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Abstract

The repugnant conclusion poses a conundrum in population ethics

that has evaded satisfactory solution for more than four decades. In

this article, I show that the repugnant conclusion can be avoided

without sacrificing any moral intuitions. This is achieved using non-

Archimedean orders, which admit the possibility of pairs of goods for

which no amount of one is better than a single unit of the other. I show

with minimal assumptions, not only are such goods sensible, they are

compulsory. I show that utilitarianism and expected utility theory in

their canonical forms are not in general suitable in this setting, and

using these tools naively can lead to ethical errors that are arbitrarily

serious. Multi-dimensional lexicographic expected utility representa-

tions are required. I use fuzzy sets to show there needn’t be a sharp

transition between non-Archimedean equivalent goods, and the lexi-

cographic ordering may only manifest asymptotically. This might be

unavoidable due to intrinsic physical limits on the ability to discrim-

inate between different goods arising from e.g. quantum mechanics.

Limited discriminatory power causes preferences to be non-transitive,

which can resolve problems related to so-called ‘fanaticism’ and ‘reck-

lessness’ wherein ‘rational’ decision-makers counterintuitively prefer

arbitrary long shot bets to a guaranteed lesser outcome.
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1 Introduction

The repugnant conclusion is the idea that for any finite population of lives of

arbitrarily high quality, there is a larger population consisting of lives that

are ‘barely worth living’ that is ethically preferable. It has been argued that

this conclusion follows if one accepts that a small reduction in the quality

of life for a given population may be ‘compensated’ by adding more people.

This reasoning can be applied recursively to make ethical improvements at

each step, ending with a larger population of lives that are each ‘barely worth

living’.[1, 2, 3]

Many attempts have been made to avoid the repugnant conclusion, but

they all appear to require accepting ethical positions that are often perceived

to be as counterintuitive or undesirable as the repugnant conclusion itself.

For a summary of such attempts and their issues, see [3]. This state of affairs

has inspired a number of ‘impossibility theorems’ that purport to prove there

is no theory of population ethics satisfying an intuitively desirable set of

axioms that includes avoiding the repugnant conclusion.[4, 5, 6, 7, 8]

Lexicographic orders have been suggested in many places as a potential

resolution of the repugnant conclusion.[1, 7, 9, 10, 11, 12, 13, 14] This entails

the existence of a pair of goods x, y such that y is better than any number of x.

While lexicographic orders are sufficient to avoid the repugnant conclusion,

they may have other implications that are unpalatable. The question of

whether lexicographic orders are sensible and necessary in population ethics

remains open. One of the main contributions developed in this article is an

affirmative answer to this question.
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A pre-requisite for lexicographic orders in population ethics is that welfare

is represented by a multi-dimensional vector as opposed to a scalar. This idea

has appeared in many places, perhaps most notably advocated by Sen.[15, 16]

Arguments in favour of this position are often qualitative and appeal to our

intuitions and lived experiences. For example, certain aspects of well-being

may intuitively appear to be non-fungible with, or irreducible to, others.

These approaches more or less ask us to take it as axiomatic that welfare is

represented by a vector.

In this article, I show that one needn’t rely on such arguments. A com-

plete description of a population is given by a vector whose components

represent the number of life years at each possible distinct life quality. Ad-

dition corresponds to combining two populations, and scalar multiplication

corresponds to scaling a population up or down. The vector space is multi-

dimensional so long as there are at least two distinct qualities of life. This

formalism parallels standard mathematical treatments of individual choice in

economics, in particular general equilibrium theory.[17] However, instead of

a choice over different commodity bundles, here the choice is over different

populations.

In the literature, the lexicographic order is often introduced in an ad-

hoc fashion that can appear contrived to avoid the repugnant conclusion.

Here, I show that the lexicographic order follows as a consequence of ethical

preferences between two populations being unchanged by scaling both up by

the same factor, or by adding another identical population to both. This

may be considered a mathematical expression of totalism. The resulting

mathematical structure is a preordered vector space. It has long been known
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that preordered vector spaces are lexicographically ordered, and the proof I

give is not new.[18, 19, 20, 13]

This result can be understood intuitively by imagining a year of life worth

living denoted by q1, and a year of life worse than non-existence denoted

by q2. It is reasonable to think that n life years at quality q1 plus m life

years at quality q2 is indifferent to non-existence for some n,m > 0. If

ethical preferences are preserved by scaling, then λ(nq1 +mq2) ≃ 0 ∀λ, and

nq1+mq2 must therefore belong to a lower Archimedean class than either q1

or q2. Denying the possibility of non-Archimedean equivalent goods requires

finding error in this reasoning. My conclusion is that the lexicographic order

is an inevitable consequence of totalism.

It has been suggested that lexicographic orders nevertheless lead to coun-

terintuitive conclusions that may make them unsuitable in population ethics.

