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Abstract: Ranking theory is one of the salient formal representations 

of doxastic states. It differs from others in being able to represent 

belief in a proposition (= taking it to be true), to also represent degrees 

of belief (i.e. beliefs as more or less firm), and thus to generally 

account for the dynamics of these beliefs. It does so on the basis of 

fundamental and compelling rationality postulates and is hence one 

way of explicating the rational structure of doxastic states. Thereby it 

provides foundations for accounts of defeasible or nonmonotonic 

reasoning. It has widespread applications in philosophy, it proves to 

be most useful in Artificial Intelligence, and it has started to find 

applications as a model of reasoning in psychology. 
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1. Introduction 

 

Epistemic or doxastic attitudes1 representing how the world is like come in 

degrees, whether you call them degrees of belief, uncertainty, plausibility, etc. 

There are various accounts of those degrees, amply presented in this handbook.2 

The interests in those accounts are manifold. Philosophers are concerned with the 

rational nature of those degrees, AI researchers are interested in their 

computational feasibility, psychologists deal with their actual manifestations, and 

all sides argue about how well they are suited to model human reasoning. 

However, we also have the notion of belief simpliciter. Related notions are 

those of acceptance or judgment. These are indeed the more basic notions when it 

comes to truth, to truly representing the world. Beliefs can be true, but degrees of 

belief cannot. The latter rather relate to action (see chapter 8.2 by Peterson in this 

volume). Accounts of degrees of belief invariably have great difficulties in doing 

																																																								
1  Strictly speaking, “epistemic” only refers to knowledge, although it is often 

used more widely. Because we will talk only about belief, we prefer to use 

“doxastic” throughout. See also chapter 5.1 by van Ditmarsch (in this volume). 

2  See chapters 4.1 by Hájek & Staffel, 4.5 by Chater & Oaksford, 4.7 by 

Dubois & Prade, 8.3 by Glöckner, and 8.4 by Hill (in this volume). 
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justice to this fundamental point. There is a questionable tendency to take degrees 

of belief as basic and to belittle those difficulties. 

So we need to theoretically account for belief simpliciter. The first attempt was 

doxastic logic (see chapter 5.1 by van Ditmarsch in this volume). However, it is 

static and misses a dynamic perspective. This has been unfolded in belief revision 

theory (see chapter 5.2 by Rott in this volume). However, it has problems with 

iterated belief revision required for a complete dynamic account. 

Ranking theory promises both to represent belief and degrees of belief and to 

provide a complete dynamics for both. These features give it a prominent place in 

the spectrum of possible theories. It was first presented in English in Spohn 

(1988) and fully developed in Spohn (2012). Easy access is provided in Spohn 

(2009). Its far-reaching applications in philosophy of science, epistemology, and 

even to normative reasoning may be found, e.g., in Spohn (2012, 2015, 2019). 

There is no place here to go into any of them. 

Below we present the basics of the theory in Section 2 and its dynamic aspects 

in Section 3. Section 4 is comparative. Section 5 gives a short introduction to its 

relevance for Artificial Intelligence, and Section 6 explains how it can be put to 

use in psychology. 
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2. The Basics of Ranking Theory 

 

Grammatically, “believe” is a transitive verb. In the phrase “a believes that p”, “a” 

refers to a (human) subject and “that p” seems to be the object. What does “that p” 

stand for, what are the objects of belief? This is a difficult and most confusing 

issue extensively discussed in philosophy (under the rubric “propositions”; see, 

e.g., McGrath 2012). Here, we cut short the issue, as usual in formal epistemology, 

by saying in a non-committal way that “that p” stands for the proposition 

expressed by “p”, where that proposition is its truth condition, the set of 

possibilities or possible worlds in which p obtains or “p” is true. 

Hence, we simply assume a set W of (mutually exclusive and jointly 

exhaustive) possibilities. These may be coarse-grained and refer only to a few 

things of interest; they need not consist of entire possible worlds. Each subset of 

W, i.e. each element of the power set P(W) of W, is a proposition. 

