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PREFACE

Frege's semantlical theorles, and especially his dis-
tinctlon between sense (Sinn) and denotation (Bedeutung),
have come in for increasing attentlon as phllosophers have
become aware of the special problems posed by the so-called
oblique or intensional contexts (even the term oblique is
from Frege's "Ungerade"). Such frequently used phrases as
"John believes that", "John knows that", "1t is surprising
that", "1t 1s necessary that" all pose logical and inter-
pretive difficultlies which have only recently come in for
intenslve investigation. The development of quantified
modal loglc, which had its beginnings only in 1946, has
made the problem of interpretatlion especlally acute,

In his article "Uber Sinn und Bedeutung" (1892),
Frege outlined his theory of sense and denotation and pro-
vided a speclal treatment of obligue contexts using the
notion of indirect denotation. This article, which 1is
concerned with the analysis of ordinary German, 1is written
in a highly condensed, informal way; and though the sense
and denotatlon dlstinction is mentioned in a few other
of his writings, the doctrine of indirect denotation and
thus his treatment of obliqué contexts seems to be confined

to this one source. Frege's work itself, therefore, is
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more in the nature of a proposal than a fully developed
doctrine.

Though wldely known, Frege's theory has not, in gen-
eral, been receilved with favor. No one denles 1ts im-
portance; 1t 1s just that few like 1t. Alonzo Church, who
has been 1ts most consistent (and perhaps sole ) prominent
champion, has called repeatedly for a precise development
of'the 1deas according to contemporary loglcal and
semantlical standards. And surely, 1f a fair evaluation of
thls important theory 1s to be reached, such a development
1s required. In 1951, Church attempted to axiomatlze the
theory in his article "A Formulation of the Loglc of Sense
and Denotation", but that formalization has serious defi-
clencles. The present_work is another attempt to formalize
Frege's theory; this time depending more heavily on
semantical methods first developed by Alfred Tarski than
on the axiomatic method.

I had the great good fortune to be one of a few
UCLA students who attended graduate courses in semantics
given first by Rudolf Carnap and later by Alonzo Church.
Each man lectured on his as yet unpublished ideas on
intensional logic. The theorles seemed complementary;
Church's formal language and Carnap's interpretation of
intensions, each offered solutions to difficulties in the
other's theory. 1In this dissertation, the foundations of
intensional logic are developed in a way which, hopefully,
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partakes of the best features of both Carnap's and Churech's
theorles,

In the formulation presented hereiln, intensional
logic becomes a branch of the theory of models, founded by
Alfred Tarskl and cultivated intensely since 1950 by a
number of logliclans. Those famillar with model theory will
recognize a number of our intensional entitles under other
names, An especially close relation holds with the model
theoretic notion of a direct product of models.

The research leading to this dissertation was sup-
ported by the Natlonal Sclence Foundation under N.S.F.
G-13226, N.S.F. G-19830, and N.S.F. GP-1603. The work has
benefited by eriticisms, suggestions, and encouragement
from my teachers Rudolf Carnap, Donald Kalish, and Richard
Montague, who in addifion are responsible for my phillo-
sophical style. Lilterary style and phlilosophical content
are my own responsibility.




ABSTRACT OF THE DISSERTATION

Foundations of Intensional Logic

by

David Benjamin Kaplan
Doctor of Philosophy in Philosophy

University of California, Los Angeles, 1964

Professor Rudolf Carnap, Chalrman

A number of languages based on Gottlcbh Frege'!s dis-
tinction of sense (Sinn) and denotation (Bedeutung) are
constructed. The semantics of these languages 1s developed
purely within set theory. Axioms are provided and complete-
ness and decidabllity results are obtained for certain of
the languages. The languages provlide facllitles for treat-
ing oblique contexts but are fully extenslonal in the sense
that the replacement of any part of a well formed expres-
sion by another with the same denotatlon leaves the denota-
tlon of the whole unchanged, where the denotatlion of a
name, predicate, or sentence may be taken to be the thing
named, the class of things to which the predicate applies,
and the truth value of the sentence respectively.

The syntax of the languages 1s based on that of the
language constructed in Alonzo Church's "A formulation of

the loglc of sense and denotatlon" in Structure, method
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and meaning: essays ln honor of Henry M. Sheffer, edited

by Henle, Kallen and Langer, New York, 1951. The semantical
interpretation of intensions 1s based on that of Rudolf
Carnap's Meaning and necessity, Chicago, 1947.

Preliminary sections provide a formulation of what
are taken to be the fundamental ideas of Frege's semantical
theory, especlally wlth regard to the analysls of oblique
contexts, In these terms, languages of direct discourse
are distinguished from languages of indirect discourse, and
some advantages of the former are suggested., The languages
of sense and denotation are developed as languages of
direct discourse, and thelr simllarity with other languages
of dlrect discourse, in partlicular formalized semantical

metalanguages, 1s emphasized.
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CHAPTER 1
INTRODUCTION

1. The General Program

Oowr primary goal is to construct a language based on
Frege's distinction of sense and denotation, and to describe
the semantics of such a language within set theory. The
language is to provide facilities for treating so-called
oblique contexts but is to be fully extensional (in a
sense to be given in section 3 below). The syntax of the
language 1s based on that of Church [6] with certain modi-
fications to conform to the semantical point of view
adopted., The semantical interpretation (especially of
intensions) is based on that of Carnap [4], [5], [6]
with certalin modifications to conform to the syntax of the
language.

Preliminary sections provide a formulatlon of what
are taken to be the fundamental 1deas of Frege'!'s semantical
theory, empeclally in regard to the analysis of oblique
contexts., In these terms, languages of direct discourse
are dlstinguished from languages of indirect discourse and
some disadvantages of the latter are suggested. The
language of sense and denotation 1is developed as a language
of direct discourse and its similarity with other languages




of direct discourse (especilally formalized semantical meta-

languages) 1s emphasized.

2. Semantlical Systems

We understand a semantical system to be composed of

two elements: a language and a semantical relation for

that language.

2.1. Languages
A language consists of a class of expressions which

we call well formed expressions (wfe's) with a structure
which determines a part-whole relation. This structure 1is

often conveniently given in terms of a type functlon, a

class of atomic wfe'!s, and a set of syntactical operations

on wfe's which we call formation rules (or formation opera-

tions). The type function assigns a grammatical category
or Exgg}(for example: term, formula, two~-place predicate of
individuals, etc.) to each wfe, Each formation rule is a
1-1 function with all wfe's of a given type as its domain
(or, in the case of an n-place (n > 1) formation rule, each
domain consits of all wfe's of a given type) and its range
included in the set of wfe's of a single type. The forma-
tion rules have disjoint ranges and a wfe is atomic Just in
case 1t 1s not in the range of any formation rule.1 Every
wfe 18 to be obtainable as the last element of a construc-
tlon, that is, a finite sequence of wfe's each element of

which 18 elther atomic or the result of applying a formation




rule to previous elements.2 In these terms we can deflne
the part-whole relation among wfe's. If o« and B are wfe's,

we say that oc 1is a part of B Just 1n case o« 1s an element

of every construction of which B 1s an element.

We have so far avolded reference to primitive symbols
and concatenatlon, in order to avold confounding the part-
whole relation with which we are concerned with an analogous
relation within pure syntax. In general, that a glven wfe
B may be obtalned from a wfe o by concatenation is no
guarantee that o 1s a part of B in our (semantical) sense.
Merely scrutinilzing a wfe wlll not reveal 1ts parts; in
fact, glven a class of wfe's many different structures are
possible (as indicated in the followlng examples),

Consider the expression '(P - Q)'. We may consider
'P' and 'Q' as the only parts (other than "(P? - Q)
itself), and the entire formula simply as the result of
combining these parts in a certaln manner. Here, the signs
t(', ')', '»' are all thought of as syncategorematic, or as

Church puts 1t improper _§ymbols.3 They merely express a

mode of connection between 'P!' and 'Q'. 'P' and 'Q! are
thdught of as having a certain semantical value (perhaps a
truth value, or a meaning), as 18 '(P »Q)'. But no inde-
pendent value is assigned to '(', ')', or '»', Another
poselble structure for '(P -»Q)!' would make 'P', 'Q', and
'»' all parts. Under this interpretation, '-' would be
thought of as having an independent semantical value, and



the entire formula as the result of combining three wfe's
into a certain compound.

We understand the part-whole relation as definable
only for a whole language, which we may think of as a
quadruple <E,T,A,F> where E is the class of wfe's, T the

type function, A the class of atomic formulas and F the set
4

of formulation rules.

We do not claim that our notion of a language has
speclal advantages over any other, except for the present
explicitly semantical purposes.5 For these purposes we are
interested in which are the semantically relevant expres-
sions (namely the wfe's) and which pleces of compound
expressions are such that their semantical values are

thought to be relevant to the semantical value of the

whole.6

In this sense, we would ordinarily consider !'John!
a part of 'John is tall', and 'cat! not a part of 'cattle!,
The question as to whether 'John' should be considered a
part of "John" seems to be generally answered in the
negative., The question as to whether 'John' should be con-
sldered a part of 'It is necessary that John=John' has
generally been answered in the affirmative, but there are
important difficulties which arise from this decision.

If we are to assoclate transformation rules with a
language, we would formulate them in terms of the structure
of the wfe's, Thus, the difficulties which are avoided by



not treating certain pleces as parts (as in the last ex-
ample of the preceding paragraph) arise again, in that this

treatment precludes these pleces from the scope of the

transformation rules.
Here again we emphasize the importance of the abstract

structure of the wfe's. If one is to describe the actual

designs of the wfe's, many additional consideratlons come
into play (such as the convention placing the identity
predicate between its terms). For purposes of convenience
we will usually describe languages in the conventional way,
providing simultaneous recursive definitions of the class
of wfe's and the type functlon in terms of atomic formulas
and formation rules. The latter are only implicitly indi-
cated by the clauses of the recursive definitions; however,
it will be easlly seen how to express the languages in terms
of explicit formation rules. In particular, the essential
feature of the formation rules, that they provide a unique

decomposition of each wfe into its atomic parts, will be

obvious.

2.2, Semantical Relations

A semantical relation (or, more exactly, a semantical
function) for a language L assigns some entity to each wfe
of L. For example, the relations which agsociate with each
sentence of English, its truth value, its cognitive con-
tent, 1ts emotive content, etc. (we take the word "entity"
in a very broad sense) are all taken to be semantical



relations for a language whose wfe's are English sentences.

3. Fregean Semantical Systems

When we are given a complete semantical system <L,R>
we can meaningfully ask, are the values of compound wfe's
functions of the values of the parts? That 1s, if o is a
part of B, ¥ 1s of the same type as o, & 1s the result of
substituting ¥’ for one or more occurrences of o in B, and
R(x) = R (), must R (B) = R (5)?7 If this condition holds
for all wfe's a, B, ", 5, we call <L,R> Fregean. Our nomen-
clature 1s motivated by what Carnap has called Frege prin-

ciples of 1nterchangeabilitx,8 namely that the denotation

of a compound wfe 1s to be a function of the denotatlon of
the parts,and the sense of a compound wfe is to be a func-
tion of the sense of the parts.g’lo We refer to the
generalized interchangeabllity requirement (with respect

to an arbitrary semantical relation) as Frege's principle.

Most familiar symbolic languages are Fregean under a

natural analysis of the part-whole relation and a natural
| semantical relation. In fact, we often take as a principle
of loglc, axioms which make explicit these assumptions.

Consider, for example, Lelbnig! Law:
If ot =)3, then @ 1if and only if ﬁﬁ"-,

If we treat OslB. Foe gb as parts of this expression, and
take a semantical relation R which assigns to terms, the
designated entity and to formulas, truth values, then



Leibniz' Law tells us that when R(o) = R(B), R(ng = R(Qb).

Euclid's Law can be understood as making a simllar
assertion about compound terms, wilth terms as parts. Inter-
change of Equivalents, though sometimes formulated in such
a way that rﬂ if and only 1fvflis required to be a theorem
in order to allow the inference of ﬁxﬁ if and only 1f:KQ1
can also be forpulated in a weaker fashion so as to allow
the interchange on the basis of the truth of rﬁ if and
only 1f‘wﬂ. When formulated in this form, it can be under-
stood as asserting that the truth values of compound formu-
las with formulas as parts 18 to be a function of the truth
values of the parts.

If we turn to the famillar developments of the seman-
tics of, say, first order logic, we see an even more ex-
plicit reflection of Frege's principle in the recursive
definitions of 'satisfaction' and 'value! or 'designation’.11

If a semantical system <L,R> 1s Fregean, the semanti-
cal relation R can bé put in the form {T*,A%,F®, where T*
is a function which assigns to each type of L anon empty set
(the universe from which wfe's of that type take their
values), A* is a function which assigns to each atomic
wlfe ccof L an element of the universe of the type of oc
(that 1s, 1f o has typeT, A%(o)eT*(Z)) and F* 1s a function
which assigns to every formation rule of L a corresponding

function on elements in the universes of the types., The

connectlon between Fregean systems and the T A% F¥




representation 1s perhaps more eaplly seen in the following

(vhere we write 'W(T)' for 'the set of all wfe's of the

M\,}[u language L of type T').

V,\;wtuﬂ@/a'J | m. If L = <E,T,A,F> 1s a language, and R i1s a semantical
1. T éﬁ relation for L, then <L,R> is Fregean if and only if there
U/(‘() are T*,A*,F* fulfilling the following conditlons:
(1) T* is a function whose domain 1is the set of types of
L (that is, the range of T) and which assigns to
each such type a non-empty set as unilverse;
(2) A* 1s a function whose domaln 1s the set of atomle
: wfe's of L (that 1s, A) and which assigns to each
atomic wfe o, an element of the unlverse of the type
of o (that is, an element of T*(T(cc)) );
(3) F* is a functlon whose domain 1s the set of formation
rules of L (that 1s, F), and which is such that if
z‘o,...,’[;, are types of L and £ 1s a formation rule
which assigns to every r-tuple of wfe's
<O seees QD Q(W(Tl)x---xw(Z'r)) a compound wfe € w(To),
then F*(f) 1s a functlon from T*(Zijx-“x'l‘*(’l;) into
™(T,) ;
(4) 4if o is an atomic wfe of L, then R(x ) = A¥{(a);
(5) 1if £ 1s a formation rule of L, and <% ,.e0y06> 18 in
the domain of f, then R(f(a’l,...,o&,)) -

(Fr(e)(R(eg), . o R(%)).

T2, If L = <E,T,A,F> 1s a language, and R, T*, A*, F#* are




. as 1in clauses (1)-(5) of T1, then <L I> 1s Fregean, In

particular, if o is any wfe of L, R(o) 1s an element of
the universe of the type of « (that 1is, R(a)ﬂT*(T(od) ).

3. If L =<E,T,A,F> 1s a language, and T*, A¥, F* are as
in clauses (1)-(3) of Tl, then there 1s a unique semantical

relation R for L which satisfies (4) and (5).

4., Denotatlion

We understand denotation as a semantical relation

defined originally only for names (and descriptions) and
assigning to each such name the thing named (or described).
Let us call this relation "restricted-denotation". Barring
certain peculiar constructions (the so-called oblique con-
texts), the restricted-denotation of compound names is a
function of the restricted-denotation of the parts.

As a simple example conslder the language
L1 = <{E,T,A,F> vwhere T asslgns to each wfe the type name,
A = {'Aristotle', 'Leibniz’', 'Frege'%, F = {m,f} where
m(o) = "the mother of oc, £(o) = Fthe father of o', and E
is the closure of A under the formation rules.
Consider the triple <{T*,A®, F%*», where T* assigns to the
type name the set of humans, A* ('Aristotle') = Aristotle,

A* ('Leibniz') = Leibniz, A* ('Frege') = Frege, F#*(m) =

that function which assigns to each human his mother,
F#(f) = that function which assigne to each human his
father, Clearly, if R(o) 1s the restricted-denotation of o;




10

R, T*, A*, F* satlsfy the conditions of theorem 1. Hence,

<L1,R> 18 Fregean.
Suppose now that we wish to extend the semantlcal

theory of the relation of restricted-denotation. This may
be done in essentially two different ways. We may leave

the class of wfe's to which we apply the relation untouched
and extend the class of formation rules, thus enlarging the
part-whole relation. If we proceed by this method, we
continue to apply the semantical relation only to names,
but we may "break-down" compound names in new ways. For
example, in the name 'the person whom John belleves to be
the president'!, 'John' would ordinarily be treated as a
part, but we may now also attempt to treat 'the president!
as a part. A second alternative for extending the semantl-
cal theory of restricted-denotation, is to enlarge the class
of wfe's to which the relation is applied by including
expressions of different types.

The first alternative seems quickly to lead to fail-
ures of Frege's principle and will be discussed in section
6. Let us consider here the second method of extending
the relatlon of restricted-denotation and let us call the
extended relation (simply) "denotation". Let ue attempt to

extend the class of wfe's by including sentences. We must

now search for an appropriate universe of entities to serve
as denotations for sentences. What considerations should

guide such a search? Suppose that we have such an extended
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language L. Then beyond the obvious requlrement that the
relations of restricted-denotation and denotation should
agree for wfe's of the type name, we shall propose two
criteria:

Cl: The semantical system <L, denotation> should be

Fregean,

C2: The number of distinct entities whilch serve as deno-

tatlons for sentences, should be minimized.

Since in general there are a number of different ways of as-
signing values to sentences whilch are compatible wilth Cl, we
propose C2 1n order to requlre that we choose one of the
most simple methods. In general, Cl requires us to assign
distinct denotatlions to certaln palrs of sentences, and C2
requires us to assign the same denotation to a pailr of
sentences unless Cl requires that their denotations be
distinct,

Glven an appropriately complex structure on L (1n
terms of the part-whole relatlon), Cl immedlately rules oiit
certain possibllities since 1t requires that for every
formation rule we be able to find a corresponding semantical
operation, For example, i1f Id 1s a formation rule of L
(where Id(oc,B) = M(« = B)7), Cl requires that we be able to
find a semantical operation Id* such that den (Ia(a B)) =
Id*(den (oc ), den (p)) = Id*(rden (o), rden (B))
(where we write 'den (€)' for 'the denotation of o'
and 'rden (oc)! for 'thé restricted-denotation of a').

Thus we cannot take the meaning of a sentence as its




denotation, since the meaning of an identity sentence is
not determined solely b& the individuals named; we need to
know in additlion how they are named. Compare, for example,
the meanings of Id ('Hesperus', 'Phosphorus') and
Id ('Hesperus', 'Hesperus'). The meanings clearly differ,
although rden ('Hesperus') = rden ('Phosphorus'). We may
treat thilis argument as showlng that the relation between
a sentence and 1ts meanlng 1s not the natural analogue of
restricted denotation.12
' The degree to which Cl rules out possibllities de~
pends of course on the complexity of the structure vi?n L. If
this is given 1in such a way that no name contaiﬁé agsentence
as a part (although sentences may contain names andibfher
sentences as parts) then Cl permits, and hence C2 requires,
that all sentences take the same value, Suppose, however,

that L contains compound names of the form rfhe unique

individual who 1is identical with ocif ¢, and who is identi-

cal with 3 if 1t is not the case that @7 with the names oc, -

‘B and the sentence ¢ as parté. Suppose, in fact, that we
have a formatlon rule g which ylelds the glven compound
name when applied to any wfe'!s OC,'ﬁ; # of the appropriate
types.l3 Let g* be the corresponding semantical operation,
that 1s, let den (g(oc,)3, @) = g* (den(og, den QB),

den (@)). The denotations of o, B, and gla, }3, g) are
already determined by the fact that they are all names and

our requilrement that the denotation of & name be the same

12




13

as 1ts restricted-denotation. Hence we know that 1f ¢ is
true, den (g(oc, B, #) - rden (g(cr:,p, #) = rden (), and
1f ¢ 1s false,den(g(oac 'ﬁ #)) = rden (B). It follows that
if L contains names ac, J3 such that rden (9 # rden (B),
then Cl1 requlres that if ¢,¥J differ in truth value,
den (@) # den (¥). Since 1if den (¢) = den () when, say
g is true and ¥ false, rden (o) = den (g(oc, B d)
= g*(den (a), den (B), den (¢)) = g* (den(c), den(B),
den (Y)) = den (g(oc.,ﬁ,lp)) = rden 03)
Assuming that L contains compound names llke

cn,‘ﬁ, @) but is so structured that allowing den (f) to
be the truth value of @ satisfies Cl (thus L contains no
oblique contexts), then C2 requires us to asslgn the same
value to sentences with the same truth value.14

Church has argued that the natural extension of the

relation between a name and the thing named (which relation
he calls 'denotation') to sentences would assign truth
values to sentences.l5 He uses essentlally two criteria,
as do we. One corresponds to our Cl, but where we would
use C2 Church uses the seemingly gratuitous assumption that
loglically equlvalent sentences have the same denotation.
Actually Church's assumption, though not so general as our
C2, 1s more closely directed to the commonly held opinion
that the "natural" semantical relation is that which

asslgns propositions to sentences and individuals to names.

It is to combat such bellefs, which have hindered the




acceptance of semantical relations which are natural by
our criteria but which countenance such seemingly "unnatur-
al" entitles as individual concepts, that the foregolng
skeétchy account of the genesls of general (that 1s, apply-
ing to more than one type of wfe) semantlcal relations was
introduced.

We understand by 'denotation' an extenslon in accord-
ance with Cl and C2 of the relation of restricted denota-
tién. We take truth values to be the denotatlon of
sentences, functions from individuals to truth values to
be the denotation of (one-place) predicates, truth func-
tions to be the denotation of sententlal connectlves, etc.16
Note that the fact that we have extended the relatlon of
restricted-denotation to apply to sentences and expressions
of other grammatical categorles 1s no better described as
"treating sentences as names" than a simlilar extenslon of
the relation between a sentence and 1lts truth value to
apply to names would be described as "treating names as
sentences."l/ 1t is similarly misleading to refer to
sentences as "naming" thelr truth value, jJust as it would
be to refer to the restricted-denotation of a name as its
"truth value". Of course, we do not wish to deny that the
extension of a restricted semantical relation is based on
& certain analogy between it and the extended relation, but
the (cognitive) content of this analogy 1s given 1n our two
criteria.18 It should not be supposed that when we speak

14
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of the "denotation" of a sentence we are abandonlng the

traditional segregatlon of expresslons into grammatlcal

categories.19

5. Sense
Although the semantical relation we call "denotation"
has probably received the fullest and most adequate treat-
ment, other relations such as that between a sentence and
its meaning, that between a sentence and 1ts emotive con-
tent, and even that between an expression and itself (the

so-called autonymous use) have also received a good deal of

attentlon. Let us consider the relation between a sentence
and 1ts meaning. e shall call thils relation "restricted-
meaning" (on the analogy of our earlier "restricted-
denotation"), and similarly speak of the restricted-
meaning of a sentence, We use this language to call atten-
tion to the fact that origlnally we think of sentences as
the only vehlcles of meaning., However, 1f we wish to pro-
vide a fuller treatment of thls relatlon we may attempt to
extend 1t to other grammatical categories of expressions
(Just as we did the denotation relation). Here, as before,
we are gulded by Cl and €2 (in their general form).18 In
thls way we come to speak of the meaning of predicates,
names, connectives, etc,, in such a way that the meaning of
a compound expression will be a function of the meaning of
its parts, or, in the earlier language, we develop a

semantical relation M (meaning) such that <L, is Fregean.




That the meaning of a name can not be ldentifled with
the denotatlon of the name was clearly enunciated by Frege,
who introduced his discussion of the two semantlcal rela-
tions: denotation and meanling, by asklng how r(a’-=}3)-’,
if true, can differ in meaning from r(oc= . If we
identify the meaning of a name with its denotation, then
the truth of r(a:=}3y7, which presumably tells us that the
denotatlion of « 1s the same as that of)3, ldentifles the
meaning of « with that of )3 and hence, by Frege's prin-
ciple, the meaning of r(oc=)3)1 with that of T{c= 7. We
shall follow Frege in using "sense" (from Frege's "Sinn")
for the meaning relation., Thus we shall speak of the sense
of a sentence, the sense of a predicate, the sense of a
name, ete, We follow Church [6] in also using the word
"concept" to refer to those entities capable of being
senses of expresslons. Suppose an expression of has X as
its denotation and S as 1ts sense, then we say that

& expresses S, ocdenotes X, and S 1s a concept of x.20

6. Extensionality
A notién which has been much discussed in the litera-
ture and which 1s related to our notion of a Fregean seman-
tical system 1s that of extensionality. Our notion differs
from those commonly found in that it is more general. We
conslder an arbitrary semantical relation R, whereas
extensionallty is usually only discussed with respect to

the relation we call denotation, However, the more

16
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general notion is at the heart of Frege's program, as we
see 1t, and plays an explicit role in hls discussions of
the extended notlon of meanling or sense. In addition, some
authors seem to consider certain kinds of entitles as
extensional and others as intenslonal; for example, sets
are often called extenslonal and properties intensional.
But thils conception 1s based on the mlstaken belief that
only certaln kinds of entitles can function as denotations
of wfe's and only certain other kinds can function as
senses, sO0 that by examining the kinds of entltles taken
as semantical values of the wfe's, we could determine
whether the semantlecal relation 1s that of denotatlon.
Against this conception we remark that although not every
kind of entity can be the sense of a wfe, any entity can
be denoted by some wfe. In particular, if o« names a wfe,
then the sense of that wfe is certainly denoted by the ex-
pression "the sense of « 7, and may also be denoted by the
expression "John's favorite concept" (for further discussion
of this point see section §).

We will call a semantical system extensional if the

system is Fregean and the semantical relation 1s that of
denotation,

Our argument that truth values be taken as the deno-
tations of sentences depended on choosing a language with
a structure sufficiently rich to contain compound names

like g(o , )3, #) but not so rich as to contain compound




names like 'the individual whom Jane belleves to be the

35th president'! (with both 'Jane' and 'the 35th president'
as parts), In fact, 1if our language structure 1ls too rich,
the question of extending restricted-denotatlon to a
semantical relation which provides an extensional semantical
system does not even arise, since even that part of the
language which contailns only names as wfe'!s may be so rich
that the semantlcal relatlon restricted-denotation already
glves a non-Fregean semantical systemn.,

It seems clear that Jane may be sufficiently out of
touch with current events for 'the individual whom Jane
belleves to be the 35th president' to name Richard Nlxon,
but not be so confused that 'the individual whom Jane
belleves to be John F. Kennedy'! names Richard Nixon. Since
'the 35th president' and 'John F. Kennedy' name the same
individual, we see that if a language contains such com-
pound names, the semantical relation of restricted-
denotation willl glve a non-Fregean semantical system, hence
also a non-extensional semantical system.

