
Discovering Agents
Zachary Kenton1, Ramana Kumar1, Sebastian Farquhar2, Jonathan Richens1, Matt MacDermott3 and Tom
Everitt1
1DeepMind, 2University of Oxford, work begun while author was at DeepMind, 3Imperial College London

Causal models of agents have been used to analyse the safety aspects of machine learning systems. But
identifying agents is non-trivial – often the causal model is just assumed by the modeler without much
justification – andmodelling failures can lead tomistakes in the safety analysis. This paper proposes the
first formal causal definition of agents – roughly that agents are systems that would adapt their policy
if their actions influenced the world in a different way. From this we derive the first causal discovery al-
gorithm for discovering agents from empirical data, and give algorithms for translating between causal
models and game-theoretic influence diagrams. We demonstrate our approach by resolving some pre-
vious confusions caused by incorrect causal modelling of agents.

1. Introduction

How can we recognise agents? In economics textbooks, certain entities are clearly delineated as
choosing actions to maximise utility. In the real world, however, distinctions often blur. Humans may
be almost perfectly agentic in some contexts, while manipulable like tools in others. Similarly, in
advanced reinforcement learning (RL) architectures, systems can be composed of multiple non-agentic
components, such as actors and learners, and trained in multiple distinct phases with different goals,
from which an overall goal-directed agentic intelligence emerges.

It is important that we have tools to discover goal-directed agents. Artificially intelligent agents that
competently pursue their goals might be dangerous depending on the nature of this pursuit, because
goal-directed behaviour can become pathological outside of the regimes the designers anticipated
(Bostrom, 2014; Yudkowsky et al., 2008), and because they may pursue convergent instrumental
goals, such as resource acquisition and self-preservation (Omohundro, 2008). Such safety concerns
motivate us to develop a formal theory of goal-directed agents, to facilitate our understanding of
their properties, and avoid designs that pose a safety risk.

The central feature of agency for our purposes is that agents are systems whose outputs are moved
by reasons (Dennett, 1987). In other words, the reason that an agent chooses a particular action is
that it “expects it” to precipitate a certain outcome which the agent finds desirable. For example, a
firm may set the price of its product to maximise profit. This feature distinguishes agents from other
systems, whose output might accidentally be optimal for producing a certain outcome. For example,
a rock that is the perfect size to block a pipe is accidentally optimal for reducing water flow through
the pipe.

Systems whose actions are moved by reasons, are systems that would act differently if they “knew”
that the world worked differently. For example, the firm would be likely to adapt to set the price
differently, if consumers were differently price sensitive (and the firm was made aware of this change
to the world). In contrast, the rock would not adapt if the pipe was wider, and for this reason we
don’t consider the rock to be an agent.

Behavioural sensitivity to environment changes can be modelled formally with the language of
causality and structural causal models (SCMs) (Pearl, 2009). To this end, our first contribution is to
introduce mechanised SCMs (Sections 3.1 and 3.2), a variant of mechanised causal games (Hammond

Corresponding author(s): zkenton@deepmind.com
© 2022 DeepMind. All rights reserved

ar
X

iv
:2

20
8.

08
34

5v
2

 [
cs

.A
I]

 2
4

A
ug

 2
02

2

Discovering Agents

(a) Gridworld

𝐷 𝑋 𝑈

(b) Game graph, G

𝐷 𝑋 𝑈

�̃� �̃� 𝑈

(c) Mech. causal graph, C

chance
mechanism
decision
utility
terminal
non-terminal

Figure 1 | Different graphical representations for the the mouse example (Section 1.1).

et al., forthcoming), and give an algorithm which produces its graph given the set of interventional
distributions (Section 3.3). Building on this, our second contribution is an algorithm for determining
which variables represent agent decisions and which represent the objectives those decisions optimise
(i.e., the reasons that move the agent), see Section 3.4. This lets us convert a mechanised SCM into a
(structural) causal game (Hammond et al., forthcoming)1. Combined, this means that under suitable
assumptions, we can infer a game graph from a set of experiments, and in this sense discover agents.
Our third contribution is more philosophical, giving a novel formal definition of agents based on our
method, see Section 1.2.

These contributions are important for several reasons. First, they ground game graph representa-
tions of agents in causal experiments. These experiments can be applied to real systems, or used in
thought-experiments to determine the correct game graph and resolve confusions (see Section 4).
With the correct game graph obtained, the researcher can then use it to understand the agent’s
incentives and safety properties (Everitt et al., 2021a; Halpern and Kleiman-Weiner, 2018), with an
extra layer of assurance that a modelling mistake has not been made. Our algorithms also open a
path to automatic inference of game graphs, especially in situations where experimentation is cheap,
such as in software simulations.

1.1. Example

To illustrate our method in slightly more detail, consider the following minimal example, consisting
of a gridworld with three squares, and with a mouse starting in the middle square (Fig. 1a). The
mouse can go either left or right, represented by binary variable 𝐷. There is some ice which may
cause the mouse to slip: the mouse’s position, 𝑋 , follows its choice, 𝐷, with probability 𝑝 = 0.75, and
slips in the opposite direction with probability 1 − 𝑝. Cheese is in the right square with probability
𝑞 = 0.9, and the left square with probability 1 − 𝑞. The mouse gets a utility, 𝑈, of 1 for getting the
cheese, and zero otherwise. The directed edges 𝐷→ 𝑋 and 𝑋 → 𝑈 represent direct causal influence.

The decision problem can be represented with the game graph in Fig. 1b: the agent makes a
decision, 𝐷, which affects its position, 𝑋 , which affects its utility, 𝑈. The intuition that the mouse
would choose a different behaviour for other settings of the parameters 𝑝 and 𝑞, can be captured
by a mechanised causal graph (Fig. 1c). This graph contains additional mechanism nodes, �̃�, �̃� , 𝑈 in
black, representing the mouse’s decision rule and the parameters 𝑝 and 𝑞. As usual, edges between
mechanisms represent direct causal influence, and show that if we intervene to change the cheese
location, say from 𝑞 = 0.9 to 𝑞 = 0.1, and the mouse is aware2 of this, then the mouse’s decision rule
changes (since it’s now more likely to find the cheese in the leftmost spot). Experiments that change

1We can also reverse this, converting a causal game into a mechanised SCM (Section 3.5).
2The mouse could become aware of this through learning from repeated trials under soft interventions of 𝑋 and 𝑈 which

occur on every iteration, see Section 3.1 for further discussion.

2

Discovering Agents

𝑝 and 𝑞 in a way that the mouse is aware of, generate interventional data that can be used to infer
both the mechanised causal graph (Fig. 1c) and from there the game graph (Fig. 1b). The edge labels
(colours) in Fig. 1c will be explained in Section 3.2.

1.2. Other Characterisations of Agents

To put our contribution in context, we here describe previous characterisations of agents:

• The intentional stance: an agent’s behaviour can be usefully understood as trying to optimise an
objective (Dennett, 1987).

• Cybernetics: an agent’s behaviour adapts to achieve an objective (e.g. Ashby, 1956; Wiener,
1961).

• Decision theory / game theory / economics / AI: An agent selects a policy to optimise an objective.
• An agent is a system whose behaviour can be compressed with respect to an objective function

(Orseau et al., 2018).
• “An optimising system is ... a part of the universe [that] moves predictably towards a small set of

target configurations” (Flint, 2020).
• A goal-directed system has self-awareness, planning, consequentialism, scale, coherence, and

flexibility (Ngo, 2020).
• Agents are ways for the future to influence the past (via the agent’s model of the future)

(Garrabrant, 2021; von Foerster et al., 1951).

For broader reviews, see also Shimi et al. (2021) and Wooldridge and Jennings (1995).

Our proposal can be characterised as: agents are systems that would adapt their policy if their
actions influenced the world in a different way. This may be read as an alternative to, or an elaboration
of, the intentional stance and cybernetics definitions (depending on how you interpret them) couched
in the language of causality and counterfactuals. Our definition is fully consistent with the decision
theoretic view, as agents choose their behaviour differently depending on its expected consequences,
but doesn’t require us to know who is a decision maker in advance, nor what they are optimising.

The formal definition by Orseau et al. can be viewed as an alternative interpretation of the
intentional stance: the behaviour of systems that choose their actions to optimise an objective function
should be highly compressible with respect to that objective function. However, Orseau et al.’s
definition suffers from two problems: First, in simple settings, where there is only a small and finite
number of possible behaviours (e.g. the agent decides a single binary variable), it will not be possible
to compress any policy beyond its already very short description. Second, the compression-based
approach only considers what the system actually does. It may therefore incorrectly classify as agents
systems with accidentally optimal input-output mappings, such as the water-blocking rock above.
Our proposal avoids these issues, as even a simple policy may adapt, but the rock will not.

The insightful proposal by Flint leaves open the question of what part of an optimising system is
the agent, and what part is its environment. He proposes the additional property of redirectability, but
its not immediately clear how it could be used to identify decision nodes in a causal graph (intervening
on almost any node will change the outcome-distribution).

The goal-directed systems that Ngo has in mind are agentic in a much stronger sense than we are
necessarily asking for here, and each of the properties contain room for interpretation. However, our
definition is important for goal-directedness, as it distinguishes incidental influence that a decision
might have on some variable, from more directed influence: only a system that counterfactually
adapts can be said to be trying to influence the variable in a systematic way. Counterfactual adaptation
can therefore be used as a test for goal-directed influence.

3

Discovering Agents

Our definition also matches closely the backwards causality definition of agency by Garrabrant
(2021), as can be seen by the time-opposing direction of the edges �̃� → �̃� and 𝑈 → �̃� in Fig. 1c. It also
fits nicely with formalisations of agent incentives (Everitt et al., 2021a; Halpern and Kleiman-Weiner,
2018), which effectively rely on behaviour in counterfactual scenarios of the form that we consider
here. This is useful, as a key motivation for our work is to analyse the intent and incentives of artificial
agents.

1.3. What do we consider an agent

Before digging into the mathematical details of our proposal, let us make some brief remarks about
what it considers an agent and not. From a pre-theoretic viewpoint, humans might be the most
prototypical example of an agent. Our method reliably classifies humans as agents, because humans
would usually adapt their behaviour if suitably informed about changes to the consequences of their
actions. It’s also easy to communicate the change in action-consequences to a human, e.g. using
natural language. But what about border-line cases like thermostats or RL agents? Here, the answer
of our definition depends on whether one considers the creation process of a system when looking for
adaptation of the policy. Consider, for example, changing the mechanism for how a heater operates,
so that it cools rather than heats a room. An existing thermostat will not adapt to this change, and is
therefore not an agent by our account. However, if the designers were aware of the change to the
heater, then they would likely have designed the thermostat differently. This adaptation means that
the thermostat with its creation process is an agent under our definition. Similarly, most RL agents
would only pursue a different policy if retrained in a different environment. Thus we consider the
system of the RL training process to be an agent, but the learnt RL policy itself, in general, won’t be an
agent according to our definition (as after training, it won’t adapt to a change in the way its actions
influence the world, as the policy is frozen).

For the purpose of detecting goal-directed behaviour, the relevant notion of agency often includes
the creation process. Being forced to consider the creation process of the system, rather than just the
system itself, may seem inconvenient. However, we consider it an important insight that simple forms
of agents often derive much of their goal-directedness from the process that creates them.

1.4. Outline

Our paper proceeds as follows: we give relevant technical background in Section 2; give our main
contribution, algorithms for discovering agents, in Section 3; show some example applications of this
in Section 4 followed by a discussion in Section 5.

2. Background

Before we get to our algorithms for discovering agents, we cover some necessary technical background.
The mathematical details can be found in Appendix A. Throughout, random variables are represented
with roman capital letters (e.g. 𝑉), and their outcomes with lower case letters (e.g. 𝑣). We use bold type
to indicate vectors of variables, 𝑽, and vectors of outcomes 𝒗. For simplicity, each variable 𝑉 only has a
finite number of possible outcomes, denoted dom(𝑉). For a set of variables, dom(𝑽) = ∏

𝑉∈𝑽 dom(𝑉).

In structural causal models (SCMs; Pearl, 2009), randomness comes from exogenous (unobserved)
variables, E, whilst deterministic structural equations relate endogenous variables, 𝑽, to each other
and to the exogenous ones, i.e., 𝑉 = 𝑓𝑉 (𝑽, E𝑉) (Definition A.5). An SCM 𝑀 induces a causal graph 𝐺

over the endogenous variables, in which there is an edge𝑊 → 𝑉 if 𝑓𝑉 (𝑽, E𝑉) depends on the value of𝑊
(Definition A.6). The SCM is cyclic if its induced graph is, and acyclic otherwise. We never permit self-

4

Discovering Agents

loops 𝑉 → 𝑉. Parents, children, ancestors and descendants in the graph are denoted Pa𝑉 , Ch𝑉 , Anc𝑉 ,
and Desc𝑉 , respectively (neither include the variable 𝑉). The family is denoted by Fa𝑉 = Pa𝑉 ∪ {𝑉}.
Interventions on 𝒀 ⊆ 𝑽, denoted do(𝒀 = 𝒚), can be realised as replacements of a subset of structural
equations, so that 𝒀 = 𝒇 𝒀 (𝑽, E𝒀) gets replaced with 𝒀 = 𝒚 (Definition A.7). The joint distribution
𝑃(𝑽 | do(𝒀 = 𝒚)) is called the interventional distribution associated with intervention do(𝒀 = 𝒚). A soft
intervention instead replaces 𝒇 𝒀 with some other (potentially non-constant) functions 𝒈𝒀 .