Now, the basic representation of a belief state is simply as the set of 

propositions believed or taken to be true in that state, its belief set. Traditionally, a 

belief set B Í P(W) has to satisfy two rationality requirements: B must be 

consistent, i.e., ⋂B ≠ Æ, and B must be deductively closed, i.e., if ⋂B Í A, then A 

Î B. 
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These two rationality requirements may seem entirely obvious. The rationale 

of deductive logic is to check what we must not believe and what we are 

committed to believe. Note, however, that deductive closure is lost when we 

identify belief with probability above a certain threshold; it easily happens that the 

probabilities of two propositions is above the threshold, while that of their 

conjunction is below. Thus, the lottery and the preface paradox and the general 

desire to stick to a probabilistic representation of belief have led to a contestation 

of these requirements (see, e.g., Christensen 2005). Here we stick to them as 

absolutely basic (see chapter 3.1 by Steinberger in this volume). Of course, these 

requirements can be maintained only under a dispositional understanding of 

belief; occurrent thought cannot be deductively closed. 

The notion of a belief set is static. However, belief sets continuously change, 

and we must account for how they change (or should rationally change). We 

cannot do so on a qualitative level. In those changes we often give up old beliefs 

and replace them by new ones, and then we give up less well entrenched beliefs 

and keep better entrenched ones (see chapter 5.2 by Rott in this volume). Roughly, 

this calls for some entrenchment order or, indeed, for some kind of degrees of 

belief measuring the strength of entrenchment. Here, ranking theory commences. 

Let us start with some brief formal explanations.	
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Definition 1: k is a negative ranking function for W iff k is a function from P(W) 

into the set of natural numbers plus infinity ¥ such that for all A, B Í W: 

(1) k(W) = 0 and k(Æ) = ¥, 

(2) k(A È B) = min {k(A), k(B)} (the law of disjunction). 

 

The basic interpretation is that k expresses degrees of disbelief (whence the 

qualification ‘negative’). If k(A) = 0, A is not disbelieved at all. This allows that 

k(~A) = 0 as well (where ~A is the negation of A); then we have indifference or 

suspension of judgment regarding A. If k(A) > 0, A is disbelieved or taken to be 

false, and the more so, the larger k(A). So, positive belief in A is expressed by 

disbelief in ~A, i.e., by k(~A) > 0 (which implies that k(A) = 0). 

This interpretation explains axioms (1) and (2). (1) says that the tautology W is 

not disbelieved, and hence the contradiction Æ is not believed. This entails that 

beliefs are consistent according to k. (1) moreover says that the contradiction is 

indeed maximally disbelieved. And (2) states that you cannot disbelieve a 

disjunction less strongly than its disjuncts. This entails in particular that if you 

believe two conjuncts, you also believe their conjunction. Hence, beliefs are 

deductively closed according to k. In other words, the belief set B = {A | k(~A) > 
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0} associated with k satisfies the two basic rationality requirements. Note, 

moreover, that (1) and (2) entail: 

 

(3) either k(A) = 0 or k(~A) = 0 (or both) (the law of negation), 

 

i.e., you cannot (dis)believe A and ~A at once. 

For an illustration, consider Tweetie. Tweetie has, or fails to have, each of 

three properties: being a bird (B), being a penguin (P), and being able to fly (F). 

This opens eight possibilities. Suppose you have no idea who or what Tweetie is, 

but somehow you do not think that it might be a penguin. Then your negative 

ranks for the eight possibilities (which determine the ranks for all other 

propositions) may be the following (chosen in some plausible way—but see 

below how the numbers may be justified): 

 

k B Ç ~P B Ç P ~B Ç ~P ~B Ç P 

F 0 4 0 11 

~F 2 1 0 8 

 

(Table 1) 
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In this case, the strongest proposition you believe is that Tweetie is either no 

penguin and no bird (~B Ç ~P) or a flying bird and no penguin (F Ç B Ç ~P); all 

other possibilities are disbelieved. Hence, you neither believe that Tweetie is a 

bird nor that it is not a bird. You are also indifferent concerning its ability to fly. 

