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Abstract 

One particularly successful approach to modeling within 
cognitive science is computational psychology. 
Computational psychology explores psychological processes 
by building and testing computational models with human 
data. In this paper, it is argued that a specific approach to 
understanding computation, what is called the ‘narrow 
conception’, has problematically limited the kinds of models, 
theories, and explanations that are offered within 
computational psychology. After raising two problems for the 
narrow conception, an alternative, ‘wide approach’ to 
computational psychology is proposed.  

Keywords: narrow conception, individualism, computation, 
psychology, explanation 

Introduction 
Cognitive science has gained a good deal of theoretical 

and methodological impetus from thinking about how 
psychological processes can be described, studied, and 
simulated using different types of models. One particularly 
successful approach to modeling is computational cognitive 
modeling or, more simply, computational psychology. 
Computational psychology explores psychological 
processes by building and testing computational models 
with human data (Sun, 2008).  

In this paper, it is argued that a specific approach to 
understanding computation, what is dubbed the ‘narrow 
conception’, has problematically limited the kinds of 
models, theories, and explanations that are sometimes 
offered within computational psychology.  

The impetus for the current study arises from a growing 
debate around the role, nature and status of computation 
within psychological investigations. Several authors have 
begun to re-examine what computationalism stands to offer 
the cognate disciplines (Piccinini, 2015; Milkowski, 2015). 
The current discussion stands to contribute to this growing 
trend by exploring and examining one important assumption 
that underwrites a notable swath of research within 
computational psychology. The goal is to show that 
computational psychology has overlooked an important 
constraining assumption. 

Computational Psychology 
For many, computational theory provides a theoretically 

flexible and expressively powerful tool for exploring 
cognition (Anderson 1983; Pylyshyn, 1984; Newell, 1990; 
Anderson & Lebiere, 1998, 2003). The computational 
approach allows researchers to construct detailed accounts 
of the mechanisms, structures, and processes that underwrite 
cognition. In testing and extending the theories of other 
domains, such as cognitive psychology and artificial 
intelligence, computational investigations offer a 
functionally viable yet mathematically rigorous way of 
exploring cognitive or psychological processes.  

A good deal of the explanatory value of computational 
psychology lies not only in the ability to produce computer 
simulations, but also in using those simulations to make 
predictions about human data. By matching the ‘fit’ of 
human data with computer simulations, researchers 
establish systematic relationships between computational 
models and psychological processes, which can reveal the 
underlying structure and form of cognitive functionalities 
(Sun & Ling, 1998). 

Consider three illustrative examples of computational 
psychology in action. First, consider Shiffrin and Steyvers’ 
(1997) REM model of episodic memory. Shiffrin and 
Steyvers’ model is one instance of a class of abstract, 
computational models that attempt to explain recognition 
judgments. These models employ a ‘global matching’ 
procedure. The global matching procedure produces a 
familiarity signal that indicates whether or not an item has 
been previously presented to the model – a test cue, for 
example, that matches two features of one item will yield a 
higher familiarity judgment than a test cue that matches one 
feature of each of the two items.  

Shiffrin and Steyvers’ model puts a Bayesian twist on the 
global matching procedure. The REM model calculates the 
likelihood of whether a cue item matches or corresponds to 
particular stored memory traces by assigning values to each 
of the stored items. When the model is tested to see if it can 
identify whether cue items are new or old, the cues are 
compared with each trace item in memory such that the 
model calculates the likelihood of the retrieval cue and the 
trace item matching. Recognition judgment is explained in 
terms of a probabilistic familiarity process operating within 
memory.  

According to Shiffrin and Steyvers, the REM model 
accounts for a number of distinct memory effects. One 
example is the word frequency mirror effect. The word 
frequency mirror effect says that subjects often make more 
false alarms on high-frequency lures (foils) versus low-
frequency lures and more correct “old” responses to low-
frequency targets versus high-frequency target when making 
recognition judgments (Glanzer et al., 1993). The REM is 
able to accommodate the word frequency effect in virtue of 
the fact that low-frequency words have more unusual 
features than high-frequency words (e.g., more syllables). 
The REM model is able to use a slightly lower value when 
generating low frequency lures items during matching, 
which results in these items having slightly higher feature 
values.  