A (structural) causal game (Everitt et al., 2021a; Hammond et al., forthcoming; Koller and Milch,
2003) is similar to an SCM, but where the endogenous variables are partitioned into chance, decision,
and utility variables (denoted 𝑿, 𝑫 and 𝑼 respectively), and for which the decision variables have no
structural equations specified. Instead a decision-maker is free to choose a probability distribution
over actions 𝐷, given the information revealed by the outcome of the parents of 𝐷 (Definition A.9).
The decision variables belonging to agent 𝐴 are denoted 𝑫𝐴 ⊆ 𝑫, and the agent’s utility is taken to
be the sum of the agent’s utility variables, 𝑼𝐴 ⊆ 𝑼. A collection of decision rules for all of a player’s
decisions is called a policy. Policies for all players are called policy profiles.

A causal game is associated with a game graph with square, round and diamond nodes for decision,
chance and utility variables, respectively, with colours associating decision and utility nodes with
different agents (Definition A.10). Edges into chance and utility nodes mirror those of an SCM,
while edges into decision nodes represent what information is available, i.e. 𝑊 → 𝐷 is present if the
outcome of 𝑊 is available when making the decision 𝐷, with information edges displayed with dotted
lines. An example of a game graph is shown in Fig. 1b.

Given a causal game, each agent can set a decision rule, 𝜋𝐷, for each of their decisions, 𝐷, which
maps the information available at that decision to an outcome of the decision. Formally, the decision
rule 𝜋𝐷 is a deterministic function of Pa𝐷 and E𝐷, where E𝐷 provides randomness to enable stochastic
decisions. This means that the decision rules can be combined with the causal game to form an
SCM, which can be used to compute each agent’s expected utility. In the single agent case, the
decision problem represented by the causal game is to select an optimal decision rule to maximise the
expected utility (Definition A.11). With multiple agents, solution concepts such as Nash Equilibrium
(Definition A.12) or Subgame-Perfect Nash Equilibrium (Definition A.13) are needed, because in
order to optimise their decision rules agents must also consider how other agents will will optimise
theirs.

Similar to SCMs, interventions in a causal game can be realised as replacements of a subset
of structural equations. However, in contrast to an SCM, an intervention can be made before or
after decision rules are selected. This motivates a distinction between pre-policy and post-policy
interventions (Hammond et al., forthcoming). Pre-policy intervention are made before the policies
are selected, and agents may adapt their policies (according to some rationality principle) to account
for the intervention. In other words, agents are made aware of the intervention before selecting their
policies. For post-policy interventions, the intervention is applied after the agents select their policies.
The agents cannot adapt their policies, even if their selected policies are no longer rational under the
intervention. In other words, the intervention is applied without the awareness of the agents.

3. Algorithms for Discovering Agents

Having discussed some background material, we now begin our main contribution: providing algo-
rithms to discover agents from causal experiments.

This can provide guidance on whether a proposed game graph is an accurate description of a
system of agents and gives researchers tools for building game graphs using experimental data.

5

Discovering Agents

Game Theory Causality

I

C

G

G

C

G′

C

G

C′

Algorithm 1

Algorith
m 2Theorem 1

Algorithm 3

Algorith
m 2Theorem 2

Algorith
m 2

Algorithm 3
Theorem 3

Figure 2 | Overview of
our three theorems. Each
provides relations between
a game-theoretic mecha-
nised causal game, M̃, with
its interventional distribu-
tions, I, and with its as-
sociated game graph, G,
and a causal object – a
mechanised causal graph,
C. Our proposed algo-
rithms Algorithm 1, Mecha-
nised Causal Graph Discov-
ery; Algorithm 2, Agency
Identification; and Algo-
rithm 3,Mechanism Identifi-
cation; detail how to trans-
form from one representa-
tion to another.

We propose three algorithms:

• Algorithm 1, Mechanised Causal Graph Discovery, produces an edge-labelled mechanised causal
graph based on interventional data.

• Algorithm 2, Agency Identification, takes an edge-labelled mechanised causal graph and produces
the corresponding game graph.

• Algorithm 3, Mechanism Identification, takes a game graph and draws the corresponding edge-
labelled mechanised causal graph.

Theorems 1 to 3 establish their correctness, and Fig. 2 visualises their relationships.

3.1. Mechanised Structural Causal Model

In this subsection we introduce mechanised SCMs, that we will later use in a procedure for discovering
agents from experimental data. A mechanised SCM is similar to an ordinary SCM, but includes a
distinction between two types of variables: object-level and mechanism variables. The intended inter-
pretation is that the mechanism variables parameterise how the object-level variables depend on their
object-level parents. Mechanism variables have been called regime indicators (Correa and Bareinboim,
2020) and parameter variables (Dawid, 2002). Mechanised SCMs are variants of mechanised causal
games Hammond et al. (forthcoming) that lack explicitly labelled decision and utility nodes. Figure 1c
draws the induced graph of a mechanised SCM.

Definition 1 (Mechanised SCM). A mechanised SCM is an SCM in which there is a partition of the
endogenous variablesV = 𝑽∪𝑽 into object-level variables, 𝑽 (white nodes), and mechanism variables,
𝑽 (black nodes), with |𝑽 | = |𝑽 |. Each object-level variable 𝑉 has exactly one mechanism parent,
denoted 𝑉, that specifies the relationship between 𝑉 and the object-level parents of 𝑉.

We refer to edges between object-level nodes as object-level edges 𝐸obj, edges between mechanism
nodes as mechanism edges 𝐸mech, and edges between a mechanism node and the object-level node

6

Discovering Agents

it controls functional edges 𝐸func. We only consider mechanised SCMs in which the object-level-only
subgraph is acyclic, but we allow cycles in the mechanism-only subgraph (we follow the formalism of
Bongers et al. (2021) when using cyclic models).

By connecting mechanism variables with causal links, we violate the commonly taken independent
causal mechanism assumption (Schölkopf et al., 2021), though we introduce a weaker form of it in
Assumption 4 (see further discussion in Section 5.3).

Interventions in a mechanised SCM are defined in the same way as in a standard SCM, via
replacement of structural equations. An intervention on an object-level variable 𝑉 changes the value
of 𝑉 without changing its mechanism, 𝑉3. This can be interpreted as the intervention occurring after
all mechanisms variables have been determined/sampled.

In a causal model, it is necessary to assume that the procedure for measuring and setting (inter-
vening on) a variable is specified. Mechanised SCMs thereby assume a well-specified procedure for
measuring and setting both object-level and mechanism variables. Pre- and post-policy interventions
in games correspond to mechanism and object-level interventions in mechanised SCMs (Hammond
et al., forthcoming).

The distinction between mechanism and object-level variables can be made more concrete by
considering repeated interactions. In Section 1.1, assume that the mouse is repeatedly placed in
the gridworld, and can adapt its decision rule based (only) on previous episodes. A mechanism
intervention would correspond to a (soft) intervention that takes place across all time steps, so that
the mouse is able to adapt to it. Similarly, the outcome of a mechanism can then be measured by
observing a large number of outcomes of the game, after any learning dynamics has converged4.
Finally, object-level interventions correspond to intervening on variables in one particular (post-
convergence) episode. Assuming the mouse is only able to adapt its behaviour based on previous
episodes, it will have no way to adapt to such interventions. Appendix B has a more detailed example
of marginalising and merging nodes in a repeated game to derive the mechanised causal graph and
game graph.

3.2. Edge-labelled mechanised causal graphs

Wenow introduce an edge-labelling onmechanised SCMs, aiming to capture two aspects of mechanised
SCMs that we think are inherent to agents:

1. whether a variable is inherently valuable to an agent (i.e. is a utility node), rather than just
instrumentally valuable for something downstream;

2. whether a variable’s distribution adaptively responds for a downstream reason, (i.e. is a decision
node), rather than for no downstream consequence (e.g. it’s distribution is set mechanistically
by some natural process).

For the first, to determine whether a variable, 𝑊, is inherently valuable to an agent, we can test
whether the agent still changes its policy in response to a change in the mechanism for 𝑊 if the
children of 𝑊 stop responding to 𝑊. For the second, to determine whether a variable, 𝑉, adapts for a
downstream reason, we can test whether 𝑉 ’s mechanism still responds even when the children of 𝑉
stop responding to 𝑉 (i.e. 𝑉 has no downstream effect).

3Alternatively, it can be viewed as a path-specific intervention on 𝑉 whose effects are constrained to 𝑉, and does not
affect other mechanism variables (assuming that the domain of 𝑉 is rich enough to facilitate the value 𝑉 is intervened to).

4Strictly, for complete precision one would need an infinite number of games.

7

Discovering Agents

We can stop the children of a variable responding to it by performing hard interventions on
each child. If an agent is present, we want it to be aware of these interventions, so they should be
implemented via mechanism interventions – we call this a structural mechanism intervention:

Definition 2 (Structural mechanism intervention). A structural mechanism intervention on a variable
𝑉 is an intervention �̃� on its mechanism variable 𝑉 such that 𝑉 is conditionally independent of its
object-level parents. That is, under do(𝑉 = �̃�), the following holds

Pr(𝑉 | Pa𝑉 , do(𝑉 = �̃�)) = Pr(𝑉 | do(𝑉 = �̃�)). (1)

We can record whether points 1. and 2. above hold in a label on the relevant mechanism edge
motivating the following definition:

Definition 3. A mechanised SCM is edge-labelled if it further identifies a subset 𝐸term ⊆ 𝐸mech of
mechanism edges (dashdotted blue) �̃� → 𝑉, called terminal mechanism edges, such that:

1. 𝑉 responds to �̃� even after any effects of 𝑊 on its children, Ch𝑊 , have been removed by means
of any structural mechanism interventions on Ch𝑊 ; and

2. 𝑉 does not respond to �̃� if effects of 𝑉 on its children, Ch𝑉 , have been removed by means of all
structural mechanism interventions on Ch𝑉 .

Non-terminal mechanism edges are drawn with dashed black lines.

Intuitively, the terminal edges designate the variables that an agent cares about for their own
sake. For example, the mechanism edge 𝑈 → �̃� in Fig. 1c is terminal, because it remains when
the children of the object-level variable 𝑈 are cut (indeed, 𝑈 has no children), and disappears if we
cut 𝐷 off from its children (since then 𝐷 doesn’t affect 𝑋 , and hence doesn’t affect 𝑈). In contrast,
�̃� → �̃� is non-terminal, because if the object-level link 𝑋 → 𝑈 is cut (i.e., the agent’s position is made
independent of it finding cheese), then the agent will cease adapting its policy to changes in the slip
probability 𝑝. The labelling of terminal links will be used in Section 3.4 to determine that 𝑋 is only
instrumentally valuable to the agent.

3.3. Discovering Edge-labelled, Mechanised Causal Graphs

We next describe how edge-labelled, mechanised causal graphs can be inferred from interventional
data. Intuitively, by definition of a causal edge, if one applies interventions to all nodes except one
node 𝑉, and varying these interventions at only node 𝑊, then one can reliably discover whether there
should be a causal edge from 𝑊 to 𝑉 (even in cyclic SCMs). This leave-one-out strategy5 is described
below:

Lemma 1 (Leave-one-out causal discovery). Applied to the set of interventional distributions generated
by a (potentially cyclic) SCM, Leave-one-out causal discovery returns the correct causal graph.

Proof. Immediate from the definitions of SCM and causal graph, see Section 2. �

Algorithm 1 applies Leave-one-out causal discovery to the combined set of object-level and mech-
anism variables of a mechanised SCM, and then infers edge-labels using structural mechanism
interventions on object-level children.

5Leave-one-out is not necessarily the most efficient procedure. Since we restrict to an acylic object-level subgraph, a more
efficient standard (acyclic) causal discovery algorithm could replace the leave-one-out strategy described here (see, e.g.,
Eberhardt et al., 2005). For the mechanism subgraph, a more efficient cyclic causal discovery algorithm could be used, (e.g.,
Forré and Mooij, 2018). There are usually tradeoffs between speed and assumptions required by these algorithms, however.

8

Discovering Agents

Leave-one-out causal discovery
Input: Interventional distributions I = {𝑃(𝑽 | do(𝒀 = 𝒚))} over variables 𝑽
1: 𝐸← ∅
2: for 𝑉 ∈ 𝑽
3: for 𝑊 ∈ 𝑽 \ {𝑉}
4: 𝒀 ← 𝑽 \ {𝑉,𝑊}
5: for 𝒚 ∈ dom(𝒀) and 𝑤,𝑤′ ∈ dom(𝑊)
6: if 𝑃(𝑉 | do(𝒀 = 𝒚,𝑊 = 𝑤)) ≠ 𝑃(𝑉 | do(𝒀 = 𝒚,𝑊 = 𝑤′))
7: 𝐸← 𝐸 ∪ (𝑊,𝑉)
8: break
Output: (𝑽, 𝐸)

Algorithm 1 Edge-labelled mechanised SCM discovery
Input: Interventional distributions I = {𝑃(V | do(𝒀 = 𝒚))} over variables V = 𝑽 ∪ 𝑽
1: (V, 𝐸) ← leave-one-out-causal-discovery({𝑃(V | do(𝒀 = 𝒚))})
2: 𝐸obj ← {(𝑊,𝑉) ∈ 𝐸 : 𝑊,𝑉 ∈ 𝑽}
3: 𝐸mech ← {(𝑊,𝑉) ∈ 𝐸 : 𝑊,𝑉 ∈ 𝑽}
4: 𝐸func ← {(𝑊,𝑉) ∈ 𝐸 : 𝑉 ∈ 𝑽,𝑊 ∈ 𝑽}
5: if 𝐸 ≠ 𝐸obj ∪ 𝐸mech ∪ 𝐸func or ∃𝑉 : |{(𝑊,𝑉) ∈ 𝐸func : 𝑊 ∈ 𝑽}| ≠ 1
6: Error: graph is not a mechanised SCM
7: 𝐸term ← ∅
8: for (�̃�, 𝑉) ∈ 𝐸mech

9: �̃� ← 𝑽 \ {�̃�, 𝑉}
10: for interventions �̃� ∪ c̃h𝑊 that are structural for Ch𝑊 , and interventions 𝑤,𝑤′ on �̃�

11: if 𝑃(𝑉 | do(�̃� = �̃�,�Ch𝑊
= c̃h𝑊

, �̃� = 𝑤)) ≠ 𝑃(𝑉 | do(�̃� = �̃�,�Ch𝑊
= c̃h𝑊

, �̃� = 𝑤′))
12: 𝐸term ← 𝐸term ∪ (�̃�, 𝑉)
13: break
14: for interventions �̃� ∪ c̃h𝑉 that are structural for Ch𝑉 , and interventions 𝑤,𝑤′ on �̃�

15: if 𝑃(𝑉 | do(�̃� = �̃�, C̃h𝑉
= c̃h𝑉

, �̃� = 𝑤)) ≠ 𝑃(𝑉 | do(�̃� = �̃�, C̃h𝑉
= c̃h𝑉

, �̃� = 𝑤′))
16: 𝐸term ← 𝐸term \ (�̃�, 𝑉)
17: break
Output: (𝑽 ∪ 𝑽, 𝐸obj ∪ 𝐸mech ∪ 𝐸func, 𝐸term)

9

Discovering Agents

Lemma 2 (Discovery of mechanised SCM). Applied to the set of interventional distributions generated
by a mechanised SCM in which structural mechanism interventions are available for all nodes, Algorithm 1
returns the correct edge-labelled mechanised causal graph.