In addition to complex wfe's formed using such psycho-
logical expressions as 'believes', 'doubts', 'asserts!, etec.
there are many other contexts that produce failures of
extensionality., By a "context" we mean & formation rule
{although the exact structure of the rule is often only
implicit in our examples). Thus every "context" determines

(in part) a part-whole relation. If f 1s a context for the

18
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language L and there 1s no semantlcal function f#* such that
den (f(oi,...,a})) = [#* (den(oi),..., den(a})) for all
<°i""’°%> in the domain of f, then we say that f 1s an
abllque context for L.21 Here we agaln follow Frege, who

called such contexts "ungerade.,"

It seems best to regard the notion of an obllique con-

text in L, for arbitrary languages L, as a theoretical prim
itive of semantics. We then regard the fallures of exten-
sionallity as described above as well as varlous other
"tests" that have been proposed, such as the fallure of the
valldity of existential generalization (first suggested in
Quine [1], see also Church's review, Church [2]), as being
indicative but not definitive of obliquity. Many contexts
can be constructed which pass all the familiar "tests," yet
still seem more naturally classified as oblique., For ex-
ample, suppose that Mr, Jones has the singular good fortune
to have all and only those bellefs which are true. Should
such a contingency require us to classify the context "Mr.
Jones believes that @" as non-obligue? Note that the con-
text is now exMhtensional. A definition of obliquity in
terms of the possibility of a fallure of extensionallity seems
hardly satisfactory 1n‘view of the obliquity of possibility,
And even if this objection were not telling, still further

cases are avallable which pass even such a test. For these
reasons we prefer to regard the various tests only as pro-

viding sufficient conditions for the presence of an obllque
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context.
Once sensltized to the presence of obllque contexts,

they seem ubiquitous 1n ordinary speech. Quine, 1n parti-
cular, has been remarkably successful in identifylng and
exposing some of the most subtle of such contexts.22 He
has also developed machinery for classifying and notation-
ally exhibiting some of their pecullar features. But his
interest in such matters seems primarily for purposes of
quarantine, to avold thelr working mischief in our more
mundane preoccupations., With respect to a "logic" of
such contexts, he has often expressed scepticism.23
Among other non-extenslonal contexts are TIt is
necessary that ¢7, Pret T, It is provable in L that ¢'K24
In view of the importance of such contexts, the questlon
immedlately arises, can we provide an adequate treatment of
the notions involved (e.g., modality) within an extensional

semantical system? The affirmative position on this ques-

tion is known as the thesis of extenslonality, expressed by

Carnap as follows: 'for any nonextensional system there

1s an extensional system into which the former can be
translated".? Without involving ourselves in the diffi-
culties of providing an exact explicatlion for 'translation!?,
let us now attempt an analysis of obllique contexts along

Frege's lines,

7. Obliquity and Ambiguilty

Conslder the following two names:




(1) the number of syllables in: venus

(2) the number of syllables in: the morning star
It appears that (2) can be obtained from (1) by replacing
one name by another with the same denotation. Since (1)
denotes two and (2) denotes four, the context Mthe number
of syllables in: of seems to be oblique., But if it were
claimed that any language incorporating (1) and (2) must
be non-extensional one might reply that in (1) and (2) the
expressions 'venus' and 'the morning star' were being used
in an unusual way., Here, they are belng used to denote
themselves, not the planet. Thus 1n the present context
they do not have the same denotation, and hence (1) and
(2) can not provide a counter instance to Frege's prin-
ciple. The reply may be put in another way. The expres-
sion 'venus! 1s amblguous in English; it 1s usually taken
as denoting a certain planet, but may In special circum-
stances be taken as denoting something else (for example,
a plcture, or the word itself)l If the language we are
analyzing contains such amblguities, we must of course
withdraw, or at least modify, any claim of extensionality.
But such fallures of extensionallity do not in general pose
deep theoretical problems for semantics. In a constructed
language the apparent simplicity attained by allowing the
same expression to function in different ways in different
contexts, would probably be outwelghed by the relative

complexity of the semantical rules and the transformation
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rules. In particular, semantical systemec which are Fregean
have a certain simplicity of their own. Thus 1t seems
profitable to first attempt to retaln extenslonality by
revising the language so as to remove ambiguitles. In this
line we may insist on writing (1) and (2) as:26
(3) the number of syllables in 'venus'’
(4) the number of syllables in 'the morning star'

It seems to have been Frege's bellef, and we take it
as a tenet of that semantical tradition stemming from hils
work, that all of the oblique contexts were susceptible
of an analysis in terms of ambiguities, along the above
27

lines.
Although Frege particularly called attentlon to those
cagses of ambligulty where names denote either themselves or
their (usual) senses rather than their usual denotations,
he did not propose any language reform along the lines of
(3) and (4). Possibly this was due to the fact that he
never attempted a formal treatment of any language adequate

to express the oblique contexts.

8. Direct and Indirect Discourse
If we adopt Frege's poilnt of vliew, namely that fail-
ures of extenslonality are due to ambiguilty, we may dis-
tlnguish two approaches to the formalization of a language
adequate to express oblique contexts.28 If we follow the

method of indirect discourse, we will not insist on any

language revision but will attempt to avold paradox by




carefully restricting the transformatlon rules; for ex-~
ample, existentlal generallzation on two occurrences of the
same name would not be allowed in certaln contexts (those
in which the name has two different denotations). If we

follow the method of direct discourse, we first requlre

that distinct uses of expressions be marked by some distlinc-
tion 1n the expressions themselves. DBy introducing a multl-
plicity of expressilons to avold paradoxes, we can maintaln
a (relatively) standard form for the transformation rules.29
The two methods may be lllustrated by reference to
modal logic (a subject not discussed by Frege). Suppose
we want to formallze a modal loglc with 1ldentity and the
names ‘'Hesperus' and 'Phosphorus'. Following the method
of 1ndirect discourse, we would treat such expressions as
(5) Hesperus = Phosphorus, and 1t 1s not necessary that
Hesperus = Phosphorus
as wfe's, But we would restrict applications of Leibniz!'
Law so that
(6) It is not necessary that Hesperus = Hesperus
could not be obtained from (5) by the transformation rules.
Similarly, we would be cautious about allowing the infer-
ence of
(7) There is an x, such that x = Phosphorus, and it 1s
not necessary that x = Phosphorus
from (5), at least in the absence of some special semantical

treatment which validates such inferences.

23




24

Following the method of direct dlscourse we first
note that the fallure of the inference of (6) from (5),
indicates that in (5) the names 'Hesperus' and 'Phosphorus'’
are used ambiguously. Hence we wlll have to introduce a
pair of names corresponding to each of the names used 1in
the previous method. But first we must declde what the
terms denote in the necessity context. Two posslbllitiles
immediately occur: they may denote themselves or they may
denote their (usual) senses. Suppose we take the flrst
possibility, we then note that the fact that necessity 1s
not truth functional 1indicates that sentences do not have
their usual denotations (namely, truth values). Hence we
must replace the second occurrence of the ldentity predi-
cate wlth a different sign, whlch when combined with two
terms ylelds not a sentence (that 1s, an expression denot-
ing a truth value) but rather an expression which unambigu-
ously denotes whatever we understand the amblguous use of
the sentence to denote, Since we have chosen to understand
the terms as denotling themselves, 1t 1s natural to under-
stand the sentence 1in thé same way. Hence in the present
method we retaln the expressions 'Hesperus' and 'Phosphorus!
in thelr usual use, and add new expressions, say 'Hesperuel'
and 'Phosphorusl', simllarly we retain '=' but add an opera=-
tion symbol '=1' (where we understand '=1' as denoting the
syntactical operation Id of section 4). The counterpart

of (5) 1s now expressed as:
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(8) Hesperus = Phosphorus, and (Hesperusl =, Phosphorusl)

is not necessary.
There remains no temptation to infer any analogue to (6) by
Leibniz' Law, (note that the expression 'Hesperus' i1s not
consldered a part of the expression 'Hesperusl') or any ana-
logue to (7) by existentlal generalization, Thus we can use
transformation rules (and also provide a semantical inter-

pretation) of a relatively simple character.3o

As matters stand, we have described the relative
merlts of the two approaches as involving a choice between
simpllicity of the structure of the wfe's on the one hand,
and simplicity of the transformatlion and semantlcal rules on
the other hand., There are, however, more profound differ-
ences, If we follow the method of indirect discourse and
think of expressions in modal contexts as denoting them-
selves, we have the result that two expressions which in
modal contexts denote the same expression, are themselves
ldentical, We are thus deprived of the means of expressing
arguments which turn on the use in modal contexts of non-
synonymous expressions to denote the same expression. Con-
sider, for example, the following informal argument given in
direct discourse.31

Assume that John's favorite sentence 1s 'Hesperus =
Hesperus', Then presumably

(9) John's favorite sentence 1s necessary
is true, But

(10) (9) 1s neceasary




18 not only not necessary but false, since the truth of (9)
depends on a contingent assumption.32 However,

(11) !'Hesperus = Hesperus' is necessary

1s true, and so 1s

(12) (11) is necessary.

Thus one might conclude that the principle that what 1s
necessary 1s necessarily so, sometimes holds (as with (11))
and sometimes falls (as with (9)).

If we attempt to formulate the preceding argument in
a modal loglc of indirect dilscourse (that 1s, where 'is
necessary' 1s preceded not by the name of a sentence but
by a sentence itself) we will be able to express (11) as
(13) (Hesperus = Hesperus) is necessary
and (12) as
(14) ((Hesperus = Hesperus) is necessary) 1s necessary;
but no means 1s avallable to express (9).

The argument turns on the fact that John's favorite
sentence = 'Hesperus = Hesperus', but 'John's favorite
sentence' # !''Hesperus = Hesperus''; in fact, 'John's
favorite sentence' 1s not even synonymous with ''Hesperus =
Hesperus'!',

If we treat expressions in oblique contexts as denot-
ing their (usual) senses (rather than themselves) and de-
velop our language by the method of indirect discourse
we have the analogous result that two expressions which in

modal contexts denote the same sense are themselves
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synonymous (that is, they have the same sense). It may

have been this fact that has led a number of authors (among
them apparently Carnap and Quine)33 to the mistaken bellef
that there 1s something in the nature of senses whlch makes
them incapable of being denoted by non-synonymous expres-
sions. On the contrary, if o and B denote distinct entl-
tles of any kind whatever, we can always construct another
name g(a:,/p, @) (using the formation rule g of section 4)
such that rg(o: , }3, #) = a! 1s true but contingent. Thus
we see that 1f we choose the method of direct discourse, we
may introduce 1ln addition to the one new expression which
replaces the ambiguous use of an old expression, a number
of new expressions (perhaps compound, as with g(oc, B, §#))
all with the same denotation but with different senses,

Our comparisons of the two approaches to the formali-
zatlon of a language adequate to treat oblique contexts,
and indeed even the description of the two methods, has
been based on a semantlcal treatment of such contexts along
Frege's lines, namely: that the denotation of compound
expressions is always a function of the denotation of the
parts, but in some cases the denotation of an expression
may vary wlth the context. However, some authors have
probably chosen what we call the indirect discourse method
primarlly to avoid committing themselves to such a semanti-
cal analysis. If we replace occurrences of 'Hesperus' in

modal contexts by occurrences of 'Hesperusl' where the




latter is thought of as denoting the sense of the former,
and especilally 1f we then go on to take the natural step of
introducing variables for which 'Hesperusl' 1s a substutu-
end, we seem commltted to the Fregean analysis along with
its commitment to an entity called "the sense of the word
'Hesperus'". Unfortunately, many authors who have chosen
the indirect discourse method have avoided committing them-
selves to any semantical analysls whatever, preferring to
focus attention on transformatlion rules which inhiblt the
derivation of highly implausible conclusions from highly
plausible premises, and treatling formulas of dublous mean-
ing by a comblnation of suggestion and revelation.34
Our alim 1s primarily semantical, and hence we adopt
the method of direct discourse., In so doing we seek to
emphasize the fundamental similarity of different treat-
ments within this method (for example, that treatment where-
in the new expressions are taken as denoting senses, and
that treatment wherein the new expressions are taken as
denoting other expressions) as opposed to the fundamental
differences between direct and indirect discourse treat-
ments, Although in certain cases one direct discourse
treatment has certaln advantages over another, these dis-
tinctions have perhaps been over-emphasized in the litera-
ture 80 as to neglect the connection of all such treatments

with the Frege tradition.35 We will attempt to show the
simllarity of different direct discourse treatments by
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developling a language of direct discourse which admits of
both an interpretation whereby the expressions in oblique
contexts denote (other) expressions (we call thls the

syntactical treatment) and an interpretation whereby the

expressions in oblique contexts denote senses (we call this

the intensional treatment).




CHAPTER 2
FIRST FORMULATIONS

9. Semantlcal Systems for Oblique Contexts
We concelve of languages adequate to treat oblique
contexts as extensions formed in the following way of the
more familiar languages. We begin with a base language, and
add whatever apparatus 1s needed in order to express the
oblique contexts of the wfe of the base language (we call
such contexts singly oblique), We then close this language

under the logical apparatus of the base language. If we
refer to the base language as Lo we may refer to the new
language as Ll‘ It contalns essentlally the logical ap-
paratus of L, with one layer of obllquity avallable., If

we beglin, for example, with the sentential calculus as Lo
and we are developing a treatment of modal logic, we would
add all expressions of the form "N @ (where ¢ is either a
formula of LO or the analogue to such a formula, depending
on whether we choose the Indirect discourse or the direct
q1scourse methods)., We then form the language L, by taking
all the sententlal combinations of the new wfe's with the
formulas of Lo‘ The process of forming Ll from Lb can then

be repeated to form QE from L In LE we have avallable

1.
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the apparatus to treat doubly oblique contexts (for ex-

ample "NN@"). In this way we form a sequence of languages,

each a sublanguage of 1ts successor.,

Among the earlliest treatments of formalized languages
for oblique contexts are the modal logics of C. I. Lewls
(1], based on the sentential calculus., Among the most
recent treatments is the system of Church [6], based on the
simple theory of types. We shall choose a milddle course,
basing our systems essentlally on the first order predicate
calculus.36 However, before constructing these languages,
we shall Introduce a hlerarchy of languages 7(0,'k',...
based on a loglc whilch avolds the complexitles involved
with varlables and variable binding operators. In the
present chapter the languages 'Ro and 'ﬁa.are Introduced
and the fundamental ldeas behind thelr interpretatlons are
discussed.

The languages 7{0, '/{1,... all share certain simple
characteristics, The wfe's fall into two broad categories,
those of slmple type and those of complex type, The simple
types are agein divided into two hlerarchies: 1, 11, 12,...
and t, tl, t2,... . Each simple type 1ls assoclated with a
certain universe of entities. For example, under the
syntactical interpretation, wré's of the simple type 1
will denote individuals, those of the simple type 11 will
denote names of individuals, those of type 1, wlll denote

names of names of individuals, etc. Similarly, wfe's
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of the simple type t will denote truth values (thus, such
wlfe's are sentences), those of type tl wlll denote wfe's
denoting truth values (that is, sentences), those of type t,
wlll denote wfe's denoting wfe's denoting truth values, etc.
Under the lntensional interpretation the wfe's of type 11
will denote concepts of individuals, those of type 12 will
denote concepts of concepts of individuals, etc. The wfe's
of type t, will denote concepts of truth values (that 1is,
propositions), those ot type t2 will denote concepts of con-
cepts of truth values, etc. The wfe's of complex type com-
bine with wfe's of simple type to form compound wfe'!s of
simple type. If a wfe Q combines with a wfe a of simple
type 1 to form a compound wfe npd:of simple type t, then.qt
wlll have the complex type <i, t> and wlll denote a function
which assigns to every element of the universe of the type
1 an element of the unlverse of the type t.37 Hence, in
the present case,yl wlll denote a function from indlviduals
to truth values and is therefore what 1s commonly called

a one-place predicate, Aslde from the introduction of
variable-binding operators, all compound wfe's are formed
by prefixing a wfe denoting a function to wfe's denoting
its arguments. Thus the formation rules are all of essen-
tially the same form (concatenation of a function expres-
sion with its argument expressions) and the corresponding
semantical operations all amount to the application of a

function to its arguments, Only atomic wfe's will have



complex types; hence all compound wfe's will be of simple
type. In addition, only wfe's of slmple type may stand as
argument expressions, so we have no second-order wfe's in
any of our languages. Languages with a varlety of simple
types, such as ours, have been called "many sorted",

Our base language 4{0 wlll contain only the simple
types 1 and t. When we move to the langusge 7?1 we will
add wfe's of the simple types 11, tl to replace the wfe's
of types 1 and t in singly obllque contexts. Similarly,
the step to 7&; requlres adding new wfe's of types 12, t2,

ete,

10. The Language ]f;
The base language 7%2 is simply the first order
predicate calculus with identity but without varlables.
D1l. The simple types of f{o are 1 and t (where 1 = 2 and

t = 3).38 The complex types of 7{3 consist of all finite

sequences <Zi,...,2;,?;>, where 7,,...,Z, are simple types
of 7, and r>o.

D2. The atomic wfe's of 7?0 fall into the following cate-

gorles:

(1) for each natural number p, a derumerable number of

ﬁ-place operation symbols of which Opsymb (m,p) is

the mth,3°
(2) for each natural number p, a denumerable number of

p-place predicates of which Pred (ﬁ,g} 1s the mth,
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(3) the material conditional sign Cond and the negation

sign Neg,
(4) the identity signs for individuals Id(i) and for

the truth values Idgt2.4°

D3. A O-place operation symbol 1s called an individual

constant, and a O-place predicate 1s called a sentential

constant.

D4. The type of an atomlc wfe of 7(0 is given by the

following:
(1) for all m, Opsymb (m,0) has type i, Opsymb (m,1l) has
type <1,1>, Opsymb (m,2) has type <i,1,1>, etec.,
(2) for all m, Pred (m,0) has type t, Pred (m,1) has
type <1,t>, Pred (m,2) has type <i,1,t>, etec.,
(3) Cond has type <t,t,t> and Neg has type <t,t>,
(4) Id(1) has type <i,i,t> and Id(t) has type <t,t,t>.

D5. B _1s a well formed expression (wee) of K_ of type1f

if and only if:
(1) )3 is an atomlic wfe of ‘ﬁg of type [, or
(2) there are wfe's I, Cyseees®, OF 'R; of types
<Tl) L ALY ] Z;‘)B’ Z.l’ s 05 ’Zr respectively 8ndﬁ 18
n /\. ..,.\
% """ %-
For the sake of familiarity, we have excluded wfe's of such
complex types as <t,t,1>, <i,t,1, etc.,ul and have also
excluded sentential connectives other than the usual

logical signs. 1In many ways, however, it might be more
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natural to admit descriptive constants of cvery type.

It is clear that 7{0 can be put in the form <E,T,A,F>
discussed in Chapter 1 (especially section 2.1). Corre-
sponding to every complex type <Zi,...,2;,a;>, we would have
a formation rule which ylelds the compound 7{5{“--5“0%
glven any ﬁb o&,...,o& of the appropriate types. Since,
as noted above, not all complex types of 'ﬁ; are repre-
sented by wfe's, some of these formation rules (if thought
of as functions) would Just be the empty function. To
fulfill the requirements lald down in section 2.1, we must
establish that (1) each formation rule is one-one, (2)
distinct formation rules have disjoint ranges, and (3)
no atomlc wfe 1s in the range of a formation rule. If
Int, 'Pred', 'Opsymb!, 'Cond!, etc., are taken as primi-
tive, we may simply lay down (1)-(3) as axioms. An alter-
native procedure 1s to ldentify wfe's with certain finite
sequences of natural number and the concatenation of ex-
pressions with the concatenation of finite sequences,
(1)-(3) are then derivable in terms of the following
definitions.

D6. The atomic wfe's of 1&; are defined as follows:
(1) Opsymb (m,p) = <2™1.3P+1.5,
(2) Pred (m,p) = <3™1.5P*1.7,
(3) Cond = <5»
(4) Neg = <7>
(5) Ia(1) = <@®*l.3
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(6) 1d(t) = <23t .3>

pr. 1If oc,/B are finite sequences of lengths m and n
respectively, then O€B 1s the finite sequence of length
m+n, whose Jth element 1s the jJth element of o if j<m,
and the (j-m)th element of/B if jom,

11. The Semantics of 1{0

Instead of settling on some particular semantiecal
relation for 7%; we will describe the general character-
1stics of a large class of such relations, namely the
denotation functions for 7ﬂr In essence, such a function
must assign an individual to every wfe of type i, a truth
value to every wfe of'type t and a function of the appro-
priate kind to every wfe of complex type. In addition, 1t
must assign certain particular functlons to the loglcal
atomic wfe's, that is, Cond, Neg, Id(i), and Id(t). Since
we want our semantical systems to be extensional (that 1s,
Fregean with respect to denotation), we will represent
the semantical relations in a form closely related to the
representation <T*,A*,F* of section 3. It will be recalled
that T* was to be a function assigning a universe to each
type, A* a function assigning an element of the appro-
priate universe to each atomic wfe, and F* a functlion as-
signing a function of elements of the universes to each
formation rule., We shall take as our fundamental semantic-

al notions, 7@,15 a_model for % , the universe of the type?

)
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in the model W] with respect to the languagec f{o, and the
‘ ——
value of the wfe « in the model }Y) with respect to the
)

language /b:. A model for 71’0 will be an ordered couple

<DR> where D is the universe of the type i (that is, the

set of individuals) and R 1s a function which, like A%,

assigns an appropriate entity to each atomlc wfe,

D8. Yn is a model for 7io if and only if there are D,R
such that: B
(1) M= <or>
(2) D is a non-empty set
(3) R is a function which assigns an entity to each
atomic wfe o of 'B; in accordance with the following:
(a) 1if oc 18 an individual constant, then R(o) 1s
an element of D
(b) if < 1is a sentential constant, then R(o) is a
truth value
(¢) 4Af ocis a p-place operation symbol and p>O,
then R(o) 1s 2 function which assigns an element
of D to each p-tuple of elements of D
(d) 1f a 1s a p-place predicate and p»0, then R()
is a function which assigns a truth value to
each p-tuple of elements of D
(e) 1f o1s the material conditional sign, then
R(o) 1s that two-place truth function which
~assigns F to <TP> and T to all other pairs of

truth values'?
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(f) 1f ocis the negatlon sign, then R(o9 1s that
one-place truth function which assigns F to T
and T to F.

(g) 1if ocis the identity sign for individuals, then
R(x) 1s that function from pairs of elements of
D which assigns T to a palr of identlcal ele-
ments and F to all other pairs

(h) 1if o 1s the ldentity sign for truth values, then
R{a) 1s that function from pairs of truth values
which assigns T to a pair of the same truth

values and F to all other pairs.

D9, If m = <DR> 1s a model for 7'\'0, and T 18 a type of

O

7{0, then the universe of T in N with respect to K
(un?(’f)) is glven by the following:
(1) the universe of 1 1s D
(2) the universe of t is {’_T,E'} (the set of truth values)
(3) 1if the universes of 7 ,...,T, are respectively
Uysse+esl, and r>0, then the universe of <t’1,...,’(r,'[°>

1s the set of all functions from (u x...xu ) into u.

Dl0. If YY[ = <DR> 18 a model for '/1/0, and o 1s a wfe of

Ko» then the value of a in Y with respect to 6/‘,,

(Valn‘,:(o()) 18 given by the following:

(1) if «x 18 an atomic wfe of ‘Ho, then the value of «
is R(o)

(2) 1r )z,ol,....oc-r are wle's of ’/{o of types
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KT e s T s Zi, .«+» (g respectively with values

T, XysesesXy respectively, then the value of the

compound wfe Yl%{{--%&, is f(xl,...,xr).

™, If «is a wfe of “ﬁg with type 7, and "] 1s a model
for ﬁ/o, then the value of o in m is a member of the
universe of T in M.

The notion of a denotation function, and hence of a

Fregean semantical system,can now be reintroduced in terms

of models for #o'

D1l1. If M is a model for 7(0, then the denotation func-

tion for ¥ corresponding to )} 1s that function from the

wlfe's of '/{o which assigns to each such o<, the value of oC
in }7]
s, If m 1s a model for 7)/0, and F 1s the denotatilon

function for 1(0 corresponding to /77, then <A O,F> is a

Fregean semantical system,

12. The Language 7"1

We now wish to construct an extension of the language
7?0 which will be adequate to treat oblique contexts of the
wfe's of 7?;. Rather than actually introducing at this
polnt some particular oblique contexts we will first aim
at the attendant changes in or additions to 1&; which such
contexts would involve, Of course if the method of indirect

discourse is followed, there are no such attendant changes,
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However, we here wish to develop a language of direct dis-
course, and this involves (among other things) providing
for each wfe of ‘ﬁ; an analogous wfe which will be used in
our direct discourse treatment of oblique contexts to un-
ambiguously denote what the original wfe would ambiguously
denote in the indirect discourse treatment of oblique
contexts. For example, if we think of a sentence ¢ as
denoting a truth value in the context,

Fit 1s not the case that ¢
but as denoting itself in the context

"1t 1is necessary that @~
we will retain ¢ in the former usage and provide a new wfe,
@, to replace @ in the latter usage. Thus we must provide
for each wfe acof [f,, a new wfe ‘. ; this new wfe 1s called

the analogue to @« . Rather than simply introducing a new

primitive as analogue for each wfe « of 7%;, we shall take
advantage of the following simplifylng assumptlion about the

denotation of wfe'!'s in an indirect discourse treatment of

oblique contexts.

Assumption A: The denotation of a wfe o¢in an oblique con-
text 1s the semantical value of o for some Fregean seman-

tical relation R.

Thus, we may understand wfe's in oblique contexts to refer
to themselves, or to their senses, etc. In any case we

have the following result, where & 1s to be the analogue
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to o« . The value of o« by the Fregean semantlcal relation R

will be the denotation of « (or for short R(o) = den (a)).
Thus, if £ 1s a formation rule, den (f{B,¥)] = R(£(B.¥)).

But since R 1s Fregean, there 1s some semantilcal operation
£+ corresponding to f such that R (£(B,¥)) = £* (R(B),R(¥")).
Therefore, since R(B) = den gE) and R(}) = den (Y¥¥), we have
den (F(B,]) = £* (den QE), den (5’“)) or, 1ln words, the
denotation of the analogue to a compound wfe 1s a function
of the denotatlons of the analogues to the parts. Hence,
Instead of introducing a new primitive as analogue for each
wfe o of 7'{0, we shall introduce such new primitives only
for the atomic wfe's of ’/]/o and we will construct the
analogue to a compound wfe such as f()B,B”) by introducing

a new formation rule, say f,, such that ﬂm = £y (x ,ﬁ).
Such a procedure is Justifled by the result of assumption

A,
In addition to providing the analogue expressions o

for every wfe ofof ﬁi, we also provide the means for
expressing the relation between the denotation of ocand the
denotation of o« . Thus, although we do not follow the
Indirect discourse approach of identifying the two expres-
sions, nelther do we completely ignore the relatlonship
between thelr denotations. The relation will depend, of
course, on what treatment of direct discourse we follow.
That 1s, on what the Fregean semantical relatlon R is, such

that we understand a wfe o in an oblique context as



(ambiguously) denoting R(a). When we discuss semantical
conslderations with respect to 7?& we wlll make explicit

at least two possibilitles.

12,1 The types of T,
Since 1%; is to be a sublanguage of 7?&, we have in

1?1 the two simple types i, t of 7?0. In addition, we in-
troduce two new simple types 1,, t, (11 = U4, ty = g) for
wlfe's of 7(1 which are analogues to wfe's of 'ﬁg of the
types 1, t.43 By the same reasoning 1t seems natural to
Introduce a new type <Zi,...,2;,2;>1 to correspond to each
of the complex types <T’,...ﬂ;,za> of Tﬁ;. We shall, how-
ever, take a different course. Although we consider
expressions of complex type to be wfe's, our primary concern
1s with the wfe's of simple type. Another way of putting
this 1s to remark that we understand our languages to have
an essentlally first order character., That 1s, they are so
constructed that to add variables of simple types would be
a natural step, but to add varlables of complex types might
require considerable revision. Our essentlal requirement,

then, 1s that we have in Wl an analogue to every wfe ocof

'ﬁg of simple type. Thus if Q is, say, & one-place operation
symbol of 1#;, the essential role of ﬁ:(the analogue to Q)
will be to combine with & (the analogue to a wfe ocdf
simple type) to form compound wfe's of the form "Y'L"'Ec (that
18, analogues to wfe's of simple-type of the form beﬂ. To
put it more generally, if Y\is a wle (of “ﬂ;) of complex

4o
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type <Tys+-.2 050 (>, 1t combines with wfe's of types
T&,...Z’ to form a compound wfe of type 27. Hence in view
of assumption A, q‘must have a type which comblnes with

M

wfe'!'s of types Z&, vesC (where T 1s 1,, and t 1s t,) to
form a compound wfe of type Co' In view of these considera-
tions we wlll assign the complex type <E1,...?;,%§> to the
analogue to a wfe of type <11,...,?;,£6>. This procedure,
which eliminates the need for an additional type
<QsesesQaly>qs will effect a considerable simplification

of the type systen.

D12. The simple types of 7? are 1, il, t, and tl The
complex types of f{l consist of all finlite sequences

<Zi,...,2;,2;>, where co,...,z; are simple types of 7{
and r>0,

It will be convenient to be able to speak in general
of the type of the analogue to a wfe of type C.

D13. If T is a type of ’/{o, then the elevation of 7~ (’f’) is
given by the following:
(1) the elevation of 1 is 1,

(2) the elevation of t is tq
(3) 1£7,,...,7, are simple types of 7&;, >0, and
%Z,...,f; are thelr respective elevations, then the
elevation of <t1,...,2},23> is <%§,...,E;.i§;.
Although the elevation of each type of 7%; is a type of 7&;
not all of the new types of 7Yi are formed in this manner,




for example <11,1,t>Jw et Aha .AaQL\rdJ.cw o{ M.a'tnu-

12.2 The Well Formed Expressions of ﬁ&
As with 7?0 we willl exclude all wfe's of certaln com-

plex types, and further we will exclude all primitilve
deseriptive constants of higher types (the higher types are

the types of 7?; which are not also types of 7?;). In the
present case, as distlinect from o? there are important
theoretical considerations, rather than mere considerations
of familiarity, behind thilis decision.

