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Abstract:		Accelerating	global	climate	change	drives	new	climate	risks.	People	around	the	

world	are	researching,	designing,	and	implementing	strategies	to	manage	these	risks.	

Identifying	and	implementing	sound	climate	risk	management	strategies	poses	nontrivial	

challenges	including:	(i)	linking	the	required	disciplines,	(ii)	identifying	relevant	values	and	

objectives,	(iii)	identifying	and	quantifying	important	uncertainties,	(iv)	resolving	

interactions	between	decision-levers	and	the	system	dynamics,	(v)	quantifying	the	trade-

offs	between	diverse	values	under	deep	and	dynamic	uncertainties,	(vi)	communicating	to	

inform	decisions,	and	(vii)	learning	from	the	decision-making	needs	to	inform	research	

design.		Here	we	review	these	challenges	and	avenues	to	overcome	them.		
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1. Humans	are	Changing	Climate	Risks	

Humans	have	changed	the	Earth’s	climate	(Field	et	al.,	2014).	The	burning	of	fossil	

fuels	has	drastically	increased	the	concentration	of	greenhouse	gases	in	the	Earth’s	

atmosphere	(Matthews	et	al.,	2014).		These	greenhouse	gas	emissions	have	altered	the	

climate	(Alexander	et	al.,	2013;	Sippel	et	al.,	2020),	with	more	changes	locked	in	

(Levermann	et	al.,	2013;	Matthews	and	Weaver,	2010).	Climatic	change	can	increase	

hazards	(Hultman	et	al.,	2010).	In	many	regions,	sea	levels	are	rising	(Slangen	et	al.,	2016),	

storm	surges	and	heat	waves	are	intensifying	(Donat	et	al.,	2013;	Grinsted	et	al.,	2013),	and	

droughts	are	becoming	more	frequent	(Hoerling	et	al.,	2012).		

Natural	and	human	systems	are	exposed	and	vulnerable	to	these	changing	climate	

hazards.	For	example,	people	live	behind	levees	that	can	be	overtopped	when	a	hurricane	

strikes	(Jonkman	et	al.,	2009),	communities	rely	on	ecosystem	services	from	drought-

sensitive	forests	(Lindner	et	al.,	2010),	and	heatwaves	increase	human	mortality	risks	

(Anderson	and	Bell,	2011).		

Risks	occur	through	interactions	between	hazards,	exposures,	and	vulnerabilities	

(see	the	discussion	in	Field	et	al.,	2014).		A	common	definition	of	risk	in	the	climate	change	

literature	is:	“the	potential	for	consequences	where	something	of	value	is	at	stake	and	

where	the	outcome	is	uncertain,	recognizing	the	diversity	of	values.	Risk	is	often	

represented	as	probability	of	occurrence	of	hazardous	events	or	trends	multiplied	by	the	

impacts	if	these	events	or	trends	occur.”	(Oppenheimer	et	al.,	2014).		This	definition	is	

consistent	with	alternatives	such	as	the	“effect	of	uncertainty	on	objectives”	(Lark,	2015)	or	

the	(ii)	“the	combination	of	probability	and	magnitude/severity	of	consequences”		(Society	

for	Risk	Analysis,	2013).		Changes	in	climate	hazards,	exposures,	and	vulnerabilities	change	
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climate	risks	(AghaKouchak	et	al.,	2020;	Hultman	et	al.,	2010).	Climate	risk	management	

analyzes	and	designs	strategies	to	manage	these	risks	(Kunreuther	et	al.,	2013;	Travis	and	

Bates,	2014).			

This	article	reviews	research	to	inform	decisions	on	how	to	manage	changing	

climate	risks.	We	start	with	an	overview	of	approaches	to	manage	climate	risks	(section	2).	

We	then	discuss	why	improving	climate	risk	management	strategies	requires	

understanding	complex	coupled	systems	(section	3).		We	then	turn	our	attention	to	

research	challenges	and	avenues	to	overcoming	them	(section	4)	and	provide	a	summary	in	

the	conclusions	(section	5).				

2.		 Climate	Risk	Can	Be	Managed	Through	Multiple	Levers	

	 The	individual	actions	that	can	be	combined	to	form	potential	strategies	are	often	

referred	to	as	decision	levers	(Lempert	et	al.,	2003). The “lever” terminology draws an 

analogy between a technocratic view of a decision problem and a machine which is 

controlled using a combination of manual inputs. For example, a home-owner facing 

increased flooding risks has several decision levers at their disposal, including purchasing 

flood insurance, flood-proofing or elevating their home, abandoning their home, and 

advocating that their government build risk mitigation structures such as levees. Many of 

these levers can be used by themselves or in combination with others, forming a range of 

strategies that the home-owner might use for managing the flood risk. Climate	risk-

management	levers	generally	fall	into	four	categories:	mitigation,	adaptation,	carbon	

sequestration,	and	solar	radiation	management	(Figure	1).		
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	 Mitigation	consists	mostly	of	reducing	the	emissions	of	greenhouse	gases	into	the	

atmosphere	to	reduce	the	intensity	of	future	climate	change.	Examples	of	mitigation	

policies	include	caps	on	emissions	and	subsidies	for	renewable	or	more-efficient	

technologies.	Mitigation	reduces	many	future	hazards,	though	these	benefits	are	delayed	

due	to	the	inertia	of	the	climate	system	(Ricke	and	Caldeira,	2014;	Tebaldi	and	

Friedlingstein,	2013).	The	potential	climate	benefits	of	mitigation	are	also	subject	to	large	

climate-	and	biogeochemical-system	uncertainties	(Bodman	et	al.,	2013;	Huntingford	et	al.,	

2009).			

Adaptation	involves	strategies	to	reduce	the	negative	impacts	of	committed	or	

anticipated	climatic	changes	by	reducing	the	associated	hazards,	exposures	and/or	

vulnerabilities.	Examples	include	changes	in	forest	management,		land-use	planning,	and	

the	design	of	engineering	infrastructures	(Field	et	al.,	2014).	Here	we	focus	on	the	example	

of	coastal	adaptation	to	changes	in	sea	levels	and	storm	surges	given	the	large	global	

impact	of	increased	flooding	(Hinkel	et	al.,	2014).	In	this	setting,	adaptation	actions	might	

include	changing	land-use	policy	to	reduce	development	and	settlement	in	flood	plains,	

incentivizing	flood	proofing	or	house	elevation,	constructing	seawalls,	or	improving	

resilience,	for	example	by	improving	the	recovery	from	flooding	events	(Schelfaut	et	al.,	

2011).	(We	will	return	to	a	discussion	of	these	levers	in	section	3).	While	adaptation	can	be	

flexible	in	responding	to	local	circumstances	and	stakeholder	needs,	these	measures	can	

require	a	long-term	commitment	to	adaptive	strategies	given	the	climate	and	

socioeconomic	uncertainties	(Haasnoot	et	al.,	2013;	Walker	et	al.,	2013).	