Proof. The algorithm checks the conditions in Definitions 1 and 3. �

Applied to the mouse example of Fig. 1, Algorithm 1 would take interventional data from the
system and draw the edge-labelled mechanised causal graph in Fig. 1c. For example, the edge (𝑈, �̃�)
will be discovered because the mouse’s decision rule will change in response to a change in the
distribution for cheese location.

3.4. Discovering game graphs

To discover agents,we can convert an edge-labelled mechanised causal graph into a game graph as
specified by Algorithm 2: decision nodes are identified by their mechanisms having incoming terminal
edges (Line 4), while utility nodes are identified by their mechanisms having outgoing terminal
edges (Line 5). Decisions and utilities that are in the same connected component in the terminal
edge graph receive the same colouring, which is distinct from the other components. On Line 10,
Connected𝑡𝑒𝑟𝑚 (𝑉) is the set {𝑊 ∈ 𝑽 |�̃� − − 𝑉} where the undirected path �̃� − − 𝑉 is in the terminal
edge graph. This set could be found by a search algorithm, such as breadth-first search.

Algorithm 2 Agency Identification. Converts edge-labelled mechanised causal graph to game graph

Input: An edge-labelled mechanised causal graph C = (V, 𝐸), with nodes V = 𝑽 ∪ 𝑽 and edges
𝐸 = 𝐸obj ∪ 𝐸func ∪ 𝐸mech, with 𝐸term ⊆ 𝐸mech.

1: 𝑫← ∅
2: 𝑼 ← ∅
3: for (�̃�, 𝑉) ∈ 𝐸term

4: 𝑫← 𝑫 ∪ {𝑉}
5: 𝑼 ← 𝑼 ∪ {𝑊}
6: 𝑿 ← 𝑽 \ {𝑼 ∪ 𝑫}
7: Coloured← ∅
8: for 𝑉 ∈ 𝑼 ∪ 𝑫
9: if 𝑉 ∉ Coloured

10: Connected𝑡𝑒𝑟𝑚 (𝑉) ← NewColour
11: Coloured← Coloured ∪ Connected𝑡𝑒𝑟𝑚 (𝑉)
Output: game graph G = (𝑁,𝑽, 𝐸), where 𝑽 = 𝑿 ∪𝑼 ∪ 𝑫 and 𝐸 = 𝐸obj.

Algorithm 2 will identify any decision node 𝐷 under the following conditions (though it may
generate false positives):

• A utility node 𝑈, or a mediator node 𝑋 on a directed path from 𝐷 to 𝑈, is included in 𝑽.
• The utility/mediator node must be sufficiently important to the agent controlling 𝐷 that its

mechanism shapes the agents behaviour.
• Mechanism interventions are available that change the agent’s optimal policy for controlling 𝑈

(or 𝑋).
• These mechanism interventions are operationalised in a way that the agent’s policy can respond

to the changes they imply.

10

Discovering Agents

Under the following stronger assumptions6, Algorithm 2 is guaranteed to produce a fully correct
game graph (without false positives). These assumptions are most easily stated using mechanised
SCMs with labelled decision and utility nodes. Following Hammond et al. (forthcoming), we call such
objects mechanised games.

For our first assumption, the following definition will be helpful.

Definition 4. For a game graph, G, we define the agent subgraph to be the graph G𝐴 = (𝑫𝐴 ∪𝑼𝐴, 𝐸𝐴),
where the edge (𝐷,𝑈) belongs to 𝐸𝐴 if and only if there is a directed path 𝐷 d 𝑈 ∈ G that doesn’t pass
through any 𝑈 ′ ∈ 𝑼𝐴 \{𝑈}. We define the decision-utility subgraph to be the graph G𝑫𝑼 = (𝑫∪𝑼,∪𝐴𝐸

𝐴).

For example, the decision-utility subgraph of Fig. 1b consists of two nodes, 𝐷 and 𝑈, and an edge
(𝐷,𝑈) as there is a directed path 𝐷 to 𝑈 that is not mediated by other utility nodes. One further piece
of terminology we use is that a DAG is weakly connected if replacing all of its directed edges with
undirected edges produces a connected graph, i.e. one in which every pair of vertices is connected by
some path. A weakly connected component is a maximal subgraph such that all nodes are weakly
connected. For example, the decision-utility subgraph of Fig. 1b is connected, and consists of a single
connected component (the agent subgraph for the mouse).

Our first assumption uses these definitions as follows:

Assumption 1. Each weakly connected component of the decision-utility subgraph is an agent
subgraph, and contains at least one decision and one utility node.

The intuition behind this assumption is that if there was a disconnected component in the agent
subgraph, then the decisions in that component could be reasoned about independently from the rest
of the decisions, and there would be no way to experimentally distinguish whether those independent
decisions were made by a separate agent. So we make this as a simplifying assumption that only
separate agents reason about their decisions independently. An example of a game ruled out by this
assumption is Fig. 8, in which a decision doesn’t directly cause it’s utility.

Assumption 2. For any set of mechanism interventions, every agent optimises expected utility (plays
best response) in every decision context, i.e. agents play a subgame perfect equilibrium.

Assumption 2 implies that mechanism interventions are operationalised in a way that agents
can appropriately respond to them, that agents are trying to optimise their utility nodes, and that
object-level links going into the decision can be interpreted as information links (since agents adapt
appropriately to the outcomes of the decision parents).

Assumption 3. Agents have a preferred ordering over decision rules, so that if two or more decision
rules obtain the same (optimal) expected utility in all decision contexts, the agent will always pick
the first optimal decision rule according to the order.

This ensures no unmotivated switches occur – so that agents don’t switch decision rule in response
to mechanism interventions which have no effect on the optimality of that decision rule.

Assumption 4. Only decision nodes, 𝐷 ∈ 𝑫, have mechanisms, �̃�, with ingoing terminal edges.

This is a weak form of the popular independent causal mechanism assumption (Schölkopf et al.,
2012), discussed further in Section 5.3, preventing dependencies between certain mechanisms.

6We consider examples of breaking the first of these assumptions in Section 4.6.

11

Discovering Agents

Assumption 5. For each node 𝑉, interventions on 𝑉 can instantiate any deterministic function relating
𝑉 to its parents (when 𝑉 lacks parents, it can be set to any constant value in dom(𝑉)).

This is to ensure that we can enact the necessary soft interventions, in a way that the agent is
aware of. We are now ready to establish a correctness result for Algorithm 2.

Theorem 1 (Correctness of Algorithms 1 and 2). Let M̃real be a mechanised causal game satisfying
Assumptions 1 to 5. Let Gmodel be the game graph resulting from applying Algorithm 1 followed by
Algorithm 2 to M̃real. Then Gmodel = Greal.

Proof. We establish that the algorithm infers the correct object-level causal structure, the correct
labelling of decision and utility nodes (and hence of chance nodes), and the correct colouring of the
same.

Causal structure The only structural difference between a game and an SCM is the presence of
information links in the game. By Assumption 5, we can impute an arbitrary decision rule to any
decision, that makes it depend on all its observations. Thereby all information links are causal links.

Decision: We first show that all and only decisions get mapped to decisions. Let 𝐷 ∈ 𝑫𝐴 be a
decision variable for agent 𝐴 in M̃real. By Assumption 1 we have that there exists a utility variable
𝑈 ∈ 𝑼𝐴 such that there’s a directed path, 𝑝, from 𝐷 to 𝑈 not passing through any other utility node of
𝐴. By means of mechanism interventions, we can ensure that 𝑈 is either 0 or 1 depending on the
value of 𝐷 by copying the value of 𝐷 along 𝑝, using deterministic functions (Assumption 5). All other
nodes ignore 𝐷. Agent 𝐴 chooses a decision rule setting 𝑈 to 1 (Assumption 2). If we do a mechanism
intervention to invert the function governing 𝑈, and cut off all of its effects on its children, then
agent 𝐴 will choose a different decision rule and Lines 10-13 will add edge (𝑈, �̃�) to 𝐸term. Further,
no mechanism intervention on the function governing 𝑈 will cause agent 𝐴 to choose a different
decision rule if we intervene to cut the effect of 𝐷 on its children as all decision rules would have the
same expected utility (and Assumption 3 rules out unmotivated switches). Thus, Lines 14-17 will not
remove (𝑈, �̃�) from 𝐸term. Algorithm 2 then correctly identifies 𝐷 as a decision.

Conversely, assume 𝑉 ∈ 𝑽 \ 𝑫 is a non-decision. It may be that Lines 10-13 will add (�̃�, 𝑉) to
𝐸term, for some 𝑊 ∈ 𝑽 \ {𝑉}. But Lines 14-17 will remove (�̃�, 𝑉) from 𝐸term by Assumption 4, and
Algorithm 2 then doesn’t identify 𝑉 as a decision.

Utility: We next show that all and only utilities get mapped to utilities. Let 𝑈 ∈ 𝑼𝐴 be a utility
variable for agent 𝐴 in M̃real. By Assumption 1 we have that there exists a decision variable 𝐷 ∈ 𝑫𝐴

such that there’s a directed path, 𝑝, from 𝐷 to 𝑈 not passing through any other utility node of 𝐴. By
the same construction as for decision nodes above, Algorithm 1 will discover a terminal mechanism
edge (𝑈, �̃�). Therefore Algorithm 2 identifies 𝑈 to be a utility as desired.

Conversely, consider a non-utility node, 𝑊 ∉ 𝑼, and some other node, 𝑉 ∈ 𝑽 \ {𝑊}, with structural
interventions cutting off Ch𝑊 and interventions on all mechanisms except 𝑉. Suppose, for contradiction,
there exists a terminal edge (�̃�, 𝑉). By Assumption 4, there will be a terminal edge (�̃�, 𝑉) only if 𝑉 is
a decision. Further, by Assumptions 2 and 3 the expected utility must be affected by the change in �̃�.
But since we’ve intervened on all mechanisms except 𝑉, the only effect �̃� can have on the expected
utility is via 𝑊. But 𝑊 ∉ 𝑼, and Ch𝑊 are not affected (since they’ve been cut off), so �̃� cannot affect
expected utility. Therefore, only utility variables get outgoing edges in 𝐸term from Algorithm 1, and
Algorithm 2 does not assign 𝑉 to be a utility.

We have thus shown that all and only decisions nodes get mapped to decisions, and similarly for
utilities. All that are left are chance nodes, and these must be mapped to chance nodes (since only
decisions/utilities get mapped to decisions/utilities).

12

Discovering Agents

Colouring: By Assumption 1 for any agent, 𝐴, and for any decision 𝐷 ∈ 𝐷𝐴, there exists 𝑈 ∈ 𝑈𝐴

with (𝐷,𝑈) ∈ 𝐸𝐴. By the above paragraphs, we must have that 𝐸term contains the edge (𝑈, �̃�), and
further, by the converse arguments, the only edges in 𝐸term are of the form (𝑈, �̃�) with 𝐷 ∈ 𝐷𝐴, 𝑈 ∈ 𝑈𝐴

and (𝐷,𝑈) ∈ 𝐸𝐴 for some 𝐴, which means 𝐸term is a disjoint union of �̃�𝐴, in which each edge of �̃�𝐴

is the reverse of an edge in 𝐸𝐴. By Assumption 1, the weakly connected components of 𝐺𝑫𝑼 are the
𝐺𝐴, and so the �̃�𝐴 are each weakly connected, and disconnected from each other. The colouring of
Algorithm 2 colours each vertex of a connected component the same colour, and distinctly to all other
components, and thus is correct. �

3.5. Mechanism Identification Procedure

In the last section we demonstrated an algorithm that, when applied after a causal discovery algorithm,
can identify the underlying game graph of a system. In this section we will show the converse, that if
one already has a game graph, one can convert it into an edge-labelled mechanised causal graph.
The interpretation is that the same underlying system can equivalently be represented either as an
edge-labelled mechanised causal graph, which is a physical representation of the system, or as a game
graph, which is a decision-theoretic representation of the system.

We first prove a Lemma relating the mechanism causal graph produced by Algorithm 1 to strategic
relevance (Koller and Milch, 2003), which captures which other decision rules are relevant for
optimising the decision rule at 𝐷. Koller and Milch give a sound and complete graphical criterion for
strategic relevance, called s-reachability7, where 𝑉 ≠ 𝐷 is s-reachable from 𝐷 ∈ 𝑫𝐴, for agent 𝐴, if, in a
modified game graph Ĝ with a new parent 𝑉 added to 𝑉, we have 𝑉 6⊥Ĝ 𝑼𝐷 | Fa𝐷, where 𝑼𝐷 is the set
of utilities for agent 𝐴 that are descendants of 𝐷 (i.e. 𝑼𝐷 = 𝑼𝐴 ∩ Desc𝐷 for 𝐷 ∈ 𝑫𝐴) and 6⊥ denotes
d-connection (Pearl, 2009). In the game graph in Fig. 1b, both 𝑋 and 𝑈 are s-reachable from 𝐷.