In addition to the analogues to the atomic wfe's of
'ﬁg, we also introduce in 751 two new identity predicates
(for wfe's of types 1, and tl), and two new predicates (the
delta predicates) to stand for the relation which holds
between the denotation of a wfe of 7Rg (of simple type) and
the denotation of 1its analogue. (Further explanation of
the delta predicates 1s forthcoming.)

D14. The atomic wfe's offkfl fall into the following cate-

goriles:

(1) all atomic wfe's of 7?;

(2) analogues to all atomic wfe's of 7?0, where
gggzgglﬂglgl 1s the analogue to Opsymb (m,p),
EEEQ;LELEI is the analogue to Pred(m,p)
ggggl, ggglﬂare the analogues to Cond, Neg
_:_tg_lg_ij_, _x_glgg.)_ are the analogues to Id(1), Id(t)

(4) the identity signs for wfe's of types i, and ¢,
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za(s;), 1a(ty)

(4) the delta predicates for wfe's of types 11 and t1

Deltqi;l), Delta(;l).

D15. The type of an atomic wfe of 7‘{1 is given by the

following:
(1) 4if « is an atomic wfe of ’f/o, its type remains the

ganme

(2) 1f acis an atomic wfe of 7/, of type T, the type of
the analogue to o¢ is the elevation of T

(3) Id(1;) has type <i,,1,,t> and Id(t,) has type
<t),t;,t>

(4) Delta(il) has type <1,,1 t> and Delta(tl) has type

<t,t, 6>

D16. /B 1s a well formed expression of K, of typeZ 1if

and only if:
(1) B is an atomic wfe of ,Kl of type ¢, or

(2) there are wfe's 7, 0 seeer0g, OF 7‘(1 of types
Tyree+sT®s Tysee-s T, respectively andp is
I\ - -
,lal [ '} %.
The bar notation (a) for the analogue to a wfe o of

¥, can now be introduced in a precise way,

D17. Te analogue to a wfe o of K o (@ 1s given by the
following: T

(1) Opsymb {m p) = Opsymb, (m, p)

(2) Pred (mp) = Pred; (m p)
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(3) Cond = Cond,

(4) Neg = Negl

(5) irT=lor{=t, Id () = 14, (T)

(6) 1if q_is a wfe of Ko of complex type <Z’,...,Z;,2;>
and o&,...,a% are wfet's of 1Ko of simple types

Z&,...,Z} respectively, then M oq+. &, ='ﬁf5{:.f5§.

6. If ocis a wfe of “H;, of type T, then o 1s a wfe of
1{1 of type %i

One must carefully distingulsh such pairs of constants
as Id(il) and Idl(i). The former 1s the ldentity predicate
for wfe's of type 11; note that 1t has the type of a two-
place predicate of such wfe's, <11,11,t>. In general, for
each simple type T we will introduce an identity sign Id(T)
of type <T,T,t> for wfe's of type T. The latter ( = Id(1))
1s the analogue to the ldentity predicate for individuals;
note that 1ts type <11, il, t1> is not that of a predicate
at all, since when combined with wfe's of type il it does
not form a sentence (that i1s, a wfe of type t), but rather
the analogue to a sentence., In general, for each atomic
wfe of 4{0, such as Id(1), we will introduce an analogue
Idl(i), an analogue to the analogue Id2(1), an analogue to
the analogue to the analogue Ids(i), etc. In this way,
each atomic wfe of ‘k; will ultimately generate an infinite
hlerarchy of analogues. But such wfe's as Id(il) do not
appear in this hlerarchy, instead, they stand at the base
of a hierarchy of their own Id(il), Idl(il), Idz(il), etc,
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Reference back to our conception of a language of di-
rect dlscourse adequate to obllque contexts may help to
clarify what we have done. We began wlth a base language
ﬁ; and added all the analogues to wfe's of the base language,
In additlion, we added some loglcal apparatus for the new
wfe's (the new identlty predicates and the delta expres-
sions) and allowed any sentential combination of the en-

larged class of wfe's of type t (for example, Neg"Deta(ilfﬂ

ﬁpsymb(%pTAbpsymb (29)) We thus have the apparatus avail-
able to express singly oblique contexts of the wfe's of 7ﬂ3.
In order to make the situation a little more concrete, let
us now introduce such a context by adding clauses to the
preceding definitions which introduce the modal operator of

necessity,

(5) the necessity predicate, Nec, is an atomic wfe of 1{1

of type <t1,t>

13. The Semantics of %
As indicated earlier, we willl provide two interpreta-
tions of 1?&, a syntactical Interpretation, according to

which wfe's of the form o will denote expressions of ‘/(o

and an intensional interpretation, according to which wfe's

of the form a will denote senses.

14, The Syntactical Interpretation of f{l
14,1 Expressions and Syntactical Entities
Under the syntactical interpretation, the universe of
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the type 11 will conslist of all wfe's of ﬁo of type 1, and
the universe of the type t, wlll consist of all wfe's of 7{0
of type t. Thus, if « is a wfe of ﬁo of simple type 1 (t),
we can require that & (which will have simple type 1, (tl))
simply denote o itself. Accordingly, 1t seems natural to
require also that ﬁ. denote Iz, when 1 is a wfe of ﬁo of com-
rlex type. We will not take this course. Instead, 'Y_lwill
denote a certain function (called "the syntactical entity
corresponding to rl" or "Sy'nt(Y()") which represents the com-

plex wfe ](
We recall (section 12.1) that the essentlal role of

the analogue | to a wfe Yl of complex type is to combine
with the analogues 7&1,..., 'o'rr to wfe's o4,...0q of simple
type to form the analogue r(‘al eor O to the compound wfe
Yl’\o&n...’\o'r of simple type. The requirement on analogues
to wlfe's of simple type tells us that each q denotes g

and that Yl."o&"‘...’ ;. denotes vl'\o&h...ho&,. Hence, since
o7 = . N, the denotation of W must combine
TR = TG

with oc_l,...,o&. to form Y(atl”...hotr. This purpose is most
simply served by requiring that T'Ldenote that formation
rule (section 2.1) which forms from each r-tuple PRI S

of wfe's of the appropriate types, the compound wfe |
Y(‘ndlﬁ...'\o&,. 44 This formation rule is the syntactical en-

tity corresponding to Yt For purposes of uniformity, let
us also refer to a wfe o of simple type as the syntactical

entity corresponding to itself.
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D1y, I!‘}j 12 o wle of ',‘]"u, then the pyntreticnl ontity

correrpondim: to B3 (Synt( J3)) iv piven by the following:;

(1) 1 )3 1v of eimple type, then synt(B) 1s 3 itnelr,
(2) 1r ‘Z’o,...?;, are osimple types of ‘A’o, 0, )S is of
complex type <Z’i,...,’2‘p, G 2nd Wo,... v, Gre the
sets of ull wlfe'r of ’A’o of typev T ,...,T, renpec-
tively, then Synt()}) in the unique function from
(wlx...xwr) into w_  which avnlgns to cuch <ot bon
in its domaln, the wfe }jﬂcx;...ﬁcxr.
Our treatnent of the denotation of 'Fl (namoly, .'Jynt(rz))
13 1n accord with our plun to have u wfe of complex type
<T1""’Tr’ 7> denote & function which assigns to euch
r-tuple <y1,...,yr>, where yJ is an element of the universe

of 't“'], an element of the universe of ?;.

14,2 Universe and Value for 1{1
If we were to follow directly the pattern of defini-

tions for the semantical notions in ‘ﬁ;, we would be led

to introduce the notion of a syntactical model for 1(1.
Such a model might consist of a couple <DR>, where D again
represented the universe of the type 1 and R assigned to
each atomic wle of 'ﬁ'l an appropriate denotation, But one
of our motives in transferring attention from denotation
functions for 7f6 to models for ‘ﬂ; was to simplify matters
by considering just those essential places at which one de~
notation function could differ from another, namely in the
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assignment of denotations to descriptive atomic wfe's. (Ac-
tually we did not go as far in thls direction as we might
have, 1n that our models for"ﬁg also assign denotations to
the logical, that is, non-descriptive, atomlic wfe's.) Simi-
lar considerations lead to a simplification of the semanti-
cal notlons for 7{/1.

Note that 1n the passage from 7Vo to 1{1, no descrip-
tlve atomlc wfe's were added. Thus, the same notlon of
model will suffice for both languages, and the assignment of
denotations to the new atomlc wfe's can be accomplished
through the new notlon of value. Hence, for the syntacti-
cal interpretation of the language 7¥1 we wlll Introduce

only the two semantical notilons: the universe of a type,

and the value of a wfe.

D19. If MM = <DR> is a model for K, and7is a type of
ﬁ&f then the universe of T in Yn with respect to the Syntac-
tical interpretation of 7Y lis 1ﬁ (T)) 1s given by the fol-

lowlng:

(1) the universe of 1 is D

(2) the universe of t is {T,F}

(3) the universe of 1, 1is the set of all wfe's of"ﬁ; of
type 1 '

(4) the universe of t, is the set of all wfe's of 7&0 of
type t

(5) 4if the universes of ZB,...,Z; are respectively

Upseoasly and r>o, then the universe of <Tl;...,15,26>
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1s the set of all functions from (ulx.. .xu ) into u.

our definition of "the value of a wfe of 4/1" makes
essentlial use of the earlier notlon, the value of a wfe o
in the model Y] with respect to the language ‘ﬁo (Valf}.{;l(oc)),

which was introduced in D1O.

D20. If M = <DR> 1is a model for “Ho, and « 1s a wfe of
Wl’ then the value of o in ¥){ with respect to the Syntacti-
cal Interpretation of 'L/l (val },{HJ‘ (d) is given by the fol-

lowing:

(1) if a is an atomic wfe of o? then the value of « is

R()

(2) if o is an atomic wfe of 7{ , then the value of & 1s
Synt(a)

(3) 12T 1s 1, or t;, and «cis Id(T), then the value of o

is the unique f such that:
(a) £ is a function from (um T) x U.m ('D) into
(.7}
(b) 1f <B,¥> 1s in the domain of f, then £(3,#) = T
if and only ifp =Y.
(4) 12T 4is 1 or t, and o is Delta(E), then the value of
o 18 the unique f such that:

(a) £ 1s a function from (a%ﬁl( ) x uS’Iﬁ (D)) into

{r,}

(v) 1r ga,x> 1s in the domain of f, then rga X) =T

if and only if Valf;,;‘B) = X,

(5) Af o is Nec, then the value of o« is the unique f such
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that:
(a) £ is a functlon from the set of all wfe's of 7{0

of type t into {T,F}
(b) if ¢ is in the domain of f, then f(¢) = T 1f and
only if for all models [/l for 'ffo, Val;{f(ﬁ) =
(6) 1f Y, Bys.-.sp, ave wfe's of 7} of types <Tys...slps
2‘°>, ’[1,. . .,Z;, respectively, with values £, xl,...,xr
respectively, and o is Y(Blﬁ..f}r, then the value of

@ 1s i‘(xl, oo ,xr) .

T7. If ais a wfe of 'Hl with type T, and 1] 1s a model
for ’h/o, then the value of o in /] 1s a member of the uni-

verse of T in M (Vals’wl(ot)é us ﬂl

8. If wils a wre of 4, and M| 1s a model for '}i,, then
N .
the value of o in M is the same for K, and K} (Valy (o) =

79. 1If M 1s a model for T{, and F is that function from
the wfe's of 7‘/ which assigns to each such o the value of
o¢ in m(Val %{ﬁ'(oc)); then <'/{1,F> is a Fregean semantical
system,

Our simple method of providing an analogue to every
wle of #o was justified by Assumption A (section 12).
The following theorem indicates that we have satisfled that

assumption.

T0. If R is that function from the wfe's of ‘/{o which as-




signs to each such &« Synt(o); then <7?°,R> 15 a Fregean

semantlical system,

14.3 Metalingulstic Features of 7?&

Under the syntactical interpretation, 7%& may be

thought of as a formalized metalanguage for ?fo wlth the

following features:

(1)

(2)

(3)

()

(5)

(6)

(7)

The obJject language, 'ﬁg, 1s a sublanguage of the
metalanguage.

The metalanguage contains type distinctions which
make 1t Impossible to express certaln propositions
(for example, that the expressions of the object lan-
guage of different types are disjoint),

The metalanguage contalns two denotation predicates
(one for names of the object language and one for
sentences of the object language).

Every name o and sentence @ of the object language

has a standard name in the metalanguage (namely, o
and ¥ respectively). |

p-place predicates and operation symbols (pdo) and
sentential connectives are not treated as wfe's of
the object language,

The metalanguage contalns a valldity predicate, Nec,
for sentences of the object language,

The logical resources of the metalanguage are very

‘weak.

7{1 differs perhaps most strikingly from famillar
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formalized metalanguages wlth respect to points (2) and (5).
In the more familiar metalanguages we have a single type
for names of all wfe's of the object language and a single
formation operation (concatenation). Thus we are able to
form names of a wilde class of expressions, in fact a wider
class than the wfe's, Furthermore, we are able to express
the fact that, for example, no sentential connectlve is an
individual constant. In our form of metalanguage, the iden-
tity of a pair of expresslons can be expressed in the meta-
language only when the identlty of thelr denotatlons can be
expressed in the object language. The second main depart-
ure from the familliar form of metalanguages 1s in the lack
of names for expressions of 1Y° of complex type. In their
place, corresponding to every such expression Q_we have a
name ﬁlof a formation rule which 1ntroducesvt Thus K
treats q as syncategorimatical; that is,il is only indica-
tive of a mode of combination of 1ts argument expressions
rather than being a full-fledged wfe with a denotation of
its own. 1In this connection, note that 1{1 contains no de-
notatlon predicate for expressions of complex type. In its
treatment of expressions of 1#0 of complex types, 7?1 pro-
videé a description of ﬁﬁ; which 1s alternative to that
given in section 10.2 with respect to the part-whole rela-
tion., But both descriptions share the feature that only
that part of the structure of the expresslons of the object
language which is relevant for semantical purposes 1s ex-
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pressed.

It 1s thils relative poverty of expressiveness which
actually provides 771 its versatility. Recall that the de-
notation of & was to be R(a) for some Fregean semantical
relation R. We have kept the metalinguistlc apparatus in
ﬂ& minimal so as to be able to accommodate, in a natural
way, Fregean semantilcal relationé other than that which as-
slgns to an expression the expression itself. In particu-
lar, we will soon provide a quite dlfferent interpretation
of 12 One in which wfe's of the form « denote concepts.
If we had constructed 1{1 in accordance wlth concatenation
theory, we would then be faced with providing an interpre-
tation for the "concatenatlon" of the sense of « and the
sense of B, where oQB may not even be a well-formed ex-
pression.

In thilis connection, we recall our purpose in con-
structing 7&&: to provlide a direct discourse language to
treat singly oblique contexts of wfe's of 'ﬁ;. It 15 not
intended to be adequate for other more far reaching pur-
poses (although some languages adequate for other purposes
may also prove adequate for ours), For our purpose the
most important features of 7%& are (1) and (4).

It is worth considering (4) at slightly greater
‘length, In what sense 1s & & standard name of of In many
ways « seems similar both to what Tarski has termed a

structural descriptive name 45 and to a quotation name,
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Like quotation names and (presumably) structural descrip-

tive names, 1t differs from what we may call contingent

names in that the fact that o« denotes o can be established
on logical grounds alone. Expressilons, like every other
kind of entity, can be named by names which require emplri-
cal investigation to determine their denotation (for exam-
ple, the name 'John's favorite sentence'). We understand

the essence of the notion of a standard name to be the logi-

cal determinateness of 1ts denotation. Thus, our claim in
(4) is understood as justified by the following theorem:
T11. If ocis a wfe of ’/’(_, of simple type, and N 1s any
model for “/\’o, then Valm A1 () = o

Theorem 11 can be slightly generalized as follows:

T12, If ocis a wfe of o* and m is any model for 1{

then Valhf;ﬁl(oc) = Synt(o).

In connection with theorems 11 and 12 it is interest-
ing to note that the universes of the higher types are also
logically determinate.

T3, If T is a type of 7{0, and M,)] are any models for
Ko+ then uﬁz 1(’0 unj(’lj)

Although every kind of entity 1s capable of being named by
& contingent name 1ike 'John's favorite . . o', only those
kinds of entitiles whose existence 1s not itaself a contingent

matter can be suoh that a given expression names them in
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every possible state of affairs. It is readily seen that
the notlon of a contingent entity 1s quite problematical,

depending, as it does, on the notlon of a possible state

of affairs. However, 1t seems plausible to assume that the
distinction between necessary and contingent entities ap-
proximately parallels that between abstract and concrete
entities. Thus numbers, expressions (in the sense of type,
not tolien, see Peirce [1]), concepts, and certaln sets are
capable of having standard names like '0',"0”, 'the neces-
sary proposition', ' A !'; whereas for any name of a physical
object, a set of physlcal objects, or a sense datum we seem
to be able to 1lmagine a possible state in which such a name
elther would be denotationless or would name something
other than that which 1t in fact does name. From this
point of view, we may regard theorem 13 as expressing the
fact that the universes of the higher types consist of non-

contingent entitles.

15. The Intenslional Interpretation of 7?1

In giving an intenslional interpretation to TRE, one
of the first questions which arises is, "What 1s a concept?"
If we do not wish to take "concept" (or "sense" or "inten-
sion" we use them interchangeably at this stage) as a primi-
tive of the metalanguage we must offer an analysis in terms
which are acceptable. There are a number of distinct no-
tions which are suggested, These notions can be differenti-
ated by various criteria.
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15.1 Principles of Individuation
The criterlon which has been most discussed is prob-

ably that of individuation., That 1s, under what circum-

stances shall we say that two expressions have the same

sense. The proposal herein adopted 1s that of Carnap (for

what he calls "intensions" in a technical sense) that two

expressions shall be said to have the same sense just in
Thus, if «

case the expressions are logilcally equivalent.
andp are wfe's of ’f)jo of type 1, then the sense of a is
identlical with the sense of]3 Just 1n case the identity sen-
tence, Id(i)"ofb, 1s loglcally true in H.. Similarly, if
7, Y are wfe's of 7?; of type t, the sense of ¢ is identi-
cal wilth the sense of'W Just in case the biconditional of
gand VY, 1d(t) ¢ W, 1s loglcally true.

This proposal 1s referred to by Church in [3] and [6]

as "Alternative Two." 46 Other principles of individuation
have been considered (three are mentioned in Church (3] and
[6]). In particular, there seem to be reasons for a tight-
er principle (that 1s, one which will individuate more
senses) in certailn contexts (for example, the oblique con-
texts formed by using predicates like 'belief!). There is,
however, at least one excellent argument in favor of the
present principle. It 1s clear. It seems very difficult
to draw the line in a natural way at any other place. 47
One may imagine two general methods for producing
tighter principles. First, restrict the logical operations
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allowed 1in proving the equivalence. Looked at from a se-
mantical point of view, this amounts to narrowing the cate-
gory of logical signs. Principles produced by this method
can probably be accommodated in the style of the present

48

work. A second method, initially quite appealing, is to

identify only the senses of wfe's which are obviously logi-

cally equivalent., We might, for example, fix an upper
bound to the length of the proof of the equlvalence in some
partlcularly natural system of logic. The primary diffi-
culty with this method ls that 1t does not produce an equiv-
alence relation between wfe's having the same sense, since

belng obviously logically equivalent 1s not a transitive re-

lation., The natural treatment of a notlon explicated by

this method 1s in terms of a degree of synonymy which in

turn would call for a notion of degree of bellef, here as-

slgning different degrees to logically equivalent sentences.
At any rate, we should think of different principles
of individuation as simply producing different notions of
sense, Our immediate purpose 1s now to continue explicat-
ing one of these notions,
15.2 Empty Concepts
A second important criterion for distinguishing d4if-
ferent notions of concept is concerned with the possibility
of so-called empty concepts. Suppose we conslder a name
of type 1 (that is, the denotation of « is to be an individ-

" ual)., Now, according to Frege, every name must have a
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sense, so let « denote the sense of o« lowever, not every
name has a denotation. For example, the name "Pegasus" is
ordinarily thought of as being denotationless. If a. is

such a denotationless name, then o will denote an empty con-

cept. Note that a is not denotatlonless; it denotes a cer-
taln concept, namely the sense of oc. But this concept
does not apply to anything, that is, 1t 1is not a concept of
anything. 49
Thus 1t 1s seen that the problem of empty concepts 1s

closely connected wlth that of denotationless names., If
we admlit denotationless names and at the same time lnsilst
that every name has a sense, we seem forced to admit empty
concepts, Two alternative proposals for treating the prob-
lem are immedlately apparent.

(1) Admit denotationless names and (thus) empty concepts.

(2) Admit no denotationless names and no empty concepts.
In general, alternative (2) is more convenilent. It was in
fact Frege who proposed that for the sake of simplicity in
the syntax we should adopt rather artificlal conventlons
vhich force a denotation on otherwise denotatlionless names.
However, from the point of view of natural usage, alterna-
tive (1) seems superior.

It has been argued that to grasp a concept 1s to lnow

to what 1t would apply given any state of affairs, and thus

1f one does not lmow to what the sense of "Pegasus" applies,

one has not fully grasped the concept {or possibly has not
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grasped the full concept). Hence, the argument goes, a
so-called empty concept is merely an incomplete concept
(that 1s, only part of a concept). We shall adopt alter-
native (2) for purposes of logical simplicity. But it is
worth mentloning that the above argument (except as a post
facto analysis of the notion which has been formalized) does
not seem completely satisfactory. One might equally well
claim that to fully grasp a (full) concept 1is to know,
glven any state of affalrs, elther to what the concept ap-
plies, or that 1t applies to nothing.

As stated above, the present work 1s based on alter-
native (2). However, before going on we should mentilon
that there are positions between (1) and (2). Let us call
one of these (1.5).

(1.5) Admit no denotationless names but allow empty concepts

(which of course would not be the sense of any names

in the language) as values of varlables of types 1,

and t,.

This alternative 1s adopted in Church (6].°° A modifica-
tion of the systems of the present work to accommodate
elther alternative (1) or (1.5) does not appear, in prin-
ciple, to impose serious difficultles.

15,3 ‘The Carnap Interpretation

The preceding discussion of what 1t means to grasp &
concept has already indicated a natural interpretation of
concept. This interpretation, which was first suggested
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1

by Carnap,5 but in a more exact way, 1s that a concept

is a function from possible states of affairs to things in

those states. Thus, for example, a concept of an indi-

vidual (that 1s, an individual concept) 1s a function which
assigns to each (possible) state of affalrs some particular
individual in that state. A concept of a truth value
(that 1s, a proposition, the sense of a sentence) is a func-
tion which assigns to each state of affairs a truth value?g
a concept of a set of individuals (that 1s, a property,
the sense of a one-place predicate) i1s a function which
asslgns to each state of affairs a set of the individuals
of that state.54
Let us review some of the previous discussion to see

how well thils interpretation fits with earlier decislons,
According to our notion of a well formed expression (ignor-
ing for the present, problems connected with the occurrence
of free variables),

(1) Every wfe has a sense.
According to the principle of individuatlon,

(2) The senses of loglcally equlvalent wfetls are ldentical,
According to the decision on empty concepts,

(3) Every wfe must have a denotatlon and no concept can

be empty.

Now let us consider a particular name, let & = "the 35th
president of the U.S.A." By (3), ochas a denotation in

every possible state of affairs, In the actual one
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happens to denotc John F. Kennedy, but in others it may
denote, say, Richard Nixon, or some other possible indi-
vidual who does not exlst at all in the actual state of
affairs., By (1), « has a sense, let us call it "Sense
()". By (3) again, Sense (x) 1s a concept of something

in each possible state of affalrs, In the actual state 1t
obviously 1s a concept of John F. Kennedy, that 1s, the
actual denotation of . Thus, what 1s more natural than
to let Sense (o) be such that for any possible state of
affairs 1t is a concept of the denotation of o for that
state (whilch denotation must exist by (3)). It is now a
simple step to let Sense (o) be that function from possible
states of affailrs, whlch assigns to each state the denota-
tion of « in that state. Suppose now that we consider
another name,‘B, which differs from a but 1s loglecally
equivalent. Repeating the previous argument,‘B has a sense,
Sens¢ (B), a functlon from possible states of affairs
which assigns to each state the denotation of}3 in that
state. From the hypothesis that o 1s loglcally equivalent
to B we conclude that for each possible state of affairs the
denotation of o 1s the same as that of 3. Hence the func-
tions Sense (x) and Sense 93) are the same, in accordance

with (2).

15.4 States of Affairs
It 1s clear from the preceding discusslon that under
the Carnap interpretation the set of indlvidual concepts,
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propositlon, propertles, etc., 1s determined by the set of
"possible states of affairs”. And further, that if we
conslder distinct alternative sets of possible states of
affairs, they willl generate dilstinct alternative sets of
concepts.

We must now face the problem of a precise treatment

of the notion state of affairs (or, more exactly, posslble

states of affairs). One method of doing this would be to
treat the expression as a primitive and attempt to formu-
late axioms which would characterize the notlon to a degree
sufficient to establish certaln general results about in-
tensional logic. It 1s, however, one of our main aims to
show that Intensional loglc can be developed in such a way
that its semantics can be treated iIn a purely extensional
language,53 in fact 1n one of the familiar forms of set
theory. Thus, we expllcitly avold the introduction of

any "intensional" notions into the metalanguage. Instead
we provide certain set theoretlcal entities to play the role
of states of affairs.

‘Since the sense of a wfe oCof ik; is to be that func-
tion which assigns to each state of affairs S the denota-
tion of « in the state S, each such state must determine a
unique denotation for each wfe oc. In addition, each state
should determine a unique class of individuals (the indi-
viduals existing in that étate of affairs ). In fact, each
state of affairs determines a unique model for 1*;. Now




suppose that two states of affalrs Sl and 82 determnine the
same model of ’ﬁ;, then the sense of any wfe of 7%; will
assign the same entity to Sl and 82. Hence 1t seems
natural to simply ldentify the states of affairs with the
models which they determine.55
We now turn to a second question in connection with
states of affalrs, one which has been largely ignored in
the preceding. What 1s a possible state of affairs? In
particular, does every model for 7&; constitute a possible
state of affalrs, independent of which model we take to
constltute the actual state of affalrs? If a negative
answer 1s glven, it would be natural to characterize an
intensional model for 7?& as a couple <MM> where YN i8 a
model for 7?; (the actual state) and M 1s a class of models
for 7?0 (the "possible" states with respect to N]). One
such couple might be of the form <?ninﬁ>. With respect to
thils model for 7&3, all true sentences of 7Vi would be
necessary. The question we are faced with is: should such
possibilities be excluded on purely loglical grounds?
Church has indicated an lnclination to allow such possi-
billities, and thus to answer our initial question nega-
tively.56 A number of other authors appear to be similarly
inclined,”! But since they are dealing with indirect dis-
course forms of modal logic one must be careful in inter-
preting thelr remarks, Carnap has in general glven a

modified positive answer to our question in that he usually
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has followed a procedure which amounts to specifying come
set of models (possibly not all models in our senge) and
then treating these as the posslble states independently of
what is taken as the actual state.58
We will follow Carnap's procedure. This decislon was
anticipated in the treatment of the necessity sign under
the syntactlical interpretation of 7{1. There, a sentence
of 7?; was sald to be necessary Jjust 1in case it was valid,
that 1s, held in every model of 'ﬁ;. There seems no reason
for providing a different treatment under the intensional
interpretation. We assume that the class of all possible
"individuals" forms a proper set in the set theory of our
metalanguage. The class M° of all models of 7{0 then also
forms a proper set as wlll various other classes to be
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introduced later,

15.5 Concepts and Senses

Given the set M, of models for 7?0 we can now intre-
duce the set of lndividual concepts determined by Mo and
the set of proposltions determined by Mo'

D21. (1) £ 1s an individual concept (with respect to M)
if and only if £ 1s a function on Mo whlch assigns to each
<DR> ¢ M, an element of D. (2) £ 1s a proposition (with

respect toﬁﬂo) if and only if f 1s & function on M, which
assigns to each Ynémo a truth value.