Carbon	sequestration	(or	carbon	dioxide	removal)	aims	to	capture	and	store	carbon	

dioxide	(CO2)	from	the	atmosphere.	This	may	be	done	actively,	through	the	use	of	negative	
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emissions	technologies	(NETs),	or	passively,	through	activities	such	as	re-	or	afforestation	

(Lal,	2008).	Examples	of	proposed	NETs	include	bioenergy	with	carbon	capture	and	

sequestration	(BECCS)	(Fridahl	and	Lehtveer,	2018),	and	direct	air	capture	of	CO2,	or	DAC	

(Chen	and	Tavoni,	2013;	Lackner,	2013).	NETs,	and	in	particular	BECCS,	are	commonly	

used	in	emissions	scenarios	reaching	the	Paris	Agreement	targets	of	limiting	temperature	

anomalies	to	1.5o	or	2oC	from	pre-industrial	(Hilaire	et	al.,	2019).	At	least	one	small-scale	

BECCS	project	has	been	announced	at	a	power	plant	(The	Economist,	2019).	One	downside	

to	BECCS	is	the	potential	upwards	pressure	on	food	prices	due	to	land	competition	

(Muratori	et	al.,	2016).	Carbon	sequestration	as	“intentional	alteration	of	planetary-scale	

processes”	falls	under	the	category	of	geoengineering	(Caldeira	et	al,	2013).	

Geoengineering	also	includes	solar	radiation	management,	discussed	next.		

Solar	radiation	management	levers	include	cloud-seeding	or	aerosol	injections	

(Caldeira	et	al.,	2013).	Solar	radiation	management	strategies	may	reduce	some	hazards	

relatively	quickly	(Moreno-Cruz	and	Keith,	2013),	but	may	create	additional	hazards	due	to	

complex	climate-system	feedbacks	and	can	introduce	additional	trade-offs	(Kravitz	et	al.,	

2018;	Robock,	2020;	Trisos	et	al.,	2018).	While	solar	radiation	management	strategies	have	

yet	to	be	tested	in	large-scale	experiments,	smaller-scale	tests	have	been	planned	(Dykema	

et	al.,	2014).	More	research	is	needed	to	understand	the	implications	of	the	rapid	climate	

changes	associated	with	solar	radiation	management	and	questions	about	shocks	resulting	

from	the	termination	of	these	strategies	(Goes	et	al.,	2011;	Matthews	and	Caldeira,	2007;	

Trisos	et	al.,	2018).	Many	solar	radiation	management	strategies	also	cannot	counteract	

some	of	the	effects	of	greenhouse	gas	emissions,	such	as	ocean	acidification	(Caldeira	and	

Wickett,	2003).		
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Figure	1:	Climate	risk	management	strategies	can	deploy	a	large	number	of	

decision-levers	that	generally	fall	into	four	broad	categories	(arranged	inside	the	

blue	diamond):	adaptation,	mitigation,	carbon	sequestration,	and	solar	radiation	

management.	Each	of	these	categories	intervenes	at	a	different	point	in	the	socio-

environmental	system	(see	the	rounded	boxes	representing	system	components	and	
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the	black	arrows	with	positive	and	negative	couplings).	Strategies	for	managing	

climate	risks	are	confronted	with	deep	and	dynamic	uncertainties	(pale	yellow	field	

behind	system	diagram)	and	must	navigate	complex	trade-offs	between	values	and	

objectives	(green	field	underlying	everything).	The	negative	coupling	from	the	blue	

box	of	risk	management	levers	to	economic	output	approximates	the	direct	costs	

required	to	implement	the	strategies.	This	figure	is	modified	and	expanded	from	

(Caldeira	et	al.,	2013).		

	

3.		 Improving	Climate	Risks	Management	Requires	Understanding	Complex	

Coupled	Systems		

Identifying	sound	strategies	to	manage	climate	risks	requires	understanding	

complex	coupled	systems	(Figure	1).		In	this	section,	we	highlight	three	aspects	of	such	

systems:	(i)	a	large	number	of	potential	levers	that	interact,	(ii)	multiple	stakeholder	

constituencies	with	diverse	values,	and	(iii)	deep	and	dynamic	uncertainties.	All	three	push	

climate	risk	management	into	the	category	of	“wicked	problems”	(Crowley	and	Head,	2017;	

Kwakkel	et	al,	2016,	Moser	et	al.,	2012;	Rittel	and	Webber,	1973),	a	multi-faceted	concept	

that	highlights	the	difficulties	of	comprehensively	formulating	a	problem	and	of	defining	

what	constitutes	a	good	solution.	“Wicked”	problems	contrast	with	“tame”	ones,	which	

feature	clear	system	boundaries	and	unambiguous	standards	of	success.				

First,	the	number	of	potential	actions	is	large	and	the	actions	interact.		Consider,	as	

an	example,	the	question	of	how	to	manage	coastal	flood	risks	(Lempert	et	al.,	2003).	

Potential	decision	levers	include	raising	levees,	diverting	rivers,	elevating	houses,	
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improving	flood	recovery,	reducing	greenhouse	gas	emissions,	and	solar	radiation	

management	(Fischbach	et	al.,	2019;	Moore	et	al.,	2015;	Schelfaut	et	al.,	2011;	van	Dantzig,	

1956;	Xian	et	al.,	2017).	These	levers	span	a	wide	range	of	spatial	and	temporal	scales	and	

impact	a	large	number	of	values	and	objectives	(Bessette	et	al.,	2017;	Groves	and	Sharon,	

2013).	This	complex	array	of	potential	levers	(interacting	and	with	diffuse	short-	and	long-

term	consequences)	can	drastically	complicate	a	comprehensive	formulation	of	the	“whole”	

problem	of	managing	coastal	flood	risk.		

Second,	diverse	stakeholders	can	have	different	values	that	lead	to	divergent	goals	

and	priorities	(Nordén	et	al.,	2017)	(see	discussion	in	section	4.2).	The	coupled	systems	can	

exhibit	trade-offs	between	key	objectives	(Herman	et	al.,	2015).	Different	stakeholders	that	

balance	the	objectives	differently	can	disagree	about	what	constitutes	an	optimal	solution.				