The relevance of the REM model is that in measuring the 
fit of the model to behavioral data and by adopting a 
Bayesian approach to the global matching procedure, the 
REM model focuses on both the essential interplay between 
modeling and experimental data and formalizing cognitive 
processes in a computationally rigorous way.  
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Next, consider Dienes’ (1992) connectionist model of 
implicit language learning. Dienes’ model attempts to 
computationally instantiate how language users come to 
implicitly understand artificial grammars using artificial 
neural networks.  In particular, Dienes’ model uses a feed-
forward autoassociator network. 

In a feed-forward autoassociator network – which is a 
version of the more standard multilayer network – activation 
passes through the connection weights of the network just 
once to produce the output activation. The feed-forward 
autoassociator contrasts with recurrent autoassociator 
networks, in which the output activation arrives back at each 
node and is passed through the weights again until a stable 
state is reached.  

In terms of network training, Dienes’ model was presented 
with the same learning material as human subjects, which 
included arbitrary strings of letters, such as MTTTTV or 
MTTVT. These features of strings were represented as 
activations to the network’s input layer. Depending on 
whether the feature was present or absent, the unit coding 
the feature would have an activation of either 1 or 0. Once 
the network learned the arbitrary training strings, similar to 
experimental tests, the model was then made to make 
grammaticality judgments on new strings of letters. The 
goal was to see if the network had learnt the underlying 
grammatical principles that implicitly structured the 
arbitrary strings being presented.  

When Dienes’ tested the model, it was found the network 
was able to distinguish grammatical versus ungrammatical 
strings. The network was able to reproduce the training 
strings by adding or subtracting strings from an exemplar 
case. The model predicted each feature of a string based on 
some set of the remaining features from an exemplar. When 
Dienes’ compared network results to that of human subjects, 
it was found that the network could classify test strings as 
well as people could. The network tended to reproduce 
grammatical test strings more faithfully than non-
grammatical test strings.  

Dienes’ connectionist model stands as a further interesting 
example of computational research, as it provides a 
computational account of implicit artificial grammar 
learning that measures the fit of the model with behavioral 
data. By investigating how artificial neural networks handle 
artificial grammar tasks, Dienes’ attempts to undercover the 
computational processes and representations underlying 
implicit language learning.  

A third example comes from Osherson et al.’s (1990) 
declarative model of inductive reasoning. Osherson et al.’s 
(1990) model attempts to investigate the computational 
underpinnings of ‘inductive’ reasoning – inductive 
reasoning is the process by which premises are thought to 
lend non-conclusive support to the truth of specific 
conclusions. 

In Osherson et al.’ model, inductive reasoning is explained 
in terms of the assessment of propositional statements 
according to the similarity between premise and conclusion 
categories For example, consider two inferential chains: (i) 

Mice have property X/All mammals have property X and 
(ii) Horses have property X/All mammals have property X. 
The category of ‘mammal’ in the conclusion covers both 
mice and horses. For Osherson et al., understanding how 
humans are able to make inferences about mice and horses 
depends on understanding how structural relationships 
between different categories are established – for example, 
understanding that mice and horses are instances of the 
subordinate category mammal.   

Two features allow Osherson et al.’s model to make sense 
of cases such as the above. The first is that the model 
assesses the similarity between premise categories and 
conclusion categories. The second is that the model 
measures how well the premise categories covers the 
superordinate category. Coverage between premise and 
conclusion categories is assessed in terms of the average 
similarity of the premise category to members of the 
superordinate category. For instance, to the extent that 
horses are more typical mammals than mice, and therefore 
more similar to other kinds of mammals, (ii) will have 
greater coverage than (i).  

Osherson et al.’s model is interesting because it addresses 
a number of empirical phenomena. One example is 
similarity effects. Similarity effects occur when people 
make inferences based on the perceived similarity between 
items in different inferential chains. Osherson et al. (2008) 
found, for example, that when people were given a choice 
between two syllogistic arguments about 95% chose the 
argument that they perceived to contain the greater 
similarity between premise and conclusion categories, e.g., 
sparrows to robins and blue jays versus geese to robins and 
blue jays. Osherson et al.’s model was able to accommodate 
such cases by assessing the relationship between the 
subordinate and premise categories. 