Lemma 3. Let M̃ be a mechanised causal game satisfying Assumptions 1 to 5, containing an agent, 𝐴,
with decision variables 𝑫𝐴 and utility variables 𝑼𝐴, and let C be the mechanised causal graph with edges
𝐸obj ∪ 𝐸func ∪ 𝐸mech, and 𝐸term ⊆ 𝐸mech, which results from applying Algorithm 1 to M̃. Then

1. For 𝐷 ∈ 𝑫𝐴, that the node 𝑌 ∈ 𝑽 \ 𝐷 is s-reachable from 𝐷 is a necessary and sufficient condition
for (�̃� , �̃�) ∈ 𝐸mech (this places no restriction on (�̃� , �̃�) ∈ 𝐸mech for 𝑊 ∉ 𝑫).

2. Further, for 𝑌 ∈ 𝑼𝐴, that the existence of a directed path 𝐷 d 𝑌 not through another 𝑈 ′ ∈ 𝑼𝐴 \ {𝑌 }
is a necessary and sufficient condition for (�̃� , �̃�) ∈ 𝐸term.

Proof. Necessity of 1: We largely follow the soundness direction of Koller and Milch (2003), Thm 5.1,
with an extension to relate this to a mechanised causal graph discovered by Algorithm 1. The proof
strategy is to suppose that 𝑌 is not s-reachable from 𝐷, and show this implies (�̃� , �̃�) ∉ 𝐸mech.

We perform the mechanism interventions, do(�̃� = �̃�, �̃� = �̃�) and do(�̃� = �̃�, �̃� = �̃� ′). Since 𝐷 is a
decision variable, by Lemma 5.1 of Koller and Milch (2003) the optimal decision rule 𝜋𝐷

�̃�
(pa𝐷, E𝐷)

under do(�̃� = �̃�, �̃� = �̃�) must be a solution of the following optimisation problem

argmax
𝜋

∑︁
𝑑∈dom(𝐷)

𝜋(𝑑)
∑︁

𝑢∈dom(𝑈𝐷)
𝑃(𝑢 | 𝑑,pa𝐷, do(�̃� = �̃�, �̃� = �̃�)) · 𝑢 (2)

and similarly for the decision rule 𝜋𝐷
�̃�′ under do(�̃� = �̃�, �̃� = �̃� ′).

Now suppose that 𝑌 is not s-reachable from 𝐷, then by Lemma 5.2 of Koller and Milch (2003),
we have that 𝑃(𝑢 | 𝑑,pa𝐷, do(�̃� = �̃�, �̃� = �̃�)) = 𝑃(𝑢 | 𝑑,pa𝐷, do(�̃� = �̃�, �̃� = �̃� ′)), and so the two

7Our definition here generalises the definition from Koller and Milch (2003) to include non-decision variables as being
s-reachable, following Hammond et al. (2021).

13

Discovering Agents

optimization problems are the same. Since they are solutions of the same optimization problem, and
by Assumptions 2 and 3 the agents choose decision rules which make up subgame-perfect equilibrium,
this leads to the same decision rule in each intervened game 𝜋𝐷

�̃�
(pa𝐷, E𝐷) = 𝜋𝐷

�̃�′ (pa
𝐷, E𝐷). This holds

for any �̃�, �̃�, �̃� ′ and so Algorithm 1 does not draw an edge, i.e. (�̃� , �̃�) ∉ 𝐸mech, as was to be shown.

Necessity of 2: As argued in Theorem 1 (colouring), (�̃� , �̃�) ∈ 𝐸term implies (𝐷, 𝑌) ∈ 𝐸𝐴, which by
Definition 4 means there exists a directed path 𝐷 d 𝑌 not through another 𝑈 ′ ∈ 𝑼𝐴 \ {𝑌 }.

Sufficiency of 1: We can use soft interventions on object-level variables to construct the same
model as used in the existence proof for Theorem 5.2 of Koller and Milch (2003). We note that the
proof for Theorem 5.2 of Koller and Milch (2003) is written for another decision variable 𝐷′ being
s-reachable from 𝐷. But the proof itself makes no use of the special nature of 𝐷′ as a decision, rather
than any other type of variable, and so it also applies to any variable 𝑌 ∈ 𝑽 \ {𝐷}.

Suppose 𝑌 is s-reachable from 𝐷 in M̃. It follows from Theorem 5.2 of Koller and Milch (2003)
that the optimal decision rule for 𝐷 will be different under these mechanism interventions (i.e. this
choice of causal game), when different mechanism interventions are applied to 𝑌 . Hence Algorithm 1
will draw an edge (�̃� , �̃�) ∈ 𝐸mech.

Sufficiency of 2: By the arguments in Theorem 1 (decision, utility) the existence of a directed
path 𝐷 d 𝑌 not through another 𝑈 ′ ∈ 𝑼𝐴 \ {𝑌 } means that (�̃� , �̃�) ∈ 𝐸term.

�

Algorithm 3 Mechanism Identification. Convert game graph to edge-labelled mechanised causal
graph.
Input: game graph G = (𝑁,𝑽, 𝐸)
1: 𝐸term ← ∅
2: 𝑽 ← ∅
3: for 𝑉 ∈ 𝑽
4: 𝐸← 𝐸 ∪ (𝑉, 𝑉)
5: 𝑽 ← 𝑽 ∪ Node(𝑉),
6: V ← 𝑽 ∪ 𝑽,
7: for 𝐴 ∈ 𝑁

8: for 𝐷 ∈ 𝑫𝐴

9: for 𝑉 ∈ 𝑽 \ {𝐷}
10: Ĝ is G with a new parent 𝑉 added to 𝑉

11: if 𝑉 6⊥Ĝ 𝑈𝐷 | {Pa𝐷 ∪ 𝐷}
12: 𝐸← 𝐸 ∪ (𝑉, �̃�)
13: if ∃ directed path 𝐷 d 𝑉 not through another 𝑈 ′ ∈ 𝑼𝐴 \ {𝑉}
14: 𝐸term ← 𝐸term ∪ (𝑉, �̃�)
Output: mechanised causal graph C = (V, 𝐸), 𝐸term

The conversion from game graph to mechanised causal graph is done by Algorithm 3, Mechanism
Identification, which identifies mechanisms by converting a game graph into a mechanised causal
graph. It first takes the game graph edges and on Lines 3-5 adds the function edges. Lines 8-14 then
add the mechanism edges based on s-reachability: if a node 𝑉 is s-reachable from 𝐷 in the game
graph, then we include an edge (𝑉, �̃�) in the mechanised causal graph. Further, it adds a terminal
edge when there’s a directed path from one of an agent’s decisions to one of its utilities, that doesn’t
pass through another of its utilities. We now establish that Algorithm 2 and Algorithm 3 are inverse

14

Discovering Agents

to each other. We will use the shorthand 𝑎𝑖 (𝑥), for 𝑖 = 1, 2, 3 to refer to the result of algorithm 𝑎𝑖 on
object 𝑥, where e.g. 𝑥 is a game graph.

Theorem 2 (Algorithm 2 is a left inverse of Algorithm 3). Let G be a mechanised game graph satisfying
Assumptions 1 to 5, and let C be the mechanised causal graph resulting from applying Algorithm 3 to it.
Then applying Algorithm 2 on C reproduces G. That is, 𝑎2(𝑎3(G)) = G.

Proof. All edges between nodes are the same in G and 𝑎2(𝑎3(G)), because neither Algorithm 2 or
Algorithm 3 changes the object-level edges. We will now show that the node types are the same in
both.

Decision: Let 𝐴 be an agent with utilities 𝑼𝐴 and let 𝐷 ∈ 𝑫𝐴, then by Assumption 1 ∃𝑈 ∈ 𝑼𝐴 and
a directed path 𝐷 d 𝑈 not through another 𝑈 ′ ∈ 𝑼𝐴 \ {𝑈}. Algorithm 3 Lines 13- 14 add (𝑈, �̃�) to
𝐸term. Algorithm 2 then adds 𝐷 to the set of decisions, as desired.

Let 𝑉 ∈ 𝑽 \ 𝑫. Algorithm 3 Lines 13- 14 only adds terminal mechanism edges going into decisions,
and Algorithm 2 then doesn’t add 𝑉 to the set of decisions, as desired.

Utility: Let 𝐴 be an agent with decisions 𝑫𝐴 and let 𝑈 ∈ 𝑼𝐴, then by Assumption 1 ∃𝐷 ∈ 𝑫𝐴 and a
directed path 𝐷 d 𝑈 not through another 𝑈 ′ ∈ 𝑼𝐴 \ {𝑈}. So Algorithm 3 Lines 13-14 add (𝑈, �̃�) to
𝐸term. Algorithm 2 then adds 𝑈 to the set of utilities, as desired.

Let 𝑉 ∈ 𝑽 \𝑼. Algorithm 3 Lines 13-14 only adds terminal edges going out of utilities, so there
will be no edge out of 𝑉 in 𝐸term. Algorithm 2 then doesn’t add 𝑉 to the set of utilities, as desired.

Colouring: By above paragraphs, the node types and edges are the same in both 𝑎2(𝑎3(G)) and
G. By Assumption 1 the colouring in G is a property of the connectedness and hence will be the same
in 𝑎2(𝑎3(G)). �

We now consider the other direction: beginning with a mechanised causal graph, can we transform
it to a game graph and then back to the same mechanised causal graph? In general this isn’t possible,
because the space of possible mechanised causal graphs is larger than the space of mechanised causal
graphs that can be recovered using only the information present in a game graph. In particular,
mechanisms with non-terminal incoming mechanism edges do not, in general, get codified in the
game graph when using 𝑎2. Further, we will find it useful to consider only those mechanised causal
graphs that are producible from a mechanised causal game satisfying Assumptions 1 to 5, as this will
enable us to use Lemma 3. Thus, in the next theorem, we restrict the space of mechanised causal
graphs we consider.

Theorem 3 (Algorithm 3 is a left inverse of Algorithm 2). Let C be a mechanised causal graph such
that

• there exists a mechanised causal game, M̃, satisfying Assumptions 1 to 5, such that 𝑎1(M̃) = C;
• any node with an incoming mechanism edge also has an incoming terminal edge, i.e. ∀(𝑉, �̃�) ∈

𝐸mech, ∃(𝑉 ′, �̃�) ∈ 𝐸term, for some 𝑉 ′ ∈ 𝑽 \ {�̃�}.

Then 𝑎3(𝑎2(C)) = C.

Proof. The edges in 𝐸obj, 𝐸func are the same in both C and 𝑎3(𝑎2(C)), since neither algorithm changes
the object-level edges, and all mechanised causal graphs over object-level variables 𝑽 have the same
edges in 𝐸func, i.e. {(𝑉, 𝑉)}𝑉∈𝑽 , which are added in Algorithm 3 Lines 3-5. We now show why edges in
𝐸term and 𝐸mech are the same in both.

15

Discovering Agents

From the theorem statement, ∃M̃ such that 𝑎1(M̃) = C. Let G be the game graph of M̃.

(𝑈, �̃�) ∈ 𝐸term of C
⇐⇒ (𝑈, �̃�) ∈ 𝐸term of 𝑎1(M̃)
⇐⇒ ∃ directed path 𝐷 d 𝑈 not through 𝑈 ′ ∈ 𝑼𝐴 \ {𝑈} in G (by Lemma 3)

⇐⇒ ∃ directed path 𝐷 d 𝑈 not through 𝑈 ′ ∈ 𝑼𝐴 \ {𝑈} in 𝑎2(𝑎1(M̃)) (by Theorem 1)
⇐⇒ ∃ directed path 𝐷 d 𝑈 not through 𝑈 ′ ∈ 𝑼𝐴 \ {𝑈} in 𝑎2(C)
⇐⇒ (𝑈, �̃�) ∈ 𝐸term of 𝑎3(𝑎2(C)) (by Algorithm 3 Lines 13-14).

From the theorem statement, ∀(𝑉, �̃�) ∈ 𝐸mech, ∃(𝑉 ′, �̃�) ∈ 𝐸term, for some 𝑉 ′ ∈ 𝑽 \ {�̃�}. By Assump-
tion 4, 𝑊 must be a decision in M̃. Thus, we only need consider edges of the form (𝑉, �̃�) ∈ 𝐸mech

where 𝐷 ∈ 𝑫.

(𝑉, �̃�) ∈ 𝐸mech of C
⇐⇒ (𝑉, �̃�) ∈ 𝐸mech of 𝑎1(M̃)
⇐⇒ 𝑉 is s-reachable from 𝐷 in G (by Lemma 3)

⇐⇒ 𝑉 is s-reachable from 𝐷 in 𝑎2(𝑎1(M̃)) (by Theorem 1)
⇐⇒ 𝑉 is s-reachable from 𝐷 in 𝑎2(C)
⇐⇒ (𝑉, �̃�) ∈ 𝐸mech of 𝑎3(𝑎2(C)) (by Algorithm 3 Lines 11-12).

�

4. Examples

We now look at example applications of our algorithms, which help the modeler to draw the correct
game graph to describe a system.