In particular, every finite sequence that starts and ends with non-Archimedean

equivalent goods must contain a pair of successive elements that are in dif-

ferent Archimedean classes.[21, 22] This seems unacceptable because the dif-

ference between successive elements can be made arbitrarily ‘small’.

Several works have suggested this conclusion might be avoided or de-

fused by appealing to some combination of vagueness, incommensurability,

indeterminacy, or fuzziness.[11, 9, 23, 12, 24] In this paper, I give a novel

approach to this issue that does not rely on any of these concepts. The key

innovation compared to earlier work is generalising to transfinite sequences

that are indexed by intervals in the ordinal numbers, as opposed to sequences

that are indexed by the natural numbers. This allows for the possibility of

elements that do not have a predecessor. It is possible to construct a mono-
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tone transfinite sequence with arbitrarily small increments spanning multiple

Archimedean classes, with no two adjacent elements in different Archimedean

classes.

Of course one can always take a finite subsequence that features succes-

sive elements where one element is preferred to any number of its successor.

However, this is also possible in the case where all goods are Archimedean

equivalent. For example, consider a sequence that starts with n > 0 years

of life worth living and decreases in duration by a small discrete quantity

until reaching zero years. The only substantive difference in the case of

non-Archimedean goods is that one can have a population consisting of a

non-zero number of life years that ‘behaves like 0’, because it is indifferent to

0. I conclude from this that the existence of non-Archimedean goods poses

no additional theoretical difficulty compared to the case where all goods are

Archimedean equivalent.

I show that preordered vector spaces admit a natural fuzzification of their

positive cone, allowing for the possibility that there may not be a precise

apparent border between non-Archimedean equivalent goods. I argue that

such limitations are unavoidable if there are intrinsic bounds on the precision

with which physical quantities can be measured stemming from e.g. quantum

mechanics. This formalism may be thought of as an effective theory that uses

fuzzy sets as a simple way to account for the fact that the model cannot be

completely physically accurate at all scales. I introduce a fuzzy expected

utility representation, and suggest that it is equivalent to an appropriate

fuzzification of the von Neumann Morgenstern axioms.

The fuzzy set construction presented here is a generalisation of the ‘lexi-
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cal threshold’ view in [12]. I present a novel example showing that fuzziness

allows for the possibility that the transition between non-Archimedean goods

occurs smoothly, and only becomes fully apparent in the limit of large popu-

lations. This limit can be thought of as ‘viewing populations under a magni-

fying glass’, allowing discrimination to occur at a higher resolution. Alterna-

tively, it can be intuitively understood by imagining empirically measuring

the quality of different lives and performing a statistical test to determine

whether they are in different Archimedean classes. Certainty that they are

in distinct Archimedean classes only appears asymptotically, in the limit of

infinite populations.

In a multi-dimensional context, fuzziness causes preferences to be non-

transitive. This leads to a new resolution of problems related to so-called ‘fa-

naticism’ and ‘recklessness’, in which a decision-maker acting in accordance

with a seemingly reasonable set of axioms including transitivity may coun-

terintuitively prefer bets that give a sufficiently large payoff with arbitrarily

small probability to a lesser, sure payoff.[25, 26, 27] The resolution works

by rejecting transitivity at all scales as a normative requirement because it

would require perfect discriminatory power, which may be inconsistent with

physical laws.

This paper is structured as follows. In section 1, I introduce preordered

vector spaces as a natural mathematical structure for totalist population

ethics. I show that any non-trivial totally preordered vector space of di-

mension > 1 is non-Archimedean. The conclusion is that not only are non-

Archimedean goods sensible, they are compulsory. I elucidate the structure

of lexicographically ordered vector spaces, showing that it is possible that
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there are only two Archimedean classes, and all goods in the lower class are

indifferent to zero. However, in principle there can be as many Archimedean

classes as there are levels of life quality.

In sections 2, I give a brief introduction to ordinal numbers. This prepares

for section 3, where I use a novel argument based on transfinite sequences to

demonstrate that there is always an arbitrarily fine-grained, monotone well

ordering connecting any pair of non-Archimedean equivalent elements with

no two successive elements in distinct Achimedean classes. This reasoning

makes no appeal to vagueness, incommensurability or fuzziness. I argue that

non-Archimedean equivalent goods pose no additional conceptual difficulty

compared to the case where all goods are Archimedean equivalent.

Finally, in section 4, I use a fuzzy set construction to parsimoniously

model vagueness/uncertainty. I introduce a fuzzy expected utility represen-

tation, and suggest its equivalence to a fuzzification of the von Neumann

Morgenstern axioms. Fuzziness leads to non-transitivity, and I put this for-

ward as a new resolution of the problems of ‘fanaticism’ and ‘recklessness’.