For wfe's 'ﬂg of simple type, we define "Sense" in accord-
ance with our earlier suggestion that the sense of o is
that concept whlch assigns to each model Yn, the denotation
of ¢ with respect to XO.

D22, If o ls a wfe of 7?; of simple type, then the sense

of & (Sense(o)) 1s that function on 1, which assigns to
o
each Mel , Valp'(a.
Following this line of development, let us now con-

sider wfe's of 7?; of complex type. If q is such a wfe,
we call the function which assigns to each PReMb, the value

of q‘in Yn, the natural-sense of q: Since wfe's of complex
type denote functions, such a natural-sense would be a con-
cept of a function, hence an assignment of a functilon 1n77l
to each MeM . But recall that in section 12.1 we decided
to simplify the type system by rejecting a speclal type for
the analogue to a wfe of complex type, and instead to have
such analogues always denote functlons on the universes
of simple types. In conformity with this policy, ﬁ:does
not denote q.itself under the syntactical interpretation.
Rather, it denotes a certain function which represents the
expresslion n: Under the present interpretation, we will
again treat 1 as denoting not a concept of a function, but
rather a certain representative thereof.

Iet us, for the moment, restrict our attention to

concepts of functions from individuals to individuals.
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Among such concepts are the senses of all one-place opera-

tion symbols of 'ﬁ;. Let us call f a natural-concept of a

function, if f 1s 1tself a functlon whose domain is Mo and
which assigns to each <DR>€;M° a function from D into D.
Thus 1f Y 1s a one-place operation symbol of 1{0, the
natural-sense of Q 1s a natural-concept of a function. Let

us say that g 1s a functlon on concepts, if g 1s a function

from the set of all individual concepts into the set of all
individual concepts. If f 1s a natural concept of a func-

tion and g 1s a functlion on concepts, we say that g repre-

sents £, 1f for every model M€ M, and individual concept x,
(8(x))(M) = (£(mM))(x(mM)). We shall also say of a func-

tion on concepts g, that 1t is invarlant, if for all models
YneM, and individual concepts x, ¥, (g(x))(M) = (a(y)) (M)
whenever x(Tn) = y(n{).

It is now an elementary matter to establish the

followlng results:
(1) Each natural-concept of a function has a unique
repregsentative,
(2) Every representative of a natural-concept of a func-
tion 1s an invariant functlon on concepts,
(3) Every invariant function on concepts represents a
unique natural-concept of a function,

(4) Not all functions on concepts are invarilant.

- Qur method is to everywhere replace natural-concepts

of functions by thelr representatives,




D23. If’ZB,...,Z} are simple types of 7?;, ™0, Q‘is a
wfe of 7?0 of complex type <Zi,...,2;,2;>, and each of
CoresesChp 1s either the set of all individual concepts or

the set of all propositions depending on whether the cor-

responding element of ’Z;,...,f; 1s 1 or t, then the sense

2;;4_(Sense (Y)) is the unique g such that:

(1) g 1s a function from (clx---xcl) into c,

(2) 1f MeM,, and <x;,...,x> 15 the domain of g, then
(B(xys 52D OM]) = VLR () (x (M), e5%, 070)).

This definition embodles our declsion to replace natural-

concepts of functions by thelr representatives, since 1t

immedilately implies that Sense(q) represents the natural-

sense onL.

The preceding definitlon considerably simplifiles our
theory. The 1dea of such a simplification was introduced
in Church [6]. Unfortunately, the representation of
natural-concepts of functions by invariant functions on
concepts 1s there marred by two defects.

First, the notion of 1nvariance used is too weak;
it only requires of a function on concepts g, that for the
actual state ), for all individual concepts x, Yy,
(e(x))(M) = (g(y)) (M) whenever x(M) = y(1N); rether than
requiring it for all Y in M, Thus the equivalence be-
tween natural-concepts of functions and invariant functions
of concepts is lost., Church's axiom embodyling the defective
notion of invariance (16°°%B), in combination with certain
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other natural principles which the system 1s required to
fulfill, can be used to prove theorems within the systen
which assert that there 1s only one concept of each object
(for example, only one true proposition and only one false
one). We discussed earliler, the possibility of leaving
such questions open by not assuming that the class of all
posslble states of affalrs contains more than one member.
Although our initial decision to make such an assumption
may be somewhat questionable (Church, for example, ex-
plicitly opposes 1t) the contrary assumption, as embodied
in the above mentioned results in Church's system, is
surely untenable,

The second defect in Church'!s representation of
natural-concepts of functions raises a second difficulty
with the invariance property, but turns primarily on the
fact that the underlying logic of Church's base language
(recall section 9) is that of the simple theory of types.
We must therefore represent natural-concepts of second order
functions whose domains are sets of funct¢lons. What, for
example, 1s to represent a concept of a second order func-
tion £ which assigns an 1ndividual to every function from
individuals to individuals? In accord with the general
replacement principle, Church assigns an invariant functlon
g whose domain is that of the representativas of natural-
concepts of functions from individusls to individuals and

whose range is that of concepts of individuals. But such
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a function will have 1In 1ts domain all functions from con-
cepts of 1ndivlduals to concepts of individuals, since the
primary virtue of the replacement principle is its identi-
ficatlon of the type <1,1>; (concepts of functlons) with
the type <11,11> (functions on concepts). It 1s easily
seen by (4), (2) p. 68) that not all functions from con-
cepts of individuals to concepts of individuals represent
natural-concepts of functions; thus our invariant function
g contalns in 1ts domaln entities which are not (and do not
represent) concepts at all. Even if the first defect 1s
repalred by revising the axioms to requlre the stronger
notion of invariance (a revisilon which can easily be made),
it is difficult to think of a natural requirement on the
value of the function for those elements of the domain of g
which are not concepts. One posslbllity 1s to require

that an lnvarlant functlon assign a designated element to
all non-concepts in its domalin, but thils course would
directly conflict with certain other basic principles of
Church's system. If the problem 1s left unresolved (as it
1s in the article) and the invariance requirement 1s stated
only with respect to concepts in the domain of g, we are
again faced with the problem that a glven concept of a
(second-order) function will have more than one representa-
tive, which, as before, leads to conflicts with some of the
leading ideas used in constructing the system. It would

seem that 1f a system cantaining second order functions 1s
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to be developed, the best course may be to forego the im-
mediate simplification which arises from the replacement
principle 1n favor of a system with a more complicated type

structure but also a more natural Interpretation,

15.6 Universe and Value for 63

As in the case of the syntactical interpretation of
7@1, we need not Introduce a new notion of model., Instead
we slimply introduce a new notlon of value under the Inten-
sional interpretation of 7? (Val ;Hl(oO) defined in terms
of the notion of sense for wfe'!s of 1? Note that the
latter notion was defined (as was Val ’Ki(a» in terms of
the notion of value for wfe's of 7?0 (Va1 ﬂ[(°9)° It 1is
convenient to first introduce the universe of a type of 7?1

under the lntensional interpretatlon.

D24, If M = <DR> 1s an element of M  and T is a type of
%y, then the universe of T in W with respect to the Inten-

sional interpretation of the lenguage 7%1 (u; YD) 1s

glven by the followlng:

(1) the universe of 1 is D

(2) the universe of £ is T,F |

(3) the universe of 1, is the set of all individual
concepts

(4) the universe of t; 1s the set of all propositlons

(5) Aif the universes of 170,...,2; are respectively
Ugseessly, and 150, then the unlverse of <Tiseees r,?;>
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1s the set of all functlons f{ronm (ulxu-xur) into u,.

D25, If Wl = <DR> 1s an element of I o+ and «is a wfe of
7{/1, then the value of o« In m with respeect to the Intension-

I,
al interpretation of ‘1(1 (val mHI ) 1s given by the

following:
(1) 1if o is an atomlic wfe of ’/{o, then the value of o 1s
R(o)
(2) if oo is an atomic wfe of ’ﬁfo, then the value of « is
Sense ()
(3) if Tis i, or ty, and o is Id(T), then the value of ocC
is the unlque f such that:
(a) £ is a function from ((J.'T;;Lﬁl(z:) x ({ ml(’C) into
{T,F}
(b) if <g,h> is in the domain of f, then f(g,h) = T
if and only 1f g = h
(4) if T1is 1 or t, and « is Delta(T), then the value of
& is the unique f such that:
(a) f 1s a function from (L(mkl(f‘) LLI Hl('t)) into
{r,F}
(b) 4if <g,x> 18 in the domain of f, then f£(g,x) = T
1f and only if g(M]) = x
(5) Af ot¢is Nec, then the value of o is the unique f such
that:
(2) f 1s a function from the set of all propositions
into {‘I‘.F}
(b) if g is in the domain of £, then f(g) = T if and
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only if for all e i, g(N) =T
(6) 1ir qul""JBr are wie's of 7?1 of types
<ti,...,Z},ZB>. 7?1,...2; respectively with values
f, XyseeesXy, respectively, and « is y(jBiﬁ--f)3r,
then the value of o is f(xl,...,xr).

The following are the counterparts to theorems 7-~10 of
section 14.2,

Tl4. If o« 1s a wfe of 7¥ with type T, and me M, then

Valm 1) 6 L{In,{(l(’c

T15. If ocis a wfe of K, and M6 M_, then Val m(®) =

1%
Va 1m 1(o)

T16. If Y€ M_, and F is that functiQ%’from the wfe's of
I
7{1 which assigns to each such ¢ Valyhl(o:); then <4f1,F>

1s a Fregean semantical system,

T17. If R 1s that function from the wfe's of TH; which
assigns to each such o, Sense (o) ; then <'ﬁ;,R> is a Fregean

semantical system.

15.7 Metalinguistic Features of 7#1

| As with the syntactical interpretation of 7{1, under
the present interpretation we may also think of 7?3 as a
kind of formalized metalanguage for 7?;. But here the
departure from conventional metalanguages 1is even greater

than before., We now have no means for spesking directly of
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the wfe's of 7?5; we can speak directly only of the con-
cepts they express. It ls not uncommon for a metalanguage
(at least informal metalanguages) to include the means to
speak of the senses or meanings of the well formed expres-
slons of the object language. This is done when we ask
whether two expressions of the object language have the
same meanling or whether everything expressible in one part
of the object language 1s expressible iIn another part of
the object language. But this 1s usually done indirectly
by using names of the expressions and an operation expres-
slon such as 'the meaning of'. In the present treatment
of 7{0 we speak directly of the concepts without medlation
by way of the expressions.GO

Some insight into the present interpretation can be
galned by comparlng, under the two interpretations, those
features (enumerated in section 14.3) wherein 7?1 resembles
a formallized metalanguage for 1&;. The inclusion of the
object language in the metalanguage is of course unaffected
by the interpretation, as are the features related to type
distinctions mentioned in (2)(page 53).

In place of the reading Tthe name o denotes the
individual )3'1 for Delta(il)nocﬁﬁ, we now read this wfe
Mthe individual concept o 18 a concept of the individual

p"l.6l




Similarly, we replace the recading “the sentence @ denotes
the truth value [ of Delta(tl)’\é‘r' by Mthe proposition ¢
is a concept of the truth value rn. In the case of
Delta(tl), the second argument expression, I", must be

a sentence, Hence, we might instead have introduced a
one-place predicate which when applied to a wfe @ of type
t, forms a sentence Tr{@) and which 1s such that Tr(¢) is
true just in case, Delta(tl)/\ﬁAP 1s true whenever [ is
true. The wfe Delta(tl)’}/\ ™ would then be equivalent to
the material blconditional (Tr(@) = ['). The syntactical
interpretation would then provide the reading "the sentence
@ 1s true! for Tr(¢) and the intensional interpretation
would give the readingithe‘ proposition ¢ 1s a concept of
'.I‘r'uth-'.G2 Within the very limited resources of ‘ﬁl we can
only name propositions whlch are expressed by sentences of

7?0, and similarly we can only name individual concepts which

are expressed by names of 7{0.

TI8. If ocis a wfe of 7Y, of type 1,(t,), then there is a
wre/3 of ﬁ/o of type 1(t) such that « is ﬁ'

Thus, in the case of 7),, we could use the reading Mthe

proposition @ is expressed by a true sentence’! for Tr(g),

and (the individual concept ocis expressed by a name of the

individual B7, for Delta(1,) o’B. However, when we turn to
richer languages with variables these readings will no
~longer be available, since the variables will range over
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concepts whlch are not expressed by any wfe,

In general, the question of the truth of a given
sentence or the denotation of a given name 1s an empirical
one.63 That 1s, although a given sentence may be true in
the actual world, there are usually other possible states
with respect to which 1t is false. And similarly, the
questlon of the truth value of which a glven proposition
actually 1s a concept and the individual of which a given
individual concept actually 1s a concept are also empirical.
That 1s, although a gilven proposition may actually be a
concept of Truth, there are usually other possible states
with respect to which 1t 1s a concept of Falsehood. Thus,
Just as our fundamental notion of the relationship between
an expression and its denotation is a relative one (the

denotation of the expression « in the model?ﬂl, so 1s our

fundamental notion of the relation between a concept and
that of which 1t is a concept. It willl be convenient to
introduce a brlef way of expressing this relation. Let
us call 1t the relation of Determination. As with denota-

tion, we shall speak of the Determination of a concept, and

say that each such concept Determines a unique entity (its
64

Determination). Note that under our treatment of inten-
slonal entitles, each concept 1s a certaln subrelation of
the relative notion of Determination. That 1s, the Deter-

mination of the concept x in the model M is just x my.

The absolute notios of denotation and Determination (as

(4
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when we spcak slmply of the (actual) denotation or Deter-
mination, without mentloning a state of affairs) can be
introduced 1n terms of the relative notions with the help
of the absolute notion of state of affairs (or model), If
we can speak simply of the actual state nQ*, then the
absolute denotatlon of x (or Determination of x) 1s just
the relative denotation (or Determination) with respect to
Ynf. It seems clear that Determination is the natural
intensional counterpart to the syntactical relation denota-
tion.

Returning once again to our reading of Delta(t)thB,
we now provide the readings r":x.ac'cu::w.lly denotes,B7 under the

o actually Determines B!

syntactlical lnterpretation, and
under the intensional lnterpretatlion, 1t may therefore be
seen that we could have expanded on the third feature of
ﬁi as a formalized metalanguage for 7K0 (section 14.3) by
remarking that the denotation (Determination) predicates
have the sense of absolute denotation (Determination).65
We turn now to the fourth and perhaps most important
metalinguistic feature of 7*1 (section 14.3). For every
name or sentence otof 1*;, 7(1 contailns an analogous wfe
o.. Under the syntactical interpretation, o« provides a
standard name of o (theorems 11 and 12). Under the inten-
slonal interpretation, owill provide a standard name of
the sense of o, Thereby, we also partially fulfill one of

the basic requirements suggested by Church66for a language
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based on Frege's distinctlon between sense denotation;
namely, that for each wfe « (wlthout free variables) we
provide a wfe‘B which denotes the sense of « The follow-

ing theorem 1s the counterpartp to theorems 11 and 12.

I,K, -
T19. If o< is a wfe of 7?;, and M ¢ M,, then Valhh () =

Sense (o).

As indicated earlier, standard names are possible only for
non-contingent entltles., The following counterpart to

theorem 13 Indlcates that concepts are such entities.

720. If {13 a type of K, and MM ¢ 1, then

’ o JK >
L(Im,(l(’c) - Uy .




CHAPTER 3
THE HIERARCHY OF LANGUAGES Hh

We now begin our formal development of semantical
systems for oblique contexts. The motlivatlion for the par-
ticular line we take was glven 1in the preceding chapters.
Although formal definitions for some of the central notions
have been given in Chapter 2, the followlng developments
are self-contailned. The task of the present chapter 1is the
constructlon of a hlerarchy of languages 7%1 wlth syntacti-
cal and intensional interpretations, thus generallzing to
arbitrary N the construction of Chapter 2 for O and 1.

In defining the semantlical notions for the language
'ﬁ%+1 we will make essential use of those notions for the
language ﬁﬂ. In the following chapter, we willl consider a
single language,-ﬁa” which includes all of the languages in
the hlerarchy. But the semantical notions for ﬁg are again
defined with reference to the corresponding notions for the
languages f{. Thus, the stepwise procedure of developing
the hierarchy plays a vital role in our understanding of
these notions. This procedure corresponds to the policy of
language levels, that of always distinguishing object and
metalanguages when semantical notions are considered. 67

- In contrast to the hlerarchical dependence of the se-
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mantical notlons, in the description of the languages them-
selves, that 1s, the notions of type, well-formed expres-
sion, atomic well-formed expression, etc,, 1t seems more
natural to first introduce the general notlions for the lan-

guage /1y, and then subdivide them for each of the languages

ﬁ%. Thus we will first define such notions as L is a sim-

ple type and the rank of the type 7, and then, making spe-

cial use of the notlon of rank, we willl define C1s a sim-

ple type of ﬁ;.

16. The Language 7(%
16.1 The Types of 7%5
As in Chapter 2, the simple types fall into two hier-
archies (1 and t), and the complex types consist of finite
sequences of slmple types. The simple types are identified
with numbers, although we continue to use the nomenclature
"

n 1 113 1"
j and tj

D26. If § 1s a natural number, then

(1) 1, = pd*+l
(2) ¢, =39
When the subscript to a type symbol 1s "o", we shall often

omit it, writing "1i" for "io" and "t" for "to".

D27,

(1) ZT1s a simple type if and only if T= 1y or T= t,

for some natural number Js

(2) T1is a complex type if and only if T = <T1a---,Z;:26>»




D28.

(1)
(2)
(3)

where Z;,...,Z; are simple types and r > o.

T 1s a type i1f and only if T 1s a slmple type or T 1is

a complex type.

If ‘C 1s a type, the rank of 7 is given by the follow-

ing:
the rank of 1j = J
the rank of ‘c‘j = J

if Z;,...,Z; are simple types wilth ranks ko,...,kr

respectively, and r > o, then the rank of

<Ti,...{t},26> = the maximum of: L SP p

If a wfe o< has type T, the type of the analogue to o

wlll be the elevation of €; similarly, the type of the ana-

logue to the analogue to o« will be the elevation of the ele-

vation of C, that 1s, the second elevation of 7. In this

way we are led to the general notion, the MEE elevation of

the type T.

D29.
th

If T is a type, and k 1is a natural number, then the

k-—— elevation of 7 1s given by the followlng:

(1)
(2)
(3)

th
the k— elevation of 1J = 1J+k
th

the k— elevation of tJ = tJ+k

1r’Zb,...,Z; are simple types, r > o, and‘rz,...,zﬁ

are the kzﬁ elevations of Z;,...,Z; respectively,

then the MEE elevation of <21,...,€;.25> =
<'é{,000”t¥) o L]

The notions of rank and elevation are related in the follow-
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ing simple way.

21, If ?’13 a type, and k 1s a natural number, then the

rank of the kth elevation of 7 is the rank of T, plus k.

Note that the Oth elevation of T 1s just C itself. It is
often convenient to be able to speak in a simple manner of
the first elevation of a type. For this purpose we use
the superscripted wiggle (%), which 1s the counterpart to
the superseripted bar (o) for the (first) analogue to a

wfe, We also sometimes speak of T simply as the elevation
of T.

D30, If T is a type, then T is the 1st elevatilon of T,

We now Introduce the restricted notion, type of Zf »

in terms of the general notion and the notion of rank. 'It
will be seen that the rank of a type 1s the lowest level
in the hlerarchy at which the type appears. A similar
remark applies to the notlon of rank for wfe's, which will

be introduced in the following sectlion. We will not

separately define simple type of 7?; and complex type of
3%, but will understand these phras:s to mean: a simple
t;ﬁe which 1s a type of 1{n, a complex type which 1s a type
of 7¢n’ The same method will be followed in the following

section where we simply define wfe of 7¥q without separate

definitions of atomic wfe of 7@;, and compound wfe of j{n.

D31. T is a type of'ﬁ , 1f and only if T 18 a type and the.




rank of T 1s less than or equal to n.

The followling theorems follow immediately from the

definitions and theorem 21.
2. If T is a type of ’/'fn, then T is a type of /;(n+l‘

™3. T 1s a type of ﬁn if and only if Z 18 a type of
#n+l'

T24, Not all types of %{n+1 (for example, <1n+l,t>) which

are not also types of 'ffn have the form T for some type T

of #n‘

5, <Z',...,Tr,25> is a complex type of ﬁ/n 1f and only

if ’Z_'O,...,’Z;, are simple types of ﬁn and r>0.

The followlng theorem provides a useful form of induction

over the types of #n+1‘

6. C is a type of l”n+1 if and only if T satisfies one
of the following mutually exclusive conditions:
(1) 7 1s a simple type of 75/0
L
(2) T= 7T', for some simple type 7' of ‘7{n
(3) 'Cla <Z’1,...,’Z;, ?;>, for some simple types To,...,’&‘r

of and some r>0,

n+l

16.2 The well Formed Expressions of ‘/s/n
The atomic wfe's are introduced with the following
considerations in mind. We begin with the descriptive
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constants of 7?0, namely (1) the p-place operation symbols
and (2) the p-place predicates. We then add the following
logical signs: (3) the materlal conditional sign, (4) the
negation sign, (5) an identity predicate for each simple
type, (6) a delta predicate for each higher simple type
(that 1s, each simple type other than 1, and to), and (7)
the necessity predlcate. Filnally, for each of the atomic
wle o so far Introduced, we must add an analogue, an
analogue to the analogue, an analogue to the analogue to
the analogue, and so on; to put 1t more generally, we must
add a Jth analogue to K for every natural number j. 1In
this way, each of the atomlc wfe's introduced in steps (1)-
(7) generates a denumerable hierarchy of atomic wfe's of
which the orilglnal wfe may be considered the Oth member.
For definiteness, we may ldentify all expressions with
finite sequences of numbers ln the manner of section 10.2,

being careful to distingulsh an atomlc wfe from its jth

analogue,

p31. If m, p, J,T are any natural numbers, then
(1) Opsymby(m,p) = @™, 3Pl I+l
(2) PredJ(m,p) s 31, 5Pt pit]y
(3) Cond; = <59
(4) Negy = <>
(5) 14,(C) = <ot+l, 3d*]y
(6) Delta,(7) = <at*l, g+l
(7) Nec, = <119t
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D32, If x and y are finlte sequences, then x“y is theilr

concatenation.

n_.n

When the subscript to the symbol for a wfe is "o, we shall
often omit it, writing "Pred(m,p’' for "Predo(m,p), and
"Cond" for "Condo", etc, Opsymb(m,p) is the mth p-place
operation symbol, Pred(m,p) 1s the mth p-place predlcate,
Cond is the materlial conditional sign, Neg 1s the negation
sign, Id(T) is the identity predicate for type Z, Delta(T)
is the delta predlcate for typeffz and Nec 1s the necessity
predlcate.

The wfeITedJ(m,p) 1s the jJth analogue to Pred(m,p).
Thus, the type of PredJ(m,p) 1s the Jjth elevation of the
type of Pred(m,p). Types are assligned to the other atomilc

wfe's in the same manner,

D33. «is an atomic wfe if and only if there are natural

numbers m, p, J, and a simple type T such that o is one of
the followlng:

(1) Opsymb,(m,p)

(2) PredJ(m,p)

(3) Cond,

(4) Neg,

(5) 1a,(2)
(6) Deltaj(%ﬂ
(1) NecJ

D34. If ois an atomlc wfe, then the kth analogue to o is




glven by the following:

(1) the kth
(2) the kth
(3) the kth
(4) the kth
(5) the kth
(6) the kth
(7) the kth
D35. If ais
following:
(1) (a)
(b)
(2) (a)
(b)
(3)
(4)
(5)
(6)
AR AR
(7)

analogue
analogue
analogue
analogue
analogue
analogue

analogue

to
to
to
to
to
to
to

Opsymb y (m,p) 1is Opsymb,,, (m,p)
Predj(m,p) is Predj+k(m,p)

CondJ is Cond'j+1c

NegJ 1s Neg‘j_’_k

IdJ(Zj 1s Idj+k(Z)
Delta,(7) is Deltad+kéf5
NecJ is Nec.j+k

an atomic wfe, the type of @ is given by the

the type of Opsymb(m,0) is 1
if Tl,...,Zb are each i, and p>0, then the type

of Opsymb(m,p) is <Zi,...,?b,i>

the type of Pred(m,0) is t
if Zi,...,zb are each 1, and p>0, then the type

of Pred(m,p) 1is <T’,...,ZB,t>

the type of Cond is <{t,t,t>

the type of Neg is <t,t>

if T is a simple ﬁype, the type of Id(t) 1s <T,T, t>

1f T is a simple type, the type of Delta(D) is

the type of Nec is <ty,t>

We introduce the notions of a wfe and the type of a wfe by

a simultaneous recursion.

D36. o.is a wfe of type 7 if and only if either
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(1) oc1s an atomic wfe of type T, or

(2) there are s ByseeesBrs TyseeesT, such that
J1s+++:B, are wfe's of the simple types ’fl,...,?;
respectively, }z 1s a wfe of type <Z’l, s r,(} and oc

is )Z)Bl Bpe

D37. @ 1s a compound wfe if and only if « 1s a wfe and o«

i1s not atomilec,

Since we have already introduced the kth analogue to an
atomlc wfe, 1t remalns only to do the same for compound

wfe's.,

D38, If ’Z‘o, oo ,'Z’r are sinple types, r>0, ?’.dl’ +ee30G, are
wfe's of types <Tysees sC. oy 2‘°>, ’Z’l, .ee ,2;‘ respectively, k
1s a natural number, and )1 oLl ,...,C!r are the kth

analogues to )r( otl,...,o&, regpectlively, then the kth
n k" Nk

analogue to VLozl coe o&‘j_syc( eeo0g

The elevatlon of a type and the analogue to a wfe are re-

lated in the following simple manner,

T27. If oLis a wfe of type T, then the type of the jth
analogue to o is the jth elevation of Z.

We can now introduce the bar notation (&) in a precise way.

We sometimes speak of o as, simply, the analogue to .

D39. If «is a wfe, then o is the 1pt analogue to ok
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The rank of a wfe 1s now given in terms of 1its type.

D4O. If o is a wfe, the rank of o is given by the follow-

ing:
(1) 1if a 1s an atomic wfe of type T, then the rank of o
1is the rank of T.

(2) 1if Y(, )31""’}31‘ are atomlc wfe's of types
<T1, ceoy ’Fr, Z‘O>, Tl, cee ,Z‘I, respectively, with ranks

k kl""’kr respectively, and r>0, then the rank

0,
of n"B e+ B 1s th 1 £: 1 k
Y(pl )31- s the maximum of: Kk ,...,k,.

We now define wfe of “[]/,] with reference to the notion

of rank,

D4l. o is a wfe of %% if and only if o is a wfe and the
7

rank of o is less than or equal to n,

The followlng theorems elther follow 1mmediately from
the definitions or require a simple induction on the wfe's,

8. Each wfe has a unilque type.
T29., All compound wfe's are of simple type.
T30. If als a wfe of ”/(n, then o 1s a wfe of n+1°

T31. (1) There are wfe's of #m-'l of type t which are
not wfel's of %{n‘
(2) All wfe's of type 1 are wfe's of 1\/0.

T32. otis a wfe of K of type T if end only if @ is a wle




90

(4
of ”/)/n_'_l of type (.
The following theorem illustrates the limited resources of
the languages in our present hierarchy. All wfe's of the

higher types have the form «.

3. )3 1s a wfe of ﬁn+1 of type x(?if and only 1f there is
a wfe « of ﬁn of type T such that 3 is =

Proof by inductlon on }3
The following theorem provides a useful form of induction

]
of the wfe's of 1

™4, o is a wlfe of ﬁnﬂ. if and only if o satisfles one of
the followlng mutually excluslve conditlons:
(1) oc1s an atomic wfe of ’4'/0
(2) o is }?, for some atomic wfe)3 of /‘)/n
(3) «is Id(;\g‘), for some simple type T of ﬁn
(4) o« is Delta('?), for some simple type Z of 7‘{“
(5) o<is Nec
(6) there are 1,}31,..., ns (gse++sTp sUCh that r>0,
?, }31,..., p are wfets of 75/n+1 of types
<Cyreeeslps T>s TysesesTy, respectively, and @ lis

Vot N
,ibl /Br"
The following abbreviations provide a more famillar

notation.