But you believe, e.g.: if Tweetie is a bird, it is not a penguin and can fly (~B È 

(~P Ç F)); and if Tweetie is a penguin, it can fly (~P È F)—each if-then taken as 

material implication. Surely, you believe the latter only because you believe that 

Tweety is not a penguin in the first place. The large ranks in the last column 

indicate your strong disbelief in penguins not being birds. This may suffice as a 

first illustration. 

We will see the reasons for starting with negative ranks. But, of course, we can 

also introduce the positive counterpart by defining b to be a positive ranking 

function iff there is a negative ranking function k such that b(A) = k(~A) for all 

propositions A. b represents degrees of belief. Of course, (1) and (2) translate 

directly into axioms for b. 

We may as well represent degrees of belief and degrees of disbelief in a single 

function by defining t to be a two-sided ranking function iff there is a negative 

ranking function k and the corresponding positive ranking function b such that 

t(A) = b(A) – k(A) = k(~A) – k(A) for all propositions A. Thus we have t(A) > 0, 

< 0, or = 0 according to whether A is believed, disbelieved, or neither in t. 
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Therefore this is perhaps the most intuitive notion. However, the mathematics is 

best done in terms of negative ranking functions. It is clear, though, that the three 

functions are interdefinable. 

There is an important interpretational degree of freedom that we have not yet 

noticed. So far, we said that belief in A is represented by k(~A) = b(A) = t(A) > 0. 

However, we may often find it useful to raise the threshold for belief, as we do 

informally in asking: “Do you really believe A?” That is, we may as well say that 

belief in A is only represented by k(~A) = b(A) = t(A) > z for some z ≥ 0. This 

seems to be a natural move. Belief is vague. Where does it commence, when does 

it cease? And this vagueness seems well represented by that parameter z. This 

move at the same time enlarges the range of suspension of judgment to the 

interval from –z to z. The remarkable point about axioms (1) and (2) is that they 

guarantee belief sets to be consistent and deductively closed, however we choose 

the threshold z. They are indeed equivalent to this general guarantee. 

 

3. Conditional Ranks, Reasons, and the Dynamics of Ranks 

 

So far, we have sketched only the static part of ranking theory. However, we 

mentioned that the numeric ranks are essentially used to account for the dynamics 

of belief; they are not just to represent greater and lesser firmness of (dis)belief. 

To achieve this, the crucial notion is that of conditional ranks. 
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Definition 2: Let k be a negative ranking function for W and k(A) < ¥. Then the 

conditional rank of B given A is defined as k(B | A) = k(A Ç B) – k(A). 

 

We might rewrite this definition as: 

 

(4) k(A Ç B) = k(A) + k(B | A) (the law of conjunction). 

 

This is highly intuitive. For, what is your degree of disbelief in A Ç B? One way 

for A Ç B to be false is that A is false; this contributes k(A) to that degree. 

However, if A is true, B must be false; and this adds k(B | A). 

It immediately follows for all propositions A and B with k(A) < ¥: 

 

(5) k(B | A) = 0 or k(~B | A) = 0 (the conditional law of negation). 

 

This law says that even conditional belief must be consistent. If both, k(B | A) and 

k(~B | A), were > 0, both, B and ~B, would be (dis-)believed given A, and this 

must be excluded, as long as the condition A itself is considered possible. Indeed, 

given definition 2 and axiom (1), we could axiomatize ranking theory also by (5) 
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instead of (2). Hence, the only substantial assumption written into ranking 

functions is conditional consistency. 

Axioms (1) and (2) did not refer to any cardinal properties of ranking functions. 

However, the definition of conditional ranks involves arithmetical operations and 

thus presupposes a cardinal understanding of ranks. We will see below how this 

may be justified. We hasten to add that one could as well define positive 

conditional ranks by b(B | A) = k(~B | A) and two-sided conditional ranks by t(B | 

A) = k(~B | A) – k(B | A). 

