tem contains no counterparts to the principles of 
theorem 111 (2)(which he explicitly rejects) or 

theorem 111 (3)(an oversight?). 

81. We have separated Tll6 from Tll5, although the prin­
ciple of Tll6 is simply the converse of Tll5 (2). In 
this we follow a tradition of attending to the latter 
and ignoring the former. 

With respect to the system S2 of Carnap [4], 
the indirect discourse counterpart to the principle 

of Tll5 (2): 
( 1) (3 O: NSrf-=' N 3 a: ¢) 
is asserted to be valid (p. 186). But it is not not­
ed that when ¢ contains no modal signs, the indirect 
discourse counterpart to the principle of Tll6: 

(2) 

is also valid in S2. 
It is somewhat surprising that (2) has not at 

least received some discussion. For it is virtually 
equivalent to the rejection of the indirect discourse 
principle: 

(3) 

where ex:, )3 are any variables; and the latter prin­
ciple has received a good deal or attention. 

To argue fully the claim or equivalence would 
take us beyond our present scope. But we remark that 
the addition or both (2) and (3) to a quantified modal 
logic (in indirect discourse) whose other axioms are 
simply the normal principles or quantification plus 
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the axioms of Lewis' SS, results in the theorem: 

( 4 ) (tvN \:/ a. V f3 (CL -= )3 ) ::> { N1 :E ft) ) . 
We may read (4) as asserting that if it is not neces­
sary that there is exactly one thing (a plausible 
assumption), then any sentence is necessary just 1n 

case it is true. While the consequent of (4) is not 
an outright contradiction, it is equally disastrous 
for modal logic. 
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