D42, If J is a natural number, then

(1) (#24) = cona, Py



(2) '\’Jﬁ = NngQ(

(3) (8&5¥) = ~(# 2, ~P)
(3) (@) = (B 2,¥)
(5) (BEW) = 1a,(6) g Y

D43. If J 1s a natural number,
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and the type of both o« and

B is the jth elevation of the simple type T, then

(o =yB) = Id,(T) o B

D4y, If J 1s a natural number,
elevation of the simple type T,
elevation of the simple type T,

s N\ A
Delta, (T) o B.
D45, If J 1s a natural number,

D46, If j 1s a natural number,

D47. If J 1s a natural number,

jth elevation of t,, then Trjﬁl

the type of oy 1s the jth
and the type of 3 1s jth

then AJ(GI,B) =

N,g = Nec'd.

P, = PredJ(O,O).

J

and the type of ¢, is the
= AJWl’(PJ DJPJ)).

We follow the general practice of omlitting the sub-

script when it is "0". Hence we write (« = B)", "(goW)",

ete.,

T35. If ¢,¥Y are wfe's of type t, ﬁl is a wfe of type t

1.'

o B are wfe's of type 7, and o« 1s a wfe of type 7, then

all of the following are wfe's of type t.

(1) (#=29)
(2) ~¢
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(3) (&Y
(%) (gv¥)
(5) (#=Y)
(6) (c==13)
(7) Alog,B)
(8) Ngy

(9) P

(10) Trg,

m™6. If ¢,.q}, ﬂi, a:,)3, o are as in the hypothesis of
T30, and their jth analogues are ;ZfJ, 'lPJ, gflJ, cr.‘j, p‘j, cri‘j
respectively, then each of the following 1s a wfe of type
tJ and the Jjth analogue to the corresponding wfe of T35:
(1) (#92,99)

(2) ~,p

(3) (g &)

@) Py )

(5) (¢ =,99)

(6) (ocd =, 3%

(1) Aylegd.pd)

(8) N,y

(9) 2y

(10) g

The following theorem provides a useful form of in~

ductlon over sentences of ‘kn-kl'

T37. ¢ 15 a wfe of ‘. of type t if and only if ¢
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satisflies one of the followlng mutually exclusive condi-

tions:
(1) there are natural numbers m,p and wfe's 0 seees0h)
~ N ~
of type 1 and & = Pred(m,p) o
(2) there are wfe's Y, X of Wn+1 of type t and & 1s one
of the following: (a) (Y2X), (b) V¥ (c) (Y¥=X)

(3) there are wfe's 05}3 of ',i)/n, both of simple type , and

and ¢ = (&= F)
(4) there are wfe's o ,B of’]ﬁ, both of simple type 1,
and ¢ = ( oc==B)

(5) there are wfe's « sB» both of simple type 7, such
that o 1s a wfe of “f{n, )3 1s a wfe of ’,‘{n_l_l, and

g = A(& :)3)
(6) there is a wre ¥ of “/)/n of type t and g = N ¥

Proof using theorems 31 (2), 32-35,

17. The Interpretation of “f{o
We assume that we have avallable an infinite proper
set consisting of all possible "individuals". The models
for ’Ko will all draw thelr domains from this set. We can
simplify the definition of model for ﬁ ° by first introduc-

ing two subsidiary notions: the universe of a type of K_
in a domain of individuals D, and the identity function on

the set K.

D48, If T 1is a type of 7"{0, and D 1s a set, then the
universe of ¥ in D is glven by the following:




(1) the universe of 1 is D

(2) the universe of t is {T,F}

(3) 1if Ts+..sT, are simple types of 7?;, Ujseesrl, are
thelr respective universes, and r>0, then the uni-
verse of < ,..., ~+Co> 1s the set of all function

from (u x-«-xu_)into u_.

D49. 1If K 1s a set, then the ldentity function on K 1s

that function from {KxK) into {T,F} which assigns T to a pair

<xy> 1f and only 1if x =y,

D50. W] is a model for jio (M e Mo) if and only if there

are D, R such that:

(1) M= <DR>

(2) D 1is a non-empty set of individuals

(3) R is a function whose domein is the set of all atomic
wfe's of ﬂYo and which assigns to each such wfe of
type T an element of the universe of T in D.

(4) 4f u, v are truth values, then
(a) R(Cond)(u,v) =T if and only if u=For v = T
(b) R(Neg)(u) =T if and only if u = F

(5) 1f T 1s a simple type of 7{0, then R(Id4(7)) is the
identity function on the universe of T in D.

D51, If ocls a wfe of 7(0, and Tﬂ_n <DR> 1s a model for

Ho» then the value of o in Y| with respect to 1(3

(Vaiﬁ{(od) is given by the following:

(1) if « 15 atomic, the value of oc= R(o)
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(2) 1if )(, Byse++ By are wie's of K, of types
<Z’1,...,?_'I,,Z‘(‘)>, Z’l,...,’(r respectively with values

f, XyseeerXy respectively, then the value of

y(ﬁln- . -ﬁ)sr = f(xl, coe ,xr) .

We can now Introduce the universe of a type 1n a model.

D52, If T is a type of 'Ho, and M= <DR> is a model for

K, then the universe of 7 in M with respect to j(o
o — 2
(U..mcl)) is simply the universe of T in D.

The partlal adequacy of our definitions of unlverse and

value are shown in the followling theorem.

8. If ais a wfe of ’/{0 of type 7, and /) ¢ M, then
X
Val?,c\’(a) 4 u,g(@.

Proof by induction on ol

18. The Syntactical Interpretation of Wn
Following the pattern of section 14, we first intro-
duce the syntactlical entlty corresponding to the wfe o with

respect to the language 1\),1.

)
—

D53. If o 1s a wfe of ﬁn’ then the syntactical entity

corresponding to « with respect to '/)/n (Synt’}{n(o:)) is
'given by the following: -
(1) 1f ais of simple type, then Syntﬁn(a) = oL
(2) 1if Zb,...;Zr are simple types of 7Y;,‘r>0, q‘is a
wfe of 7{n of complex type <Zys.00s0 T and




WseeesW, are the sets of all wfe's of 7)’ of types

'[o,...,’( respectively, then Syntﬁ (IZ) is that

function from(wlx ++xw) into w_ which assigns to

N M ~
each <P1""’)3r> in 1its domain, the wfe yzﬁl JBr'

The first part of the following theorem is the main step in
showing that the semantlical relation which assigns to each
wfe o of 'f\/ s Syn‘ckn(or.) ylelds a Fregean semantlcal system.

9. If ’c‘(‘),...,’g_ are simple types of 7'(n, r>0, and
YZ ) seees, are wfe's of ﬁ/ of types <23,...,’Z;,2;>,
Tqreee ,Z‘ respectively, then
(1) Synt;r(ﬂ o o) = synt “()l)(Synt COY
synt " (cc,))
(2) ylﬂcxlﬁ---'\ot.r = SyntKn(Yl)(dl,...,og,)

The universes of the higher types consist of syn-

tactical entities. The definition makes use of the cases

of theorem 26,

D54, If T 1s a type of K/n’ and ”IG M_, then the universe
of I in m with respect to the Syntactlical interpretation
——.ﬁn (u_ nT) 1s given by the following'
(1) 1f n =0, then a,ln(t)) =um(t)
(2) 1f n = m+1l, then
(a) 1f'C 1s a simple type of 7(0, then (,LT:“(”C) -
u g

(b) 1f (,18 a simple type of Wm‘ then [fr}\n(’c') =
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the set of all wfe's of H  of type T

(e) 1if ?f,.. ,Z’ are simple types of 7Y , > o0, and
T= VAYERR ,Z’ 2;), then LL ﬁkZD = the set of all
functions t‘r'om(u_S “(T ...xus#"(’( )) into (,LS‘K"(’Z")

The universes of the higher types consist of non-contingent
entities.

™o, If MM eMm o» and T 1s a type of 7¥n, then
S, Kn+ X
W 1@ - U .
Proof by the definition.
We now introduce the notlon of value, the definition makes

use of the cases of theorem 34.

D55. If ais a wfe of TV, and W€M_, then the value of a
in WLwith respect to the syntactical interpretation of ﬂ

(Valy’.q"(cx.)) is given by the following:
3, K
(1) if n = o, then Valm"(or.) = Val#n%(o:)
(2) 1f m=M+1, then
(a) 1if ocis an atomlic wfe of 7 _, then Vals;fl" () =
'Va1«° (9 '

(b) if otis an atomic wfe of '/<m. then Valg;,;{" () =

Synt m (o0

(¢) 1f T 1s a simple type of ﬁm, then ValsX"(Id(’E)) =

the identity function on u?’;{”(‘t)

() 1£T1s a simple type of fiy, then
Val%,’,{‘"(Delta(ﬁ) = the unique f such that:

(1) £ is a function from(d{:{"('t) X L(Sﬁ"(’(?‘))
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into {T,F}
(11) 1r §ﬁ,x> is in the domain of f, then f(B,X) =
T if and only if ValS'Km (B) =
(e) Vals£§T (Nec) = the unique f such that:
(1)  is a function from the set of all wfe's
of '/t{m of type t into {T,F-}‘
(11) if ¢ 1s in the domain of f, then f(g) = T
if and only if for all ¢ Mo’ Valgf?m(g) =
T
(f) if ’[;,...,'C'r are simple types of 7/7,, r>o, and
)‘(, Xy 5000 r, BrE wfe's of ﬁn of types
<[’1,...,’Z’r,T>, Z‘l,...,’{'r respectively, then

Valm (N 1"‘... &) =
Valg Hn (,'L)(\rals,;,’),L (oal),...,Val%::" (o:r)).

1. If «1s a wfe of F, of type T, and ) € M, then
var¥in (o) ¢ 30 (D).

Proof by 1nduction on o.
The wfe & provides a standard name of the syntactical en-

tity corresponding to o

™2, If ais a wfe of p, and MeM_, then
(1) Va2 (%) = synt" (o)
(2) 1f ocis of simple type, then Vals’;(y’iJrl('é'n) = oL
(3) 1ir N €M , then Val 17%"*1 (o) = vu?;f"“("&)
Proof: (1) by induction on o using T39 for the in-
ductive step; (2) and (3) by (1).
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™3, If 1s a wfe of K__, of simple type T, and Me M
then Val%hn+1(%) is a wfe of f(n of simple type T,

Proof by theorem 41,

The following theorems relate the semantical notions

for ‘}(n under the syntactlical interpretation to those for
A1

™4, (1) If & 1s a wfe of 7{ of simple type, then
Synt n(oc) - o = 7fn-i—l(o[)

(2) 1r YL is a wfe of 7{n of complex type <Z7,...s%sT>s
and wl(n),...,wr(n) are the sets of all wfe's of #n
of types <(7,...,0; respectively, then
Synt)Kn(Y() = Syntﬁn”l(rp? (wy(n)x««-xw_(n))®9

(3) Ifn is a wfe of ﬂ/ of complex type, then Synt‘H (T‘L)C
Synt n+l(m

Proof: (1) and (2) by the definitions; (3) by (2).

™5. If ¢ M,» then
(1) 1r Tis a simple type of '}f s u?n:f{n(t) = {,(S.,;ixml(z)
(2) 1f ”Cis a simple type of ’/{ Sﬂtn('t) =3 L,sz,’,{fn"'l(a

(3) 1ir Tor+++1T, are simple types of ’A’n, and r>0; then
S,¥
if fr ¢ \l)«yLn (<’('_?L,...,Z'r,2‘>), then there is a

g 6 LL’}nnH(q-"wTrvTJ) such that £ <= g,
Proof: (1) by the definition, (2) by T30,
(3) by (1) and (2).
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™6, If Me M,, then

S,K
(1) 1if « 1s a wfe of ﬁ/n of simple type, Val ﬁzn(a) -
S
Va17;fh+l(00
x NE
(2) 1if Tlis a wfe of /{ of complex type, Valyn- (q)._
S,k
Val)’;’(_m-l(yz)

Proof by cases: n =0, orn=m+ 1 for some m, In
the first case, the "&" of (2) can be strengthened to
"="; (2) is then proved by T29, D55(2)(a), and (1) is
proved by inductlon on a In the second case, the proof

1s simllar using the cases of T34.

19, The Intensional Interpretation of 7%;

We first introduce the general notion of a T-concept,

where T 1s a simple type. Our earlier notions of an
individual-concept and a proposition will then correspond

to i-concepts and t-concepts respectively.

D56, If T is a simple type, then the T-concepts are given

by the following:

(1) 4Af T 1s a simple type of 1#0, then f 1s a T-concept
if and only if f 1s a functlon whose domain is Mo
and which assigns to each ¢ M, an element of{ﬁ%{t)

(2) 1f T is a simple type,of 4{n, then £ 18 a %iconcept
if and only if f 1s a functlion whose domain is Mo
and which assigns to each M¢ M, a T-concept.

The unlverses for each type under the intensional interpre-

tatlon are now introduced in the natural way, with concepts
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here playing the role played by syntactical entitiles under
the syntactical interpretation. The definition makes use

of the cases of theorem 26,

p57. If CTis a type of J}{n’ and M € M., then the universe

of Tin W] with respect to the Intensional interpretation
___ﬁ/ (e ﬁ“("c)) 1s given by the following:

(1) 4if n = 0, then L( L8y n(7) =L{7‘,’L(’z:)

(2) if n=m+ 1, then

(a) if’t is a simple type of 7)/ then ILI"?“(Z) =

L(,m(fc )
1k,
(b) 41f T 1s a simple type of ﬁm, then LL??L () =
the set of all (-concepts
(¢) if T ,...,T are simple types of 7{ , ™0, then

In
L )”Yl KT ,...,?;., T,>) = the set of all functions

from (L{m (T l)x---xul'm\ 7)) into L(I}g“(’c;).

The universes of the higher types consist of non-contingent

entities,

'1‘47. It MNe M o’ and CTis a type of '7\/n, then
u. Kml(t) u ;ﬁn+1(a

We now Introduce the notion of value. The definition uses

the cases of theorem 34.

D58, If o.is a wfe of “/(n, and mi M,» then the value of

o in with respect to the Intensional interpretation of

1
ﬂn (val ;,Ln(d)) is given by the following:
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1,%
(1) if n = 0, then Val —;y(n(on) = Va]?’t{-n%(on)
(2) if n = m+l, then
I,'Kn
(a) if « is an atomic wfe of /Ko’ then Val ., () =
%
Valn?(og)
(bl) if oc is an atomic wfe of /}{m of simple type,
I -
then Va17f)zn(oa) = the unique f such that
(1) £ is a functlon whose domain is M,
(11) 1 Nle M M,, then £(7) = val ’7{“‘(«)
(b2) 1if ’Z’o,...,’l; are simple types of 7{{ s 705 7?
is a wfe of 7{m of complex type (3....,’2;,,@,
and CooeeesCy are the sets of all

r
’Z’O-concepts, cos ,’Z;-concepts respectively, then

Val;;;?“(iz') = the unique f such that
(1) £ 1s a function from (clx---xcr) into ¢
(11) 1M e M, and <8ys+++s8> 18 in the domain
of ;‘:Rthen £(8ys00448,) 00 =
Va1 () (g, (), - .8, ().
(¢) 1f T 1s a simple type of ﬁm' then
ValI«;nn(Id(%)) = the identity function on L(I—;r?‘n(%‘)ﬂ
(d) 1£ T 18 a simple type of ﬁm' then
Valg,n“(nelta (’(’)) = the uniqu;/ f such th%t
(1) £ 1is a funetion from (L(_m (’(‘:) xam o))
into {T,F}
(11) 1f <g,x> 1s in the domain of f, then
£(g,x) = T if and only if g(7]) = x

I
(e) val ';;t“(uec) = the unique f such that




(1) £ is a function from the set of all
t-concepts into {T,F}

(11) if g 1s a t-concept, then f(g) = T if and
only if for all Y, € M_, g(h) = T.

(£) 1ir Z}y°°°’2} are simple types of Tk;, r>0, and
Q, oi,...,a% are wfe's of ?{n of types
<Zii---:f;,25>, Tys+++, 7, respectively, then
Val fﬁn(qui“--f‘o%) =

I I,K% I,X
Val—r;tn()Z) (Valyy ™(oq), .o, Valyy "(ey))
The notion of sense can now be introduced, We wlll estab-

11ish in theorem 49 that under the intensional interpreta-

tion the value of o.is the sense of a.

D59, If ocis a wfe of ﬁn, then the Sense of o wlth

respect to qu (SenséKn(oQ) is given by the following:

(1) 1irf a:is~6f simple type, then Senséﬁh(aj = the unique
f such that
(a) f is a function whose domain 1s M
(b) 1f M€ M, then £(N) = Va117’z_ N
(2) 1ir ‘Z;,...,t} are simple types of 7?;, r>0,'q is a
wfe of ’f{n of complex type <T1,...,’t‘r. (oo and

0

Corev+sC, are the sets of all 'Z;—concepts,...,?;-

Hn

concepts respectively, then Sense (q) = the unique
f such that

() £ is a funetion from (clx“-xcx) into ¢
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(b) 1f N6 M, and <gys...,8> 13 1in the domain of
f, then fh(gla-ooagr) (n) =

Va1 R r) g 00, -, 0.

The second part of the followlng theorem provides the main
step in argulng that the semantical relatlon which assigns
to each wfe ocof Ty , Sense #n(o:) ylelds a Fregean

semantlical system.,

™8. (1) If «is a wfe of ﬁn of simple type, and N ¢ M.,

then Sense«n(oc) (N) = Vall){ﬁn(o.)
(2) 1Irf 2‘0,...,2‘r are simple types of %n’ r>0, and
)Z, &) seess &, are wlfe!s of .Hn of types <C'1,...,'Zr,‘26>,
ore++2Tps Tespectively, then Sense n()z) (Sense n(ocl),
Kn n,, AN A

.o sense (o&,)) = Sense (Q o e o:r)
Proof: (1) by the definition, (2) by showing that

both sldes of the equallty are ’Z_'o-concepts and then using

(1) to show that they have the same value for a given

Me M.
We now easily show the required result for the value of « .

L, (T
™9, If ocis a wfe of ﬁn’ and M 6 Mo, then ValI';nm'l(oc) =
Senséﬁn(oo.

Proof by inductilon on otusing TW8 (2) for the in-

ductive step.

The values of wfe's are in the appropriate universe,
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™0, If ails a w%g of 1«% of type Z and Mel o’ then
I, X N frme
Va1t M) € Wiy ).
Proof by inductlon on o

All wfe's of the higher simple types denote concepts (those

of higher complex types denote representatives of natural-

concepts).,

PAA

T51. If oq 1s a ufe of 7&;+1 of simple type ¢, and )72€M0,
1,7
then Val 7'% n(o(l) 1s a C-concept.
Proof by T50.

We now turn to theorems relating the semantical no-
tion for ﬁ?; under the intensional interpretations to those
for 4 .. It will be evident that none of the subtleties
of the syntactical interpretation (for example, theorems
Wh(2), 45(2), 46(2))have counterparts under the present in-
terpretation. In fact, theorems 52-54 suggest very strong-
ly the natural constructlion of the language 7&L)of the

following chapter.,

~ I
152, 1If Tis a type of K , and Mem, then Uy M) =
(1}:1{n+1
m )
Proof by cases using T26,

TS3. If o is a wfe of 7? » and YRGM , then vallxéfn(og =
v ™
Proof by induction on n. In the inductive step,
proof 1s by induction on a using the cases of
734 and making use of TS2.




“/fn -A/n+l(«)

™4, If oo is a wfe of 7Vn, then Sense (o) = Sense

Proof by TS3.

20 Some Adequacy Theorems
The following theorems indicate that the formal treat-
ment of the logical signs of our languages is 1n accord
with the informal exposition. Theorems 57-59 also provide
a succinct comparison of the two interpretations. Theorems

55-58 follow directly from the definitions.

T55. If @ and Y are wfe's of 7{n of type t, and 7nGMo,

then
(1) Valggin(ﬁifW) = T 1f and only if, if Val%g{n(g) = T

then Valsy’,{‘n(‘f)) = T
(2) v:aa:[y’,z n(gfg}a{W) = T if and only if, if Vallﬁz‘ Mgy =T
then Val%ﬂl 'S

S, H
(3) Valyy "(~¢) = T if and only if, it 1s not the case

that Vg15+;{( Ng) =T
I )
(4) valon (v ;%) T if and only if, it is not the case

I
that Valy (@) = T

(5) Va157’,,f Ng&Y) = T 1f and only if, Val f7;;,2’{“(51) = T

andIVals-:};)Jn(\F) = T -
(6) valyn "(98¥) = T 1f and only if, Valy, (¢) =T
and Vall’ﬂn("l})) - T
SR #
(7) valyy ™(#v¥) = T 1f and only if, Val%ﬁn @) =T
or Veal‘s;y;':f YY) =T
I,K

(8) Val:;yzﬁ“(wll’) = T Af and only if, Valy, Ng) =1
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(9)

(10)

T56.

or ValI;yZ{n(VJ) =T
5:“1" N(g=Y) = T 1f and only if, Valsf){‘n(ﬁ) = T

if and only 1if Valsm (W) =T

1,
Valm_ n(ﬂ-—-‘}’) T if and only 1if, Val )y M) =T
if and only 1if Val m YY) =

If « and B are wfe's of «n of the same simple type,

and €M, then

(1)

(2)

57,
and

(1)

(2)

T589
(1)

(2)

59,
(1)

57fn(04 =

ValSﬂ M= B) = T if and only if Val

s, K'n
I"n% "(p)

I
Val-m “(oc= B) = T if and only if Valf,z_ M) =
valym "(p)
If o and B are wfe's of 1’/ , Of the simple types [
'Z:respectively, and ')’Izm , then

Valsmn"'l(A( » 3)) = T if and only if
;;n+1 S, el
Vl’ (VIWL (o)) = Valyy (ﬁ)

Vol 1(A(a1,)3)) = T if and only if
ValI»L L(a) (M) = val'yn ™(p)

If ﬁl is a wfe of %n+1 of type t,, and )')(GM , then

s K
Valyy "™1(NE) = T if and only if for all J] (M,

Va1 i“(v 1%7?/““(511 ) = T
val 737{1_ ™L(Ng)) = T 1f and only if for a1 N v,
Va1 "lg)m) =1

If g, 15 a wre of K . of type t,, and Mem,, then

1
YnffMI(Wl) - 1f and only if
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S 'kn(ValsJ *n'l'l(gl)) =
(2) Va 117,:{“*1(1'&1) T if and only if Va.lI 7Lr“*'l(ﬁl)(m)
= T

Proof by D47, 157, T55(1) and (2).

%0, If d.and)3 are wfe's of 'Kn of the same simple type,

and mGM , then

(1) va 1Sn,?_{n+l(A( )a)) = T if and only if Valg Wn(a)
Val (}3)

(2) vVal m{n’“l(A (a,B)) = T if and only if Valyrzin(oc) =
Valm Qa)

Proof: (1) by T57(1), ™2(2), T46(1);
(2) by T57(2), ™9, m™8(1), TS3.

1. If ¢ 1s a wfe of N of type t, and M &M, then

(1) va 15;715"*1(1«:?) T if and only if for all ?lemo,
Val J7‘“(p’)

(2) ValyIn_ n+l(Nﬁ) = T if and only if for all MM,
Valn_ n(51)

Proof: (1) by 'r58(1), mea(2);
(2) vy T58(2), ™9, Tu8(1).

™92, If @ 1s a wfe of ‘ﬁ of type t, and mGM , then
(1) val Y;Z‘“*'l(w @) = T if and only if Val Ng) = 1
(2) val m«""'l('r:ﬁ) = T 4if and only ir ValIyyf_( (F) =T
Proof: (1) by T59(1), M2(2);
(2) vy T59(2), 9, ™8(1).




Note that in view of T33, theorems 57-59 represent no more
general a case than do theorems 60-62. However, in the
language Jﬂu, which contains variables, counterparts to all
the preceding theorems (57-62) will still hold, whereas T33
will fail. Thus both sets (57-59, 60-62) were stated here
as illustrative of what is to come, It 1s also interesting
to note that only theorems 57-59 reveal the differences be-
tween the syntactical and intensional interpretations; the-
orems 60-62 reveal the similarities. In the latter connec-
tion, we add theorem 63 to emphasize a point made in note 62
on the two interpretatlons of truth. The followlng definl-
tions of validity are introduced for the sake of theorem 63.

D60, If ¢ is a wfe of 7« of type t, then ¢ 1s valid under
the Syntactical 1nt<_e%pretation of 7{ | (=% #) 1f and only
7 ''n
n
if for I eM , valy "(#) =

D61, If g is a wfe of 7K’ of type t, then ¢ 1s valid under

the Intensional interpretation of 7? ( h??ﬁ @) if and only
I,K L *ln

1f for a1l Nem , Valn Ng) =

763. If ¢ is a wfe of K of type t, then

(1) '"%T (Tr Z=g)

(2) '1"7" (Tr P=¢)

Proof: (1) by T62(1), T55(9), T46(1)
(2) by 62(2), 155(10), 753
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CHAPTER 4
THE LANGUAGE Ww

In the preceding chapter we constructed a hlerarchy
of languages 7{n. The purpose of 7«1, 1t will be recalled,
was to provide a direct dlscourse treatment for singly
oblique contexts of ’k;. Simlilarly, 7«; can be used for
doubly oblique contexts of 7&;, 7«5 for triply obllgque con-
texts, and so on. Thus for contexts of iﬁ; of any degree
of obliquity, there is some language in the hierarchy with-
in which a direct discourse treatment can be given. How-
ever, since a development in accordance with the method of
indirect discourse allows contexts of arbitrary (finite)
degree within a single language, it seems desirable to at-
tempt the same for the direct discourse method. This 1is

done by constructing the language '1Q,

2l. The Language ﬁkto
@Given the notlons of type, wfe, etc. for each of the
languages jkh, and keeping in mind the fact that each lan-
guage of the hierarchy is included in its successor, we
could simply introduce the corresponding notions for'7ﬁu by
taking unions, But recall that our method of introducing
these notions for the language 7#; was first to glve a gen-

110



111

eral formulation and then subdivide using the idea of rank,
Thus the approprilate notions for ﬁ; were already introduced
in sections 16.1 and 16,2, The following theorems verify

that the same results would obtaln if we were to take

unions.

m64. (1) C 1s a type iIf and only if there is a natural
number n, such that T 1s a type of 7%1

(2) ocils a wfe if and only if there is a natural number

n, such that o€ 1s a wfe of ‘}'fn.

Proof by the definlitlons, using the facts that every
type has a finite rank, and every wfe has a type.

When we form the 1anguage;4»,which contains variables, new

wie's wlll be introduced. For this reason, we now identify
our unrestricted notion of well formed expression with that
of well formed expression of 77 . Slnce no new types are

Introduced in EQD, there 18 no need for a simllar restric-

tion of the notion of type.

D62. o.is a wfe of j‘fwif and only if «is a wfe.

%5, ocls a wfe of 7&0 of type ¢ if and only if there is
a natural number n such that ocis a wfe of 7?5 of type T.
Proof by D62, T64,

The foilowing theorem shows that fﬁb is closed with
respect to the bar function. That is, every wfe of #éu has
an analogue in 1“;, This is one of the essentlal proper-
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ties, lacking 1n the languages “/\/n, required to provide

a direct discourse treatment of arbltrary degrces of

obliquity.

66, o 1s a wfe of '/)/w of type T if and only if xis a wfe
PAs

of 1{60 of type T.
Proof by T65, T32.
The restriction (which will no longer hold for the

language lw) that all wfe's of types T have the form o
applies to 'f‘{o ag 1t does to the languages #n'

A
67. }3 is a wfe of 7‘/6.) of type T if and only if there is a
wfe ot of Ww of type T such thatj_‘i 1s .

Proof by T65, T33.

22. The Syntactical Interpretation of 7))6.)
y In view of theorem 44, which links Synt#n(oc) to
Synt n'H(c:c), the notion for WG.) can be introduced in a

gimple fashion.