As an illustration, consider again Table 1 and the conditional beliefs contained 

therein. We can see that precisely the (material) if-then propositions non-

vacuously held true correspond to conditional beliefs. According to the k 

specified, you believe, e.g., that Tweetie can fly given it is a bird (since k(~F | B) 

= 1) and also given it is a bird, but not a penguin (since k(~F | B Ç ~P) = 2), and 

that Tweetie cannot fly given it is a penguin (since k(F | P) = 3). Hence, your 

vacuous belief in the material implication “if Tweety is a penguin, it can fly” does 

not amount to a corresponding conditional belief. In other words: “if, then” 

expresses conditional belief rather than material implication (see also chapter 6.1 

by Starr in this volume). 

A first fundamental application of conditional ranks lies in the notion of an 

epistemic reason, which is at the center of the entire handbook. It is very natural 
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to say that A is a reason for B iff A speaks in favor of B or confirms B, if A makes 

B more plausible or less implausible, or if B is more credible or less incredible 

given A than given ~A. This explanation works for any conception of conditional 

degrees of belief. In a probabilistic interpretation it amounts to Carnap’s notion of 

incremental confirmation or positive relevance (Carnap 1950/62), which is basic 

for confirmation theory (see chapter 4.3 by Merin in this volume). Ranking-

theoretically, it leads to 

 

Definition 3: A is a reason for B relative to the negative ranking function k or the 

associated two-sided ranking function t iff t(B | A) > t(B |~A). 

 

We may show that if A is a deductive reason for B, i.e., if A Í B, then A is also 

a reason for B according to definition 3 (given k(A), k(~B) < ¥). Clearly, this 

definition provides only a subjectively relativized notion of a reason entirely 

depending on the subject’s doxastic state. Philosophers strive for a more objective 

notion of a reason3, perhaps because they take objective deductive reasons as a 

paradigm. In our view, the extent to which a more objective notion may be 

reached is a philosophically fundamental, alas very open issue (see Spohn, 2018). 

																																																								
3 See also chapters 2.1 by Broome, 2.2 by Wedgwood, and 12.2 by Smith (in 

this volume). 
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On this account, reasons can take four significant forms, depending on whether 

t(B | A) and t(B |~A) are positive or negative. E.g., A is a sufficient reason for B iff 

B is believed given A and not believed given ~A. We suggest that this is indeed 

the core meaning of the term “sufficient reason”, although it is often used 

differently. 

Moreover, we may define that B is (doxastically) irrelevant to or independent 

of A if neither A nor ~A is a reason for B. On this basis, a theory of (conditional) 

independence can be developed in ranking terms in far-reaching analogy to the 

probabilistic theory. For instance, the theory of Bayes nets (see chapter 4.2 by 

Hartmann in this volume) works equally well in ranking theory (see Goldszmidt 

& Pearl, 1996). 

A second fundamental application of conditional ranks lies in the dynamics of 

beliefs and ranks. As in probability theory, we may say that we should simply 

move to the degrees of belief conditional on the evidence E learned. Thereby, 

though, the evidence E acquires maximal certainty, either probability 1 or positive 

rank ¥. This seems too restrictive. In general, evidence may be (slightly) 

uncertain, and our rules for doxastic change through evidence or learning—we do 

not attend to changes caused in other ways like forgetting—should take account 

of this. In ranking theory, it is achieved by two principles: first, conditional ranks 

given the evidence E and given its negation ~E are not changed by the evidence 

itself—how could it change them?—and second, the evidence E does not become 
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maximally certain, but improves its position by n ranks, where n is a free 

parameter characterizing the specific information process.4 These two 

assumptions suffice to uniquely determine the kinematics of ranking functions, 

i.e., ranking-theoretic conditionalization. 

In order to see how this works look again at our Tweety example. Suppose you 

learn in some way and accept with firmness 2 that Tweetie is a bird. Thus you 

shift up ~B-possibilities by 2 and keep constant the rank differences within B and 

within ~B. This results in the posterior ranking function k': 

	

k' B Ç ~P B Ç P ~B Ç ~P ~B Ç P 

F 0 4 2 13 

~F 2 1 2 10 

 

(Table 2) 

	

In k' you believe that Tweetie is a bird able to fly, but not a penguin; you still 

neglect this possiblity. So, in k' you believe more than in k; in belief revision 

																																																								
4  This is completely analogous to Jeffrey conditionalization in probability 

theory (see Jeffrey 1983, ch. 11, and chapter 4.1 by Hájek & Staffel in this 

volume). 
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theory (cf. Chapter 5.2 of Rott in this volume) this would be called a belief 

expansion. 