4.1. Simple example

We begin by considering the simple example of Fig. 1 in more detail. The underlying system has
game graph Greal, displayed in Fig. 1b, with 𝐷 a decision node, 𝑋 a chance node and 𝑈 a utility node.
Recall that all variables are binary; 𝑋 = 𝐷 with probability 𝑝, 𝑋 = 1 − 𝐷 with probability 1 − 𝑝; and
𝑈 = 𝑋 with probability 𝑞, 𝑈 = 1 − 𝑋 with probability 1 − 𝑞. Having specified the causal game, we
can now describe the optimal decision rule – this depends on the values of 𝑝 and 𝑞: if 𝑝, 𝑞 > 0.5 or
𝑝, 𝑞 < 0.5, then 𝐷 = 1 is optimal, if 𝑝 < 0.5, 𝑞 > 0.5 or 𝑝 > 0.5, 𝑞 < 0.5 then 𝐷 = 0 is optimal, and if
either 𝑝 or 𝑞 is 0.5, then both 𝐷 = 0 and 𝐷 = 1 are optimal.

We can now consider mechanism interventions, to understand what Algorithm 1 will discover.
Suppose we soft intervene on 𝑋 and 𝑈 such that 𝑝, 𝑞 > 0.5, so that the optimal policy is 𝐷 = 1. Then
we change the soft intervention on 𝑋 such that 𝑝 < 0.5, we will see the optimal policy change to
𝐷 = 0. Thus Algorithm 1 draws an edge (�̃� , �̃�). By a similar argument, it will also draw an edge
(𝑈, �̃�), which will be a terminal edge. Thus Algorithm 1 produces the edge-labelled mechanised
causal graph Cmodel shown in Fig. 1c. Algorithm 2 then takes Cmodel and produces the correct game
graph by identifying that only �̃� has incoming arrows, and so 𝐷 is the only decision node, and that 𝑈
is the only variable which has its mechanism with an outgoing terminal edge into the mechanism for
𝐷, and hence is a utility. In this simple example, we have recovered the game graph of Fig. 1b.

16

Discovering Agents

𝐷

𝐻1 𝐻2

𝑀 𝑈

(a) G

𝐷

𝐻1 𝐻2

𝑀 𝑈

𝐻1 𝐻2

𝑀

�̃�

𝑈

(b) C

Figure 3 | Recommender system optimising a model of a human. 3a Game graph, G, from Everitt
et al. (2021a, Fig. 4b). 3b mechanised causal graph, C, that Algorithm 1 discovers. Note the path
𝐻2 → 𝑈𝐷 → �̃� which implies the recommendation system’s policy depends on how a human updates
their opinions when shown the recommended content, which is not visible from the game graph.

4.2. Optimising a model of a human

We next consider an example from the influence diagram literature. It has been suggested that a
safety problem with content-recommendation systems is that they can nudge users towards more
extreme views, to make it easier to recommend content that will generate higher utility for the system
(e.g., more clicks), as the extreme views are more easily predictable (Benkler et al., 2018; Carroll
et al., 2022; Stray et al., 2021). To combat this, Everitt et al. (2021a) propose that the system’s utility
be based on predicted clicks using a model of a user, rather than directly on actual clicks and the
user’s actions. Their Fig. 4b is reproduced here in our Fig. 3a. The node 𝐻1 represents a human’s
initial opinion, and 𝐻2 their influenced opinion after seeing an agent’s recommended content, 𝐷. The
agent observes a model of the human’s initial opinion, 𝑀, and optimises for the predicted number of
clicks, 𝑈, using the model 𝑀.

Drawing the mechanised causal graph (Fig. 3b) for this system reveals some critical subtleties.
First, there is a terminal edge (𝑈, �̃�), since this is the goal that the agent is trained to pursue. But
should there be an edge (𝐻2, 𝑈)? This depends on how the user model was obtained. If, as is common
in practice, the model was obtained by predicting clicks based on past user data, then changing how
a human reacts to recommended content (𝐻2), would lead to a change in the way that predicted
clicks depend on the model of the original user (𝑈). This means that there should be an edge, as we
have drawn in Fig. 3b. Everitt et al. (2021a) likely have in mind a different interpretation, where the
predicted clicks are derived from 𝑀 according to a different procedure, described in more detail by
Farquhar et al. (2022). But the intended interpretation is ambiguous when looking only at Fig. 3a –
the mechanised graph is needed to reveal the difference.

Why does all this matter? Everitt et al. (2021a) use Fig. 3a to claim that there is no incentive for
the policy to instrumentally control how the human’s opinion is updated and they deem the proposed
system safe as a result. However, under one plausible interpretation, our causal discovery approach
yields the mechanised causal graph representation of Fig. 3b, which contains a directed path 𝐻2 d �̃�.
This can be interpreted as the recommendation system is influencing the human in a goal-directed
way, as it is adapting its behaviour to changes in how the human is influenced by its recommendation
(cf. discussion in Section 1.2).

This example casts doubt on the reliability of graphical incentive analysis (Everitt et al., 2021a)
and its applications (Ashurst et al., 2022; Cohen et al., 2021; Evans and Kasirzadeh, 2021; Everitt
et al., 2021b; Farquhar et al., 2022; Langlois and Everitt, 2021). If different interpretations of the same
graph yields different conclusions, then graph-based inference does not seem possible. Fortunately,
by pinpointing the source of the problem, mechanised SCMs also contain the seed of a solution:

17

Discovering Agents

𝑄 𝑌 𝑊

𝐴 𝑆 𝑅

(a) Greal

𝑄 𝑌 𝑊

𝐴 𝑆 𝑅

𝑄 �̃� �̃�

𝐴 �̃� �̃�

(b) Cmodel

𝑄 𝑌 𝑊

𝐴 𝑆 𝑅

(c) Gwrong

𝐴 𝑆 𝑅

(d) Gcoarse

Figure 4 | Actor-Critic. 4a True game graph Greal. 4b Algorithm 1 produces the mechanised causal
graph Cmodel. From Cmodel, Algorithm 2 produces the correct game graph by identifying that 𝐴 and
𝑄 have incoming arrows, so are decisions, and that 𝑌 has its mechanism with an outgoing terminal
edge to the mechanism for 𝐴 so is its utility, whilst 𝑊 has its mechanism with an outgoing terminal
edge to the mechanism for 𝑄, so is its utility. They are coloured differently due to having different
utilities. 4c Incorrect game graph for actor-critic. 4d Coarse-grained single-agent game graph.

graphical incentive analysis can be trusted (only) when all non-decision mechanism lack ingoing
arrows. Indeed, this mirrors the extra assumption needed for the equivalence between games and
mechanised SCMs in Theorem 3. As mechanisms are often assumed completely independent, this is
often not an unreasonable assumption (see also Section 5.3). Alternatively, it may be possible to use
mechanised SCMs to generalise graphical incentive analysis to allow for dependent mechanisms, but
we leave investigation of this for future work.

4.3. Actor-Critic

Our third example contains multiple agents. It represents an Actor-Critic RL setup for a one-step
MDP (Sutton and Barto, 2018). Here an actor selects action 𝐴 as advised by a critic (Fig. 4a). The
critic’s action 𝑄 states the expected reward for each action (in the form of a vector with one element
for each possible choice of 𝐴, this is often called a Q-value function). The action 𝐴 influences the state
𝑆, which in turn determines the reward 𝑅. We model the actor as just wanting to follow the advice of
the critic, so its utility is 𝑌 = 𝑄(𝐴) (the 𝐴-th element of the 𝑄 vector). The critic wants its advice 𝑌 to
match the actual reward 𝑅. Formally, it optimises 𝑊 = −(𝑅 − 𝑌)2.

Algorithm 1 produces the mechanised causal graph Cmodel, in Fig. 4b. We don’t justify all of the
mechanism edges, but instead focus on a few of interest. For example, there is an edge (�̃�, 𝑄) but
there is no edge (�̃�, 𝐴), i.e. the critic cares about the state mechanism but the actor does not. The
critic cares because it is optimising 𝑊 which is causally downstream of 𝑆, and so the optimal decision
rule for 𝑄 will depend on the mechanism of 𝑆 even when other mechanisms are held constant. The
dependence disappears if 𝑅 is cut off from 𝑆, so the edge (�̃�, 𝑄) is not terminal. In contrast, the actor
doesn’t care about the mechanism of 𝑆, because 𝑌 is not downstream of 𝑆, so when holding all other
mechanisms fixed, varying �̃� won’t affect the optimal decision rule for 𝐴. There is however an indirect
effect of the mechanism for 𝑆 on the decision rule for 𝐴, which is mediated through the decision rule

18

Discovering Agents

for 𝑄. Algorithm 2 applied to Cmodel produces the correct game graph by identifying that 𝐴 and 𝑄

have incoming arrows, and therefore are decisions; that 𝑌 ’s mechanism has an outgoing terminal
edge to 𝐴’s mechanism and so is its utility; and that𝑊 ’s mechanism has an outgoing terminal edge to
the mechanism for 𝑄, and so is its utility. The decision-utility subgraph consists of two connected
components, one being (𝐴, 𝑌) and the other (𝑄,𝑊). The decisions and utilities therefore get coloured
correctly.

This can help avoid modelling mistakes and incorrect inference of agent incentives. In particular,
Christiano (private communication, 2019) has questioned the reliability of incentive analysis from
CIDs, because of an apparently reasonable way of modelling the actor-critic system where the actor is
not modelled as an agent, shown in Fig. 4c. Doing incentive analysis on this single-agent diagram
would lead to the assertion that the system is not trying to influence the state 𝑆 or the reward 𝑅,
because they don’t lie on the directed path 𝑄 →𝑊 (i.e. neither 𝑆 nor 𝑅 has an instrumental control
incentive; Everitt et al., 2021a). This would be incorrect, as the system is trying to influence both
these variables (in an intuitive and practical sense).

The modelling mistake would be avoided by applying Algorithms 1 and 2 to the underlying
system, which produce Fig. 4a, differing from Fig. 4c. The correct diagram has two agents, and it’s
not possible to apply the single-agent incentive concept from (Everitt et al., 2021a). Instead, an
incentive concept suitable for multi-agent systems would need to be developed. For such a multi-agent
incentives concept to be useful, it should capture the influence on 𝑆 and 𝑅 jointly exerted by 𝐴 and 𝑄.

Fig. 4d shows a game graph that involves only a subset of the variables of the underlying system,
i.e., a coarse-grained version. This is also an accurate description of the same underlying system,
though with less detail. At this coarser level, we find an instrumental control incentive on 𝑆 and 𝑅, as
intuitively expected.

4.4. Modified Action Markov Decision Process

Next, we consider an example regarding the redirectability of different RL agents. Langlois and
Everitt (2021) introduce modified action Markov decision processes (MAMDPs) to model a sequential
decision-making problem similar to an MDP, but where the agent’s decisions, 𝐷𝑡, can be overridden by
a human. In the game graph in Fig. 5, this is modelled by 𝐷𝑡 only influencing 𝑆𝑡 via a chance variable,
𝑋𝑡, which represents the potentially overridden decision.

Algorithm 1 produces the mechanised causal graph Cmodel in Fig. 5b, where for readability
we restrict to mechanisms only – for the full diagram see Fig.10 in Appendix D. There are many
mechanism edges, so we only elaborate on the interpretation of one of the edges, (�̃�1, 𝐷1), in this
mechanised causal graph. This edge represents that the agent’s choice of decision rule is influenced
by the mechanism for the potentially overridden variable, 𝑋1. In general, in this decision problem, it
will be suboptimal to ignore knowledge of the mechanism for the potentially overridden variables.
Algorithm 2 applied to Cmodel produces the correct game graph by identifying that 𝐷1 and 𝐷2 have
incoming terminal edges, so are decisions, and that 𝑈 has its mechanism with outgoing terminal
edges to the mechanisms for decisions 𝐷1 and 𝐷2, and so is a utility. Since the utility is the same, the
decisions are coloured the same to show they are the same agent.

We note that the game graph diagram presented here in Fig. 5a differs from Figure 2 of Langlois
and Everitt (2021). The reason is that we have been stricter about what should appear in a game
graph, and what should appear in a mechanised causal graph. In particular, Langlois and Everitt
have a node for the decision rule in their game graph, whereas we only have decision nodes in our
game graphs, with decision rule nodes only appearing in mechanised causal graphs, along with other
mechanism nodes. With this extra strictness comes greater expression and clarity – in our game

19

Discovering Agents

𝑆1 𝑆2 𝑆3

𝐷1 𝐷2

𝑋1 𝑋2

𝑈

(a) Greal

𝑆1 𝑆2 𝑆3

𝐷1 𝐷2

�̃�1 �̃�2

𝑈

(b) Cmodel

chance
mechanism
decision
utility
terminal
non-terminal

Figure 5 | Modified Action MDP. 5a The underlying system has game graph Greal. 5b Algorithm 1
produces the mechanised causal graph Cmodel (we display mechanisms only, see Fig.10 in Appendix D
for the full diagram). Since the utility 𝑈 is the same, the decisions 𝐷1 and 𝐷2 are coloured the same
to show they belong to the same agent.

𝑋 𝑌 𝑍

(a) Greal

𝑋 𝑌 𝑍

�̃� �̃� �̃�

(b) Cmodel

Figure 6 | Zero agents. 6a The true game graph Greal has no decisions or utilities, so is a standard
causal Bayesian network. 6b Algorithm 1 produces the mechanised causal graph Cmodel. Algorithm 2
produces the correct game graph by identifying that there are no agents, and just recovers the
standard causal Bayesian network.

graph we are clear that the agent’s decisions can’t condition on the result of the modification, whereas
Langlois and Everitt draw an information edge from the modification to the policy, which is a decision
node in their diagram. Instead, we represent the fact that the decision rules are influenced by the
mechanism for potentially overridden variables by the edges (𝑋𝑡, 𝐷𝑡) in the mechanised causal graph.
This allows us to be clearer about what information is available for each decision (the state), but does
not observe the modification, as might be construed from the diagram in Langlois and Everitt (2021).