D63, If o< is a wfe of 7){0 of rank n, then the syntactical

pr
entity corresponding to o with respect to 1{17 (Synt “ (&)

j.s given by the following:
(1) 1f « 18 of simple type, then Syntdh,“’(od = o
(2) ar vl 15%01' complex type, then Synt&’(z) =
U Synt m()z) 70
m>n

Since by theorem 45, the universe of a simple type




with respect to “Hn 1s 1ncluded in the corresponding uni-
verse with respect to’ﬁ;+l, we can form the universe with
respect to 7%; simply by takling the union of the unilverses
for each of the 7&;. However, the relationship between the
universes of a complex type wlth respect to languages 7ﬁ1

and is somewhat more compllicated. In fact, if we

n+l
bulld up the unlverse of a complex type wlth respect to ﬁz,

from the corresponding universes wlth respect to the Jﬁh
in the natural way, the result would be that the unilverse
of <Zi,...,2;,28> would not consist of all functions from
(ulx --cxux> into u, (where U,seeesU, are the universes of
fb""'z} respectively) but only some of these functions.71
We shall avolid these complications (which do not arise at
all under the intensional interpretation) by introducing
the universe of a complex type directly as the set of all
such functions, rather than by way of the corresponding
unlverses for the languages TWn. Such a procedure can work
no harm, so long as we exclude from our languages both
variables of complex type and primitive descriptive con-
stants of higher types. For the unilverses of the types

are Introduced primarlily for heurlstic reasons, Ve see
what values a variable of the glven type might take, if we
had such variables; and we see what entities an arbitrary
descriptive constant of the given type might denote, if we
had such constants. Thus an insight is supplied into the

ontologlcal presuppositions of our languages, or, more



properly, into certain natural extensions of our languages,
But when, as in the present case, such extensions lnvolve
a conslderable increase 1in complexity, we wlll satisfy our-
selves with a simpler treatment adequate for the specilal

case before us.,

D64, If T is a type of rank n, and M¢ M, then the uni-
verse of U in M with respect to the Syntactical interpre-

tation of “/)} ({,{ ('zj)) is given by the following:
S,k
U™

(1) 1ir ’t’is a simple type, then (z(mw((_) .,
(2) 1r ’t’,...,'Z' are simple types, r>0, and ’Z‘/E
<0yseees Zos 25> then L(m_ (Z) = the set of all func-
t1ons from (({ ’h“’(’Cl)x---xuS 1{0(@) into L{;;:KM(Z’O).

By theorem 46, the value of a wfe o¢ of simple type
remains constant for all languages 'ﬁm, where m 1s greater
than or equal to the rank of oc, that 1s, where « 1s a wfe
of ﬂ/m. The values of a wfe )?_ of complex type form an
inclusion chaliln, that 1s, starting with the value of )Z In
%, (where n is the rank of )z) each value 1s included in
that for the succeeding language. Thus we are led to the
following definition.

D65, If ocis a wfe of 7f, of rank n and M M,» then the

value of o in 7Y with respect to.the Syntactical interpre-
S

tation of K 2 (Va1 7{‘ N{o)) 1s given by the following:

S
(1) 4if ocis of simple type, then Val ’7{“’(«) Valﬁszn(od |

8
(2) 1r 'l is of complex type, then‘Valm (72) =

114




115

U ValS"ﬁm( yz)

m3n Yf(
768, If o«is a wfe of 7%3 of type C, and M€ M, then
Vali%ﬁm(a) e (iié?b(fj

Proof by cases: (1) if T is a simple type, proof 1s
by D65 (1), D64 (1), T#1; (1i) 1f T 1s a complex type,

proof is by D65 (2), D64 (2), m1, D54, and set theory.

S, 4,
169. If ois a wfe of Mw, and Me M_, then Val’ “(%) =

Synt‘k“’(cx.) .

Proof by T64 (2), D62, D65, T2 (1), D53, D63.

23. The Intensional Interpretation of ‘#&)

The constancy, indicated in theorems 52-54, between
the semantical notlons for the intensional interpretation
of ’/{n and those for the lntenslonal interpretation of Wn-t—l
allow us to frame simple definitions for the corresponding
notions in 'ﬁ/ . The difficulties alluded to in connection
with D64 do not arise here. In fact, a definition which

separates clauses 1n the manner of D64 would be equivalent

to the followlng.

D66. If T is a type of rank n, and M M_, then the uni-
verse of T in M with respect to the Intensional interpre-

tation of ”6;? ( b(I}f)?"(E')) 1s Y %.Z{n('l)

D67. If ocis a wfe of T, of rank n, and Me M, then the
value of o in M| with respect to the Intensional interpre-




116

tation of ﬁ (Va 1-,,?‘*’(0:)) is Val “(c,)

D68. If o 1s a wfe of 7)/4_, of rank n, then the Sengse of o<

7\/
with respect to #a) (Senseﬁ:(a)) 1s Sense "(o).

As explained earlier, the sense of a wfe of simple type,

asgigns to each model the value of the wfe in that model.

T70. If o« is a wfe of 7{a) of simple type, and N6 M,
then Sensef‘/“’(o:)(l’l) = Val ){K“J(oc)
Proof by D68, D67, T8 (1).

We also obtain the appropriate theorems about the value of

the analogue to a wfe and the relation between the values of

wfet's and the unliverses of thelr types.

I,%,
T71. If «is a wfe of '/(w, and M6 M o2 then Valm_ () =
Sense#-’(cc)

Proof by D68, D67, T49.

72, h’If & is a wfe of 7)/4‘J of type T, and M6 Mys then
I
Valyy “ (o) @ L(I “(D.
Proof by D67, D66, TSO.

24, logical Axioms for Ww
Iet us provisionally distinguish our logical signs
Into two groups. The signs from "extensional" logic,
namely, Cond, Neg, Id(t), Id(1); and the “speciai" signs
- Delta (7), Id(’fﬁ » Nec, 5. We first turn our attention to
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the former group which we will henceforth call the purely

logical signs. All sentences of 7)/‘) whose validity depends
solely on the interpretation of these signs are derivable
from two sets of axioms, the tautologies and the identlity
axioms. Tautologles are defined in terms of truth evalua-

tions; the 1identity axloms are defined in terms of substi-

tutlion.

D69, f is a truth evaluatlion for VA/B} if and only if:
(1) f is a function from the set of all wfels of % of
type t into {T,F},
(2) if @, are in the domaln of f, then
(a) £ (g2Y) = T 1if and only 1if, if £(#) = T then
£(Y) =T
(b) f£(~¢g) = T if and only if, 1t 1is not the case
that £(g) = T
(¢) £ (F=2¥) = T if and only if, £(g) = T if and
only if £(¥) = T

D70, ¢ 1s a tautology of ‘ﬁ/g if and only if
(1) ¢ 1s a wfe of 'ﬁw of type t

(2) if £ is a truth evaluation for “Kw , then £(g) = T.

D71, If <, B are wfe's of 7)2) of the same simple type,
and ¥, & are wfe's of 7/@ of the same simple type, then
& is a result of substituting « for B at none or more places
_j;n_t(Subﬁ“’(oc,B,Y;S)) if and only if:
(1) ¥'=j, and either § = xor 5-=)3; or
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(2) y";!)a, and either
(a) ¥ 1is atomic and § =Y, or

(b) there are r, and simple types, T ;... 5, Yz,
MyseeesPns pi,...,p;, such that r>0, )Z is a wfe
Of é) Of type <’q,o.|,%,%>’ Pl“.")‘ll’ are er's
of types ¥y,...,7, respectively, if 1 £ j £ r then
‘ﬁ n N ~
Sub “)(oc ,}3,)13,;15), 3“=7Z )11 "t Pps and
S q Fl .oa r.
The identity axioms consist of all instances of Frege's
Law; which incorporates Leibniz' Law, Euclld's Law, and

interchange of material equlvalents, and all instances of

the Self-Identity Law.

D72. ¢ is an instance of Frege'!s Law in 1{}9 if and only if

there are o, J3, Y, § such that:
(1) o ,B are wfe's of 7)’@ of the same simple type
(2) W,§ are wfe's of 7‘{&) of the same simple type
(3) Sub#“’(on.p,r.é’)
(4) ¢ 15 ((¢=p)2 (Y= §)).

D73. @ is an instance of the Self-Identity Law in ‘f)}y if
and only if there 1s an o< such that:

(1) «1s a wfe of 7{{62 of simple type

(2) £ 1is (== o,

DT4. @ is a Logical Axiom of 7)/ if and only if
(1) ¢# 1s a tautology of 7)2,, or
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(2) ¢ 1s an instance of Frege's Law in 'ﬁw, or
(3) ¢ is an instance of the Self-Identity Law in 7{6)‘

We now introduce the notion of valldity under the two

interpretatlions of -ﬁ/&): and show that all loglcal axioms

are valld.

D75. @ 1s valid under the Syntactical interpretation of f{w
if and only 1f:
(kx ? y
(1) @ is a wfe of "Kw of type t
(2) for a1l € M, va1® ﬂ“(pf) = T.

D76. ¢ is valid under the Intensional interpretation of 7{”
( f-*-— #) if and only if:

(15 p( is a wfe of ﬁw of type t

(2) for all N e M, ValYL (g) = T,

3. If ;d,‘-t' are wfe's of 7], of type t, and Mg M, then

(1) Val gz’f)) = T 1f and only if, if Val '& () =
then Vals T () =

(2) ValIﬁN(ﬁ:ﬂP) = T if and only if, if Vall 1'f"’(gaf)
then Vall"“(ly) =T

(3) Vals,,f“’(f/ﬁ) = T i1f and only 1if, it 1s not the case
that Val :’{U(p() = T

(4) varl %(Mﬁ) = T 1f and only if, it 1is not the case
that Va1l 7{’/"’(91) -T

(5) va1® 7lr"’(;1&‘}’) = T if and only 1f, Val 3'1‘{"'(51) = T and
Val ’*‘-’(\P) = T




(6)

(7)

(8)

(9)

(10)

T4,
(1)

(2)
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Val{;fa) (g4y) = T 1if and only if, ValI-;nﬁ‘“(ﬁ)_a T and
Valzf;,z‘w(q’) = T

Vals,;fw(gv?’) = T if and only if, Vals,;zz‘-’(g) = T or
Val%:,}ﬁ“’(\k) = T

Val;);.z({@(;lv\}') = T if and only if ValIﬁf“’(q) =T or
Val:g,,’,l’l“’(% = T

Val%;{{“’(ﬁ;?)') = T if and only if Vals-',,’:‘-{“’(ﬁ) = T if and
only if Val%;?“’(% = T

Vall.,;L%(gfalV) = T if and only if, Valfﬁﬁw(;x) = T if
and only if Val;,’,\z_{“(‘f’) =

Proof by D65, D67, TS5.

If ¢ is a tautology of ﬁa): then

e

S:w

i

Proof: (1) by T73, T68 the function which assigns

to each sentence @ of T,,, Valg,;z{‘" (@), 18 a truth evalua-

tion. Hence if @ 1s a tautology, Valsm%(ﬂ) = T for all
Me M,; (2), similar using T73, T72.

5.

If cr_,p are wfe's of 7);) of the same slmple type,

1,8 are wte's of 7{» of the same simple type,
sub’o(c B, ¥76), ana M & M_, then

(1)

(2)

if Val%{“’(a) = Vals'n%"()s), then Val%#“’(ﬂ =

Val%;Z""(S)
1f Val%“-’(o:) - Val)):,’,ztv(p), then ValIy;va M) =
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I,%,
Valm (6).

Proof by induction on ¥

6., If or.,ﬁ are wfe'!s of 7)2) of the same simple type, and

M € M, then

(1) Va1§,;10(oc=-/3) = T if and only if Val%{ﬁw(o:) =
Val%{’é’(B)

(2) Valz,;z{u(ot =) = T 1f and only if Val%(«) -

Val%’w (3).

Proof by D65, D67, T56,

T77. If ¢ is an instance of Frege's Law in 7, then

(1) IES‘

(2) mﬁ

Proof by T75, T73, ’-175, D75, D7é6.

T78. If ¢ is an instance of the Self-Identity Law in 7,
then,

(1) g-’?u;ﬁ

(2) [
I,“f{wg
Proof by T76, D75, D76,

T79. If @ is a Logical Axiom of #w: then

(1) = ¥

(2) mﬂf
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Proof by D74, T75, T77, T78.

We now introduce the notion of a modus ponens conse-

quence of a set of sentences A,

D77. @£ is a modus ponens consequence of A (gp—y #) 1f and
>

only 1f:
(1) A 1s a set of wfe's of ﬁ/w of type t
(2) there are S and n such that:
(a) S is a finite sequence of length n+l

(b) S, =¢
(c) 41f 0 € m £ n, then either
(1) §, € A, or

(11) there are j,k < m, and SJ = (Sk:)Sm)

780. If @, Y are wfe's of 7, of type t, then

(1) iffg’_ﬂ‘; (#>¥) and mﬁ, then [u-:-#; ¥

S

2 if = d s th
(2) ;:;Z)(ﬂ'lP) an ;?;z>¢' en ;:;ZLN’
Proof by T73, D75, DT6.

™81, If A is the set of Logical Axioms of 7, and

p——— g, then

MP,A

(1) gf;z>¢

(2) E—;a;ﬂf

Proof by induction on the length of the proof of ¢
using 179, T80.




25. Completeness and Decidability of #
We first introduce the notion of validity for formulas
of 7@6, and show that it colncldes with valldity under both

interpretations for such formulas,

D78. ¢ 1s valid in K ()T g) if and only if:

(1) & is a wfe of 7K0 of type t
(2) for all M 6 M, Valé{,(_)(g) = T

T82. If ¢ 1s a wfe of 7?;, then
1) if and only if
(1) b= g mﬁ
(2) ]-%- @ if and only if |esme ¢

I,v}{w
Proof by D65, D6T.

The followlng theorem establishes that validity under the
two interpretations agrees for formulas of ﬁg. That this
1s not the case, in general, for arbltrary formulas of

will be shown in theorem 95.
T63. If ¢ is a wfe of ‘fé, then [m @ i1f and only if

1,7,
Proof by T82,.

The followlng two theorems are well known from the

11terature?2 The second will be called the completeness

theorem for 7&;.

™84, If ¢ 1s a wfe of 7ﬁ;, and A is the set of Logical
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Axioms of 7, then b 001y 4 iy 4

5. If ¢ is a wfe of 7k;, and A is the set of Logical
Axioms of T, then T g if and only if |gp—y #.

Proof by T84, T81, T82.

The decidabllity of ’ﬁ; is also well known,72 but we will
give an argument differing slightly from the familiar
forms. Our argument depends primarily on T. First we must
introduce the notion of an instance of a formula of 7&;.

For this purpose we define some auxiliary notilons.

D79. 1If 8 1s a wlfe of ‘ﬁg of simple type, and Qi”“‘ob
are wfels of 7Y; of type 1, then 5[0&,...,0%] is the

result of simultaneously replacing all occurrences of the
Jth individuel consfant (Opsymb(J,0)) in § by ¥ for all
1£J €p.

D80, f 1s a substitution function for jﬁ; if and only 1if:
(1) f 1s a funetion whose domain is thé_set of all
predicates and operation symbols of ‘fg
(2) f assigns a wfe of 'ffo of type 1 to each operation
symbol of 7,
(3) f assigns a wfe of A of type t to each predicate

of ﬁ’o
D81, & is a '6/3 instance of J if:

(1) Y is a wfe of 'ﬁ; of simple type
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(2) there is a substitution function for 7, f, such that
§ 18 the result of simultaneously replacing all

occurrences ofvznaiq---ﬁbb in'('by f(Q)[Oi,...,Ob].
where 7118 a p-place predicate or operation symbol

and 0ﬁ""’°b are wfe's of “ﬁg of type 1.

T86. If @ is a wfe of 'ﬁ; of type t, q’is a 7{0 instance

of ¢, andlsmzn @, then h%§= Y,

Proof by induction on ¢,

D82, ¢ 1s a contingent identity disjunction if and only

if ﬂ is a disjunction each of whose disjuncts has the form
(x =-=)3), where o ,)3 are distinct wfe's of 7{0 of type 1.

T87. If @ 1s a contingent identity disjunction, then
W
neither @ nor ~¢ is valid in 3k;.

Proof: @ can not be valid since @ holds in any
model <DR> where D contains only a single element. To show
that ﬂ is not valid, construct an n,GMo isomorphic to <D,R>
where D 18 the set of all wfe's of 736 of type i and where
R(Opsymb(m,p)) = Synt fe (Opsymb(m,p)). Then if X is a wfe
of A, of type 1, Val/%e (o) = oy thus each disjunct in g
will be false, and hence so will ¢,

The followlng theorem is related to a result of Quines 73
to the effect that a formula of the predicate calculus has
a contravalid 1lnstance just in case 1t 1s falsifiable in a

model whose universe contains a single element.
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88, If @ is a wfe of 7?0 of type t, and ¢ 1s not valid in
7?0, then there are V{Xf such that:

(1) Y 15 a 7?0 instance of ¢

(2) (Y>%)

(3) iles a contingent identity disjunction

Proof: Since ¢ 1is not valid, it must fail in some

<D,R>GM0. In fact <D,R> can be chosen to satlsfy the fol-
lowing conditions: (a) D is finite, (b) for each element
X6D, there 1is a wfe 3, of +, such that vl (Be) = X
Form the 1lnstance Vjof ﬁ as follows. If q i1s a p-place
predicate occurring in & and R(q) = {<xi,...,x;>,...,
<xT,...,xg>:}, then replace n?o&“..fndb by ( ((o&===ipxi)&...
&:(qp====}3x;))v...V((crl====)3xrln)&...&(d-p====)3xg)) ). 1If Q is
a o-place predicate, replace i1t with either (5 ===6) or
N (& ===§) (where & = Opsymb{0,0)) depending on whether
R(n) = T or F, This replacement does not affect the truth
value of ¢, hence ¥ is also false in <DR>. Form X as fol-
lows. First put ?’ into conjunctive normal form., Since yj
contains no predicates (other than identity) each conjunct
will be a disjunction of wfe's of the form (o === B). Now
any conjunct with a disjunct of the form (ol=== o) will be
true, hence since \P 1s false, one of the conjuncts must
not contaln any such disjunct. Let X be the first such

conjunct, then X will be & contingent identity disJunction
which 1s implied by VY.
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T™89. If @ is a wfe of 1?; of type t, and A 1s the set of
logical axioms of 7%9, then @ 1s not valid in 7?0 if and
only 1f there are 'VC?ﬁ such that:

(1) Wis a 7?0 instance of ¢

(2) kpx (W=2X)

(3) X 1s a contingent identity disjunction.

Proof: from left to right by T88, T85; from right

to left by 187, T85, T82, T30, T86.

T90, The set of all valid wfe's of “ﬁ% is decidable.

Proof: By T85, T89 we can enumerate both the glven

set and 1ts complement within the class of wfe's of "f%

of type t.

26, Additional Axioms for 7%9

We now turn to axloms (or, more exactly, axiom
schemes) governing the speclal logical signs of our direct
discourse languages. Namely, those introduced 1in the
languages 7?;+1: Delta (T); Ia (7), Nec, and all wfe's .
In the present section, we formulate the remaining axioms
and establish that all theorems are valid.

Our flrst set of axloms 1links the delta predicates
with the bar notation.

D83. g is a Delta Axiom of ‘A , 1f and only 1f there are
o ,}3 such that:
(1) « ,)3 are wle's of 'f/b of the same simple type




(2) ¢ 1s (A .p)= (o= p)).T*

It follows from theorem 67, that formulas of Ww
whose maln connective is Id(’g), have the form, (&:—-:)'3'),
Thus, such formulas reflect our principle of 1ndividuation
for the entities in the universes of the types %’ We now
introduce the axioms governed by these principles. Under
the syntactical interpretation, the unlverse of the simple
type %consists of wfe's of type 7. The denotation of o
is simply o.. Thus a andﬁ have the same denotation Just

in case « 1s the same wfe as }

D84, ¢ is a Syntactical Individuating Axiom of 7‘{3) if and

only if there are or.,}3 such that:
(1) o« ,B are wfe's of 73/4) of the same simple type
(2) if =p, then @ 15 (x == B)
(3) if «#f3, then g 18 ~(x = B)

Under the intensional iInterpretation, the universe of the
simple type %consists of concepts. The denotation of o
1s now the sense of oc, Hence the problem of the identity
of the denotatlons of «and B reduces to that of the iden-
tity of the sense of o and the sense of )3 Here 1t will
be recalled (section 15.1) that we decided to equate the

senses of « and)3 when o andﬁ are themselves logically

equivalent. Tat 1s, when (oc.-}a) expresses a necessary

proposition.
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D85. ¢ 1s an Intensional Individuating Axiom of A ) Af and

only if there are oc,B such that:
(1) «,B are wfe's of féj of the same simple type

(2) ¢ 1s (N{ot= B] = (x = [))

We will introduce a number of axlioms on necesslity.
The modal axioms of the first four kinds are the famlllar
principles of the modal system 85.75 The last two kinds
of modal axioms are required to prove of a contingent

sentence (proposition) that it 1s not necessary.

D86, ¢ i1s a Modal Axiom of“ﬁ;)if and only if there are
wiets Y, X of 7@0 of type t and ¢ satisfles one of the

following conditions:

(1) ¢ 1s (N[Y5XT 2 (N¥ > N9))

(2) ¢ 1s (NY2¥)

(3) # 1s (NP=NNY)

(4) # 1s (VNP> W)

(5) X1s a ‘h/o instance of "P and ¢ 1s (NY>NY)

(6) Y 1s a contingent identity disjunction, and ¢ is

VNV

This completes our list of axioms for 7Y . Note
that the axioms given for the two interpretations differ
only with respect to the individuation axioms (D84, D85).76
We will now establish that all of the axioms are valid
under the appropriate interpretation of %,..
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T91. If ¢ 1s a Delta Axiom of K, , then

(1) mﬁ

(2) o= g

I,%,
Proof by D65, D67, T60, T73, T76.

An immedlate consequence of the preceding theorem shows

that a certain intuiltive criterion of adequacy is fulfilled.

T2, If « is a wfe of 7§b of simple type, then
(1) = A\ (o ,0)
S, K,

(2) R A(m ,d)

Proof by T91, T73, T76.

The followlng theorem states three important propertiles of
necessity: first that NZ 1s true Just in case ¢ is valid,
second that when ¢ 1s valid, N is valid, and third that a
formula of the form Nﬁ 1s logically determinate in the sense
that either 1t or 1its negation 1s valid,

T93. If @ 1s a wfe of M, of type t, then

(1) 1r Me M, Vals—;zt{“(Nm = T Aif and only if | ¢
LA

(2) 1r Me M, Val%(Nﬁ) = T Aif and only if |-—1-);- ]
2

3 [— R
(3) 1t IS‘ﬁﬁ th?n FS.:;{:,W

2y

4 n
(4) 1r mﬁ, the EW
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(5) either |jm== NJ or |me= #NJ

S, S,H,
6) eith NG or |=== #N
(6) either m ) lI,’/}’w [

Proof: (1), (2) by D65, D67, T61l; (3), (4) by (1),
(2); (5), (6) vy (1), (2), T73.

Properties of Id(%’) which correspond to those of Nec given

in the preceding theorem are given in the followilng.

™4, If o ,B are wfe's of “sz) of the same simple type,
then

(1) 1fMe M, val
(2) 1£fMme M, Val

(o = B)

(E—}B’) if and only 1if cr=}3

s,fx’o(
I,1<,.,(

@==FR) = T if and only if x =
a == f) = T if and only if

]

I ,‘Ka)

1

(3)
S, ke
(4) m (&uE) if and only if [7 (0C==)3)

I,U

(5) either pme= (xx==F) or [ (¢ == F)
Sfﬁw S’&)
(6) either E (¢ == B) or ,Ia,-TTuA/(E == J3)

Proof: (1) by 176, T69, D63; (2) by T76, T71, T70;
(3), (4) vy (1), (2); (5), (6) by (1), (2), 173.

The preceding theorem brovides a convenient proof of the
fact, asserted in connection with theorem 83, that validity
under the syntactical interpretation of f)/w and validity
under the intensional interpretation of #cu do not, in
general, agree, In fact, neither implies the other..




T95.
(1)

(2)

Let ¢ be Pred(0,0). Then

(# == w»@) is valid under the intensional interpre-
tation of 7&) but not under the syntactlcal interpre-
tation

~ (@ == 7¥¥) 1s valid under the syntactical interpre-
tation of 7&0 but not under the intensional interpre-
tation,

Proof: (1) by To4, T73, T76; (2) by (1), To4.

We can now establlsh the validity of the remalning axioms,

T96o

(2)

T97.
(1)

(2)

(1) If ¢ is a Syntactical Individuating Axiom of 7,
then [m=== ¢,

S’ﬁﬁ)
If ¢ 15 an Intensional Individuating Axiom of 7%0,

then mﬁ

Proof: (1) by T94, T73; (2) by T93, TO4, T73.

If ¢ 1s a Modal Axiom of 7%w then

aryalt 4

S ,_’{(‘)

T

Proof by the cases of D86: (1) by T93, T73, T80;

(2), (3), (4) vy 793, T73; (5) by T93, T8, 86, T73; (6)
by T9I3, T821 T87: T73-

The theorems of 7&;) are the consequences of the

axioms by two rules of inference: modus ponens, and modal

generalization. The latter leads from a theorem @ to the
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theoren N§.77 We next define our new notion of conse-

quence,

D87. _giis a consequence of A by modus ponens and modal

generalization if and only if

y
(1) A is a set of wfe's of ‘ﬁw of type t
(2) there are S and n such that:
(a) S is a finite sequence of length n+l
(b) s, =
(¢) if O

N &

m € n, then either

(1) s, ¢ A, or
(11) there are J,k < m, and SJ = (SRZDSm), or
(111) there is a j<m, and S = Ngg.

D88, Let A® be the set of all ¢ satisfying one of the
following conditions: @ 1s a Logical Axiom of 7,, # is a
Delta Axiom of H,, ¢ 1s a Syntactical Individuating Axiom
of '1'{0, ¢ is a Modal Axiom of ‘¥ .,. Then ¥ 1is a theorem of

the Syntactical interpretation of)ga)(\gj?r-y)) if and only
— w

1f ¥ 1s a consequence of A by modus ponens and modal

generalization.

D89, Let Al

following conditions: ¢ is a Loglcal Axiom of Ky, # is a

be the set of all & satisfying one of the

Delta Axiom of 7ﬂ9, # 1s an Intensional Individuating Axiom

of 7%;, ¢ 1s a Modal Axiom of 7%»-‘ Then Y 1s a theorem

of the Intensional interpretation of { Af and
‘ rp jﬂj& (}::7§;¥’)
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only if 1P is a consequence of A~ by modus ponens and modal

generalization.

The following theorem, which asserts that all theorems are
valld, provides half of the completeness argument which

willl be finished in the following section.

198. (1) If g, then |m= g

S,
(2) Irgm #, then 1;_& o ©

Proof by induction on the length of the proof using
cases (1), (11), (1ii) of D87: case (i) by T79, T91, T96,
T97; case (11) by T80; case (1ii) by T93.

27. Completeness and Decldability of 7&,

The cruclal lemmas for both the completeness and the
decidabllity argument are theorems 102 and 103. These in
turn depend on theorems 99 and 100. The latter indicate
the general idea of the arguments. Each formula of rank
n+l 1s shown to be provably equivalent to a formula of rank
n. By this process each formula of 7@; is reduced to a

formula of Tﬁ; where we can apply the results of section 25,

T99. Let n be any natural number such that all wfe's ¥ of
ﬂ; of type t satisfy both of the following conditions:

(1) 1r I-S-E‘P, then |-s-’7£-01/)

(2) 1f 1t 1s not the case that e then py—— ~#NV.
| ’So7ﬁu‘vj, Ky N¥

Then if ¢ is any wfe of 1Y;+1 of type t, there i1s a [ such
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that:
(3) [Mis a wre of K, of type t, and

(4) m(ﬂfp)

Proof: Assume the hypotheslis and assume that ﬂ is a

wlfe of 7{n+1 of type t.
priate [ by induction on & using the cases of T37.

Case (1): ¢ 1s a wfe of '6’0, hence of ‘A'/n. Let ['= ¢.

We show that there 1ls an appro-

Case (2): by the inductive hypothesls and the logical

axioms there 1s an equivalent [' of the same

structure.
Case (3): subcase (1) ot=)3: by the individuation axioms

@-:R—ﬁ. Hence, let ! be any tautology.
2 ey
subcase (11) o # B: by the individuation

axioms )E-ﬁgfvﬁ. Hence let [1 be the negation of
any tautology.