Similar to the previous models, Osherson et al.’s 
declarative model is an illustrative example of 
computational psychology, because it is not only informed 
by and tested against empirical data, but it also attempts to 
identify the computational procedures and properties 
underlying complex cognitive processes, such as inductive 
reasoning.  

The point of the previous survey is that each of the three 
models provides a paradigmatic example of computational 
psychology. Each model attempts to undercover the 
computational underpinnings of various cognitive processes 
via the construction and testing of computer models with 
human data. These models help to tease out the 
underwriting assumptions within computational research. 

The Narrow Conception 
With the domain of analysis laid out, the task now is to 

examine one approach to understanding computation that 
underlies a good deal of the research within computational 
psychology, what is labeled the ‘narrow conception’.  

In order to get a better handle on the narrow conception, 
consider what Segal (1991) says about computational 
cognitive systems, he writes: “It seems likely that whole 
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subjects (or whole brains) make up large, integrated, 
computational systems…the whole subject is the largest 
acceptable candidate for the supervenience base because it 
is the largest integrated system available” (p.492). For 
Segal, the individual or whole subject (which is plausibly 
identical to the whole brain) is the largest unit available for 
computational, psychological investigation. Newell et al. 
(1989) offer a similar view, writing: “Symbol systems are 
an interior milieu, protected from the external world, in 
which information processing in the service of the organism 
can proceed” (1989, p.107). Here, again, computational 
systems are limited to the boundary of the individual.  

Consider Fodor (1983) next: “Mechanisms of 
transduction are thus contrasted with computational 
mechanisms: whereas the latter may perform quite 
complicated, inference-like transformations – the former are 
supposed – at least ideally – to preserve the information 
content of their input” (1983, p. 41). Fodor’s contrast 
between sensory transducers and computational 
mechanisms is indicative of where he thinks computational 
systems are located. Computational systems are sandwiched 
between transducers and motor outputs. Finally, consider 
what Egan (2000) says on the matter: “A computational 
theory prescinds from the actual environment because it 
aims to provide an abstract, and hence completely general, 
description of a mechanism that affords a basis for 
predicting and explaining its behaviour” (p.191). Only by 
abstracting away from the embedding environment and 
focusing on the individual can one begin to provide 
successful computational analyses. Once again, the outer 
limit of formal analysis for computational systems is the 
individual. 

Common to each of these views is the idea that the 
individual or some sub-module, conceived of in terms of the 
primary unit of action, constitutes the largest organizational 
system amendable to computational description (i.e. 
computational modeling). The individual marks the 
conceptual boundary for computational, psychological 
investigations. Here is one way the view might be 
formulated: 

 
THE NARROW CONCEPTION: Computational cognitive 
systems are, and should be studied as if they were, 
located entirely within the individual or some sub-
module.  

 
Something in the spirit of this claim seems to have 

operated implicitly within a good swath of computational 
psychology. The narrow conception, if true, represents a 
principled claim about where and how computational 
cognitive systems should be studied. It constitutes a 
plausible and substantive proposal for computational 
psychology. 

Consider the methodological implications of the narrow 
conception. If computational systems are wholly interior to 
the individual, then computational modeling should have as 
its target only those systems and processes that are 

individual-centered. As Segal diagnosis the situation: 
“Whole subjects plus embedding environments do not make 
up integrated, computational systems” (1991, p.492). The 
embedding environment plus individual will always fail to 
be adequate for computational analysis. Only the individual 
or some sub-system will be sufficient for computational 
modeling.  

One motivation for adopting the narrow conception is that 
it provides a powerful way of explaining the causal powers 
of cognition. If cognitive systems are computational systems 
and computational systems are located within the individual, 
then identifying the causal properties and powers of 
computational systems provides insight into causal power of 
cognitive processes and abilities. Memory effects, such as 
primacy and recency affects, for example, will be best 
explained by focusing on the computational search 
strategies used by individuals during various tasks (e.g., 
exhaustive versus terminal search) (Sternberg, 1969). Only 
by identifying the distinct functional and causal properties 
intrinsic to the individual are rigorous computational, 
psychological explanations provided. 