Third,	strategies	to	manage	climate	risks	face	deep	and	dynamic	uncertainties.	Deep	

uncertainty	refers	to	a	situation	“where	the	system	model	and	the	input	parameters	to	the	

system	model	are	not	known	or	widely	agreed	on	by	the	stakeholders	to	the	decision”	

(Lempert,	2002).	Decision-makers	who	adopt	different	assumptions	about	model	

structures	and	parameters	may	disagree	about	which	strategies	lead	to	which	outcomes	

and	can	hence	arrive	at	different	preferred	strategies	even	if	their	values	and	goals	are	the	

same	(see	discussion	in	section	4.3).	Alternative	model	structures	constitute	different	

problem	formulations,	and	in	this	way	deep	uncertainty	challenges	the	notion	of	a	

definitive	problem	formulation	(Kwakkel	et	al,	2016).	The	uncertainties	are	dynamic	

because	decisions	often	play	out	over	a	considerable	length	of	time	during	which	new	

research	and	observations	have	the	potential	to	change	the	uncertainties	(often	shrinking	

them,	but	not	necessarily	so)	(Oppenheimer	et	al.,	2008).	Accounting	for	the	potential	for	
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learning	can	improve	strategies,	but	can	be	computationally	and	conceptually	hard	

(Hadjimichael	et	al.,	2020).	

In	this	section,	we	have	highlighted	three	features	of	complex	coupled	systems.	We	

draw	attention	to	these	features	because	of	how	they	complicate	the	task	of	identifying	

sound	strategies	for	climate	risk	management.	While	identifying	and	assessing	strategies	is	

the	focus	of	this	article,	we	wish	to	emphasize	that	to	manage	climate	risks,	strategies	must	

also	be	implemented.	The	features	of	complex	coupled	systems,	and	of	the	wicked	problems	

they	engender,	can	also	challenge	implementation	by	complicating	communication	efforts	

and	the	building	of	consensus	in	support	of	climate	action	(see,	for	example,	the	discussion	

in	Moser	et	al,	2012).	While	these	topics	are	beyond	the	scope	of	the	article,	we	briefly	

address	communication	in	section	4.6	and	community	engagement	in	section	4.7.	Lempert	

and	Turner	(2020)	illustrates	one	approach	to	incorporating	the	question	of	consensus-

building	into	the	analysis	of	risk-management	strategies.		

4.		 Challenges	in	Analyzing	Climate	Risk	Management	Strategies	and	Avenues	to	

Tackle	Them	

The	discussion,	thus	far,	illustrates	the	complexity	of	analyzing	strategies	to	manage	

climate	risks.	We	now	turn	our	attention	to	seven	specific	challenges	and	approaches	to	

tackle	them.	While	we	review	these	challenges	separately,	they	often	overlap.	We	discuss	

avenues	to	account	for	these	overlaps	at	the	end	of	this	section.	
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4.1		 Linking	the	required	disciplines	

Complex	socio-environmental	systems	comprise	interacting	components	

traditionally	studied	by	separate	academic	disciplines.	Knowledge	and	methods	from	

across	these	disciplines	must	therefore	be	integrated	in	order	to	develop	an	understanding	

of	overall	system	dynamics,	project	potential	outcomes	of	strategies,	and	assess	the	

desirability	of	those	outcomes.	For	example,	how	we	represent	the	global	carbon	cycle	(a	

question	addressed	in	the	Earth	sciences)	interacts	with	how	we	represent	long-term	

discounting	(addressed	in	economics)	in	determining	the	economically	efficient	strategy	

for	mitigating	carbon	dioxide	emissions	(Schultz	and	Kasting,	1997).	Each	discipline	can	

“see”	only	a	part	of	the	problem,	and	combining	improvements	in	multiple	disciplines	can	

lead	to	new	insights.	The	disciplines	involved	in	climate	risk	management	span	diverse	

branches	of	inquiry,	including	the	natural,	formal,	and	social	sciences,	as	well	as	

engineering,	humanities,	and	decision	science.	Further	examples	of	integration	are	found	

below,	and	we	return	to	the	linking	of	disciplines	in	section	4.7,	where	we	provide	a	high-

level	sketch	of	some	key	pathways.	

Some	terminology	can	be	helpful	for	communicating	about	this	aspect	of	climate	

risk	management	when,	for	example,	seeking	to	learn	from	others	confronting	similar	

challenges	or	to	identify	appropriate	funding	sources.	Research	that	integrates	knowledge	

and	methods	across	disciplines	is	referred	to	as	interdisciplinary	research	(Stock	and	

Burton,	2011;	von	Wehrden	et	al.,	2019).	Transdisciplinary	research	and	convergence	

research	are	related	and	overlapping	concepts,	variously	defined	as	building	on	

interdisciplinarity	through	even	greater	integration	and	synthesis	across	disciplines,	

collaboration	with	non-academic	partners,	or	a	focus	on	specific	motivating	concerns	(e.g.,	
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“problem-driven”)	(Johnson,	2019;	National	Research	Council,	2014;	Sakao	and	Brambila-

Macias,	2018;	Stock	and	Burton,	2011;	von	Wehrden	et	al.,	2019).	Climate	risk	management	

fits	each	of	these	concepts	and	can	benefit	from	the	insights	of	a	developing	literature	that	

collects	and	evaluates	best	practices	for	effective	interdisciplinary,	transdisciplinary,	and	

convergence	research	(Freeth	and	Caniglia,	2020;	Gaziulusoy	et	al.,	2016;	Institute	of	

Medicine,	2005;	National	Academies	of	Sciences,	Engineering,	and	Medicine,	2019;	National	

Research	Council,	2014).	

4.2		 Identifying	relevant	values	and	objectives	

Values	encompass	all	of	the	principles,	perspectives,	and	concerns	that	people	use	to	

judge	the	desirability	of	potential	actions	and	outcomes.	In	other	words,	values	are	why	we	

care	about	risk.	Vocabularies	for	discussing	the	treatment	of	values	vary	across	research	

communities.		Here	we	adopt	the	following	definitions.	Goals	are	what	one	is	concerned	to	

achieve	in	a	given	decision	context.	In	the	case	of	coastal	flood	risk	management,	goals	may	

include	minimizing	loss	of	life,	minimizing	cost,	maintaining	a	tax	base,	or	distributing	risk	

equitably.	Goals	can	be	seen	as	the	result	of	values	intersecting	with	the	decision	at	hand.	