Next, to your surprise, you tentatively learn and accept, say with firmness 1, 

that Tweetie is indeed a penguin. This results in another ranking function k'', 

which shifts all P-possibilities down by 1 and all ~P-possibilities up by 1, so that 

P is indeed believed with firmness 1 (i.e., k''(~P) = 1): 

 

k'' B Ç ~P B Ç P ~B Ç ~P ~B Ç P 

F 1 3 3 12 

~F 3 0 3 9 

 

(Table 3) 

 

So, you have changed your mind and believe in k'' that Tweetie is a penguin bird 

that cannot fly. In belief revision theory this would be called a belief revision. 

Obviously, belief contraction (cf. Chapter 5.2 of Rott in this volume), where you 

simply give up a belief previously held without replacing it by a new one, can also 

be modeled by ranking-theoretic conditionalization. The example already 

demonstrates that this rule of belief change can be iteratively applied ad libitum. 
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An important application of ranking-theoretic conditionalization is that it 

delivers a measurement procedure for ranks that justifies the cardinality of ranks. 

This procedure refers to iterated belief contraction. Its point is this: if your iterated 

contractions behave as prescribed by ranking theory5, then that behavior uniquely 

determines your ranking function up to a multiplicative constant. That is, your 

ranks can thereby be measured on a ratio scale (see Hild & Spohn 2008). The 

consequences of the fact that ranks are measured only on a ratio scale await 

investigation. They imply, e.g., a problem analogous to the problem of the 

interpersonal comparison of utilities. 

 

4. Comparisons 

 

The formal structure defined by axioms (1) and (2) has been called Baconian 

probability by Cohen (1980). Its first clear appearance is in the functions of 

potential surprise developed by Shackle (1949). The structure is also hidden in 

Rescher (1964) and is clearly found in Cohen’s own work in Cohen (1970, 1977). 

The crucial formal advance of ranking theory lies in the definition of conditional 

ranks, which is nowhere found in these works and which makes the theory a 

properly cardinal one. 

																																																								
5  In fact, we need no more than twofold non-vacuous contractions. 
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Belief revision theory was precisely about the dynamics of belief. However, 

they only conceived of entrenchment orders. And within their ordinal framework, 

there was no clear solution of the problem of iterated belief revision (see chapter 

5.2 of Rott in this volume). 

Possibility theory, building on early work of Zadeh (1978) and developed by 

Dubois and Prade (see chapter 4.7 by Dubois & Prade in this volume), is in fact 

equivalent to ranking theory; (2) is the characteristic property of possibility 

measures. However, the interpretation of those measures was intentionally left 

open, leaving considerable formal uncertainty as to how conceive of conditional 

degrees of possibility. 

The theory of Dempster-Shafer belief functions, as developed in Shafer (1976), 

seems to be a far more general theory (see again chapter 4.7 of Dubois & Prade in 

this volume), which comprises probability theory and also ranking theory as a 

special case. Shafer (1976, ch. 10) defines so-called consonant belief functions 

which appear to be equivalent to negative ranking functions. However, their 

respective dynamic behavior diverges, a fact that prevents reduction of ranking 

theory to the DS theory (see Spohn 2012, sect. 11.9). 

Of course, the largest comparative issue is how ranking theory relates to 

probability theory. A comparison of their axioms and their form of 

conditionalization suggests translating the sum of probabilities into the minimum 

of ranks and the product and the quotient of probabilities into the addition and the 
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subtraction of ranks. This translation works only for negative ranks; that’s why 

the latter provide the formally preferred version of ranking theory. And it explains 

why very many things that can be done with probability theory also work for 

ranking theory in a meaningful way. 