What is interesting about the narrow conception, besides 
its relatively straightforward nature, is that it is plausibly 
supported by and conforms to a good deal of research within 
computational psychology. This is why authors such as 
Segal claim that it is “likely” that the whole subject is the 
largest unit of analysis. The narrow approach is an empirical 
wager on how computational cognitive systems are 
distributed in nature.  

Return to the three previous models to see why. First, 
consider how Shiffrin and Stevyer describe their model: 
“This cued recall model is meant to illustrate one plausible 
way in which retrieval from episodic images and retrieval 
from lexical/semantic images could work hand in hand to 
allow recall to take place” (1997, p.160). The emphasis on 
retrieval and storage is indicative of the narrow conception: 
the computational processes under investigation are 
localized within the individual. It is only once items are 
learned and internalized that computational processes can 
operate over them. The Bayesian matching procedure 
applies to items stored internally within an individual’s 
episodic memory.  

Consider, next, how Dienes’ conceives of his model, he 
writes: “[L]awful behaviour may be produced by a 
connectionist network in which rules or hypotheses are not 
explicitly represented” (1992, p.40). A little later he writes: 
“the subject of the models obeys the rules, but does not 
represent them symbolically”(1992, p.70). Again, the 
message is plain. The artificial neural network represents a 
cognitive system that employs internal representations and 
rules that solve artificial grammar tasks, and the human data 
helps to reveal these internal computational processes and 
structures. The connectionist network is meant to represent 
the internal computational system within a subject that is 
used to carry out the cognitive task.  

Finally, consider Osherson et al.’s model. In studying 
inductive reasoning, Osherson et al. adopt the following 
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position: “The similarity-coverage model assumes that the 
existence of a pre-established hierarchy of categories that 
classify the instances figuring in an argument. The success 
of the model in predicting the qualitative 
phenomena…testifies to the approximate soundness of the 
model’s assumptions” (1993, p.200). What emerges, again, 
is a particular interpretation of what has been revealed about 
the underlying computational system. Reasoning about 
inference chains is an internal computational process that 
requires the deployment of particular categorical 
hierarchies. The boundary of the cognitive system is once 
again fixed at the formal system detecting relationships 
between argument stimulus input and subordinate 
categories.  

Each of the three examples conforms, in varying degrees, 
to the narrow conception. The individual or some sub-
component is the complete and natural unit of 
computational theorizing. The individual, in each case, is 
conceived of, and studied as if it were, the largest organized 
set of components capable of supporting computational 
investigation.  

But notice that in addition to helping researchers to better 
understand models, the narrow conception also helps to 
structure the way in which researchers go about identifying 
and constructing investigations. The narrow conception also 
offers a means for thinking about where and what to look 
for when during investigation. It proposes methodological 
guidelines for studying computational cognitive systems.  

Recall, for instance, that each of the three models 
addressed particular problems, proposed different solutions, 
and provided different explanations. Shiffrin and Stevyers’ 
model, for instance, conceived of recognition as a problem 
of item matching. This meant that the computational 
processes involved searching through memory traces using 
a global matching procedure. Dienes’ model, on the other 
hand, conceived of implicit learning as a form of pattern 
recognition. This led to looking for the internal exemplar 
representations and rules that allowed the network to 
identify and classify new letter strings. Finally, in Osherson 
et al.’s study, inference was taken to involve detecting 
structural category relations. This meant that it attempted to 
build a model around understanding how such categorical 
relationships could be structured.  

One way to understand why each study offers the types 
of model it does and measures the fit of its model(s) against 
the types of experimental data that it does is as a result of 
the constraining influence of the narrow conception. In 
directing attention to the individual and its sub-components, 
the narrow conception sets up certain implicit conceptual 
boundaries. It limits which computational explanations are 
seen as viable, which properties and processes are taken to 
be necessary for investigation, and which solutions are 
considered plausible. The explanatory space of options 
surrounding computational theorizing is delimited. The 
narrow conception curbs the conceptual and methodological 
understanding of computation available for use within 
investigations. 