Case (4): argument as in Case (1),

Case (5): by the delta axloms t-gmz (= (oc--—-ﬁ)). Hence,
using the logical axioms, 1t suffices to show
that there 1s a 1}) provably equivalent to
(oc=-=)3).
subcase (1) the type of o is 1: argument as
in Case (4).
subcase (11) the type of « 1s %: argument as
in Case (3),.

Bubcase (111) the type of ®is t: argument as
in Case (2),
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: : by the hypothesis of the
case (6): subcase (1) ]S;R:7V y NgY
eraliza-
the theorem, Pg;g;‘?- Thus by modal genera "
. Hence, let
tion m Ny, that 1s W o )
be as in Case (3)(1).
t :+ by the othesis of
subcase (11) no E?%:‘V y hyp

the theorem [-s—’-R—MN'\?’ that is, (g-ﬁgugf.
w

Hence, let [ be as in Case (3)(11).

7100, If 'Faxf' and '@T?E; are replaced in theorem
S, Ky

99 by '?f§=' and 'ﬁfqﬂi respectively, the result is also
2
2 il

true.

Proof 1s as for T99 with exception of Case (3), which

1s as follows:
Case (3): subcase (1 (¢ = B): by the hypothesis
(3) (1) m B
of the theorem, modal generallzation, the indi-
viduation axloms, and the loglcal axioma)ijqﬂsgL
Hence let r1 be any tautology.
subcase (1i) not ';T (== p): by the
)
hypothesls of the théorem, the individuation
axioms, and the loglical axiom .
» g B m ¢ Hence,
let |7 be the negation of any tautology.

TI01. If A 1s the set of loglcal axioms of 7., and fgp— f,
then

(1) éﬁ?ﬂ;ﬁ’
(2) h:;g;ﬁ
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Proof by inductilon on the length of the proof of ¢,

™o02. If n 1s any natural number, and W 1s a wfe of ‘f(n

of type t, then

(l) ir )_" w, then ,3-’—_1—{—1})

(73]
(2) 1if it is not the case that ;=—=-= W, then
S,
A Y

Proof by induction on n, Case (i) n =0: (1) b

™82, T84, T101. To show (2), assume the antecedent of (2).
Then by 782, T89, T101l, and modal axioms of kind 5 and 6,
there are |',X such that }m:) (M=X), @—’?Z)NN-)Z,
)-g—‘&— (Ny>NX). But then by modal generalization on (I">X),

N .
modal axloms of kind 1, and loglcal axioms m ANV,
Case (ii) n = mtl: assume the antecedent of the theorem,
Then by the inductive hypothesls and T99 there 1is a M such
that [ is a wfe of ’Hm and (A), )w (Y=). To show
(1), assume the antecedent of (1). Then by T98 and (A),
l?‘f? [7. Hence, by the hypothesis of induction ]-S—— r,
therefore by (A) }g—,ﬁ- Y. To show (2), assume the ante-
cedent of (2). Again by T98 and (A), not [a—_fT [V, fhus
by the hypothesis of induction '377?; ~NT. But by (A),

the logical axioms, modal generalization, and modal axioms

of kind 1, }S—i-) (NYyoNF)., Hence, by the logical axioms
?
7, Y-

T103, If 'hwwwss! and 1-5-7-' are replaced in theorem 102 by
s, h,
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Newmee! and 'hTTTJ respectively, the result is also true.
1 B

T, Ko
Proof is as for T102 but using T100 in place of T99,

The following 1s the completeness theorem for 7%;.

™04, (1) }:S-n%n g if and only if Imc—dg
7

(2) rﬁ‘ ¢ if and only 1if II,T' g
21000 «
Proof: (1) by T98 (1), T1w02 (1); (2) by T98 (2),

703 (1).

T105. (1) The set of all ¢ such that,-eiy @ is decidable,
S, fg

(2) The set of all & such that Ef;; @ 1s decidable.
200

Proof: By T104, T102 (2), T103 (2) we can enumerate
both the glven sets and thelr complements withln the class

of wfe's of 1@5 of type t.

28, Comparison With Indirect Discourse
For purposes of comparison, let us now consider a
system of modal logic developed by the method of indirect
discourse, We call the language, -ﬁ;.d.' All well formed
expressions of 7?1;d. have type t, The atomic formulas
are sentential constants, thus identity does not occur.

¥We introduce the wfe's of 7?1 d by a recursive definition.

D30, ¢ is a wfe of 7¥i 4. 1f and only if @ satisfies one
of the following conditions:
(1) there is a natural number m such that ¢ is Pred (m,o)
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(2) there are wfe's of j/i.d. Y, X such that g 1s (Yo2X).
(3) there 1s a wfe of 7, 4 Y such that ¢f 1s ~Y,
(4) there 1s a wfe of 1gi.d.1y such that @ 1s N VY.

Our axloms will be such as to allow a natural interpretation
of ; q.° Donald Kallsh has dubbed this system Sl3.78
Let us imaglne that tautology of 7%1 q. 1s defined on the

pattern of D69 and D70. Then we can succinctly introduce

the axloms of S13,

D91, ¢ 1s an axiom of S13 if and only if there are wfe's
of 7Yl a 'Vﬂ)( such that @ satisfles one of the following

condltlons:

(1) ¢ 1is a tautology of 7?;.d.'

(2) ¢ is (N(¥Y2X)>(NYoNX)).

(3) #1s (NY2Y).

(4) ¢ 1s (NV¥O NNY).

(5) & 1s (#NWY>N#NY),

(6) Wis also a wfe of “H;, W 1s not a tautology, and

g 18 /N,

Axlom schemes (1)-(5) are the axioms of the more familiar
Lewls system S5, Axiom scheme (6) adds ~#N'¥Y for modal free
non-tautologies . Note that the first clause in (6)
requires that ¥ does not contain Nec. The notion of a
theorem of 813 (written 'h§E§J) is defined with respect to

the inference rules modus ponens and modal generallization,

only here the latter rule leads from @ to NJ rather than
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to N@. We now introduce the value of a wfe of "/{i d.°

D92, If & 1s a wfe of %/1.d.' and M€ M_, then the value
of ¢ in M with respect to ﬁ/i.d. (val /};;%'d'(ﬂ)) is given
by the following: o
(1) Valw)ﬁ,\i'd'(gf) 6 {T,F}
(2) 1f @ 1s Pred(m,0) then Valmi'd’(ﬁ) = Val}%(ﬁ)
(3) 1if ¢ 1s (W=2X), then Valﬂ”}('d‘(ﬂ) = T if and only 1f,
if Val»:{"d‘(% - 7 then Val 14+ () = T
(4) 1f @ 15 W, then Valyi*?* () = T if and only 1f 1t
1s not the case that Valwyjﬂ_’d’(w =T
(5) 1f ¢ 1s NV, then Val";yil'd'(ﬁ) = T if and only if for

all N¢ M, Val ,%"L(y!) =T,

We define validity in ‘ki q. (written '@-:') in the usual

==t 1od.

way. We can now state the completeness theorem for ‘7?1 d

which was first proved in Carnap [3].

T106. |yy3— # 1f and only if [?;—d- g

If the sentences of 7{/ j.q, are understood as denoting
truth values, N is certainly an oblique context of @, Thus
translation into 71:9 should Just amount to replacing ¢ in

such contexts by its analogue J.

D93. If ¢ 18 a wlfe of 7{1 4. » then the translation of ¢
into direct discourse (Trans(g)) 1es given by the following.

(1) 1f m 1s a natural nuwber, Trans(Pred(m,0)) = Pred(m,0)
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(2) 1t W,X are wre's of K, , , then Trans(¥>X) =
(Trans(y) @ Trans(X))

(3) if V¥ 1s a wfe of 161.d.’ then Trans (YY) =
#(Trans(Y))

(4) if Y 1s a wfe of TH;.d., then Trans (NY) =
N Trans (P,

Every wfe of /’Vi d has as 1ts translation a wfe of 77/w'
The followlng theorem indicates that our translation 1is

correct.

TI07. If ¢ is a wfe of %, ; , and M¢ M, then

(1) Valfr{'d'(ﬂ) = Valsﬁkﬁ“’(TranS(s?f))

(2) vaiti-d (@) = a1 ™ (trans(g))
(3) m g 1if and only if )m Trans (@)
(%) m g if and only if 1;-;2 Trans (@)
(5) hﬁ g 1if and only if ;WuTrans(gf)
(6) }-S-B- g 1if and only if {m Trans (¢)
Proof: (1), (2) by induction on ¢; (3), (4) vy (1),

(2); (5), (6) vy (3), (4), T106, TiO4.

Theorem 107 provides us with another large class of

sentences wlth respect to which our two interpretations

of ¥, agree,

T108, If @ = Trans(P) for some wfe Y of "’Ki_d , and
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S, K N
Me M, then Valyy “(f) = ValIwa‘(;i).

Proof by T107.




CHAPTER 5
THE LANGUAGE o,

A full development of the material of the preceding
four chapters would provide a treatment of at least the
followlng topics, A language JQU, modeled on /), but
based on the full first order predicate calculus with iden-
tity and description, can be constructed. The comparlson
of ;QD to an indirect discourse development of quantified
modal loglc ralses a number of new and interesting ques-
tions., In partlcular, the problem of translating such lan-~
guages of 1indirect dlscourse into JQD can be shown to in-
volve far greater difficulties than those concerned with
the translation of ‘k;.d. into féa° The translation prob-

lem leads one to consider some versions of essentlalism,

The notlon of the essence of an entity x can be roughly

explicated as that concept which i1s a concept of x in every
possible state of affalrs, Various essentlalist interpre-
tations of }QD are possible, with Interesting relations to
different systems of quantified modal logic. An investiga-
tlon in this area reveals the exact extent of support for
Quine's often repeated claim that quantified modal logilc
presupposes essentialism,

The full development of these toplcs exceeds certain
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limitations on the present worlk. However, the construction
and intensional interpretation of 42) are so centrally re-
lated to the alm of providing a foundation for intenslonal
loglic that 1t seems important to include at least the

following abstract of that development.

29, Syntactical Interpretations

The language JL) differs from 7kb in the presence of
varlables of each simple type and the two variable binding
operators: the universal quantifler, and the description
operator, Thus the base language Xi, upon which the hier-
archy leading to ‘Iw is bullt, 1s the full first order
predlcate calculus with identity and descriptions.

If the syntactical and intensional interpretations of
the hlerarchy of languages 7?n are compared, it wlill be
noted that the intensional interpretation offers several ad-
vantages by way of simplicity. Under the intensional inter-
pretation Nec can be dropped as a primitive constant and re-
introduced by definition as suggested in footnote 76, Under
the intensional interpretation, the universes of a given
type with respect to 7?5, 7?n+1’ and 7%0 are all the same.
Also, under the intenslonal interpretation, the value (deno-

tation) and sense of a given wfe of dﬁ; remain constant for

144




#0 Hpepe and Hie

The difficultles connected with the relation between
the universes of a given type with respect to the syntacti-
cal interpretations of 7Yn and n+1l would be multiplied
wlth respect to JQQ, seeming to requilre not only a new hier-
archy construction but the ramification of each higher sim-
ple type of 7%0 into orders. Note that whereas a variable
of type t1 in J:l takes as values any wfe of ;fo of type t,
a varlable of the same type in Jfg draws its values from
the wider class of wfe's of ‘ia of type t. Hence the natu-
ral course seems to be to divide the type tl of Jig into
the types [t,,0], [t;,1], [t;,2], ete., where X . would
contain variables of types [tl,O],...,[tl,n]. The language
JQU could then be, as before, the union of the languages
J:n. This problem does not arilse under the intensional in-
terpretation Oftfag. Further simplificatlions avallable to
the Intensional interpretation of.iig but denled to the syn-~
tactical interpretation concern the fact that if a:and)3
differ just by rewrite of a bound varlable, o and IE must
have distinct denotatlons under the syntactical interpreta-
tion but will have the same denotation under the intension-
al interpretation (since « and B, belng logically equiva-
lent, will have the same sense),

For the above reasons, and others, we leave the syn-
tactical interpretation of a direct discourse language
based on the full first order predicate calculus to future
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developments. For the present we content ourselves with an
intensional interpretation of JQ;» hoplng the contents of
Chapters 2, 3, and 4 to have supplied sufficlent Justifica-
tion for our earlier clalm of an essential similarity be-
tween different direct dlscourse treatments as opposed to
the fundamental dlfferences between direct and indirect

dliscourse treatments.

30. The Language ofco
The type structure of X’w remains that of H,.. The
new atomic wfe's consist of an infinite supply of varilables
of each slmple type. The variables of each type are ordered
so that we can speak of the wmth variable of type T. We

also add two varlable binding operators: The Universal

Quantifier, and The Descriptlion Operator. The varlable

binding operators have no types, and thus are not wfe's,
They are the only syncategorematic expressions of our lan-

guage. Thus, the atomic wfe's of fg conslst of all the

atomle wfe's of ﬁ(o plus the variables,

The well-formed expressions of f ) consist of the
atomlc wfe's of .fw plus compound wfe's of X  formed in

one of the following three ways.

(1) If o Osses%, are wfe's of L,y of types
<'Z'1....,’Z;,.’(6>, ’q,...,?‘r respectively, then y{o{f‘..?os
1Ba.wfeoonfty'pe%- |

(2) If o 1s a variable of fw, and ¢ is a wfe of fw of
type t, then The Universal Quantuierhoc’\ﬁ 1s a wlfe of
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iw of type t.
(3) If « is a varilable of fw of type C, and ¢ 1s a wfe
of £,y of type t, then The Description Operator | ochﬂ
1s a wfe of 4, of type T,
Note that all wfe's of '/'2) are also wfe's of o{w.
We carry over all the abbreviations of D42-D47 and
add the followlng:
(1) V@ = The Universal Quantifier o @
(2) (¢ = Me Description Operator o @
(3) Jeg = YWy

The set of free varlables of the wfe o¢ is defined in

the usual way, The order of the varlables allows us to

th

speak of the n= variable of type T not free in o. A wfe

without free variables is said to be closed.

Our treatment of descriptlons follows the method of
Frege as modified by Carnap. For each simple type T we
choose the distinguished constant of type T in accord with

the following.
(1) The distinguished constant of type i, 1s Opsymbj(o,o)
(2) '™e distinguished constant of type tJ is PredJ(o,o)
An improper description of type ‘Cwill then have the same
denotation as the distinguished constant of type ¢

31. | The Intensional Interpretation of ofc.)
When YTIGMO, and T 1s a type the universe of Tin M
with respect t"l@ ( (,(m('c)) remains as it was for 7{&,.
Only the closed wlfe'!s of i () c8n be said to have a




denotation properly speaking. But for wfe's contalning free
variables we can Introduce a kind of guasl-denotatlon rela-
tive to an assignment of values to the varlables,

If MGMO, then / 1s an assignment to varilables for Y if

and only if 4 1s a function from the variables of &£,
which assigns to each variable of type “C an element of the
universe of T in M. If @ is an assignment to variables
for Y|, o« 1s a varlable of type T and x 1s an element of
the universe of Tin M, then d_g is that assignment to vari-
ables which 1s exactly like (& except possibly for &, to
which 1t assigns Xx.

When YYIGMO, A 1s an assignment to variables for N,
end ocis a wfe of y, then the value of o in M, & with

respect to the intensional interpretation of £ : (Val,)nd‘(oa)
is glven by the following.

(1) If ocis an atomic wfe of o(w other than a varilable,
then Valypq(o) = ValI';yZ{w(or).

(2) If ocis a variable of ;Cw, then Val ma(oz) = ¢ ().

(3) 1r y(, O seees0), BTE wfe's of é(w of types
<Z‘i,...,2“r, 7> Z’l,...,’q respectively, then
Valy, o (g 0 Teg) = Valog () (Valyglog)see,
Valmd_‘(o:r)).

(4) If < 1is a variable of fw of type ¢, and ¢ is a wfe
of JQ) of type t, then Valma_(‘v/oc @) = T if for all

x¢ u-nL('C). Val ma_?(ﬁ) = T; otherwise Valm(v’o:ﬁ) -
F

148




149

(5) If «is a varlable of Xy of type T, and @ 18 a wfe
of a(w of type t, then Val'ma_(boc @) = the unique
x€ (L, (T) such that Val mag(g) = T, 1f there 1s such
a unique X; otherwise Valma_(boc.ﬁ) = Val-mdthe dis-
tinguished constant of type 7).
It follows easily that the value of a wfe is 1n the

appropriate universe and that the values of the wfe!s of "Km

remain as they were.

32, Senses and Quasl-Senses

Just as we can only speak of closed wfe's as properly
having denotations, we can only speak of closed wfe's as
properly having senses. But on analogy to quasl-denotations
we can assign quasi-senses to wfe's which contaln free vari-
ables, Here we must relativize to an assignment of senses
to variables., We need not introduce any new functlons here
since we can again make use of our assignments (of denota-
tions) to variables. Let (. be an assignment to variables,
then we may think of A as assligning senses to varlables in
the following way. If o is the mt—r-’- variable of type T,
andP is the mt’-}-1 variable of type Mf‘; then (L. assigns as
sense to o, the concept (( /B).‘

The matter can be put more easily if we introduce one
of the clause in the definition of the bar function for Jy).
If ocis the M variable of type T, then & is the ‘mt211 vari-
able of type % Now let ﬁ. be any assignment to varisbles
and 7 be any model in M, Then the reduction of &to n
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(dy) is that function on varisbles which asslgns to each
variable o« (L (%) (')2). Note that &;l is an assignment (of
denotations) to variables for 7). The (quasi)-sense of a
variable « relative to an assignment & will be that func-
tion which assigns to each ')’LGMO, Cz.h(d-). Following this
pattern, we can introduce the relativized notlon of sense
(or quasi-sense) as follows. If o.is a wfe of J\au) of sim-
ple type, and d_ is an asslgnment to varlables, then the
sense of o relative to & (Sensea‘(oc)) 1s that function on

M_, which assigns to each ')’ZGM ) Vaan (o), 1If 7( 1s a
wle of wa of complex type, then )Z must be an atomic wfe
of ‘f)’m. Hence Y( cannot contain any free varlables, and
the sense of Y( can be as it was for Wm‘

If o« 1s a closed wfe of ’(6)’ its value in a model is
unaffected by the cholce of asslignment and similarly 1its
quasi-sense 1s unaffected by the choice of assignment.

Thus for such wfe's we will sometimes speak simply of their
sense (rather than quasi-sense). The above definitions im-

ply that the senses of all wfe's of ﬁw remain as they were,

33. The Bar Function in '(’OJ
We now extend the definition of the bar function to
cover all wfe's of fw. The possibility of defining Y« @
and ([ ocf without introducing two whole hierarchies of
variable binding operators (namely, the Jtﬂ analogue to
The Universal Quantifier, and the Jt—}-‘- analogue to The De-
scription Operator, for each j) very greatly simplifies the
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structure of 3(@ . 79 A few fundamental theorems are stated

without proof.
The following deflines the analogue to a wfe ocof d{;‘u

(a).
(1) If o 1is an atomic wfe of 7‘{@, o« remains as before,
(2) If « is the mMm® variable of f&) of type T, then « 18
the mt-r-l- variable of a‘(w of type ;E
(3) 1Ir Qhoclh...ﬂocr are wfe's of f:w of types
<’C’1, co s T G0 Ciseney ’qﬂ respectively, then
m is 71"31_["‘. . ."Er.
(4) If o 1s a variable of p(a), and @ is a wfe of ofm of
type t, then
Vad 1s U (VaN(B,2. &
V¥ (VaN (528 DN(2, By)) )
where J3, and B"i are respectively the first and second

varlables of type t, which are not free in ¢ and which

1
are different from o (1f o happens to be of type tl).
(5) 1If o is a variable of,f;‘_) of type T, and ¢ 1is a wfe

of Iw of type t, then
ToP is
UBN(VE = =B IVIVIBVAF =X = BII& (3 =) )

wherep 1s the first variable of type T which 1is not

free in ¢ and which is different from «, and ¥ 1s the

distinguished constant of type T .

It 18 beyond the scope of this abstract to glve a de-
talled proof of the adequacy of clauses (4) and (5) above,.
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but some insight into the ldea 1involved may be galned from
the following remarks. The argument, of course, is by in-
duction., The right hand side of (4) may be read as follows:
"the proposition which is first, true only 1in models for
which a denotes a true proposition under every assignment
to o, and second, the strongest propositlion satisfying the
first condition". Also, from the inductive hypothesis, it
can be shown that the wfe V'a.g is true 1n'7n if and only
if for all assignments of a concept of the appropriate kind
to a, @ denotes a proposition which 1s true in 1]. The
right hand side of (5) is formed by taking the wfe

(L g =}3) and eliminating the description., This results
in an equivalant wfe |'. Hence, (JIE'NF (the right hand
side of (5)) 1s equivalent to bFN(b « @ =R), which by
the indilviduating principle for intensilons 1is equivalent to
(_,ﬁ (Cx@ ===]§'), which i1s equivalent to | oc@. A more

systematiec development leads to the following fundamental

theorem on the adequacy of .10 oO°

T109, If & is a wfe of fé)’ 771€M°, and (I 1s an assignment
to variables for M, then Val-mQ(E) Sensea(oc).

Note also that although fo is closed under the bar
function, that 1is, every wfe ofﬁa) has an analogue in ,TZJ;
X, does not satisfy the condition of theorem 67 with re-
spect to “f(w. In fact, not only does fw contain wfe's of
type % whlch do not have the form &, it even contains wfe's

of type T which are not equivalent to any wfe of the form &,
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If we recall that o is a standard name of the concept ex-
pressed by o, we may call the wfe's alluded to above contin-

gent names of concepts. For example, let P be Pred(o,o)

and let ?ﬁ be a varlable of type tl. Then

Lo, (P& (o, ==(F3F)) Jv(vP& (p, ==#TF5F))) ) denotes the
necessary proposition if P is true, and the impossible prop-
osltion 1f P 1s false. If we call the wfe 1n the example

" l”’ we see that N¢1 is equivalent to P, Hence, in con-
trast to theorem 93 for 7%3, nelther Ng; nor ~ Ng, 1s val-
1d. The availlability of such wfe's as ¢i in JQO allows us
to now treat informal arguments closely related to that

given in section 8 1in connection with the comparison of

direct and indirect discourse treatments of obliquity.

34, The Incompleteness of JQ)

The valld wfe's of JQ) under the intensional inter-
pretation do not form a recursively enumerable set. Thus,
according to the usual notions of axlomatization, they are
not axiomatlzable. The proof of non-axiomatizabllity 1s
simple. If ¢ is a sentence of the first order predicate
calculus (or, more exactly, the sublanguage of JQ,, Z(O)
and ¢ 1s not valid, then ~#NJ¥ is valid under the intensional
interpretation of JQJ (see theorem 114 (8) below). There-
fore a complete axiomatization would allow us to enumerate
both the validities and invalidities of first order logic,

thereby providing a decision procedure contrary to Church's

theorem.
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35. Some Valld Formulas of JZJ

All the usual loglcal principles of the first order
predicate calculus with ldentity and descriptions are avail-
able in £, subject only to the restriction that the formu-
las in question be well formed according to our type rules.
Leibniz' Law (in fact, Frege's Law), existential generaliza-
tion, universal instantiation (sometimes called "specifica-
tion"), are all valild irrespective of the occurrence or
placement of modal signs. In addition, if ¢ 1is a valid
formula of Ia, so are N@ and V @. Thus modal generall-
zation and universal generallization are both validity pre-
serving inference rules. Modus ponens, of course, remains
a truth preserving inference rule. For those who treat
extenslonality as a property of theories which obey Frege's
Law (in 1ts many forms), we can show that fw, under the
intensional interpretation, is fully "extensional",

Corresponding to the set of Delta Axioms of 7&3’ we
now state two separate schemes. The compllicatlion is due to
the fact that a wfe may contain free variables, If < is a
variable, o 18 simply another variable. No special require-
ment 1s placed upon assignments to varlables which would
make A(w,a) valid in such cases, Thus, the counterpart to
the Delta Axloms requires an additional hypothesis. As be-
fore, we will use the symbol " ,m " to indicate validity
under the intensional interpretation of Z..

T110. If o )3 are wfe's of f w of the same simple type, then
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(1) 1if the free variables of ocare & s-+.,dn, then

= (AF08) 8 R A (G S0 D (A BI=(a =—B))

2

(2) if o 1s closed, then i-?: (A(H,ﬁ):—‘:‘:(d snz [3) )
The loss of theorem 67 requlres separate statement of the
principles that (1) Delta(%-) denotes a function, (2) there
are no empty concepts, and (3) everything falls under at

least one concept. 8o

T™11. If }3,)“ are variables of a{w of type T, and a 1s a
Ao
varlable of wa of type T, then

(1) ;ﬁ:((mo&.p)& A (@, ) D(p ==1))

@) == Voo 3 pA(a, B)
(3) = VpIq Al )
290
The principle of individuation for concepts can be
expressed in fw in the same form as in ’/‘fw.

T112, If of p are variables of afw of the same type, then
7 (N@==P) =@ == )
In connection with the preceding theorem note that ('53—-'-—-7)
is simply (o s )3'), and that the whole wfe can be unl-
versally generalized with respect to the variables & B.

As indicated in footnote 76, Nec could be introduced
in fw by an axliom of definitional form. This fact 1s veri-
fied in the following theorem.

T11l3. lLet 'pl be the first variable of type t,, and let P be

Pred(o,0 th = w—
(0,0), then s (Ney=(R (F5F)) )
Of the six kinds of modal axioms of ‘ﬁ(w, only the first can
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be generallzed to pra) without adding some restrictive hy-

pothesls (for example, that the wfe's are closed),

7114, If ﬂ,"P are wfe's of wa of type t, then

(1) g (n(F2Y) 2 (Ng>NY))

(2) 1f ¢ 1s closed, then{=f?= (Ng2 )

(3) if the free variables of ﬁ are 51""‘£n’ then
7= (8B4 Lk AG8,)0(829))

() \=7===(N7:>Tr 7

(5) 4if ¢ is closed, then faT(N}X:; NNV)

(6) 1if ¢ 1s closed, then ]ﬁ@u(A/Nﬁ.DN_E)

(7) 4if & 1s closed, and ¥ 1s an instance @ obtained by

proper substltution on predicates and operation sym-

bols of ¥ , then = (NF2NP)

AN}

(8) if & 1s closed, and not E-?-ﬁ, then ’I'ETB NNZ.
F AT W

Finally, we come to some princlples which combine mo-
dality with quantification. Theorem 115 asserts the validi-
ty of some principles whose indirect discourse counterparts

have frequently been assumed by modal logiclans,

T115, If & is a wfe of £w of type t, and o 1s a variable
of AL then
(1) [zm= (Yo =NV P)
@) fr== (@R PoNTEP)
The following theorem asserts the validity of a prin-
c¢iple to which, it seems, no previous modal logician has

glven assent. 81
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T116. If & is a wfe of L5 of type t, and o 1s a variable
of ;\aw , then [m(NmDB o N)

The proof of theorem 116 goes roughly as follows, Assume
that N3 @ 1s true, then Joc @ 1s true in every model.
Hence, for each model Il there is some entity 7, which when
taken as the value of the variable o makes @ true in 7?.
Let £ be thet function on M_ which assigns to each nGMO,
7206 Note that £ 1s a concept; in fact, f is in the uni-
verse of the type of o, But now if f is taken as the value
of o, @ will denote the necessary proposition; hence NF
will be true, and therefore 3 @ N is true.

Let us now look at the kind of argument that might be
given for rejecting the principle of theorem 116. One
might argue that although in every model 7] there is some-
thing which when taken as the value of « makes @ true in n,
that thing might vary from model to model. Therefore it
might still be the case that no single thing would be such
that in every model 1t had the property expressed by {.
When put in this way the presupposition of the argument
comes clearly to light. The variable o is to range only
over concepts which plck out the same thing in each model,
Thus the universes of concepts are to contailn only essences.

This 1s essentialism.