Metrics	are	proxies	within	the	analysis	that	operationalize	and	quantify	the	degree	to	which	

a	goal	is	satisfied	by	potential	outcomes.	Defining	a	metric	for	the	goal	of	minimizing	cost,	

for	example,	requires	deciding	what	costs	will	be	included	and	how	they	will	be	calculated	

and	aggregated.	Defining	a	metric	for	the	goal	of	distributing	risk	equitably	requires	a	

mathematical	description	of	equity.	Finally,	objectives	mirror	goals	but	with	reference	to	

metrics,	so	the	qualitative	goal	of	minimizing	cost	becomes	a	formal	objective	of	

minimizing	a	specific	formula	within	the	analysis.	
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Values	are	fundamental	both	to	decision	making	and	to	the	design	of	decision	

analyses	(Clemen	and	Reilly,	2013;	Keeney,	1992).	Failing	to	attend	carefully	to	values	right	

from	the	beginning	can	lead	to	formulating—and	ultimately	solving—a	problem	that	is	not	

as	relevant	to	the	stakeholders.	Stakeholder	goals	inform	the	initial	scoping	of	plausible	

strategies	for	achieving	those	goals,	thereby	determining	what	strategies	will	be	examined	

in	more	detail.	Subsequent	detailed	assessment	and	comparison	of	strategies	then	requires	

characterizing	potential	outcomes	in	ways	that	reveal	how	each	outcome	stacks	up	with	

respect	to	those	same	goals.	For	example,	in	the	case	of	coastal	flood	risk	management,	

likely	outcomes	of	a	given	flood	wall	design	might	initially	be	characterized	in	terms	of	an	

annual	exceedance	probability.	But	what	does	that	number	mean	for	property	damage,	loss	

of	life,	or	equitable	distribution	of	risks?	Further	analysis	is	required	to	estimate	potential	

impacts	in	terms	of	metrics	and	objectives	that	mirror	stakeholder	goals.	Consequently,	

values	also	inform	the	choice	of	scientific	and	decision-analytic	models	to	be	used	within	

the	analysis:	an	adequate	model		(Addor	and	Melsen,	2019;	Haasnoot	et	al.,	2014)	will	

include	system	components	needed	to	map	strategies	to	outcomes,	describe	those	

outcomes	at	the	spatial	and	temporal	scales	needed	to	estimate	relevant	metrics	(Vezér	et	

al.,	2018),	and	support	quantification	of	uncertainties	associated	with	the	objectives	

(Helgeson	et	al.,	2021).	

Learning	about	relevant	values	requires	engagement	between	researchers	and	

other	stakeholders.	There	are	many	modes	of	engagement,	from	informal	consultation	and	

collaboration	to	more	formalized	advisory	panels	to	research-based	approaches	like	

interviews,	surveys,	and	focus	groups	(Phillipson	et	al.,	2012;	Reed	et	al.,	2009).	Deeply	

collaborative	engagements	are	sometimes	referred	to	as	co-production	(Norström	et	al.,	
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2020).	The	question	of	who	is	included	among	the	stakeholders	deserves	careful	

consideration	(Colvin	et	al.,	2016;	Few	et	al.,	2007;	Tuana,	2020).	Heuristic	tools	for	

collaboratively	articulating	values	include	values	hierarchies	and	means-ends	diagrams	

(Clemen	and	Reilly,	2013;	Keeney,	1992).	Frameworks	for	recognizing	and	structuring	

values	include	ethical	theory	(Mayer	et	al.,	2017),	psychometrically-validated	taxonomies	

of	values	(Brown	and	Reed,	2000),	and	systems	of	cultural	(Satterfield	et	al.,	2013)	and	

environmental	valuation	(Tadaki	et	al.,	2017).	

The	values	and	goals	that	motivate	climate	risk	management	can	be	explored	at	

different	geographical	scales	and	levels	of	specificity.	At	the	global	scale,	and	in	very	broad	

strokes,	the	Intergovernmental	Panel	on	Climate	Change	(IPCC)	summarizes	myriad	

studies	on	the	impacts	of	climate	change	into	five	key	“reasons	for	concern’’	(IPCC,	2018).	

As	an	example	at	the	national	scale,	the	development	process	of	the	United	States	Fourth	

National	Climate	Assessment	included	regional	engagement	workshops	through	which	

stakeholder	values	shaped	the	focus	of	the	report	(Avery	et	al.,	2018).	Regional-	and	

community-level	engagements	can	provide	opportunities	for	richer	and	more	

comprehensive	elicitation	and	characterization	of	relevant	values	(e.g.,	Borsuk	et	al.,	2001;	

Wolf	et	al.,	2013;	Graham	et	al.,	2018),	and	as	a	result,	the	potential	for	more	targeted	risk	

management	analyses.	

Situating	values	within	a	visualization	of	the	risk	management	context	is	a	common	

step	in	the	framing	of	risk	analyses	and	the	design	of	their	objectives.	Influence	diagrams	

(Clemen	and	Reilly,	2013;	Howard	and	Matheson,	2005)	map	the	paths	through	which	a	

decision	impacts	the	objectives	and	display	the	sequence	of	events	when	a	decision	maker	

will	receive	relevant	information.	Mental	models	(Morgan	et	al.,	2002)	use	a	similar	visual	
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language	to	characterize	and	compare	understanding	of	risks,	including	their	underlying	

mechanisms,	and	this	approach	can	be	extended	to	explicitly	include	values	(Bessette	et	al.,	

2017;	Bridges	et	al.,	2013)	(see	Figure	2).	Values	are	typically	impacted	through	specific	

components	of	a	system,	and	articulating	this	explicitly	can	aid	the	formulation	of	goals,	

their	translation	into	objectives,	and	the	mapping	of	objectives	onto	quantitative	features	of	

scientific	and	decision-analytic	models.	

	

	

Figure	2:	A	didactic	example	of	integrating	stakeholder	values	into	a	visualization	of	

system	understanding	to	support	the	design	of	risk	analyses.	The	example	concerns	

coastal	flood	risk	management	(synthesizing	and	simplifying	results	from	(Bessette	

et	al.,	2017)	and	(Mayer	et	al.,	2017)).	Arrows	indicate	the	direction	of	influence	

among	levers	and	system	components.	Colored	dots	indicate	where	stakeholder	

values	may	be	realized	in	the	system,	which	can	guide	the	formulation	of	metrics	

and	objectives	within	the	analysis.		
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4.3	 Identifying	and	quantifying	important	uncertainties			

Climate	risks	depend	on	uncertainties	(Schneider,	2002).	Uncertainties	can	be	

classified	as	aleatory	or	epistemic.	Aleatory	uncertainties	are	those	which	are	intrinsic	to	a	

stochastic	process,	such	as	whether	a	flipped	coin	lands	heads-up	or	tails-up.	Epistemic	

uncertainties	result	from	a	lack	of	knowledge	about	the	underlying	process,	such	as	

whether	the	coin	is	fair.	In	other	words:	epistemic	uncertainty	relates	to	the	conceptual	

model	while	aleatory	uncertainty	relates	to	the	effects	of	unresolved	stochastic	processes.			