4.5. Zero agents

Our final example of our algorithm working as desired is one in which there are no agents at all,
see Fig. 6. Here 𝑋 causes 𝑌 and 𝑌 causes 𝑍, but there is no decision or utility. Algorithm 1 produces
the mechanised causal graph Cmodel, in Fig. 6b. Algorithm 2 produces the correct game graph by
identifying that there are no decisions as there are no mechanisms with incoming edges, and hence
also no utilities. This then just recovers a causal Bayesian network graph.

4.6. Breaking Assumptions

Compared to the other assumptions which are more benign, Assumption 1 rules out some examples
that we might wish to consider. We now consider some examples which break it.

20

Discovering Agents

𝑅1 𝑅2

𝐻1 𝐻2

𝜃

𝑈

(a) Greal

�̃�1 �̃�2

𝐻1 𝐻2

�̃�

𝑈

(b) Cmodel restricted to mechanisms only

𝑅1 𝑅2

𝐻1 𝐻2

𝜃

𝑈

(c) Gmodel

Figure 7 | Assistance Game (A.K.A. CIRL). 7a True game graph Greal, where the yellow utility indicates
both robot and human share the same utility. 7b Algorithm 1 produces the mechanised causal graph
Cmodel, shown here restricted to mechanisms only for readability – see Appendix D, Fig. 11 for the full
mechanised causal graph. 7c Algorithm 2 produces the an incorrect game graph in this case, because
we violated Assumption 1, and gives that all decisions belong to the same agent.

4.6.1. Multiple agents with a shared utility

First, in Fig. 7, we consider a causal game that has two agents with a shared utility, see Fig. 7a. This is
a diagram that represents an Assistance Game, formerly known as Cooperative Inverse Reinforcement
Learning (Hadfield-Menell et al., 2016). There is a human which makes decisions 𝐻1 and 𝐻2,
conditioned on information about their preference, encoded by 𝜃, and a robot which makes decisions
𝑅1 and 𝑅2 based on observations of the human’s decisions, but without direct observation of 𝜃. All of
the human and robot decisions affect the utility, 𝑈 which is the same for both robot and human agents
(drawn in yellow to signify that it’s shared). This breaks Assumption 1 because the decision-utility
subgraph only has one weakly connected component, and two agent subgraphs, whereas Assumption 1
requires the weakly connected components be the two agent subgraphs.

Algorithm 1 produces the mechanised causal graph Cmodel shown in 7b. We believe this mechanised
causal graph representation of the system is correct. However, the problem arises when we apply
Algorithm 2 on it. The result is the game graph in 7c which has all decisions belonging to the same
agent. We hope that in future work we will be able to distinguish agents which share the same utility,
through some modification to the colouring logic of Algorithm 2. One approach may be to use some
condition involving sufficient recall (Milch and Koller, 2008) to distinguish between agents (a game
graph has sufficient recall if for all agents the mechanism graph restricted to that agent’s decision
rules is acyclic).

4.6.2. Non-descendent utility

We now consider an example, Fig. 8a, that breaks Assumption 1 in another way. There are two agents
which make decisions 𝐴 and 𝐵 with utilities 𝑈𝐴 and 𝑈𝐵 respectively. The red agent chooses 𝐴, which
affects the utility that the blue agent receives 𝑈𝐵. The blue agent’s choice affects the red agent’s utility.
Note that the agent subgraph for 𝐴 is disconnected (no directed path from 𝐴 to 𝑈𝐴), so this example
violates Assumption 1.

Algorithm 1 applied to Greal produces the mechanised causal graph Cmodel, in Fig. 8b. We think
this mechanised causal graph is an accurate representation of the system. From inspecting it, we can

21

Discovering Agents

𝐴

𝐵

𝑈𝐵 𝑈𝐴

(a) Greal

𝐴

𝐵

𝑈𝐵 𝑈𝐴

𝐴

�̃� 𝑈𝐵

𝑈𝐴

(b) Cmodel

𝐴

𝐵

𝑈𝐵 𝑈𝐴

(c) Gmodel

Figure 8 | Non-descendant utility. 8a True game graph Greal. Note that the agent subgraph for 𝐴

(Definition 4) is not connected, violating Assumption 1. 8b Algorithm 1 produces the mechanised
causal graph Cmodel. 8c Algorithm 2 produces an incorrect game graph in this case, because we
violated Assumption 1, leading to 𝐴 and 𝑈𝐴 being incorrectly identified as chance, rather than as
decision and utility variables respectively.

see that although 𝑈𝐴 is not a descendent of 𝐴, it is a descendent of 𝐴, via 𝐴 → �̃� → 𝐵 → 𝑈𝐴. That
is, the red agent’s decision rule can still have an effect on its utility, but Assumptions 2 and 3 rule
out agents strategising using this path. Applying Algorithm 2 on Cmodel produces an incorrect game
graph with 𝐴 and 𝑈𝐴 being incorrectly identified as chance nodes (Fig. 8c).

This example highlights several questions for future work: Which agents learn to influence their
utility by means of their decision rule, thereby breaking our Assumptions 2 and 3? And how can
Algorithm 2 be generalised to handle non-descendant utilities and agents utilising influence from
their decision rule?

5. Discussion

5.1. Relativism of variable types

The first thing we discuss is that the variable types in a causal game, i.e. decision, utility or chance,
are only meaningful relative to the choice of which variables are included in the model. Whether our
procedure of Algorithm 1 followed by Algorithm 2 classifies a variable as decision, utility or chance
depends on what other variables are included in the graph. For example, if in reality there is a utility
variable 𝑈 which is not present in the model (i.e., the set of variables doesn’t include 𝑈), but some of
its parents, Pa𝑈 , are present in the model, then those parents will be labelled as utilities. Similarly, if
in reality there is a decision variable, 𝐷, which is not present in the model, but some of its children,
Ch𝐷, are present in the model, then those children will be labelled as decisions. See Appendix C for a
simple example of this relativism. In a sense, a choice of variables represents a frame in which to
model the system, and what is a decision or a utility node is frame-dependent.

5.2. Modelling advice

How does one identify the relevant variables to begin with? Section 3.3 and Algorithms 1 and 2 only
provides a way to determine the structure of a mechanised SCM and associated game graph from a
given set of variables, but not how to choose them. We now offer some tips on choosing variables.

A few principles always apply. First, variables should represent aspects of the environment that
we are concerned with, either as means of influence for an agent, or as inherently valuable aspects of
the environment. The content selected by a content recommender system, and the preferences of a

22

Discovering Agents

user, are good examples. Second, it should be fully clear both how to measure and how to intervene
on a variable. Otherwise its causal relationship to other variables will be ill-defined. In our case, this
requirement extends also to the mechanism of each variable. Third, a variable’s domain should be
exhaustive (cover all possible outcomes of that variable) and represent mutually exclusive events
(no pair of outcomes can occur at the same time) (Kjaerulff and Madsen, 2008). Finally, variables
should be logically independent: one variable taking on a value should never be mutually exclusive
with another variable taking on a particular value (Halpern and Hitchcock, 2010).

It’s important to clarify whether a variable is object-level or a mechanism. For example, previous
work (Langlois and Everitt, 2021) has drawn a policy (i.e., a mechanism) in a way that makes it look
like an object-level variable, which led to some confusion, whereas in Section 4.4 we take the decision
rule to be a mechanism. Another lesson learnt is that there are important differences between a
utility and a variable which is merely instrumental for that utility. This is evident when performing a
structural mechanism intervention to cut off instrumental variables from their downstream utilities,
in which case a decision-maker won’t respond to changes only in the instrumental variable.

Of particular importance is the level of coarse-graining in the choice of variables. There are some
works on the marginalisation of Bayesian networks (Evans, 2016; Kinney and Watson, 2020), and in
cyclic SCMs (Bongers et al., 2021), which allow for one to marginalise out some variables. We hope
to explore marginalisation in the context of game graphs in future work, and present one example in
Appendix B. The choice of coarse-graining may have an impact on whether agents are discovered.

5.3. Relationship to Causality Literature

We now discuss some related literature in Causality. Other related work was discussed in Section 1.2.
Pearl (2009) lays the foundations for modern approaches to causality, with emphasis on graphical
models, and in particular through the use of structural causal models (SCMs), which allow for
treatment of both interventions and counterfactuals. Dawid (2002) considers related approaches to
causal modelling, including the use of influence diagrams to specify which variables can be intervened
on. One model that’s introduced is called a parameter DAG, which is similar to our mechanised SCM,
in that each object-level variable has a parameter variable which parametrises the distribution of the
object-level variable. However, whilst acknowledging there could be links between the parameter
variables, they are not considered in that work. In contrast, our focus is less on using influence
diagrams as a tool for causal modelling, and rather on modelling and discovering agents using causal
methods. Further, we allow relationships between mechanism variables in our models, and elucidate
their relation to decision, chance and utility variables in the influence diagram representation.

Halpern (2000) gives an axiomatization of SCMs, generalizing to cases where the structural
equations may not have a unique (or any) solution. However, in the case of non-unique (or non-
existant) solutions, potential response variables are ill-defined, which White and Chalak (2009)
claim prevents the desired causal discourse. They instead propose the settable systems framework in
which there are settable variables which have a role-indicator argument which determines whether
a variable’s value is a response, determined by its structural equation, or if its value is a setting, as
determined by a hard intervention. Bongers et al. (2021) give formalizations for statistical causal
modelling using cyclic SCMs, proving certain properties present in the acyclic case don’t hold in the
cyclic case. In our work, we use mechanised SCMs that can have cycles between mechanism variables.
Zero, one or multiple solutions reflect the multiple equilibria arising in some games. Our formalism
for mechanised SCMs follows the cyclic SCM treatment of Bongers et al. (2021).

Correa and Bareinboim (2020) develop sigma-calculus for reasoning about the identification of
the effects of soft interventions using observational, rather than experimental data. In our work, we

23

Discovering Agents

assume access to experimental data, which makes the identification question trivial. Future work
could relax this assumption to explore when agents can be discovered from observational data. Their
regime indicators roughly correspond to our mechanism variables.

Our work draws on structure discovery in the causal discovery literature. See Glymour et al. (2019)
for a review, and Forré and Mooij (2018) for an example of causal discovery of cyclic models. The usual
focus in causal discovery is not to model agents, but rather to model some physical (agent-agnostic)
system (modelling agents is usually done in the context of decision/game theory). Our work differs
in that we use causal discovery in order to get a causal model representation of agents (a mechanised
SCM), and can then translate that to the game-theoretic description in terms of game graphs with
agents.

One of the most immediate applications of our results concerns the independent causal mechanisms
(ICM) principle (Peters et al., 2017; Schölkopf et al., 2012, 2021). ICM states that,

1. Changing (intervening on) the causal mechanism 𝑀𝑋 for 𝑃(𝑋 | pa𝑋) does not change any of the
other mechanisms 𝑀𝑌 for 𝑃(𝑌 | pa𝑌), 𝑋 ≠ 𝑌 .

2. Knowledge of 𝑀𝑋 does not provide knowledge of 𝑀𝑌 for any 𝑋 ≠ 𝑌 .

ICM argues that 𝑃(𝑋 | pa𝑋) typically describes fixed and modular causal mechanisms that do not
respond to the mechanisms of other variables. The classic example is the distribution of atmospheric
temperature 𝑇 given its causes pa𝑇 such as altitude. While the distribution 𝑃(pa𝑇) may vary between
countries, 𝑃(𝑇 | pa𝑇) remains fixed as it describes a physical law relating altitude (and other causes)
to atmospheric temperature. In recent years ICM has become the predominant inductive bias used
in causal machine learning including causal and disentangled representations (Bengio et al., 2013;
Locatello et al., 2019; Schölkopf, 2022), causal discovery (Janzing and Schölkopf, 2010; Janzing
et al., 2012), semi-supervised learning (Schölkopf et al., 2012), adversarial vulnerability (Schott et al.,
2018), reinforcement learning (Bengio et al., 2019), and has even played a role in major scientific
discoveries such as discovering the first exoplanet with atmospheric water (Foreman-Mackey et al.,
2015). Our results provide a constraint on the applicability of the ICM principle; namely that

𝑃(𝑋 | pa𝑋) does not obey the ICM principle if it is an agent’s decision rule, or is strategically
relevant to some agent’s decision rule, as determined by Algorithm 2.

Condition 1 in the ICM is true only if 𝑋 is not strategically relevant for an agent, and condition 2
covers agents themselves, as their mechanisms are correlated with the mechanisms of strategically
relevant variables. This limits the applicability of ICM (and methods based on ICM) to systems where
the data generating process includes no agents. Likely examples include sociological data and data
generated by reinforcement learning agents during training. However, our hope is that Algorithm 1
can be applied to identify mechanism edges that violate ICM, allowing ICM to be applied to the
correct systems, and in doing so improve the performance of ICM-based methods.

6. Conclusion

We proposed the first formal causal definition of agents. Grounded in causal discovery, our key
contribution is to formalise the idea that agents are systems that adapt their behaviour in response
to changes in how their actions influence the world. Indeed, Algorithms 1 and 2 describe a precise
experimental process that can, in principle and under some assumptions, be done to assess whether
something is an agent. Our process is largely consistent with previous, informal characterisations

24

Discovering Agents

of agents (e.g. Dennett, 1987; Flint, 2020; Garrabrant, 2021; Wiener, 1961), but making it formal
enables agents and their incentives to be identified empirically or from the system architecture. Our
process improves upon an earlier formalisation by Orseau et al. (2018), by better handling systems
with a small number of actions and "accidentally optimal" systems (see Section 1.2 for details).

Causal modelling of AI systems is a tool of growing importance, and this paper grounds this area of
work in causal discovery experiments. We have demonstrated the utility of our approach by improving
the safety analysis of several AI systems (see Section 4). In consequence, this would also improve
the reliability of methods building on such modelling, such as analyses of the safety and fairness of
machine learning algorithms (see e.g. Ashurst et al., 2022; Cohen et al., 2021; Evans and Kasirzadeh,
2021; Everitt et al., 2021b; Farquhar et al., 2022; Langlois and Everitt, 2021; Richens et al., 2022).