Using this approach, I demonstrate the possibility that the distinction be-

tween non-Archimedean equivalent goods only manifests asymptotically.
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2 The mathematics of population ethics

2.1 Totalist population ethics is a preordered vector

space

I begin by showing that vector spaces are the natural mathematical frame-

work for population ethics, and preordered vector spaces are the natural

mathematical framework for totalist population ethics.

Let V be a vector space with basis B, where each b ∈ B corresponds to a

life year at a different level of quality. V may be finite or infinite dimensional.

Each element of V is a finite linear combination of basis vectors where the

components indicate the number of life years at each quality. Thus each

element of V describes a finite population with a particular profile of life

qualities. Addition in V corresponds to combining two populations, while

multiplication by a positive number represents scaling a population up or

down.

Definition 1. Preorder. Consider the following properties of a binary

relation ≥ on a set S that hold ∀x, y, z ∈ S,

x ≥ x Reflexive (2.1)

z ≥ y and y ≥ x ⇒ z ≥ x Transitive (2.2)

x ≥ y or y ≥ x Complete. (2.3)

The relation ≥ is called a preorder if it satisfies 2.1-2.2, and a total preorder
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if it satisfies 2.1-2.3.

Definition 2. Preordered vector space. A preordered vector space is a

pair (V,≥) where V is a real vector space and ≥ is a preorder on V , such

that ∀x, y, z ∈ V, λ > 0,

y ≥ x ⇒ y + z ≥ x+ z (2.4)

y ≥ x ⇒ λy ≥ λx. (2.5)

(V,≥) will be called a totally preordered vector space if ≥ is a total preorder.

Preordered vector spaces capture the idea for any two populations, adding

some other population or λ-fold replication does not affect the preordering.

This may be considered a mathematical expression of totalism. To see this,

note that if ≥ can be represented by a utility function u : V 7→ R, then the

preordered vector space axioms are equivalent to linearity of u.

Note that the structure of a preordered vector space would not be expe-

dient in e.g. consumer choice theory. One can imagine a pair of goods x and

z (tea bags and milk) that complement each other, along with another pair

of goods y and z (orange juice and milk) that don’t, in a way that could lead

to violations of 2.4. In the population ethics setting, however, it is useful

for any inter-personal, inter-population or inter-life-year complementarities

to be subsumed under quality of life. This can be achieved by e.g. inter-

preting a basis vector as a year of life of a given quality spent in a virtual

reality machine that is indistinguishable from reality. Then, for example, a

year of life enhanced by the company of one’s family needn’t require vectors
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representing the lives of family members. In this way, any complementarities

can be captured through an appropriate interpretation of the basis vectors.

Further, this interpretation maps any possible population with any profile of

life qualities onto an element of the vector space. Putting a total preorder

on this space can then allow any population ethics question in principle to

be answered.

2.5 implies scale invariance. In the consumer choice setting, one can

imagine two goods y and x (chocolate and bread) such that one unit of y is

preferred to x, but there is some λ > 1 such that λ units of x is preferred

to λ units of y. In the population ethics setting, however, it is reasonable to

take it as axiomatic that if population v2 is better than population v1, then

v2 scaled by λ is better than v1 scaled by λ.

Translation invariance 2.4 allows us to interpret a positive number of lives

as a gain, and a negative number of lives as a loss, relative to some status

quo. Informally speaking, for any prospective loss we wish to consider, we

may imagine a population large enough that such a loss is possible, and

assign it the element 0. This is possible because the preordering is preserved

by translations. More formally, we may consider the affine space that V is

associated to.

2.2 Preordered vector spaces are lexicographically or-

dered

Next, I prove that every preordered vector space is lexicographically ordered.

This mathematical result has been known for some time, and is typically used
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in proofs of non-Archimedean generalisations of the von Neumann Morgen-

stern theorem.[18, 19, 20, 13] The fresh insight here comes from applying this

mathematical result in the setting of population ethics, with the implication

that totalism leads to the lexicographic order.

Definition 3. Convex cone. A convex cone C in a real vector space V is

a subset C ⊆ V such that,

C + C ⊆ C (2.6)

λC ⊆ C ∀λ ≥ 0. (2.7)

Here, addition and multiplication for subsets of a vector space are defined

by S1 + S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2} and λS = {λs | s ∈ S}. Examples

of non-convex and convex cones in R3 are shown in Figure 1.

Figure 1: Left: A non-convex cone in R3. Right: A convex cone in R3.

Theorem 1. There is a 1− 1 correspondence between convex cones C in a

real vector space V , and preordered vector spaces (V,≥), given by defining
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y ≥ x iff (y − x) ∈ C. ≥ is a total preorder iff C ∪ (−C) = V .

Proof. Let x, y, z ∈ V . C ∪ (−C) = V implies every element of V is in C or

−C or both. This in turn implies that y ≥ x or x ≥ y ∀x, y ∈ V , which is

completeness 2.3.