Epistemic	uncertainties	play	a	major	role	in	climate	risk	management	due	to	limited	

knowledge	about	future	anthropogenic	greenhouse	gas	emissions	(Ho	et	al.,	2019)	and	

climate-system	responses	(Vega-Westhoff	et	al.,	2020),	as	well	as	uncertainty	about	the	

structure	and	dynamics	of	the	underlying	socioeconomic	or	environmental	systems.	

Uncertainty	assessment	can	take	the	form	of	quantification	or	characterization,	or	a	

combination	of	the	two.	Uncertainty	quantification	describes	uncertainties	using	one	or	

more	probability	distributions,	while	uncertainty	characterization	typically	represents	

uncertainties	through	the	use	of	scenarios	that	are	designed	to	capture	relevant	ranges.	

Improving	the	representation	of	these	uncertainties	can	considerably	change	(and	

often	increase)	risk	projections	(Lee	et	al.,	2020).	Characterizing	the	uncertainties	

surrounding	the	coupled	natural-human	system	is	nontrivial.		For	one,	hazards	driving	

large	risks	are	typically	rare	events.	Rare	events	are	located	in	the	tails	of	the	distributions	

describing	the	outcomes.	For	example,	tropical	cyclones	can	cause	storm	surges	that	cause	

severe	coastal	flooding,	but	these	high	storm	surges	happen	infrequently	(Needham	et	al.,	

2015).	Inferences	about	such	extreme	events	can	be	difficult	because	they	are—by	

definition—rare.	As	a	result,	projections	of	extreme	events	can	depend	considerably	on	
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structural	assumptions	(Van	den	Brink	et	al.,	2005).		This	dependence	of	risk	estimates	on	

adopted	model	structure	is	an	example	of	deep	uncertainty.		Risk	projections	can	also	hinge	

on	subjective	choices	about	model	priors,	how	to	represent	past	and	possible	future	

forcings,	and	which	data	sets	to	use	(Srikrishnan	et	al.,	2019;	Wahl	et	al.,	2015;	Wong,	

2018;	Wong	and	Keller,	2017).		Consider,	as	an	example,	projections	of	coastal	extreme	

water	levels	(Figure	3).		These	projections	change	across	a	range	of	common	assumptions	

about	the	potential	nonstationary	behavior	of	storm	surges	and	the	mechanisms	driving	

ice-sheet	dynamics	(DeConto	and	Pollard,	2016;	Wong,	2018).	An	additional	challenge	in	

uncertainty	quantification	is	that	climate	risks	are	often	driven	by	compound	events	

(Raymond	et	al.,	2020;	Zscheischler	et	al.,	2018).		For	example,	a	tropical	cyclone	can	drive	

a	storm	surge,	extreme	inland	rainfall,	and	damaging	winds.	Neglecting	the	correlations	

between	these	hazards	can	lead	to	biased	risk	estimates	(Moftakhari	et	al.,	2017;	Wahl	et	

al.,	2015).			Furthermore,	models	used	to	project	hazards	are	often	computationally	

expensive	and	have	a	large	number	of	model	parameters	that	need	to	be	estimated.	

Characterizing	the	full	joint	probability	density	function	of	the	model	parameters	in	a	way	

that	resolves	the	decision-relevant	tails	can	impose	serious	(and	often	computationally	

infeasible)	demands	(Lee	et	al.,	2020).		Last	but	not	least,	because	humans	are	also	a	part	of	

the	system,	projections	of	climate	risk	depend	on	changing	human	values,	decisions,	and	

actions	(Schneider,	2002).	For	example,	the	timing	of	making	decisions	and	implementing	

them	are	themselves	uncertain	and	can	impact	outcomes	(Colten	et	al,	2008,	Keller	et	al,	

2007,	Singh,	2010).	
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Figure	3:	Structural	uncertainty	can	drastically	impact	projected	hazards,	such	as	

coastal	flood	risk,	and	risk	management	strategies,	such	as	levee-building.	In	each	

panel,	colors	correspond	to	different	models,	each	of	which	makes	a	different	set	of	

assumptions	about	future	sea-level	rise	and	storm	surge	dynamics.	Panel	A)	shows	

how	the	probabilities	of	extreme	water	heights	(sea-level	rise	combined	with	storm	

surge)	in	2070	change	as	model	assumptions	are	varied.	Panel	B)	illustrates	how	

changing	model	assumptions	affect	the	return	period	(how	frequently	one	might	

expect	to	see	that	event)	of	these	extreme	water	levels.	Panel	C)	plots	the	100-year	

protection	heights	resulting	from	using	the	various	models.	If	a	planner	were	to	

base	their	protection	level	on	the	projected	100-year	flood	level	obtained	by	using	

the	simplest	model	(in	green;	8.1	ft),	the	real	level	of	protection	might	only	be	to	a	1-

in-19	year	event	if	ice	sheet	disintegration	occurs	rapidly	and	storm	surge	

distributions	change	in	response	to	warming	(in	pink).	Under	these	assumptions,	a	

9.9	ft	levee	would	be	required	to	protect	against	a	100-year	event	in	2070.	Figure	

redesigned	from	(Srikrishnan	et	al.,	2019).	
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Improving	uncertainty	characterization	in	the	area	of	climate	hazards	is	a	fast	

moving	field	(Beven	et	al.,	2018;	Krueger	et	al.,	2012;	Otto	et	al.,	2016).		Active	areas	of	

research	include	approaches	to	refining	(i)	the	characterization	of	deep	uncertainties	

through	expert	elicitation	(Bamber	et	al.,	2019;	Morgan,	2014;	Zickfeld	et	al.,	2010),	(ii)	the	

integration	of	observations	and	expert	assessments	into	probabilistic	projections	through	

data-model	fusion	and	probabilistic	inversion	(Bedford	and	Cooke,	2001;	Fuller	et	al.,	

2017),	(iii)	the	use	of	a	hierarchy	of	models	to	improve	mechanistic	understanding	while	

also	sampling	decision-relevant	tails	(Held,	2005;	Wong	and	Keller,	2017),	(iv)	the	

characterization	of	compound	hazards	(AghaKouchak	et	al.,	2020),	and	(v)	the	

identification	of		decision-relevant	uncertainties	through	sensitivity	analyses	(Lamontagne	

et	al.,	2019;	Saltelli	et	al.,	2019).			