Acknowledgement

We thank Laurent Orseau, Mary Phuong, James Fox, Lewis Hammond, Francis Rhys Ward, and Ryan
Carey for comments and discussions.

References

W. R. Ashby. An Introduction to Cybernetics. Chapman and Hall, 1956. 1.2

C. Ashurst, R. Carey, S. Chiappa, and T. Everitt. Why fair labels can yield unfair predictions: Graphical
conditions for introduced unfairness. In AAAI, 2022. 4.2, 6

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013. 5.3

Y. Bengio, T. Deleu, N. Rahaman, R. Ke, S. Lachapelle, O. Bilaniuk, A. Goyal, and C. Pal. A meta-
transfer objective for learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912,
2019. 5.3

Y. Benkler, R. Faris, and H. Roberts. Network propaganda: Manipulation, disinformation, and radical-
ization in American politics. Oxford University Press, 2018. 4.2

S. Bongers, P. Forré, J. Peters, and J. M. Mooij. Foundations of structural causal models with cycles
and latent variables. The Annals of Statistics, 49(5), 2021. 3.1, 5.2, 5.3, A.2

N. Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014. 1

M. D. Carroll, A. Dragan, S. Russell, and D. Hadfield-Menell. Estimating and penalizing induced
preference shifts in recommender systems. In International Conference on Machine Learning, pages
2686–2708. PMLR, 2022. 4.2

M. K. Cohen, B. Vellambi, and M. Hutter. Intelligence and unambitiousness using algorithmic
information theory. IEEE Journal on Selected Areas in Information Theory, 2:678–690, 4 2021. 4.2, 6

J. Correa and E. Bareinboim. A calculus for stochastic interventions: Causal effect identification
and surrogate experiments. Proceedings of the AAAI Conference on Artificial Intelligence, 34(06):
10093–10100, 2020. 3.1, 5.3

A. P. Dawid. Influence diagrams for causal modelling and inference. International Statistical Review /
Revue Internationale de Statistique, 70(2):161–189, 2002. ISSN 03067734, 17515823. 3.1, 5.3

25

Discovering Agents

D. C. Dennett. The intentional stance. MIT press, 1987. 1, 1.2, 6

F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments sufficient and in the worst
case necessary to identify all causal relations among n variables. In UAI, 2005. 5

C. Evans and A. Kasirzadeh. User tampering in reinforcement learning recommender systems. In
FAccTRec Workshop on Responsible Recommendation, 2021. 4.2, 6

R. J. Evans. Graphs for margins of bayesian networks. Scandinavian Journal of Statistics, 43(3):
625–648, 2016. 5.2

T. Everitt, R. Carey, E. Langlois, P. A. Ortega, and S. Legg. Agent incentives: A causal perspective. In
AAAI, 2021a. 1, 1.2, 2, 3, 4.2, 4.2, 4.3, A.9

T. Everitt, M. Hutter, R. Kumar, and V. Krakovna. Reward tampering problems and solutions in
reinforcement learning: A causal influence diagram perspective. Synthese, 2021b. 4.2, 6

S. Farquhar, R. Carey, and T. Everitt. Path-specific objectives for safer agent incentives. In AAAI, 2022.
4.2, 6

A. Flint. The ground of optimization. https://www.alignmentforum.org/posts/
znfkdCoHMANwqc2WE/the-ground-of-optimization-1, 2020. 1.2, 6

D. Foreman-Mackey, B. T. Montet, D. W. Hogg, T. D. Morton, D. Wang, and B. Schölkopf. A systematic
search for transiting planets in the k2 data. The Astrophysical Journal, 806(2):215, 2015. 5.3

P. Forré and J. M. Mooij. Constraint-based causal discovery for non-linear structural causal models
with cycles and latent confounders. In UAI, 2018. 5, 5.3

S. Garrabrant. Saving time. https://www.alignmentforum.org/posts/
gEKHX8WKrXGM4roRC/saving-time, 2021. 1.2, 6

C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods based on graphical models.
Frontiers in genetics, 10:524, 2019. 5.3

D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan. Cooperative inverse reinforcement learning.
Advances in neural information processing systems, 29:3909–3917, 2016. 4.6.1

J. Y. Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research, 12:317–337,
2000. 5.3

J. Y. Halpern and C. Hitchcock. Actual causation and the art of modeling. In Causality, Probability,
and Heuristics: A Tribute to Judea Pearl, pages 383–406. College Publications, 2010. 5.2

J. Y. Halpern and M. Kleiman-Weiner. Towards formal definitions of blameworthiness, intention, and
moral responsibility. In AAAI, 2018. 1, 1.2

L. Hammond, J. Fox, T. Everitt, A. Abate, and M. Wooldridge. Equilibrium refinements for multi-agent
influence diagrams: Theory and practice. In AAAI, 2021. 7, A.13, A.3

L. Hammond, J. Fox, T. Everitt, R. Carey, A. Abate, and M. Wooldridge. Reasoning about causality in
games. forthcoming, forthcoming. 1, 2, 3.1, 3.1, 3.4, A.9, A.13, A.3, 8

D. Janzing and B. Schölkopf. Causal inference using the algorithmic markov condition. IEEE Transac-
tions on Information Theory, 56(10):5168–5194, 2010. 5.3

26

https://www.alignmentforum.org/posts/znfkdCoHMANwqc2WE/the-ground-of-optimization-1
https://www.alignmentforum.org/posts/znfkdCoHMANwqc2WE/the-ground-of-optimization-1
https://www.alignmentforum.org/posts/gEKHX8WKrXGM4roRC/saving-time
https://www.alignmentforum.org/posts/gEKHX8WKrXGM4roRC/saving-time

Discovering Agents

D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and B. Schölkopf.
Information-geometric approach to inferring causal directions. Artificial Intelligence, 182:1–31,
2012. 5.3

D. Kinney and D. Watson. Causal feature learning for utility-maximizing agents. In International
conference on probabilistic graphical models, pages 257–268. PMLR, 2020. 5.2

U. B. Kjaerulff and A. L. Madsen. Bayesian networks and influence diagrams. Springer Science+
Business Media, 200:114, 2008. 5.2

D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games. Games
Econ. Behav., 45(1):181–221, Oct. 2003. 2, 3.5, 3.5, 3.5, 7, A.11, A.12

E. Langlois and T. Everitt. How RL agents behave when their actions are modified. In AAAI, 2021.
4.2, 4.4, 4.4, 5.2, 6

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Challenging
common assumptions in the unsupervised learning of disentangled representations. In ICML, pages
4114–4124. PMLR, 2019. 5.3

B. Milch and D. Koller. Ignorable information in multi-agent scenarios, 2008. 4.6.1

R. Ngo. AGI safety from first principles: Goals and Agency.
https://www.alignmentforum.org/posts/bz5GdmCWj8o48726N/
agi-safety-from-first-principles-goals-and-agency, 2020. 1.2

S. M. Omohundro. The basic AI drives. In Proceedings of the 2008 Conference on Artificial General
Intelligence 2008: Proceedings of the First AGI Conference, page 483–492, NLD, 2008. IOS Press.
ISBN 9781586038335. 1

L. Orseau, S. M. McGill, and S. Legg. Agents and devices: A relative definition of agency. arXiv
preprint arXiv:1805.12387, 2018. 1.2, 6

J. Pearl. Causality. Cambridge university press, 2009. 1, 2, 3.5, 5.3, A.5, A.6, A.2, A.7, A.8

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning algorithms.
The MIT Press, 2017. 5.3

J. G. Richens, R. Beard, and D. H. Thompson. Counterfactual harm. arXiv preprint arXiv:2204.12993,
2022. 6

B. Schölkopf. Causality for machine learning. Probabilistic and Causal Inference: The Works of Judea
Pearl, pages 765–804, 2022. 5.3

B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and anticausal
learning. arXiv preprint arXiv:1206.6471, 2012. 3.4, 5.3, 5.3

B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Toward causal
representation learning. Proceedings of the IEEE, 109(5):612–634, 2021. 3.1, 5.3

L. Schott, J. Rauber, M. Bethge, and W. Brendel. Towards the first adversarially robust neural network
model on MNIST. arXiv preprint arXiv:1805.09190, 2018. 5.3

A. Shimi, M. Campolo, and J. Collman. Literature Review on Goal-
Directedness. https://www.alignmentforum.org/posts/cfXwr6NC9AqZ9kr8g/
literature-review-on-goal-directedness, 2021. 1.2

27

https://www.alignmentforum.org/posts/bz5GdmCWj8o48726N/agi-safety-from-first-principles-goals-and-agency
https://www.alignmentforum.org/posts/bz5GdmCWj8o48726N/agi-safety-from-first-principles-goals-and-agency
https://www.alignmentforum.org/posts/cfXwr6NC9AqZ9kr8g/literature-review-on-goal-directedness
https://www.alignmentforum.org/posts/cfXwr6NC9AqZ9kr8g/literature-review-on-goal-directedness

Discovering Agents

J. Stray, I. Vendrov, J. Nixon, S. Adler, and D. Hadfield-Menell. What are you optimizing for? aligning
recommender systems with human values. arXiv preprint arXiv:2107.10939, 2021. 4.2

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition, 2018.
ISBN 9780262039246. 4.3

H. von Foerster, M. Mead, and H. Teuber, editors. Cybernetics: Circular causal and feedback mechanisms
in biological and social systems. Transactions of the seventh conference. Josiah Macy, Jr. Foundation,
1951. 1.2

H. White and K. Chalak. Settable systems: An extension of pearl’s causal model with optimization,
equilibrium, and learning. Journal of Machine Learning Research, 10(8), 2009. 5.3

N. Wiener. Cybernetics: Or Control and Communication in the Animal and the Machine. MIT Press, 2nd
edition, 1961. 1.2, 6

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge Engineering
Review, 10(2):115–152, 1995. 1.2

E. Yudkowsky et al. Artificial intelligence as a positive and negative factor in global risk. Global
catastrophic risks, 1(303):184, 2008. 1

28

Discovering Agents

A. Mathematical Background

A.1. Notation

We use roman capital letters 𝑉 for variables, lower case for their outcomes 𝑣. We use bold type to
indicate vectors of variables, 𝑽, and vectors of outcomes 𝒗. Parent, children, ancestor and descendent
variables are denoted Pa𝑉 ,Ch𝑉

,Anc𝑉 ,Desc𝑉 , respectively, with the family denoted by Fa𝑉 = Pa𝑉 ∪ {𝑉}.
We use dom(𝑉) and dom(𝑽) = ×𝑉∈𝑽 dom(𝑉) to denote the set of possible outcomes of 𝑉 and 𝑽
respectively, which are assumed finite. Subscripts are reserved for denoting submodels and potential
responses to an intervention.

A.2. Structural Causal Model

We begin with a standard definition of a structural causal model.

Definition A.5 (Structural Causal Model (SCM), Pearl, 2009). A structural causal model (SCM) is
given by the tuple S = 〈𝑽,E𝑽 , F , Pr(E𝑽)〉 where

• 𝑽 is a set of endogenous variables.
• E

𝑽 = {E𝑉 }𝑉∈𝑽 is a set of exogenous variables, one for each endogenous variable.
• F = {𝑉 = 𝑓𝑉 (𝑽, E𝑉)}𝑉∈𝑽 is a set of structural equations, one for each endogenous variable.
• Pr(E𝑽) is a distribution over the exogenous variables.

This has an associated directed graph, called a causal graph (CG).

Definition A.6 (Causal Graph (CG)). For an SCM, S = 〈𝑽,E𝑽 , F , Pr(E𝑽)〉, a causal graph (CG) is the
directed graph C = 〈𝑽, 𝐸〉, where the set of directed edges, 𝐸, represent endogenous dependencies in
the set of structural equations F , so that (𝑉,𝑊) ∈ 𝐸 if and only if 𝑊,𝑉 ∈ 𝑽 and 𝑓𝑊 (𝑽, E𝑉) depends on
the value of 𝑉 (as such, all our causal graphs are faithful (Pearl, 2009) by construction).

The subgraph of white nodes in Fig. 1c is an example of a CG.

In some parts of this work, we will consider acyclic (recursive) SCMs, in which the CG is acyclic.
Other parts will consider cases in which there is a possibly cyclic (nonrecursive) SCM, in which
the CG is cyclic. See Bongers et al. (2021) for a foundational treatment of SCMs with cyclic CGs.
They define a solution of an SCM as a set of exogenous and endogenous random variables, E,𝑽,
for which the exogenous distribution matches that in the cyclic SCM, and for which the structural
equations are satisfied. For a solution, E,𝑽, the distribution over the endogenous variables, Pr𝑽 is
called the observational distribution associated to 𝑽. In this cyclic case, there can be zero, one or many
observational distributions, due to the existence of different solutions of the structural equations. In
this work, we assume the existence of a unique solution, even in the case of a nonrecursive SCM. This
unique solution then defines a joint distribution over endogenous variables (Pearl, 2009)

Pr[S] (𝑽 = 𝒗) =
∑︁

{𝜺 |𝑽 (𝜺)=𝒗}
Pr(𝜺). (3)

SCMs model causal interventions that set variables to particular outcomes, captured by the
following definition of a submodel:

Definition A.7 (SCM Submodel, Pearl, 2009). Let S = 〈𝑽,E𝑽 , F , Pr(E𝑽)〉 be an SCM, 𝒀 ⊆ 𝑽 be a set
of endogenous variables, and 𝒚 ∈ dom(𝒀) a value for each variable in that subset. The submodel

29

Discovering Agents

S𝒚 represents the effects of an intervention do(𝒀 = 𝒚) and is formally defined as the SCM S𝒚 =

〈𝑽,E𝑽 , F𝒚 , Pr(E𝑽)〉 where F𝒚 = {𝑉 = 𝑓𝑉 (Pa𝑉 , E𝑉)}𝑉∈𝑽\𝒀 ∪ {𝒀 = 𝒚}. That is, the original functional
relationships for 𝒀 are replaced with the constant functions 𝒀 = 𝒚.