I will show that every convex cone in V defines a totally preordered vector

space. Assume y ≥ x. Then

(y − x) ∈ C ⇒ (y + z)− (x+ z) ∈ C (2.8)

⇒ (y + z) ≥ (x+ z), (2.9)

which is translation invariance 2.4. Let λ ≥ 0.

(y − x) ∈ C ⇒ λ(y − x) ∈ C (2.10)

⇒ λy ≥ λx, (2.11)

where I have used 2.7. This is scale invariance 2.5.

Reflexivity 2.1 is trivially true since x − x = 0 and every convex cone

contains 0, giving x ≥ x.

Assume that z ≥ y. Then (z − y), (y − x) ∈ C, and by 2.6,

(z − y) + (y − x) = (z − x) ∈ C (2.12)

⇒ z ≥ x, (2.13)
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which is transitivity 2.2.

Finally I will show that in every preordered vector space, the set C :=

{v ∈ V |v ≥ 0} is a convex cone. Let x, y ∈ C and λ ≥ 0. Then (x + y) ≥

y ≥ 0 using 2.4, and λx ≥ 0 by 2.5. But these are the defining properties of

a convex cone 2.6, 2.7. ■

C will be called the positive cone of (V,≥), and elements in C will be

called positive.

Definition 4. Archimedean equivalence. Two non-zero elements x, y ∈

V of a preordered vector space (V,≥) will be said to be Archimedean equiv-

alent if there exists n,m ∈ N such that

n|x| ≥ |y| (2.14)

m|y| ≥ |x|, (2.15)

where |x| := max(x,−x). I will use the notation y ≫ x if y ≥ x and x, y

are not Archimedean equivalent. (V,≥) will be called Archimedean if all its

non-zero elements are Archimedean equivalent.

Proposition 1. Let x, y ∈ V be elements of a preordered vector space (V,≥).

If y ≫ x, then ny ≫ x ∀n > 0.

Proof. From the definition 4 of Archimedean equivalence, we have |y| ≥

m|x| ∀m ∈ N. Assume that there exists n > 0,m ∈ N such that m|x| ≥ |ny|.

Then m
n
|x| ≥ |y|, which is a contradiction. ■

13



This implies that if one unit of y is better than x and y is not Archimedean

equivalent to x, then any strictly positive number of units of y is better than

x.

Theorem 2. Supporting hyperplane theorem. For any convex subset S

of Rn and any point x0 in its boundary, there exists a supporting hyperplane

H0 that contains x0, such that S is a subset of one of the closed half spaces

defined by H0.

Proof. The proof is an application of the separating hyperplane theorem. See

section 2.5 of [28] ■

Theorem 3. Every finite-dimensional subspace of a totally preordered vector

space is lexicographically ordered.

Proof. Let Vn be an n-dimensional subspace of V . Then Vn is also a totally

preordered vector space, with an induced order given by the positive cone

Cn = C∩Vn. That Cn is a convex cone can be seen by taking the intersection

of 2.6, 2.7 with Vn,

(C + C) ∩ Vn = V ∩ Vn ⇒ Cn + Cn = Vn (2.16)

λC ∩ Vn ⊆ C ∩ Vn ⇒ λCn ⊆ Cn. (2.17)

We also have C ∩ (−C) = V ⇒ Cn ∩ (−Cn) = Vn.

If Cn = Vn, then
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x ≥ 0 ≥ x ⇒ x ≃ 0 ∀x ∈ Vn, (2.18)

which is the trivial case. If Cn ̸= Vn, then Cn must have a non-empty

boundary that includes 0. Using Theorem 2, the convex cone Cn of (Vn,≥)

has a supporting hyperplane H0 containing 0, defined by a.x = 0. Assume

Cn has another distinct supporting hyperplane. This would imply there is a

non-zero vector x that is in the upper half space defined by one hyperplane,

and the lower half space defined by the other. Since Cn ∩ (−Cn) = Vn and

any supporting hyperplane separates Cn and −Cn, this would imply x = −x,

which is a contradiction. Therefore H0 is the unique supporting hyperplane

that contains all of the points on the boundary of Cn.

Let e1 be a unit vector pointing in the direction of a, which is a normal

vector at right angles to H0. Then e1 is not Archimedean equivalent to any

of the vectors in H0 that are perpendicular to it. This is because subtracting

a vector in H0 from e1 just translates e1 in a perpendicular direction, which

always stays in the positive cone Cn.