However, the translation does not justify conceiving ranks in probabilistic 

terms. As mentioned in section 2, belief in A cannot be probabilistically 

represented by P(A) = 1 – e, if one sticks to the consistency and deductive closure 

of belief sets. The relation of probability and belief is hotly debated in philosophy 

without a clear solution emerging (see, e.g., the proposals of Leitgeb 2017 and 

Raidl & Skovgaard-Olsen 2016). Therefore, our attitude has always been to 

independently develop ranking theory as a theory of belief. 

 

5. Ranking Functions in Artificial Intelligence 

 

Besides probability theory and logic, ranking functions are among the most 

popular formalisms used for knowledge representation6 and reasoning (KRR), and 

their popularity is still increasing because they provide a very versatile framework 

for many central operations in KRR, as already sections 2-4 pointed out. Most 

importantly, ranking functions are a convenient common basic tool for 

																																																								
6  In AI, the distinction between knowledge and belief is usually quite vague. 
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nonmonotonic reasoning and belief revision. Belief revision has been already 

explained in more detail in section 3, and nonmonotonic reasoning also deals with 

belief dynamics in that conclusions may be given up when new information 

arrives (so, the consequence relation is not monotonic, as in classical logic). Both 

fields emerged in the 1980’s (partly) as a reaction to the incapability of classical 

logic to handle problems in everyday life that intelligent systems like robots were 

expected to tackle. Knowledge, or belief about the world is usually uncertain, and 

the world is always changing. Therefore, AI systems built upon classical logics 

failed. So-called preferential models (see Makinson 1989) provide an important 

semantics for nonmonotonic logics, their basic idea is to order worlds according 

to normality and focus on the minimal, i.e., the most plausible ones for reasoning. 

Likewise, AGM belief revision theory (see chapter 5.2 by Rott in this volume) 

needs orderings of worlds to become effective. For both fields, ranking functions 

offer quite a perfect technical tool that also complies nicely with the intuitions 

behind the techniques. Moreover, they can also evaluate conditionals and are an 

attractive qualitative counterpart to probabilities (see section 3).	

Judea Pearl was probably the first renowned AI scientist to make use of 

ranking functions; his famous system Z (Pearl 1990) is based on them. He has 

continuously emphasized the structural commonsense qualities of probabilities 

and developed ranking functions as an interesting qualitative counterpart to 

probabilities. He set up his system Z as an “ultimate system of nonmonotonic 
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reasoning” in terms of ranking functions. To date, it is one of the best and most 

convenient approaches to implement high-quality nonmonotonic reasoning.	

Consequently, ranking functions are deeply connected with nonmonotonic and 

uncertain reasoning and with belief change, which are core topics in KRR. Many 

researchers make use of them in one way or another even if they rely on more 

general frameworks. Darwiche & Pearl (1997) presented general postulates for 

the iterated revision of general epistemic states, but illustrated their account with 

ranking functions. So did Jin & Thielscher (2007) and Delgrande & Jin (2012) 

when they devised novel postulates for iterated and multiple revision. 

Interestingly, the independence properties for advanced belief revision which 

were proposed in those papers can be related to independence with respect to 

ranking functions (see Spohn 2012, ch. 7) in analogy with probabilistic 

independence (see Kern-Isberner & Huvermann, 2017).	

Indeed, as suggested in section 3, ranking functions are particularly well suited 

for iterated belief change because they can easily be changed in accordance with 

AGM theory, returning new ranking functions which are readily available for a 

successive change operation. The main AGM operations are revision (adopting a 

belief) and contraction (giving up a belief), related by Levi and Harper identities 

(see chapter 5.2). In ranking theory, the connections between these operations are 

even deeper, since (iterated) contraction is just a special kind of (iterated) ranking 
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conditionalization. Indeed, the results of (Kern-Isberner et al., 2017) show that 

iterated revision and contractions can be performed by a common methodology.  