We also assume the existence of a unique solution to the set of structural equations under all
interventions, allowing us to define the potential response.

Definition A.8 (Potential Response, Pearl, 2009). Let S = 〈𝑽,E𝑽 , F , Pr(E𝑽)〉 be an SCM, and let
𝑿,𝒀 ⊆ 𝑽. The potential response of 𝑿 to the intervention do(𝒀 = 𝒚), denoted 𝑿𝒚 (E) is the solution for
𝑿 in the set of equations F𝒚 , that is, 𝑿𝒚 (E) = 𝑿S𝒚 (E), where S𝒚 is the submodel from intervention
do(𝒀 = 𝒚).

A.3. Structural Causal Game

We now introduce a (structural) causal game, which draws on the SCM, emphasising the structural
causal dependencies present.

Definition A.9 (Structural Causal Game, Everitt et al., 2021a; Hammond et al., forthcoming). A
(Markovian) (structural) causal game is a tuple

M̃ = 〈𝑁,𝑽,E𝑽 , {Pa𝐷}𝐷∈𝑫, F , Pr(E𝑽)〉

where

• 𝑁 = {1, . . . , 𝑛} is a set of agents
• 𝑽 = 𝑫 ∪ 𝑿 ∪ 𝑼 is a set of endogenous variables, partitioned into decision, chance and utility

variables respectively.
• E

𝑽 = {E𝑉 }𝑉∈𝑽 is a set of exogenous variables, one for each endogenous variable
• {Pa𝐷}𝐷∈𝑫 is a set of information parents for each decision variable 𝐷, with Pa𝐷 ⊆ 𝑽 \ 𝐷
• F = {𝑉 = 𝑓𝑉 (Pa𝑉 , E𝑉)}𝑉∈𝑽\𝑫 is a set of structural equations for each non-decision endogenous

variable, as specified by the functions 𝑓𝑉 : dom(Pa𝑉 ∪ {E𝑉 }) ↦→ dom(𝑉), where Pa𝑉 ⊆ 𝑽 \ {𝑉}.
• Pr(E𝑽) is a distribution over the exogenous variables such that the individual exogenous variables

are mutually independent.

The causal game has an associated graph:

Definition A.10 (Game Graph). Let M̃ = 〈𝑁,𝑽,E𝑽 , {Pa𝐷}𝐷∈𝑫, F , Pr(E𝑽)〉 be a causal game. We define
the game graph to be the structure G = (𝑁,𝑽 ∪ E

𝑽 , 𝐸), where 𝑁 = {1, . . . , 𝑛} is a set of agents and
(𝑽 ∪ E𝑽 , 𝐸) is a DAG with:

• Four vertex types 𝑽 ∪ E𝑽 = 𝑿 ∪𝑼 ∪ 𝑫 ∪ E𝑽 : the first three types are endogenous nodes in white
circles, coloured diamonds and squares respectively; the fourth type are exogenous nodes, E𝑽 ,
in grey circles. The different colours of diamonds and squares correspond to different agents.

• Two types of edges:
– dependence edges, (𝑉,𝑊) ∈ 𝐸 if and only if either 𝑊 ∈ 𝑽 \ 𝑫 and 𝑉 is an argument to the
structural function 𝑓𝑊 , i.e. 𝑉 ∈ Pa𝑊 ∪ E

𝑊; or 𝑊 = 𝐷 ∈ 𝑫 and 𝑉 = E𝐷. These are denoted
with solid edges.

– information edges, (𝑉, 𝐷) ∈ 𝐸 if and only if 𝑉 ∈ Pa𝐷 of the causal game. These are denoted
with dashed edges.

30

Discovering Agents

One can also draw a simpler graph by omitting the exogenous variables and their outgoing edges
from the game graph. Fig. 1b is an example of a game graph. We will only consider causal games for
which the associated game graph is acyclic.

For each non-decision variable, the causal game specifies a distribution over it. For the decision
variables, the causal game doesn’t specify how it is distributed, only the information available at
the time of the decision, as captured by Pa𝐷. The agents get to select their behaviour at each of
their decision nodes, as follows. LetM be a causal game. A decision rule, 𝜋𝐷, for a decision variable
𝐷 ∈ 𝑫𝑖 ⊆ 𝑫 is a (measurable) structural function 𝜋𝐷 : dom(Pa𝐷 ∪ {E𝐷}) ↦→ dom(𝐷) where E𝐷 is
uniformly distributed over the [0, 1] interval.8 A partial policy profile, 𝝅𝑫′ is a set of decision rules 𝜋𝐷

for each 𝐷 ∈ 𝑫′ ⊆ 𝑫. A policy refers to 𝝅𝑎, the set of decision rules for all of agent 𝑎’s decisions. A
policy profile, 𝝅 = (𝝅1, . . . ,𝝅𝑛) assigns a decision rule to every agent.

For a causal gameM, we can combine its set of structural equations F = {𝑉 = 𝑓𝑉 (Pa𝑉 , E𝑉)}𝑉∈𝑽\𝑫
with a policy profile 𝝅 to obtain a Policy-game SCM, M(𝝅) = 〈𝑽,E𝑽 , F 𝝅, Pr(E𝑽)〉 with the set of
structural equations F 𝝅 = F ∪ {𝐷 = 𝜋𝐷 (Pa𝐷, E𝐷)}𝐷∈𝑫. Note that there is a well-defined endogenous
distribution, Pr[M(𝝅)] , as the policy-game SCM is acyclic, due to the game graph being a DAG.

Each agent’s expected utility in policy profile 𝝅 is given by

𝐸𝑈𝑎(𝝅) =
∑︁

{𝑢𝑎∈dom(𝑈𝑎) }
Pr[M(𝝅)] (𝑈𝑎 = 𝑢𝑎) · 𝑢𝑎. (4)

Definition A.11 (Optimality and Best Response, Koller and Milch, 2003). Let 𝒌 ⊆ 𝑫𝑎 and let 𝝅 be a
policy profile. We say that partial policy profile �̂�𝒌 is optimal for policy profile 𝝅 = (𝝅−𝒌, �̂�𝒌) if in the
induced causal gameM(𝝅−𝒌), where the only remaining decisions are those in 𝒌, the decision rule
�̂�𝒌 is optimal, i.e. for all partial policy profiles 𝝅𝒌

𝐸𝑈𝑎((𝝅−𝒌, �̂�𝒌)) ≥ 𝐸𝑈𝑎((𝝅−𝒌,𝝅𝒌)). (5)

Agent 𝑎’s decision rule 𝝅𝑎 is a best response to the partial policy profile 𝝅−𝑎 assigning strategies to the
decisions of all other agents if for all strategies 𝝅𝑎

𝐸𝑈𝑎((𝝅−𝑎, �̂�𝑎)) ≥ 𝐸𝑈𝑎((𝝅−𝑎,𝝅𝑎)). (6)

In the game-theoretic setting with multiple agents, we typically consider rational behaviour to be
represented by a Nash Equilibrium:
Definition A.12 (Nash Equilibrium, Koller and Milch, 2003). A policy profile 𝝅 = (𝝅1, . . . ,𝝅𝑛) is a
Nash Equilibrium if for all agents 𝑎, 𝝅𝑎 is a best response to 𝝅−𝑎.

In this paper, we consider the refined concept of subgame perfect equilibrium (SPE), as follows

Definition A.13 (Subgame Perfect Equilibrium, Hammond et al., 2021, forthcoming). A policy profile
𝝅 = (𝝅1, . . . ,𝝅𝑛) is a Subgame Perfect Equilibrium if for all subgames, 𝝅 is a Nash equilibrium.

Informally, in any subgame, the rational response is independent of variables outside of the
subgame. See Hammond et al. (2021, forthcoming) for the formal definition of a subgame in a causal
game.

8For settings where we are interested in arbitrary counterfactual queries, a more complex form of E𝐷 has advantages
(Hammond et al., forthcoming).

31

Discovering Agents

B. Getting a mechanised SCM by Marginalisation and Merging

A bandit algorithm repeatedly chooses an arm 𝑋 and receives a reward 𝑈. We can represent two
iterations by using indices.

𝑋1 𝑈1 𝑋2 𝑈2

If we include the mechanisms in the graph, we can model the fact that the policy at time 2, i.e. 𝑋2,
depends on the arm and outcome at time 1:

𝑋1 𝑈1 𝑋2 𝑈2

𝑋1 𝑈1 𝑋2 𝑈2

To arrive at the final mechanism graph, we first marginalise 𝑋1 and 𝑈1. The path from 𝑈1 to 𝑋2

previously mediated by 𝑈1 now becomes a direct edge.

𝑋2 𝑈2

𝑋2 𝑈2𝑈1𝑋1

Finally, we merge 𝑋1 with 𝑋2 and 𝑈1 with 𝑈2, with the understanding that observing the merged node
�̃� corresponds to observing 𝑋2, while intervening on �̃� means setting both 𝑋1 and 𝑋2. This yields the
following mechanised causal graph (note the terminal edge due to 𝑈2 not having any children)

𝑋2 𝑈2

�̃� 𝑈

Applying Algorithm 2 yields the expected game graph:

𝑋2 𝑈2

C. Example of relativism of variable types

This example illustrates the discussion of Sec.5.1 with an example of the relativism of variable types.
Whether a variable gets classified as a decision, chance, or utility node by Algorithm 2 depends on
which other nodes are included in the graph. To see this, consider the graph in Fig. 9 in which a

32

Discovering Agents

𝐵 𝑇 𝐶

�̃� 𝑇 𝐶

𝐵 𝑇 𝐶

(a) Include 𝐵, 𝑇, and 𝐶

𝑇 𝐶

𝑇 𝐶

𝑇 𝐶

(b) Include 𝑇 and 𝐶

𝐵 𝑇

�̃� 𝑇

𝐵 𝑇

(c) Include 𝐵 and 𝑇

Figure 9 | What is a decision or a utility node depends on what other variables are included. Here the
variables represent a blueprint for a thermometer (B), the constructed thermometer (T), and thereby
whether the reading is correct or not (C)

blueprint for a thermometer, 𝐵, influences the constructed thermometer, 𝑇, and thereby whether the
reading is correct or not, 𝐶.

Considering first Fig. 9a where a first modeler has included all three variables. We find that the
designer will produce a different blueprint if they are aware that blueprints are interpreted according
to a different convention (i.e., if 𝑇 changes), or if temperature was measured at a different scale (a
change to 𝐶). Accordingly, Algorithm 2 labels 𝐵 a decision, and 𝐶 a utility. This makes sense in this
context: the designer chooses a blueprint to ensure that the thermometer gives a correct reading.

A second modeler may not care about the blueprint, and only wonder about the relationship
between the produced thermometer 𝑇 and the correctness of the reading 𝐶. See Fig. 9b. They will
find that if temperature was measured at a different scale, a slightly different thermometer would
have been produced, i.e. 𝐶 now influences 𝑇 rather than �̃� (as in Fig. 9a). This is not a contradiction,
as 𝑇 is a different object in Fig. 9a and 9b. In Fig. 9a, 𝑇 represents the relationship between 𝐵 and 𝑇,
while in Fig. 9b, 𝑇 represents the marginal distribution of 𝑇. As a consequence, Algorithm 2 will label
𝑇 as a decision optimising 𝐶. This is not unreasonable: a decision was made to produce a particular
kind of thermometer with the aim of getting correct temperature readings.

A third modeler may not bother to represent the correctness of the readings explicitly, and only
consider the blueprint and the produced thermometer, see Fig. 9c. They will find that the blueprint
is optimised to obtain a particular kind of thermometer. Again, this is not unreasonable, as in this
context we may well speak of the designer deciding on a blueprint that will produce the right kind of
thermometer.

D. Supplementary Figures

33

Discovering Agents

𝑆1 𝑆2 𝑆3

𝐷1 𝐷2

𝑋1 𝑋2

𝑈𝑆1 𝑆2

𝑆3

𝐷1 𝐷2

�̃�1 �̃�2

𝑈

Figure 10 | Full mechanised causal graph for MAMDP example in Fig. 5

𝑅1 𝑅2

𝐻1 𝐻2

𝜃

𝑈

𝐻1 𝐻2

�̃�1 �̃�2

�̃�

𝑈

Figure 11 | Full mechanised causal graph for Assistance Game example in Fig. 7

34

	1 Introduction
	1.1 Example
	1.2 Other Characterisations of Agents
	1.3 What do we consider an agent
	1.4 Outline

	2 Background
	3 Algorithms for Discovering Agents
	3.1 Mechanised Structural Causal Model
	3.2 Edge-labelled mechanised causal graphs
	3.3 Discovering Edge-labelled, Mechanised Causal Graphs
	3.4 Discovering game graphs
	3.5 Mechanism Identification Procedure

	4 Examples
	4.1 Simple example
	4.2 Optimising a model of a human
	4.3 Actor-Critic
	4.4 Modified Action Markov Decision Process
	4.5 Zero agents
	4.6 Breaking Assumptions
	4.6.1 Multiple agents with a shared utility
	4.6.2 Non-descendent utility

	5 Discussion
	5.1 Relativism of variable types
	5.2 Modelling advice
	5.3 Relationship to Causality Literature

	6 Conclusion
	A Mathematical Background
	A.1 Notation
	A.2 Structural Causal Model
	A.3 Structural Causal Game

	B Getting a mechanised SCM by Marginalisation and Merging
	C Example of relativism of variable types
	D Supplementary Figures