These	five	research	areas	discussed	above	can	interact	and	provide	synergies.	This	

can	be	illustrated	for	the	problem	of	projecting	coastal	flood	hazards.	Future	sea-level	

rise—and	hence	coastal	flood	hazard—depends	in	part	on	the	pace	of	melting	ice	sheets,		

but	ice-sheet	models	that	resolve	key	physical	processes	are	computationally	demanding	

and	have	many	model	parameters.	Incorporating	such	models	into	tail-area	risk	estimates	

requires	first	estimating	a	large	number	of	parameters;	the	number	of	model	runs	needed	

for	this	often	exceeds	available	computational	resources.		One	approach	to	address	this	is	

to	build	a	computationally	fast	emulator	of	the	expensive	model,	use	this	emulator	to	

perform	a	full	uncertainty	analysis	including	all	parameters,	and	then	use	a	global	

sensitivity	analysis	to	identify	a	subset	of	the	most	decision-relevant	parameters	(Conti	

and	O’Hagan,	2010;	Wong	and	Keller,	2017).	The	insights	into	which	uncertainties	matter	
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most	for	decision-relevant	metrics	can	then	be	used	to	refine	and	focus	the	uncertainty	

quantification.			

For	a	case	study	of	flood-risk	management	in	New	Orleans,	a	global	sensitivity	

analysis	identifies	a	small	subset	of	parameters	that	drive	much	of	the	uncertainty	

surrounding	projected	flood	hazards	(indicated	by	the	circles	in	Figure	4)	(Wong	and	

Keller,	2017).	In	this	case,	uncertainties	surrounding	storm	surges	and	the	Antarctic	ice	

sheet	dominate	the	picture.		This	ranking	is	broadly	consistent	with	other	related	studies	

and,	perhaps,	intuition.	The	finding	that	the	storm	surge	model	(and	especially	the	shape	

parameter)	is	highly	important	is	consistent	with	a	similar	case	study	for	a	location	in	the	

Netherlands	(Oddo	et	al,	2017).		The	high	importance	of	uncertainties	surrounding	storm	

surges	(relative,	for	example,	to	uncertainty	surrounding	glaciers	and	ice	caps,	see	Figure	

4)	is	perhaps	expected,	as	projections	about	extreme	events	with	relatively	short	

observational	records	can	be	highly	uncertain	(Wong	et	al,	2018)	and	because	changes	in	

regional	water	levels	due	to	projected	storm	surges	can	far	exceed	those	due	to	projected	

melting	of	glaciers	and	ice	caps	(Bakker	et	al,	2017,	Wong	and	Keller,	2017).						
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Figure	4:	Quantification	of	the	relative	importance	of	key	considered	uncertainties	

for	the	uncertainty	surrounding	the	projected	flood	hazards	over	the	next	few	

decades	for	a	case	study	in	New	Orleans	(Wong	and	Keller,	2017).	The	size	of	the	

circles	represents	the	sensitivity	of	flood	hazard	to	each	parameter.	The	width	of	the	

connecting	lines	represents	the	sensitivity	of	flood	hazard	to	parameter	

interactions.	If	a	parameter	has	no	circle,	this	indicates	that	the	projected	flood	
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hazard	is	not	sensitive	to	its	value.	Figure	adopted	from	Wong	and	Keller	(2017))	

without	changes.	For	definitions	of	the	parameter	names	please	refer	to	Wong	and	

Keller	(2017).	The	figure	is	distributed	under	the	Creative	Commons	Attribution-

NonCommercial-NoDerivatives	4.0	International	(CC	BY-NC-ND	4.0)	license.	

4.4	 Resolving	the	interactions	of	decision-levers	and	system	dynamics	

	 Climate	risk	management	levers	can	interact	with	each	other	synergistically	or	

antagonistically.	As	a	synergistic	example,	climate	mitigation	can	slow	sea-level	rise	

(Nauels	et	al.,	2017),	reducing	coastal	adaptation	needs.	On	the	other	hand,	adapting	to	

higher	temperatures	by	using	air	conditioning	increases	energy	use	and	(absent	a	

transition	to	low-carbon	sources	of	electricity)	greenhouse	gas	emissions	(van	Ruijven	et	

al.,	2019).	This	feedback	results	in	a	greater	overall	need	for	mitigation	efforts.	The	early	

availability	of	negative	emissions	technologies	may	also	result	in	reduced	mitigation	needs	

and	investment	(Holz	et	al.,	2018;	Muratori	et	al.,	2016).	As	a	result	of	such	interactions,	

studying	the	impact	of	climate	risk	management	levers	in	isolation	can	provide	a	myopic	

perspective.	

Assessing	climate	risk	and	the	potential	performance	of	risk	management	strategies	

requires	understanding	the	dynamics	and	interactions	of	the	coupled	physical,	climate,	

social,	and	technological	systems.	The	extent	to	which	communities	are	exposed	and	

vulnerable	to	natural	hazards	changes	as	people	and	institutions	learn	about	local	risk	and	

adapt	(Kreibich	et	al.,	2005;	Kreibich	and	Thieken,	2008;	Work	et	al.,	1999)	(Figure	5).	This	

decision-making,	as	well	as	the	use	of	other	levers	such	as	mitigation,	changes	the	joint	

system	dynamics	and	risk	profile.	For	example,	an	analyst	might	implicitly	rule	out	relevant	
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system	dynamics,	such	as	coupling	across	sectors	or	coupled	natural-human	interactions,	

by	not	including	them	in	any	of	the	used	system	models.		This	could	affect	projected	

outcomes	and	result	in	a	divergence	between	the	projections	and	realizations.	In	extreme	

cases,	the	inclusion	(or	removal)	of	these	dynamics	might	change	how	the	decision	is	made.	

There	are	also	interactions	across	multiple	sectors,	such	as	agriculture,	energy,	and	water,	

which	can	result	in	nonlinear	system	dynamics	(Moss	et	al.,	2016;	USGCRP,	2018).			 	