NOTES

We will use the followlng expressions in speaking
about functions. Let f be a function, then the set of
entitles to which f 1s applicable 1s called the domailn
of £, the set of values obtalned by applylng f to an
element of 1ts domaln is called the range of f, If f
1s a two-place function which 1s applicable to any
palr of entitles <Z,y> when =z 1s an element of A and
¥ 1s an element of B, then A 1s called the first do-
main of f and B is called the second domain of f.
Functlons of more than two places are treated simi-
larly., Alternatively, we may use the notation "(axB"
for the set of all couples <zZ,y> where z 1s an element
of A and y 1s an element of B, and say of a two-place
function whose first domain is A and whose second do-
main is B that i1ts domain is (simply) (AxB., If f is any
function whose domain is A and whose range is included
in C (that 1s, every element of the range of f 1is an
element of C although C may not coincide with the
range of f), we sometimes say that £ 1s a function
from A into C. Thus, if f i1s that formation rule

which assigns to every pair of sentences their con-
Junctlon, and A is the set of all sentences, then we
would say that f i1s a function from (AxA) into A, A
function is sald to be 1-1 if it always aseigns dis-

tinct elements of its range to distinct elements of
its domain, |

The term "construction" is taken from the abstract
Curry [1].

158
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Church [7]), p. 32.

In general, if we identify a type with the set of

wfe's having that type, E, T and A are determined by

F alone as follows: E = the union of the domalns of
the elements of F, T(od = the domain of any element of
F which has o« in 1ts domain, A = E‘u’the union of the
ranges of elements of F. The only requlrement seems
to be that every wfe occur as a part of some other wfe,

In particular, for certain metamathematical purposes
and In the field of pragmatics, 1t 1s often natural to
impose additlonal recursivity conditions, for example,
that there be an effective way of determining the type
of each wfe,

We adopt the practice of using "part" for elements
with respect to the structure with which we are pri-
marlly concerned, and "plece" for elements with
respect to other possible structures, Hence, what 1s
a part from one polnt of view is merely a piece from
another. Those pleces of expressions which are
semantical elements, we call parts and we lmagine the

formation rules of a language to be constructed so as
to reflect these ideas., Thus expressions which are
thought of as syncategeramatic would not occur as
wfe's, hence not as a part of any wfe though of course
they may be pleces of wfe's,

Note that we can define the relevant substitution
notion as follows., Let C be a construction of B.
Then S (which we call the structure of C) is to be a
sequence of the game length as C and such that 1if cn
is atomilc, Sn = n; if cm is the result of applying a
formation rule £ to <Chprpes0sCp 25 Sn = {f, ml,..,md>
(our earlier requiremen%s assure that S is unique).

§ 18 now said to be the result of substituting one or
more occurrences of J’ for o in J, just in case & can




9.

10,

be obtalined as the last element of some sequence D
where: D has the same length as C; Af Sn = n and
C, # & D, =8,; if § = <f,ml,...,mj> and C, #£ o,
D, = f(Dml,...,Dm%); if 8§, =, D = aor D =¥
for some k such that ¢ = o, D = ¥,

This notion of substitutlon, given in terms of
the structure of a wfe, has certain advantages over
more familiar forms in that 1t automatically takes
account of 1diosyncracies in the deslign of the wfe's.
For example, a formation rule f which when applied
to a two-place predicate and two terms ylelds the
corresponding formula may have the feature that
fO'F' 'x' 'y') = 'F(xy)' and £('=' 'x' 'y!) = '(x = y)\
It 1s clear that the most useful substitution notion
would have the substitutlon of 'F! for '=!' in
'(x = y)' be 'F(xy)' (that 1s, substitutlon of 'F!
for '=! in f(lFl’ %!, |y|) is f(lFl, Ix?, |y|))
rather than !'(xFy)'.

Carnap {4], pp. 121, 122.

The best expositlions known to us of Frege's semantical
ideas are to be found in Carnap (4], especlally pp.
118-133, and Church [T], especially pp. 3-31. In the
latter, the inchangeability principles are mentioned
on pp. 8, 9. The present discusslon involves a con-
slderable generalization and development of what is
explicitly found in Frege. In addition, we deviate
from Frege in a few points, especlally with regard to
his notlons of an unsaturated (ungsittigt) expression
and a function.

Our general notions of a language and a Fregean
semantical system can be given so as to apply to
languages containing variables and arbitrary variable
binding operators. However, certaln additional
Bubtleties are thereby required so that it seems best
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for purposes of the present informal discussion to
think of our languages as not contalning variables.

The first precise development of semantics occurs in
Tarskl [1] where the notion of satisfaction 1s intro-
duced and shown to be a fundamental concept of
semantlcs,

T™his point 1s due to Frege [3].

It should be noted that even the restriction suggested
in footnote 10, that we exclude variables from the
languages presently under consideratlon, does not
prohiblt us from introduclng a constant desc, such
that if oC,B are wfe of the type name and ¢ a wfe of
the type sentence, then g(oc, 3, #) = desc”'(’b?ﬁﬁﬁﬂ')k
g(oc, B, #) 1is a wfe of the type name, and

rden(g(oc, Bs #)) = the unique x such that elther ]

is true and x = rden (a) or & is false and

x = rden (p). Expressions of this form will play an
important role in our constructions. Many expresslons
of English might plauslibly be clalmed to have this
form., For example, statements about the future where
there are only two poassibillities (!'The next president'’
uttered after the nominations), statements of the form

the other ooty etc.

Note that Cl still allows other possibilities. For
example, we may divide the sentences into four
equivalence classes: true sentences with names as
parts (T+), true sentences without names as parts
(T"), false sentences with names as parts (F'), false
sentences without names as parts (F ). Corresponding
to such formation rules as cond (cond(@,¥) = "(F2W¥)")
we would then take the semantical operation with the

- truth table
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R(g) R(Y) cond* (R(Z)R(Y))
T+ T+ T+
ol T Tt
T+ F+ F+
T F- Fr
7 Tt Tt
T T T
T FF Fh
T F F~
Ft ol g
Fh 7" T
FH F Tt
Ft F~ Tt
F~ Tt T
P T T
F~ F Tt
F~ Ft T

The argument glven above that sentences of differing
truth value can not have the same denotation (in
languages of approprilate complexity) uses a construc-
tion from Church [1]. That the language contains no
oblique contexts is implliclitly assumed therein,

Prege seems to have at times belleved (see, for ex-
ample, Frege [1]) that in an expression like 'Fa' the
denotation of 'F' must be something incomplete or "un-
saturated" which when placed in proximity with the
object denoted by 'a'! immediately absorbs it and forms
a new object (here, a truth value). One of his main
arguments (given at the end of Frege [2]) was that if
'F' in 'Fa' simply denoted an object (for example, a
set of ordered couples) then there 1s nothing to hold
the compound expression 'Fa' together, that 1s, 'Fa!

would not be a gentence with a single denotatlon but

rather Just a string of expressions each with its own
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denotation like 'John, Fred, Bob!. A gimilar argument
is given in Church [7], pp. 32-35, against the pos-
sibility of eliminating all connectives (but compare
his footnotes 87 and 90. Here we see again the diffi-
cultles involved in attempting a semantical analysis
simply with reference to the expresslions themselves
and ignoring what we have taken as the essentlal
ingredient in a language, namely the structure on the
expressions. If the compound expression 'Fa' 1s
simply thought of as a token obtalned by pushing the
token 'F' next to the token 'a', the unity of 'Fa'! 1s
lost. Similarly, once one reallzes that the expres-
slon 'Fa' is a new abstract object, related to the
abstract objects 'F! and 'a' by certain formation
operatlions,there seems no longer any reason for the
denotatlion of 'Fa'! to be obtalined simply by pushing
the denotations of 'F! and 'a' together. Rather, we
would expect the denotation of 'Fa'! to be a new
objJect related to the denotations of 'F! and 'a' by
certain regular semantical operations.

Interestingly enough, for languages of appropriate
complexity an extension along the latter lines would
again give us the relation of denotatlion. However,
this symmetry does not hold in general for extensions
in accord with Cl and C2.

We gave Cl and C2 in application to the extension to
sentences of the particular semantical relation
restricted-denotation. However, the general form of
our criteria for an arbitrary relation being extended
to an arbitrary type of wfe 1is clear.

Church, although he apparently conceives of the matter
much as we do, adopts the practice of speaking of
sentences as names. He writes, "An important advantage
of regarding sentences as names is that all the ideas
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and explanations of §§01-03 can then be taken over at
once and appllied to sentences, and related matters,

as a speclal case. Else we should have to develop
independently a theory of the meaning of sentences;
and in the course of this, 1t seems, the developments
of these three sections would be s0 closely paralleled
that in the end the identificatlon of sentences as a
kind of names (though not demonstrated) would be very

forcefully suggested as a means of simplifylng and

unifying the theory. In particular we shall require

variables for which sentences may be substituted,
forms which become sentences upon replacing their free
variables by appropriate constants, and assoclated
functlions of such forms--~things which, on the theory
of sentences as names, f1t naturally into thelr proper
place in the scheme set forth in §§02-03. (Church
[7], p. 24; underlining added.) It 1s our feeling
that such a practice, even after the underlined remark,
tends to provide an already unfamiliar theory with an
unnecessarlly exotlc flavor which 1s not likely to
facllitate its acceptance,

On Frege's terminology and its English forms see
Carnap [4], p. 118, footnote 21. Also, in thils con-
nection, see Church [4], p. 47, lines 11-14, on the
rendering of 'Gedanke' as 'proposition! rather than
the misleading 'thought' adopted in Frege [4].

Thus obliquity is indicated by a failure of extension-
ality.

For an early source see Quine [3]. For one of the
most recent and richest sources see Quine [6],

For example, the attitude of Quine [2] (1947) “"When
modal logic is extended to include quantification
theory, . . . serious obstacles to interpretation are
encountered” 1s echoed in Quine [7) (1961) "confusion
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of use and mention . ., . seems to be a sustalning

force [for modal loglcl, engendering an i1llusion of
understanding."

It is often sald that in the development of mathe-
matlcs no non-extensional contexts arise. On the
contrary, the fundamentally lmportant lncompleteness
result of Godel [2] turns on his discovery of a pre-
cise treatment of such contexts as “the sentence S
says that @7, Numerous "philosophical interpretations’
of hils result have foundered on the non-extensionality
of this context and the subtlety of Godel's (exten-
slonal) treatment.

Carnap [4#], p. 141. Here as in other formulations

(for example, Carnap [1], §67) there is a proviso to

the effect that only non-extensional systems useful

for scilentific purposes are included. For the view

that there are no such systems see Quine [6],

especlally Q45.

This 1insistence may take one of the following forms:

(a) We may insist that since planets have no
syllables, (1) and (2) both denote zero.

(b) We may insist that although (1) and (2) are gram-
matlcally correct, as a matter of fact, they have
no denotation. (Thus, assimilating (1) and (2)
to: "the number of feathers in the wings of
Pegasus",) |

(c¢) We may insist that (1) and (2) are grammatically
i11l-formed, and hence meaningless.

Perhaps Frege waz led to this position by his strong
insistence on Frege's principle. Indeed, something
close to that requirement seems almost to be a pre-
condition of any semantical treatment that we would
call an "analysis".
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Note that in view of the possibllity of ambiguities,
we must speclfy more exactly our use of such terms as
"oblique'", "extensional." In general we use these
terms with respect to the ordinary denotation of ex-
presslons. Thus we shall continue to speak of (1)
and (2) as indicating that the context 1is oblique.

It 1s interesting to note that in Carnap [1] (1934,
especlally §§63-T1) we already find a falrly extensive
analysis of oblique contexts in terms of ambigulty,
here consildering the specific case of an expression
denoting itself. The possibllity of analyzing all
oblique contexts in this way ls made the basls for the
thesls of extensionality. There follows an illuminat-
Ing discussion of indirect and direct discourse
(referred to by Carnap as the "quasi-syntactical" and
"syntactical" methods) with speclal reference to the
logic of modalities.

Another method of treating oblique contexts 1s Just to
eliminate them as contexts (as in the parenthetical
remark about 'Hesperus' not being a part of 'Hes-
perusl'). We may preserve the symbolic form, but
avold the difficulties by restricting the part-whole
relation. However, since such a method completely
eliminates the plece from the field of any transforma-
tion rules, it does not in general provide an adequate

treatment.

This argument is due essentially to Church [6], foot-
note 23, But there, as 1n commentaries such as
Myhill (1], p. 79, it is not c¢learly emphasized that
direct versus indirect discourse i1s at the heart of
the matter,

The numerals enclosed in parentheses are introduced as
abbreviations to refer to the expressions they enumer-
ate, Thus, (9) = 'John's favorite sentence is
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necessary'. The displayed expressions function
autonomously.

See, for example, Quine [7], p. 329, in which Quine
admits (and corrects) the error, but incorrectly at-
tributes 1t to Church.

For an example of the latter kind see the assertion

in Smullyan [1], p. 31, that the truth of "There 1is

an x, such that x numbers the planets and it 1s neces-
sary that x 1s greater than 6," 1s simply a matter

of "brute fact".

For example, in Church [5]. The distinction between
direct and indirect discourse seems to have been 1lit-
tle noticed, the partlsans of each taking their

method for granted.

Such systems were first developed in Carnap (3], [4]
and Barcan [1].

The terms "complex" and "compound" are not used inter-
changeably. Well formed expressions are either atomic
(that 1s, without parts) or compound (that 1s, having
parts). Types are either simple or complex. Compound
wlfe's are constructed by combining a wfe of complex
type with one or more wfe'!s of simple type., The wfe's
of complex type lnclude p-place predicates and opera-
tion symbols where p>0, and sententlal connectives,
All wfe's of complex type will be atomic.

Thus, the simple types are just numbers, But the
notation '1' and 't! seems somehow less confusing
than the use of numerals.

We will later introduce further atomic'wfe's, for
example, Opsymbj(m,p) for arbitrary natural numbers j.
There, as here, we tacitly make the natural assump-
tions about distinctness of atomic wfe's,
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The identity sign for truth values 1s simply the
material biconditional, that 1s,the familiar two-
place sentential connective often wrltten '=='. It
is clearly natural to have an 1identity predicate for
each universe of entities, Our method of asslgning a
type to each constant (including logical signs) re-
quires that we use distinct identity signs for
distinct universes.

Thus we exclude such expressions as desc of note 13,
which would have {ype <1,i,t,L>.

We write 'T!' for 'Truth' and 'F' for 'Falsehood!'.

Another method would assign the type 1 also to the
anelogues of wfe's of types 1 apnd t, and Introduce
two one-place predicates, say "T 1t ang “Ttl", applic-
able to all wfe's of type 1, which would mark the
difference otherwise indicated by the types 11 and

tl. In this way we would obtain a first order theory.
(Such reductions of many sorted theories to first
order theories have been discussed in Montague (1],
Quine [5), and Wang [1]). However, in the present
case, "T In anda "7 would have to be treated as
logical signs, and thus we could not be assured of one
of the main benefits of such formalization, the
completeness theorem of Godel (1] (at least not under
our intended interpretations). Also, since the type
distinctions in 'H& reflect certain intuitive onto-
logical distinctions in the subject matter, the form
of language in which wfe's of types 1, 11, and tl are
distinguished provides a useful device for first
investigating the foundations of intensional logic.

The same purpose could be aschieved by having i denote
ne But this would involve introducing semantical
operations of other forms than the familiar application -
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of function to argument., It also violates our simple
understanding of wfe's of complex type as denoting
functions, or alternatively 1t leads us to lntroduce
M as having a type distinct from but parallel to the
type <’1,...,Z;,'Za> and to introduce new formation
rules to accommodate such wfe's,

Tarski [3], p. 156.

Church suggests how we may partially express the prin-
ciple in the language 7{1 Let «cand B be wfe's of 1{0
of the same simple type 7 (that 1s, both of type 1 or
both of type t). Let us write '(oC == 3)' for
'Id(’Z)AaAB'. To say that cand B are logically
equlvalent 1s to say that (< == B) 1s valid. This 1is
to say that the proposition expressed by (OL-=)3),
namely the denotation of {o== B) under the intension-
al interpretation of 'H&, is the necessary proposition.
In other words, writing 'Nﬂi' for Necﬂﬂi', N{ac= 3}
1s true. We can easlly express the fact that o:.andﬁ
have the same sense, by (& == F). Hence, writing

"(f ==W)' for 'Id(t)’\ﬂ’l;U', we can express the prin-
ciple of individuatilon by:

(Nl =PJ] = (x = f))

In view of our definition of the bar function,

Ta = .;'ﬁ‘)' = 14,(T o B. Therefore the conditional from

right to left 1s merely an instance of Leibniz' Law
plus the principle: N{oc== o). Hence, writing
"(Z2Y)! foriCond™@g Y, the essence of our principle
of individuation 1is:

(M= BT > (&= F))
An interesting discussion Qf this point may be found
in Carmap [6], §9, VIII.

The method would be to narrow the relation of logical
equivalence by admitting "logically impossible" models,
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that 1s, models which, for example, assign variant
truth functions to Neg so that @ and Neg Neg ¥ no
longer have the same value 1in every model, and hence
are no longer logically equilvalent,

If we were to enrich our language by the addiltlon of
variables and quantiflers, we could express the fact
that o denotes an empty concept as follows:

N3 xA(oe,x)

where we write 'w#g!' for 'Negnﬂ' and 'A(&,ﬁ)’ for
Delta (11)’}{:8.

This possibility immedlately suggests a treat-
ment of "exlstence". Namely, to translate a sentence
of the form, "Pegasus exists." by (3x)A ("Pegasus’ x),
and "Pegasus doesn't exist." by ~ (3x)A("Pegasus” x).
Thus, we conslder the context Cac exists ! as oblique,
"Pegasus" might then be considered to be denotation-
less, and simllarly for any compound expressions of
which 1t (though not, of course, "Pegasus') 1s a part.
Hence 1f « 1s a name, the sentence (2x)(oc== x) will
be elther loglcally true or denotatlionless according
as (A3x)A(xx) 1s true or false. Such a treatment
makes "existence" a predicate, but of concepts rather
than individuals.,

According to alternative (1:5), if o 18 any name of
type 1 and x 18 a variable of the same type

(3) x (x = o)

is valid. But if y, 1s a variable of type 1y

(4) Vy,3xA(yy,x)

1s not valid, Note that according to proposal (1),
(3) may fail for names of type 1i; and according to

proposal (2), (4) 1s valid.

In Carnap [4] (1947), p. 181.
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Carnap defines a proposition as a set of states of
affalrs, Our notion may be thought of as the charac-
teristic function of a proposition in his sense. The
present notlion fits more immedlately into a unified
treatment.

Another alm, secured by adopting the method of direct
discourse, is that the "intensional" obJect languages
should be completely extensional (in the sense of
section 6).

In Tarski [3] (1950) the notions of arithmetical class
and arithmetical function are introduced. These no-
tions, which correspond to propositions and proper-
ties which are expressible in first-order languages,
have proved quite frultful in the 1investigation of
mathematical systems,

Other analyses are possible. For example, we might
ldentify states of affalrs with ordered couples con-
sisting of a number and a model. Thls would avoid the
intuitive obJection to the identification of states

of affairs with models, namely{ that intultively
distinct states might determine the same model of A’o.
Thus, a proposition which is not expressible in ﬁg
might hold in one state and fall in another, both of
vwhich determine the same model of % . Actually, our
method is at least partially lmmune to this obJection.
For suppose, what seems reasonable, that in accordance
with Leibniz' principle of identity of indiscernibles
we identify "completely isomorphic" states (in some
intuitive sense of "completely isomorphic" adequate

to Leibniz' principle). Then each state of affairs de-
termines nct a unique model M of 7{0 but rather an iso-
morphism class M of such models. Hence, since we do

‘not identify isomorphic models, our method can be

thought of as representing each state of affairs by a
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unique element of the lsomorphlsm class which 1t
determines., Accordingly, we wlll admit propositions
(and other intensional entities) which have different
values for isomorphic models.

Church [6], p. 22,

In partlcular, there has recently appeared some inter-
esting work interpreting necesslity in terms of rela-
tions between models. These relations determine whilch
models are "possible" relative to others, The first
work along these lines seems to have been reported by
Montague 1n a talk delivered to the Annual Spring
Conference in Philosophy at the University of Call-
fornia, los Angeles, in 1955 (later published as
Montague {2]). More recently, Hintlkka [1] and
Kripke [1] have reported interesting results relating
different relations between models to the famillar
modal calcull S1-S5 of C., I. Lewls,

See, for example, Carnap [4].

This method of assuring that notions to be introduced
determine legltimate set theoretical entities was used
in Tarskl [3], p. T06, footnote 3.

The possibllity should also be considered of forming
a language closer to ordinary metalanguages by combin-
ing the features of both interpretations of K. We
simply dupllcate the new wfe'!s which are added to 1ﬂ3
and assign the syntactical interpretation to onc set
of new expressions and the intensional interpretation
to the other, Suppose we assign the types 1?. ti,
etc., to wfe's receiving the syntactical interpreta-
tion, and the types 1§, ti, etc., to wlfe's receiving
the intensional interpretation. We could then intro-
duce an operation symbol S of type <t§,t§> where the

wfe (S(o) == B) would be true just in case 3 denoted
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the sense of the sentence denoted by oc. Languages
(or more properly speaking, semantlcal syctems) which
contaln certain wfe's with a syntactlical interpreta-
tion and other wfe'!s with an intensional interpreta-
tion, we call dual languages. Such languages seem
worthy of further study. However, thelr structure
becomes rather lntricate as we move to languages
capable of treating doubly, and triply obllque con-
texts.

The exact use of corners (f,7) here may be made clear
by an example. If B.= 'John', and o= f = 'John, ',
then: 'the name « denotes the 1nd1v1dual}37 = 'the
name John, denotes the individual John' and "the indi-
vidual concept a 1s a concept of the individual 7=
'the individual concept John1 18 a concept of the
individual John'.

The two interpretations of Tr(¢¥) are of interest with
respect to the controversy over whether truth is a
property of sentences or propositions. The precise
definition of truth as a property of sentences (for
sentences of a wide class of languages) was first
given in Tarski [1] (1936). We are unaware of any
precise definition of truth as a property of proposi-
tions before the present work., Most of the polemics
in this controversy seem to have come from the de-
fenders of truth as a property of propositions, per-
haps in reaction to the success of Tarski's theory
(see, for example, Kneale and Kneale [1], Strawson
[1], and many others). 'The importance imputed to
the "proper" solution of this "controversy" seems to
us surprising in view of the essential isomorphism
between the two notions., For example, all sentences
of the form (Tr(ff) o @) are valid under both inter-
pretations., Further comparisons of the two notions

173
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of truth occur in Chapter 3.

The exceptions are loglcally determinate sentences
and standard names (in the sense introduced in section

14.3).

Church has used "determines" in this way in Church
(7], p. 6; he also uses "characterizes" in a similar
way. The temptation to simply use "denotation" for
this relation, also, is quite strong; and Church [3],
[6] does use the suggestive expression "A' for this
relation. Carnap also sometimes uses the same expres-
sion for both denotatlon and Determination. 1In

Carnap {6], section 9, III he writes, "the properties
Pand Q . . . have the same extension" although his
main use of "extension" 1s in the context "extension
of a designator" rather than "extenslon of a property".

This, 1in fact, was the sense in which "denotation"
was originally used in section 4.

Church [6], footnote 13.
See, for example, Tarski [2], section 9.

Note the difference between the identity sign "="
(read "short equals") which 1s used to define "=="
(read "long equals"). The former is simply a short-
hand in English for "is identical with"; the latter
18 a special sign of our theory used to denote a cer-
tain formation rule of our constructed languages.

When £ 1s a function and A is a set included in 1its
domain, we write "f4A" (read "f restricted to A")

for that function g whose domain 1s A and which 1is such
that for x¢ A, g(x) = r(x).

When g(n) 1s a set for each n such that Fn, the union
of g(n) for n such that P(n) ( P)g(n)) is the least

n
set containing all such g(n). F
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There is an exception, this 1is not true when
<Cyse-sTps > 18 @ complex type of 7{0.

For example, Ackerman [1].

Quine [4].

The validity of the Delta Axloms suggests that we
might have introduced 'A(oc,B)' by definition (as we
did with 'Tr(@)', '(F&V)', etc.), thus eliminating
all the atomic wfe's Delta (T). We could indeed have
taken such a course successfully in 7Vwb but this 1s
due only to the poverty of thls language as expressed
in theorem 67. When we turn to the languagecqu,
which contalns variables of all simple types, wfe's of
the form 15(0155)' where ) and B are variables of
the appropriate types, will not be equivalent to any
Delta-free wfe,

S5 1s the strongest of a number of systems of modal
logic developed in Lewis and Langford [1], from sug-
gestions in Lewis [1].

Not all of the axiom schemes, as glven, are independ-
ent, In fact, all modal axioms of kinds 1l-4 are
derivable from the remaining axiom schemes (which are
independent) using the intensional individuating
axioms, and modal axioms of kinds 2-4 are derivable
from the remaining axiom schemes (which are inde-
pendent) using the syntactical individuating axioms.
The stronger result from the intensional individuating
axioms depends on the fact that those axioms allow one
to prove (Nf = (7 == {P5F)) ), where @ 1s any wfe of
Kw of type t and P is Pred(o,0).

This result shows that under the intensional
Interpretation, 'NJ' could have been introduced by
definition (as were 'Tr(¥)', '(F&V¥)', etc.). 1In
fact, the following general definition (not dependent
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on theorem 33) oould be piven.
Definition If ﬁi is a wfe of type t,, then

uﬁl - (¢1 ~ [F5F)).
Jupst thls method 1o used to introduce necesasity in
Church [6]. But such a course would not provide the

desired propertieos of necessity under the gyntactical
interpretation,

The inference rule of modal generalization has a
slightly different character from that of modun ponens,
Whercas modus ponens 18 truth preserving (that 1im,
whon applied to truc sentencos ito result is alwayn
true), modal goneralization ic only validity preserv=
ing, If it is donirod to avoid inference rules which
arc not truth preserving, an equivalent cystem cun be
obtained by dropping the rule of modal generaliza-~
tion, replacing each axiom @ by the new axiom NP, and
retaining modal axiom (2) (NW2V),

In a talk, "Modal Logic Explored Semantically,"” to
the UCLA Logic Colloquium (1959). A slightly differ-
ent formulation of an equivalent system MPC was given
in Carnap [3)]. Both Carnap and Kalish provided
completeness theorems and decision procedures,

It is interesting to note that in a development of
intensional logic based on the simple theory of types
(ggch as_in Church [6]) with the types KTy oo0 Tps
<G ...‘t}> distinguished, a similar introduction of
the bar function 1is possible, To be specific, if the
language ocontains (as in Church [6]) the single
variable binding operator 'A! plus function symbols

U D (to be applied to lambda axpressions) correspond-
ing to the universal quantifier and desoription
operator, the bar function can be adequately defined
without introdusing new operators fA,', 'Ay', eto.,
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or new loglcal constants U(j), D(J).

The principles of theorem 110 correspond to axloms
11-15 of Church [6]. The principle of theorem 111
(1) corresponds to Church's axiom 17. Church's sys-
tem contains no counterparts to the principles of
theorem 111 (2)(which he explicitly rejects) or
theorem 111 (3)(an oversight?).

We have separated T116 from T11l5, although the prin-
ciple of T116 is simply the converse of T115 (2). 1In
this we follow a tradltion of attending to the latter
and ignoring the former.

With respect to the system S2 of Carnap (4],
the indirect discourse counterpart to the principle
of T115 (2):
(1) (3 xNg=NT - ¢)
is asserted to be valid (p. 186). But it is not not-
ed that when @ contains no modal signs, the lndirect
discourse counterpart to the principle of Tl16:

(2) (N3 < @23 e NY)
is also valld in S2,

It is somewhat surprising that (2) has not at
least receilved some discussion. For 1t 1s virtually
equivalent to the rejectlion of the indirect discourse
principle:

(3) Va VB((o === 3)DN(cC ===B))

where o , ] are any varlables; and the latter prin-
clple has received a good deal of attention.

To argue fully the claim of equivalence would
take us beyond our present scope. But we remark that
the addition of both (2) and (3) to a quantified modal
logic (in indirect discourse) whose other axioms are
simply the normal principles of quantification plus
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the axloms of Lewls'! S5, results in the theorem:
(4) (VY aVB(a=j3) D (P = #)).

We may read (4) as asserting that if it is not neces-
sary that there is exactly one thing (a plausible
assumption), then any sentence is necessary just in
case 1t i1s true. While the consequent of (4) 1is not
an outright contradiction, 1t is equally dilsastrous
for modal logic.
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