We can repeat the same reasoning inductively starting with the subspace

given by the hyperplane H0 to find a subset of basis vectors that lexicograph-

ically order Vn. ■

It is instructive to look at the case where V is two-dimensional. Ignoring

the trivial case where C = V , we can choose basis vectors e1, e2 for V such

that C is either H≥ or (H≥ \ L<) . Here, H≥ is the upper half space of

vectors whose vertical component is ≥ 0, and L< is the strictly negative
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half-line along the horizontal axis. These positive cones can be visualised in

Figure 2.

Figure 2: Left: The upper half space in R2. Right: The upper half space
in R2 with the strictly negative half-line in the e1 direction removed.

It should be clear that if the vertical component of vector y is greater

than or equal to the vertical component of vector x, then y ≥ x. Therefore

e2 is the greatest unit vector, and e1 is the least unit vector that is ≥ 0. In

the (e1, e2) basis, we have that (a1, a2) ≥ (b1, b2) iff a2 > b2 or (a2 = b2 and

a1 ≥ b1), which is just the lexicographic order. For any positive vector v that

is not a scalar multiple of e1, v ≫ e1. All other vectors excluding multiples

of e1 and 0 are Archimedean equivalent to each other.

There are vectors that are arbitrarily close in the sense that their differ-

ence can be as ‘near to zero’ as one desires. This provides an intuition for

the necessity of non-Archimedean equivalent goods. Given any two linearly

independent vectors v1, v2 corresponding to life years of different qualities,

we can always find a linear combination d whose vertical component is zero.
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Then d is not Archimedean equivalent to at least one of v1 and v2. For ex-

ample, if v1 > 0 and v2 < 0 correspond to life qualities that are in the same

Archimedean class, then d = a1v1 + a2v2 represents a1 life years at quality

v1, and a2 life years at quality v2. This can be as ‘close’ to zero as one wants,

leading to a good that is in a lower Archimedean class.

If the positive cone is (H≥ \ L<), then we have e1 ≥ 0 and −e1 ≱ 0, which

implies that e1 is strictly greater than zero, e1 > 0. In this case, among all

vectors that are greater than zero and whose components are positive and

sum to 1, e1 is the smallest. In other words, e1 corresponds to a year of life

that is barely worth living.

On the other hand, if the positive cone is the upper half space H≥, then

we have e1 ≥ 0 and e1 ≤ 0, which implies that e1 is indifferent to zero,

e1 ≃ 0. In this case, the set of vectors greater than zero whose components

are positive and sum to 1 does not have a minimum, and there is no element

that clearly corresponds to a life that is barely worth living.

More generally, let B> denote the subset of basis vectors that are not

indifferent to zero. Now assume that there is a ‘fixed exchange rate’ between

these life qualities, i.e there exists ni such that b0 ≃ nibi ∀i ∈ I, where I is an

indexing set for B>. Then every vector in the span of B0 := {(b0 − nibi)}i∈I

is indifferent to zero. On the other hand, bi ≫ b ∀b ∈ B0, i ∈ I. We can use

≃ as an equivalence relation to collapse the space spanned by B0 to a line.

The result is a two-dimensional space with a convex cone as in the left hand

side of Figure 2.

It is also possible that there are more than two distinct Archimedean

classes. In principle, there can be as many distinct Archimedean classes as
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there are levels of life quality. The set of life years that are strictly greater

than zero still need not have a minimal element, similarly to how e.g. there is

no smallest strictly positive real number. If it does have a minimal element,

this corresponds to the notion of a life year barely worth living. Otherwise,

there is no clear concept of a life barely worth living.

2.3 Implications of lexicographic ordering in popula-

tion ethics

In this section, I examine some implications of the lexicographic order in

population ethics. In particular, I present the well-known result that the lex-

icographic order cannot be represented on the real numbers, and I discuss the

multidimensional expected utility representation that results from dropping

the Archimedean axiom in the von Neumann Morgenstern theorem.

Proposition 2. The lexicographic order on R2 cannot be represented on R.

Proof. Let ≥ denote the lexicographic order on R2. Assume there is a func-

tion u : R2 → R such that u(y) ≥ u(x) ⇔ y ≥ x. Consider the map

f : α → [u((α, 0)), u((α, 1))]. (2.19)

The Archimedean property of the real numbers can be used to show that ev-

ery non-empty interval in the real numbers contains a rational number. I will

use ϕ to denote a function that selects a rational number from a non-empty in-

terval given as its argument. The function ϕ◦f : R → Q is an injection, since

18



for α ̸= β we have that either u((α, 0)) > u((β, 1)), or u((β, 0)) > u((α, 1)).

This in turn implies that f(α)∩ f(β) = ∅, and ϕ(f(α)) ̸= ϕ(f(β)) for α ̸= β.