Continuing on that, and beyond practicality and diversity of ranking functions, 

it is crucial to understand that they are not just a pragmatically good choice but 

indeed allow for deep theoretical foundations of approaches to reasoning. It is the 

ease and naturalness with which they can handle conditionals—very similar to 

probabilities—that make them an excellent formal tool for modeling reasoning. 

Given that conditionals are, on the one hand, crucial entities for nonmonotonic 

and commonsense reasoning and belief change, and, on the other hand, formal 

entities fully accessible to conditional logics, this capability provides a key feature 

for logic-based approaches connecting nonmonotonic logics and belief change 

theories with commonsense and general human reasoning. More precisely, 

conditional ranks give meaning to differences between degrees in belief when 

observing A vs. A & B (see the law of conjunction in section 3), and the examples 

of belief change given in section 3 illustrate nicely how it is easily possible to 

preserve these differences under change when using ranking functions. This 

property has been elaborated as a principle of conditional preservation in Kern-

Isberner (2004), giving rise to defining c-representations and c-revisions (all 

belief changes shown in section 3 are c-revisions). C-representations are c-

revisions starting from a uniform ranking function and allowing for reasoning 

from conditional belief bases. Ranking theory is one of the few formal 
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frameworks that is rich and expressive enough to allow such a precise 

formalization of conditional preservation which supports both belief change and 

inductive reasoning as a common methodology, probability theory is another.	

 

6. Ranking Theory in Psychology 

 

Potentially, ranking theory has applications for many areas of psychology. To 

illustrate, psychological research on belief revision has been carried out under the 

inspiration of AGM theory and probabilistic updating (Baratgin & Politzer 2010; 

Wolf et al. 2012; Oaksford & Chater 2013; see also chapter 5.4 by Gazzo & 

Knauff in this volume). Such work could be extended by ranking theory, given 

that one of its central motivations was to represent a notion of full belief, in 

contrast to probabilistic update mechanisms, while improving upon AGM theory 

to allow for iterative revisions. However, as Colombo et al. (2018) note, 

probabilistic Bayesian approaches are currently enjoying a boom in cognitive 

science to the neglect of alternative formal frameworks, like ranking theory. 

As said, possibility theory is mathematically equivalent to ranking theory, yet 

differs fundamentally in its intended interpretation. In Da Silva Neves et al. 

(2002) and Benferhat et al. (2005), possibility theory was subjected to empirical 

testing. In Da Silva Neves et al. (2002), a direct route was chosen by testing 

whether participants' possibility judgments satisfy the rationality postulates 
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codified in System P augmented by Rational Monotonicity (A |~ C, ¬ (A |~ ¬ B); 

therefore A Ù B |~ C),7 in case their responses violated Monotonicity (A |~ C; 

therefore A Ù B |~ C). Interestingly, no such direct test of ranking theory based on 

the participants' judgments of disbelief, or implausibility, has yet been made. 

What exists is the following. Isberner & Kern-Isberner (2017) investigated 

whether belief revision with ranking functions could retrodict findings of 

temporal delay when processing implausible information in tasks, where 

plausibility judgments would interfere with the task constraints (a finding known 

as "the epistemic Stroop effect"). A guiding assumption underlying this work is 

that ranking theory can be used to represent the situational model that participants 

construct during language comprehension. Moreover, Eichhorn et al. (2018) 

proposed a conditional-logical model based on ranking functions, which allows 

for the elaboration of plausible background knowledge. 

In Ragni et al. (2017), it was investigated whether ranking theory could 

retrodict the suppression effect (Byrne, 1989), where endorsement rates of 

classically valid modus ponens (MP) (A → B, A; therefore B) and modus tollens 

(MT) (A → B, ¬ B; therefore ¬ A) are suppressed when further premises 

indicating possible defeaters are presented. To illustrate, normally inferring “Lisa 

will study late in the library” from the premises “Lisa has an essay to write” and 

																																																								
7  Here, |~ represents nonmonotonic or default entailment. 



24		

“if Lisa has an essay to write, then Lisa will study late in the library” would be 

seen as unproblematic. But if the additional premise “if the library is open, then 

Lisa will study late in the library” becomes available, then participants are much 

more reluctant to draw this inference. However, as Ragni et al. (2017) show, the 

inference mechanism exploiting ranking functions does not in itself retrodict the 

suppression effect. To do so, further assumptions about the underlying knowledge 

base instantiated in long-term memory need to be made. In addition, Ragni et al. 