The Wide Conception 
The discussion up until this point has been largely 

descriptive. The goal has been to articulate what the narrow 
conception amounts to and provide a sense of the way in 
which it imposes interpretative and methodological 
constraints on research. In this final section, the aim is to 
provide a critical analysis of the view. Two problems are 
raised. 

The first problem follows on the heels of the constraining 
influence of the narrow conception. The issue is that if the 
narrow conception limits the theoretical and explanatory 
horizons of computational investigations, then it also limits 
the kinds of research that can conducted. This is an 
undesirable state of affairs insofar as a healthy domain of 
investigation should have the broadest range of alternatives 
available when conducting research. If researchers are 
limited in the potential avenues they might explore, then the 
range of theories, explanations, and models they end up 
offering may turn out to be impoverished. In an ideal world, 
there will be as few constraining or biasing assumptions as 
possible during investigation. Insofar as the narrow 
conception operates as a constraining assumption on 
computational psychology, it forms a barrier to conducting 
successful research.  

The history of behaviorism offers an instructive example. 
In both its logical and philosophical forms, behaviorism 
eschewed recourse to ‘mental’ vocabulary. It held that only 
‘observable behaviour’ was the proper subject of 
psychological investigation. One result of its constraining 
influence was North American psychology made little 
reference to mental structures and processes. It took almost 
30 years to reclaim the conceptual territory lost to 
behaviorism (Gardner, 1985). The claim here is not quite so 
negative, but the moral is the same. The narrow conception 
has potentially closed off interesting avenues of 
computational research because of its constraining 
influence.  

One might respond by arguing that the above concern is 
only a really problem if the narrow conception turns out to 
be false. But that given the wealth of empirical support the 
view enjoys, there is really no reason to think that the 
narrow conception is in fact not the right view to hold. The 
problem with this response is that gets the order of 
explanation backwards. It is not that the narrow conception 
is true because computational research conforms to its 
strictures. Rather, it is because the narrow conception 
imposes certain restrictions on research that computational 
investigations conform to its strictures. The narrow 
conception problematically limits the range of alternatives 
considered before, during and after investigation.  

The second concern is that the narrow conception, on 
occasion, provides explanatory weaker accounts of 
psychological phenomena in virtue of its over emphasis on 
individual-bound systems. Because the narrow conception 
emphasizes the individual as the limit of computational 
explanations, investigations based on its strictures can fail to 
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identify the important computational role played by 
environmental elements.  

Consider an example from the history of cognitive 
science. Problem solving was traditionally thought to 
involve a search through problem space (Newell, Shaw, & 
Simon, 1960). One way this approach was computationally 
instantiated was to simulate agents searching mentally 
through a virtual problem space during various tasks 
(Newell & Simon, 1976). One issue with these early 
approaches is that cognizers often interactively explore 
problems by physical manipulating external structures 
(Kirsh, 2009). These types of actions are more than just 
pragmatic, as they crucially help cognizers to simplify and 
transform complex problems. Computational models that 
focused narrowly on internal searches missed out on the 
simplifying computational role of epistemic actions (see 
Wilson, 2004; Clark, 2008). 

Insofar as computational explanations fail to pay sufficient 
attention to elements of the environment that offload and 
distribute cognitive activities, they stand to provide weaker 
accounts of psychological phenomena. Computational 
explanations that are overly reliant on the narrow 
conception, such as in the above case, can supply 
explanatorily weaker accounts (Wilson, 2014). This is not to 
say that every computational explanation that subscribes to 
the narrow conception is explanatorily weaker. Rather, it is 
to point out that because there are blind spots imposed by 
the narrow conception, some computational explanations 
may, on occasion, be weaker than potential alternatives. 

The previous two concerns should not be taken to 
undermine the narrow conception in its entirety. Instead, the 
concerns are better understood as forming a negative case 
against the sufficiency of the narrow conception as a global 
thesis. Given this, it will be worth exploring a possible 
alternative approach to understanding computation. 