Then the cardinality of the rationals must be greater than or equal to the

cardinality of the reals, which is a contradiction. ■

Proposition 2 has the consequence that there does not exist a real-valued

function of the expected utility form that can represent a preordering of

probability measures over a non-trivial preordered vector space (V,≥) of

dimension > 1. This is because there doesn’t even exist a real-valued function

that can represent a preordering on the subset of such probability measures

that are Dirac measures (i.e. sure outcomes in V ). The axioms of the von

Neumann Morgenstern utility theorem are not satisfied.[29] Note that this is

not due to any ‘irrationality’ on our part regarding our evaluation of uncertain

outcomes - the failure occurs when only considering outcomes that happen

with probability 1.

This has profound implications for the application of utilitarianism and

expected utility theory in population ethics, and any setting involving non-

Archimedean preordered vector spaces or lexicographic orders. Any line of

reasoning that implicitly or explicitly attempts to represent such orders using

real numbers is unsound. If we proceeded ignoring the above, it would be

possible to come to ethical conclusions that are arbitrarily wrong. This

can occur, for example, by mistakenly taking two goods to be Archimedean

equivalent when they are not.

The conflict is with the continuity/Archimedean axiom of the von Neu-

mann Morgenstern utility theorem. If this axiom is weakened, a preordering
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of probability measures may be represented with multi-dimensional lexico-

graphic expected utilities.[18, 20] Let P,Q be probability measures defined

on a sigma algebra over V . A lexicographic expected utility representation

consists of real-valued functions ui on each distinct Archimedean class in V

such that

P ≥ Q ⇔ EP [u] ≥ EQ[u]. (2.20)

Here, EP [u] is the expectation with respect to the measure P of the vector

u whose components are ui. The comparison of P and Q is accomplished

using the lexicographic order ≥ on a finite dimensional subspace of V , since

EP [u],EQ[u] are elements of V that can be written as finite linear combina-

tions of basis vectors. Uncertain prospects are thus lexicographically ordered

according to expected utility within Archimedean classes. For more detail

on the conditions for such a representation to exist, see Chapter 1-4 of [20].

As an example of multi-dimensional lexicographic expected utility, con-

sider the bets in Table 1 over quantities of two non-Archimedean equivalent

goods denoted by H (‘higher’) and L (‘lower’).

Table 1: Multi-dimensional expected utility

Bet 1 Bet 2 Bet 3

Probability
distribution

P(H=10) = 1
2

P(H=0) = 1
2

P(L = 2) = 1

P(H=1) = 1
P(L = 3) = 1

P(H=2) = 1
2

P(H=0) = 1
2

P(L = 7) = 1
Expected
utility

(
5 2

) (
1 3

) (
1 7

)
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Bet 1 is preferred to the other two bets because the first component of its

expected utility vector is largest. Bet 3 is preferred to Bet 2 because the first

components of their expected utility are equal, but the second component

for Bet 3 exceeds that of Bet 2.

Our only assumptions so far are the axioms for a preordered vector space

2. However, we are forced to conclude that there are pairs of goods that are

not Archimedean equivalent. Although non-Archimedean life qualities have

previously been suggested as a way of avoiding the repugnant conclusion,

it has been claimed that if such a pair of life qualities exists, then other

counterintuitive results follow. In particular, every finite, monotone sequence

beginning and ending with non-Archimedean equivalent goods must contain

a successive pair of elements that are in distinct Archimedean classes. I

address this issue in section 4 after first introducing some preliminaries on

ordinal numbers.

3 An informal introduction to ordinal num-

bers

In this section, I give a brief introduction to ordinal numbers. An under-

standing of ordinal numbers is necessary for the material in section 4.

Alice likes apples and oranges. She always prefers a larger number of

apples/oranges to a smaller number. However, she likes apples more than

oranges, to the extent that there is no number of oranges that she would

prefer to even a single apple.
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Let us try to represent her preferences using numbers. We will assign the

number 1 to the bundle consisting of 1 orange, the number 2 to 2 oranges, etc.

Then the ≥ operator on the natural numbers represents Alice’s preferences

over oranges.

However, if we limit ourselves to the natural numbers, we immediately run

into a problem. The bundle consisting of a single apple cannot be assigned a

natural number in a way that respects Alice’s preferences. Whichever number

it is assigned, there is always a larger natural number available, which would

incorrectly imply that there is some number of oranges Alice would prefer to

one apple.

In a sense, we have ‘run out’ of numbers that we can use to order the

available bundles. The theory of ordinal numbers was constructed more

than a century ago by Cantor, and developed further by von Neumann and

others.[30, 31] We give a brief whistlestop tour of this theory here.

There is nothing stopping us from simply defining an abstract number,

which we will call ω, and extending the relation ≥ by assigning ω to be

greater than any natural number. ω can then be used to represent the bundle

consisting of one apple for Alice.

We can take this further and consider bundles consisting of some number

of both apples and oranges. Remembering that Alice always prefers more

fruit to less, we may define a new element denoted by ω + 1 that is greater

than ω, corresponding to 1 apple and 1 orange. This can be repeated for

ω + 2, ω + 3 etc. For two apples, we symbolically assign the element ω2.