(2017) present experiments that test ranking theory's ability to predict the 

participants’ reasoning with MP and MT once nonmonotonic keywords such as 

“normally” are inserted. Characteristic of this line of research is that c-

representations are used to inductively infer ranking functions that satisfy the 

constraints set by an assumed knowledge base. 

Moreover, the account of conditionals in Spohn (2013, 2015) has inspired a 

series of experiments. Spohn (2013, 2015) outlines a number of expressive roles 

of conditionals that go beyond the Ramsey test, which merely takes conditionals 

to express conditional beliefs. For instance, conditionals may express reason 

relations as specified in definition 3. In Olsen (2014), a logistic regression model 

was presented to both formulate predictions for the participants' evaluations of the 

conclusions of MP, MT, AC (A → B, B; therefore A), and DA (A → B, ¬ A; 

therefore ¬ B) inferences and to suggest a solution to the problem of updating 

based on conditional information. In Skovgaard-Olsen et al. (2016a), a reason 
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relation reading of the conditional was contrasted experimentally with the Ramsey 

test in participants' probability and acceptability evaluations of indicative 

conditionals and support was obtained for the reason relation reading. In 

Skovgaard-Olsen et al. (2019), it was found that there are patterns of individual 

variation in these results. In Skovgaard-Olsen et al. (2016b), participants' 

perceived relevance and reason relation evaluations were investigated and some 

first evidence for the explications of reason relations and perceived relevance 

introduced above was obtained. However, characteristic of this latter line of 

research is that it adopts an indirect route to testing ideas from ranking theory by 

exploiting its extension to conditionals in Spohn (2013, 2015) and its parallels to 

probability theory (see also Henrion et al. 1994).  

Presently, paradigms operationalizing degrees of beliefs as probabilities are 

much more well-established than tasks using ranking functions. This is so in spite 

of the fact that the arithmetical operations of ranking theory require much less 

computational effort than those of probability theory. For instance, it is well-

known that participants exhibit difficulties in properly integrating information 

about base rates of the rarity of a given disease in evaluating how likely it is that a 

person has the disease given a positive test result. Yet, interestingly, Juslin et al. 

(2011) find that the notorious base-rate neglect could be reduced when 

participants are given the tasks in a logarithmic format. Juslin et al. (2011) 

therefore conjecture that a linear, additive integration of information is more 
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intuitive in the absence of access to overriding analytic rules that utilize a 

multiplicative format, like probabilities.  

Nevertheless, there is a lack of direct experimental investigations of ranking 

functions. Perhaps due to the following challenges: 

(i) Negative ranking functions are useful for conducting proofs. But it initially 

presents a conceptual challenge to think in terms of disbelief in negations of 

propositions as a way of representing full beliefs. Two-sided ranking functions 

solve this problem. But they come at the cost of having different rules applying to 

the negative and positive range of the scale. 

(ii) An operationalization of ranking functions in terms of iterated contractions 

exists (see above). But it is not one that has received the same kind of 

experimental implementation as the operationalization of probabilities in terms of 

betting quotients. 

(iii) Since negative ranks take natural numbers from 0 to infinity, there is no 

natural way of non-arbitrarily dividing the scale into regions of ascending degrees 

of disbelief other than a region of zero disbelief, a region of above zero disbelief, 

and a region of maximal disbelief. In contrast, the crude division of the 

probability scale of real numbers between 0 and 1 into decimal regions enables 

participants, and experimenters, to make qualitative differentiations between low 

degrees of belief (e.g. [0.0,0.3)), middle degrees of belief (e.g. [0,3-0.7]), and 

strong degrees of belief (e.g.(0.7, 1.0]).  
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If challenges such as these can be overcome in future work, ranking theory 

potentially has a lot to offer to psychology, and cognitive science more generally. 
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