To	illustrate	these	interactions,	consider	the	task	of	projecting	flood	risks.	Flood	risk	

projections	can	depend	on	several	coupled	natural-human	system	interactions.	Two	

interactions	of	note	are	the	levee	effect,	where	the	building	of	flood	risk	mitigation	

structures	causes	increases	in	development	and	population	growth	in	the	protected	area,	

and	what	might	be	called	the	abandonment	effect,	where	the	memory	of	recent	flooding	

causes	migration	away	from	the	floodplain	(Di	Baldassarre	et	al.,	2013).	These	feedbacks	

can	change	the	exposure	from	flooding	hazards.	In	the	case	of	a	strong	levee	effect,	the	

resulting	increase	in	exposure	might	outpace	the	reduction	in	hazard	resulting	from	the	

construction.	The	net	result	is	an	increase	in	risk	from	the	project.	
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Figure	5:	Interactions	between	the	coupled	natural	and	human	systems	can	

drastically	change	the	system	dynamics	and	the	anticipated	performance	of	a	given	

strategy.		A	simplified	model	(denoted	by	the	blue	components	and	arrows)	that	

misses	factors	and	interactions	related	to	human	decision-making	(represented	by	

the	green	components	and	the	red	and	green	arrows)	can	miss	important	

interactions	and	system	dynamics.		

4.5	 Characterizing	trade-offs	and	synergies	between	objectives	

Climate	risks	affect	diverse	groups	of	stakeholders,	who	may	have	multiple,	

potentially	conflicting	goals	due	to	varying	values	(Nordén	et	al.,	2017).	Classical	
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approaches	to	decision-making	under	uncertainty	optimize	a	single	utility	function,	which	

is	intended	to	aggregate	relevant	preferences	(Morgan,	2017)	(Figure	6).	Aggregating	

varying	and	potentially	conflicting	objectives	into	a	single	utility	function	can	miss	

tensions,	obscure	trade-offs,	and	implicitly	prioritize	certain	objectives	(Garner	et	al.,	2016;	

Herman	et	al.,	2015;	Lempert,	2014;	Moallemi	et	al.,	2019).		

Multi-objective	optimization	methods,	such	as	multi-objective	evolutionary	

algorithms	(Coello	Coello	et	al.,	2007),	identify	a	set	of	optimal	strategies,	called	the	Pareto	

front.	Comparing	any	two	strategies	belonging	to	the	Pareto	front	results	in	improved	

performance	with	respect	to	some	objectives	and	decreased	performance	in	others.	The	

Pareto	front	reveals	what	performance	levels	are	possible	with	respect	to	the	considered	

objectives,	allowing	for	preferences	to	be	adjusted	afterwards.	For	example,	integrated	

assessment	models	of	climate	change	can	show	a	tension	between	the	objectives	of	reliably	

limiting	global	warming	and	increasing	economic	consumption	(Nordhaus,	1992).	An	

example	of	such	a	trade-off	is	illustrated	by	the	Pareto	front	in	Figure	7	(Garner	and	Keller	

(2016).	

Due	to	trade-offs	between	objectives,	many	different	strategies	can	be	identified	

which	are	optimal	in	the	sense	described	above.	However,	the	optimization	procedure	

necessarily	includes	a	particular	representation	of	the	underlying	epistemic	uncertainties.	

The	choices	involved	in	selecting	a	particular	representation	can	result	in	solutions	which	

appear	optimal,	but	which	degrade	in	performance	when	exposed	to	alternative	

representations,	which	are	characteristic	dynamic	uncertainties.	Ideally,	we	would	identify	

strategies	from	the	optimization	which	are	robust	to	alternative	characterizations	of	

underlying	uncertainties.	In	this	context,	a	strategy	is	robust	when	it	can	achieve	a	
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satisfactory	level	of	performance	with	respect	to	the	selected	objectives	when	confronted	

with	relevant	deep	uncertainties	(Herman	et	al.,	2015).		Multi-objective	robust	decision-

making	(Kasprzyk	et	al.,	2013)	is	one	decision	framework	which	combines	multi-objective	

optimization	with	testing	of	selected	strategies	for	robustness.	

	

Figure	6:	Designing	and	analyzing	climate	risk	management	strategies	requires	

methods	that	are	appropriate	for	the	nature	of	the	decision	problem.	The	x-axis	

describes	different	levels	of	epistemic	uncertainty	representation,	ranging	from	

none	(so	only	aleatory	uncertainty	is	included	in	the	analysis)	to	deep	&	dynamic	

uncertainties.	The	y-axis	shows	how	the	objectives	considered	by	the	analysis	or	

suggested	by	the	problem	can	be	structured,	from	only	considering	a	single	

objective	(such	as	net	monetized	benefits	or	reliability)	to	multiple	objectives	with	

considerations	of	robustness	to	uncertainty.	The	green	box	highlights	an	area	which	
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contains	combinations	of	epistemic	uncertainty	realization	and	objective	

formulation	suggested	by	the	nature	of	many	climate	risk	management	problems.	

The	pink	box	captures	combinations	which	are	properties	of	many	decision	

analyses.	These	may	exclude	considerations	of	robustness	or	the	dynamic	nature	of	

the	deep	uncertainties,	potentially	creating	biases	or	failing	to	fully	represent	

stakeholder	values.	Figure	modified	and	expanded	from	(Singh	et	al.,	2015).	

	

	

Figure	7:	Example	of	a	Pareto	front	characterizing	the	trade-offs	between	

objectives.	Each	circular	point	corresponds	to	a	different	solution	belonging	to	the	

Pareto	front,	while	the	squares	correspond	to	optimal	solutions	when	only	

considering	one	objective.	The	x-axis	and	the	colors	of	each	point	represent	the	

change	in	balanced	growth	equivalent	from	the	no-climate	damages	scenario.	The	y-

axis	shows	the	achieved	reliability	of	stabilizing	global	mean	temperatures	at	the	

2℃	target	set	by	the	Paris	Agreement.	The	preferred	directions	(reduced	damages	

and	increased	reliability)	are	shown	by	the	arrows	on	the	top	and	right	sides	of	the	

plot.	Decreasing	economic	damages	beyond	a	certain	threshold	requires	reducing	
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the	reliability	of	temperature	stabilization,	and	increasing	temperature	stabilization	

reliability	is	associated	with	increased	economic	damages.	Identifying	the	Pareto	

front	allows	decision-makers	and	stakeholders	to	see	the	trade-offs	between	their	

considered	objectives	and	how	their	constraints	map	to	achievable	outcomes.	Figure	

adopted	without	changes	from	Garner	et	al.	(2016),	distributed	under	the	Creative	

Commons	Attribution	4.0	International	License	

(http://creativecommons.org/licenses/by/4.0/).	See	Garner	et	al.	(2016)	for	details.	

	

4.6.	 Communicate	effectively	to	inform	decisions	

Informing	decisions	requires	communication	with	decision	makers.	The	scope	and	

reach	of	climate	risks	means	that	these	decision	makers	are	a	diverse	group,	spread	across	

the	public	and	private	sectors	at	organizational	levels	from	individuals	to	global	bodies.	