ω is called the first infinite ordinal number. An arithmetic of ordinal

numbers can be constructed recursively using disjoint unions of sets. A well-
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ordered set is a totally-ordered set in in which every subset has a least el-

ement. Given two well-ordered sets X, Y , we may define X + Y as the set

obtained by taking their disjoint union, and assigning every element of Y to

be greater than every element of X, but otherwise preserving the ordering

within X and Y . For example,

{0, 1, 2}+ {0′, 1′} := {0, 1, 2, 0′, 1′}, (3.1)

where sets are written so that the elements increase from left to right. We can

map the set {0, 1, 2, 0′, 1′} onto {0, 1, 2, 3, 4} while preserving the ordering by

0 → 0, (3.2)

1 → 1, (3.3)

2 → 2, (3.4)

0′ → 3, (3.5)

1′ → 4. (3.6)

We can go further and identify {0, 1, 2, 3, 4} as the ordinal number 5. This

is because every element of a well-ordering is uniquely determined by the set

of elements that it is larger than. Similarly, ω can be identified with the set

of natural numbers. In this scheme, ordinal numbers are simply canonical

representatives of a set of well-orderings that are all equivalent to each other,

with the different ordinal numbers providing labels for every possible distinct
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well-ordered set. The ordinal number associated with a well-ordered set is

called its order type.

Note that the above addition operation is commutative for finite ordinal

numbers, i.e. X + Y = Y + X ∀X, Y < ω. This however, ceases to be the

case when considering infinite ordinals. For example,

2 + ω = {0′, 1′, 0, 1, 2...}. (3.7)

This ordering is equivalent to ω, since we can simply relabel as follows

0′ → 0, (3.8)

1′ → 1, (3.9)

0 → 2, (3.10)

1 → 3, (3.11)

... (3.12)

On the other hand,

ω + 2 = {0, 1, 2... ω, ω + 1}. (3.13)

This is not equivalent to ω, since there are two elements in ω + 2 that are

greater than all the natural numbers, as opposed to none in ω. Thus ω+2 ̸=
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2 + ω.

Multiplication and exponentiation operations can also be defined for or-

dinal numbers, but I will not develop this here. I refer the reader to some of

the many excellent texts on set theory.[32, 33, 34]

4 Ordinal numbers and the repugnant con-

clusion

In this section, I address sequence arguments against the existence of non-

Archimedean equivalent goods. Other proposed resolutions in the literature

use vagueness, incommensurability, indeterminacy, or fuzziness.[11, 9, 23, 12,

24] The approach here does rely on any of these concepts.

Results in [21, 22] imply that in any finite increasing sequence for which

the first and last elements are not Archimedean equivalent to each other,

there must be a pair of successive elements that are not Archimedean equiv-

alent. This can used as an argument against the existence of goods that are

not Archimedean equivalent, based on the idea that one should be able to

construct such a sequence where each element is marginally better than its

predecessor. This would then imply that there are a pair of life qualities that

are near-identical, but there is no number of the marginally worse life years

that is better than just one of the marginally better life years. The argu-

ment can be extended to infinite sequences, using transitivity of Archimedean

equivalence to obtain the result that in any sequence where every two suc-

cessive elements are Archimedean equivalent, all elements are Archimedean
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equivalent.

The problem can be approached by generalising to transfinite sequences.

A transfinite sequence is a collection of set elements indexed by an interval

in the ordinal numbers (rather than the natural numbers). We can construct

an increasing transfinite sequence of vectors v1, v2, . . . vω where every pair of

successive elements is Archimedean equivalent, but vω is not Archimedean

equivalent to any vn for n ∈ N. This is possible because vω does not have a

predecessor. That is, there is no natural number that has ω as its successor,

because one can always find a larger natural number. Thus it is perfectly

possible to have vectors v1, vω such that vω cannot be ‘reached’ from v1

by a finite number of marginal increments. If that is not enough, there are

ordinal numbers that are arbitrarily large, so one can construct an increasing

transfinite sequence of vectors containing pairs of elements that cannot be

reached from each other by a countable or uncountable infinite number of

marginal increments. If one wishes to have a set of vectors that contains

arbitrarily large ascending and descending chains, one can use indexing sets

that takes values in e.g. the surreal numbers.

As an example, consider the following sequence in R2 with the lexico-

graphic order,

100

0

 ,

10

0

 ,

1

0

 ,

0

1

 . (4.1)

For concreteness, we can think of the top component as the number of life
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years at a life quality that is worth living, and the bottom component as the

number of life years at a life quality that is indifferent to nonexistence.