Wide computationalism is the idea that at least some of 
the elements of computational cognitive systems can reside 
outside the individual (Wilson, 1994, 1995; Hutchins, 1995; 
Kersten, 2016; Kersten & Wilson, 2016). Wide 
computational systems are those systems that recruit 
computational units from the larger embedding 
environment. Similar ideas have also been offered about 
cognition under the label of ‘situated, embedded and 
extended’ cognition (see Wilson, 2004; Clark 2008). 

The viability of wide computationalism follows from the 
location neutrality of computational individuation. Wilson, 
for example, writes: “There is nothing in the method of 
computational individuation itself…which implies that the 
class of physical features mapped by a realization function 
cannot include members that are part of the environment of 
the individual” (1994, p.355). Because formal systems are 
medium neutral, it is at least possible that some of the 
computational elements include parts outside the individual. 
Wide computationalism stands in contrast to the narrow 
conception insofar as it pushes computational analysis 
outside the individual. Wide computationalism also gains 

support from a number of empirical studies in human and 
animal psychology (see Kersten, 2016). 

Wide computationalism is a locational thesis about the 
realization or supervenience base of computational 
cognitive systems. It is a view about the scope of physical 
systems, processes, and components that are capable of 
supporting computational analysis. What this means is that 
although wide computationalism is compatible with either 
an individualist (Segal, 1991) or an externalist (Shagrir, 
2001) interpretation, it is, strictly speaking, non-committal 
on issues of representational or semantic individuation. 

For present purposes, the truth of wide computationalism 
is less important than the alternative it presents. This is 
because wide computationalism provides one potential 
alternative for understanding computation within 
computational psychology. In articulating a conception of 
computation that moves beyond the individual, wide 
computationalism stands to supply an importantly distinct 
approach to understanding computational investigations. By 
exploiting the location neutrality of computational 
individuation, wide computationalism re-conceptualizes the 
study of computational cognitive systems as at least 
partially requiring analysis of the embedding environment.
 Investigations based on this wide approach stand to pay 
closer attention to the role of the environment, given their 
explicit focus on computational systems spreading out 
across the brain, body and world. Examples of the wide 
conception in action, for example, include agent-based 
models or swarm behaviour models (see Dawson, 2010). 
One way to view wide computationalism, then, is as an 
alternative conception of the underlying concept of 
computation that may be used within computational 
psychology.  

Another way to make the point is to say that whereas the 
narrow conception might be construed as a restrictive 
monistic and a priori assumption about how cognitive states 
and processes are studied, wide computationalism provides 
an alternative pluralistic, empirical approach to 
investigation. Instead of viewing the narrow conception as 
exhausting the logical space of investigation, wide 
computationalism might be seen as a further, important 
additional explanatory strategy that can be used when 
thinking about computational investigations. Some 
phenomena may be more amendable to wide investigation, 
while others may conform more closely to the narrow 
conception. It may be that in some cases a narrow approach 
is preferable, while in others a wide approach is more 
suitable. In opening up the logical space, computational 
psychology is better positioned to precede both 
methodologically and theoretically.  

This is only the briefest of sketches, but it should begin to 
provide a sense of how computational psychology may 
move beyond the narrow conception. However, the wide 
approach is not offered as a replacement to the narrow 
conception, but rather as a supplement. Wide 
computationalism is simply an extension of the logic 
inherent within computational psychology. The point is that 
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it can step in when computational investigations run up 
against the limits of the narrow conception. On the proposed 
view, research that conforms to the narrow conception, such 
as the three examples surveyed, still makes a valuable and 
important contribution to cognitive science and psychology.  

The general point to note in concluding is that in 
demonstrating the commitment of three paradigmatic 
examples of computational research to the narrow 
conception and outlining two problems the view faces, the 
case for the existence and problematic influence of the view 
has been at least partially motivated. The narrow conception 
has, on occasion, problematically structured at least some of 
the thinking within computational psychology, and that in 
doing so it has laid down some of the conceptual track on 
which the computational research train has run. Given this, 
further examination of previously underexplored 
approaches, such as wide computationalism, may help 
enrich the range of theories, models, and explanations 
offered within computational psychology.  
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