The	communication	side	of	climate	risk	management	is	a	sprawling	area	of	study	in	

its	own	right,	discussed	under	overlapping	headings	such	as	climate	services	(Vaughan	et	

al.,	2018),	risk	communication	(Morgan	et	al.,	2002),	and	decision	support	(Matthies	et	al.,	

2007;	National	Research	Council	et	al.,	2009).	Here	we	can	highlight	only	a	few	key	points.	

First,	attempts	to	improve	decision	making	implicitly	invoke	some	notion	of	what	it	means	

to	make	a	good	decision	(Elwyn	and	Miron-Shatz,	2010),	which	raises	issues	of	agency,	

manipulation,	and	other	ethical	matters	(Adams	et	al.,	2015).	Second,	the	impacts	of	

decision	support	tools	and	climate	hazard	information	on	decisions	is	complex	and	

requires	evaluation	(Budescu	et	al.,	2014;	Clar	and	Steurer,	2018;	Wong-Parodi	et	al.,	

2016).	This	evaluation	is,	however,	often	neglected	(Clar	and	Steurer,	2018;	Morgan	et	al.,	
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2002;	Vaughan	et	al.,	2018;	Wong-Parodi	et	al.,	2016).	Third,	informing	real-world	

decisions	can	raise	nontrivial	questions	at	the	interfaces	between	fields	such	as	law,	ethics,	

political	science,	and	decision-analysis	(Kopp	et	al.,	2019;	Scolobig,	2015).		

4.7		 Learning	from	decision-making	needs	to	inform	research	designs			

Analyzing	decisions	about	how	to	manage	climate	risks	can	help	to	identify	mission-

oriented	basic	research	questions	(Bakker	et	al.,	2017;	Hekkert	et	al.,	2020;	Stockes,	1997).		

Identifying	research	relevant	to	the	mission	of	improving	climate	risk	management	

requires	integrating	the	elements	discussed	above	into	a	unified,	coherent,	and	iterative	

process	that	can	flexibly	incorporate	stakeholders,	decision-makers,	and	analysts.		There	is	

a	large	body	of	literature	on	how	to	design	such	a	process	(Field	et	al.,	2014;	Haasnoot	et	

al.,	2013;	Kates	et	al.,	2012;	Lempert	et	al.,	2003;	McDaniels	et	al.,	1999;	McDaniels	and	

Gregory,	2004;	Moallemi	et	al.,	2019;	Moser	et	al.,	2012;	National	Research	Council,	1999;	

Renn,	1999;	Wong-Parodi	et	al.,	2016).	Here	we	focus	on	key	elements	and	linkages	to	

present	an	example	process	schematic	illustrating	paths	of	interaction	and	iteration	(Figure	

8).			
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Figure	8:	Assessing	and	designing	climate	risk	management	strategies,	and	

identifying	mission-oriented	research	questions,	requires	an	iterative	approach	

(represented	by	the	arrows)	that	links	concepts	and	tools	from	a	wide	range	of	

disciplines	(represented	by	the	different	colors	of	the	boxes).	This	figure	synthesizes	

and	expands	on	concepts	in	the	studies	discussed	in	this	subsection.		

	

This	example	process	starts	with	identifying	values	and	mental	models	of	

stakeholders,	decision-makers,	and	analysts.	It	then	uses	this	information	to	jointly	frame	

the	decision	analysis,	including	specification	of	the	decision-levers,	uncertainties,	and	

metrics	to	be	considered,	as	well	as	the	relationships	(formalized	in	models)	that	connect	

these	elements.		The	next	step	is	to	quantify	uncertainties,	if	needed	using	reduced	

complexity	models	or	emulators.	This	step	then	informs	the	analysis	of	trade-offs	and	

synergies	between	the	objectives.	The	next	steps	in	this	iterative	loop	are	to	screen	for	
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decision-relevant	uncertainties	and	to	stress-test	candidate	strategies.	The	insights	from	

these	steps	can	point	to	further	uncertainties	as	well	as	help	refine	the	assessment	of	

values	and	mental	models,	which	may	in	turn	motivate	revisions	to	the	problem	framing.		

Of	course,	this	is	a	drastically	simplified	overview	that	abstracts	from	many	important	

considerations	(see	references	in	the	previous	paragraph	for	further	advice	and	process	

schematics).		

5.		 Conclusions		

Climate	risk	management	includes	many	challenges,	including	deep	and	dynamic	

uncertainties,	diverse	(and	sometimes	conflicting)	stakeholder	values	and	goals,	and	

complex	system	dynamics.	These	aspects	of	climate	risk	management	problems	result	in	a	

need	for	fundamental	research	that	integrates	disciplines	and	researchers	with	

stakeholders	and	decision-makers.	

We	review	how	basic	research	can	inform	decision	analyses	of	climate	risk	

management	and	how	these	decision	analyses	can,	in	turn,	inform	research	designs.	

Currently	available	data,	tools,	and	approaches	have	enabled	valuable	insights	and	helped	

to	improve	decisions,	but	important	challenges	remain.		Adopting	an	iterative	and	

integrated	approach	to	climate	risk	management	can	lead	to	important	new	insights,	

provide	more	relevant	decision	analyses,	and	identify	avenues	to	improve	risk	

management	strategies.	Such	an	approach	can	help	to	link	the	required	disciplines,	identify	

relevant	values	and	uncertainties,	resolve	key	system	dynamics,	characterize	trade-offs	and	

synergies,	communicate	effectively,	and	inform	research	designs.		In	short,	a	sound	
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approach	to	climate	risk	management	is	required	to	do	the	science	right	and	to	do	the	right	

science	(Tuana,	2018).			

Summary	Points		

1. Climate	change	drives	nontrivial	changes	in	hazards	and	risks.	

2. Climate	risks	are	subject	to	deep	and	dynamic	uncertainties.	

3. Designing	a	climate	risk	management	strategy	often	requires	navigating	trade-offs	

between	diverse	and	often	conflicting	values	and	objectives.		

4. Analyzing	climate-risk	management	decisions	can	identify	mission-relevant	basic	

research	questions.		

Future	Issues	

1. How	to	train	stakeholders,	decision-makers,	practitioners,	and	researchers	in	the	

required	disciplinary	and	collaborative	skills?	

2. How	to	design,	implement,	and	sustain	the	required	decision	support	and	

observation	systems?	

3. How	to	establish	and	support	an	environment	of	shared	discovery	that	enables	the	

required	collaborations?	
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