The final pair of elements in 4.1 are not Archimedean equivalent. We

can further subdivide the interval between their top components so that

the difference becomes arbitrarily small. One might think that continuing

to subdivide in this fashion is unlikely to improve the situation. However,

consider

102

0

 ,

101

0

 ,

100

0

 ,

10−1

0

 ,

10−2

0

 . . .

0

1

 . (4.2)

4.2 is clearly more fine-grained than 4.1., since it contains all elements of the

form

10−n

0

 , n ∈ N. By contrast, it does not contain any two successive

elements that are not Archimedean equivalent. 4.2 is a decreasing transfinite

sequence whose order type is ω + 1, where the final element does not have a

predecessor.

Finite subsequences like 4.1 whose initial and final elements are not

Archimedean equivalent pose no additional conceptual difficulty compared

to the case where all goods are Archimedean equivalent. In both cases, one

can construct a decreasing sequence with ‘small’ increments such that there

is an element that is preferred to any number of its successor. For example,

102, 101, 100, 10−1 . . . 10−n, 0. (4.3)
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The penultimate element is greater than any multiple of 0, despite the fact

that the difference between them can be made arbitrarily small. The only

substantive difference in the non-Archimedean case is that one can have

e.g. a population consisting of a non-zero number of life years in a lower

Archimedean class that ‘behaves like 0’ because it is indifferent to 0. The exis-

tence of finite sequences whose initial and final elements are not Archimedean

equivalent is thus no more (or less) mysterious than a sequence starting with

a life worth living, where each successive term reduces its duration by a small

discrete quantity until we are left with a life whose duration is 0.

5 Uncertainty and vagueness

5.1 Fuzzy preordered vector spaces

The formalism presented so far may be viewed as a theoretical framework

for population ethics in circumstances of complete information, sharply de-

marcated boundaries and ethical preferences that are sensitive to arbitrarily

small changes. However, these conditions may not exist in reality. For ex-

ample, it may not be clear what constitutes a life that is barely worth living,

or to give the concept a precise definition. A natural way of generalising

to accommodate uncertainty/vagueness in the context of preordered vector

spaces is to allow the positive cone to be a fuzzy set.

Definition 5. Fuzzy set. A fuzzy set is map m : V → [0, 1], where V is a

set. m is called the membership function.

In the current setting, the value of the membership function may be
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interpreted as a frequentist or Bayesian probability that a given element

of the preordered vector space (V,≥) is in the positive cone, and therefore

greater than or equal to 0. That is, there really is a sharp boundary between

elements that are ≥ 0 and elements that are not, but we do not know exactly

where it lies. The uncertainty may originate at least partly from our inability

to detect differences below a certain threshold.

Alternatively, the membership function may be interpreted as the ‘degree’

to which a given vector is greater than or equal to zero. In this view, the

‘positive cone’ need not have a sharp boundary, similar to the way there

is no sharp distinction between e.g. a sunny day and a cloudy day. This

interpretation is fundamentally distinct from a probabilistic interpretation,

in which there is uncertainty about the answer to a well defined question.

By contrast, fuzzy sets allow for the possibility of a question that is not well

defined, and answers with truth values ranging between 0 (false) and 1 (true).

Whichever interpretation is adopted, there is no longer a precise appar-

ent border between elements that are not Archimedean equivalent to each

other. This is consonant with the intuition that there is no clear dividing line

between life qualities that are qualitatively different. For example, we might

hold the position that one completely blissful life is better than any number

of lives that are barely worth living, without having a clear idea of where

exactly the boundary lies between lives that are Archimedean equivalent to

the single blissful life, and those that are not.

This induces a new preference relation ⪰ on V characterised by a decision

rule with threshold α ∈ [0, 1], defined by
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y ⪰ x iff m(y − x) ≥ α (5.1)

It is possible to extend ⪰ to probability measures by constructing a repre-

sentation in terms of a utility function u,

P ⪰ Q ⇔ m(EP [u]− EQ[u]) ≥ α. (5.2)

I suggest this representation may be equivalent to an appropriate fuzzification

of the von Neumann Morgenstern axioms.

5.2 Transitivity at all scales is inconsistent with physics

The relation ⪰ in 5.1 may be non-transitive. For example, m and α may

be such that ⪰ restricted to a finite-dimensional subspace of V is the lexico-

graphic semiorder.[35] This can be understood as the lexicographic ordering

with imperfect discriminatory power, such that only differences above a cer-

tain threshold in a given dimension are detectable. Non-transitivity of the

strict preference ≻ can also occur as in examples given by Ng.[36] Non-

transitivity of indifference ∼ (the symmetric part of ⪰) can occur along the

lines of the example given in seminal work by Luce [37] of an individual who

strictly prefers a coffee with one sugar over a coffee with five sugars, but is

pairwise indifferent between a series of intermediate coffees that differ by tiny

increments in the quantity of sugar.
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If there are physical limitations on the ability to discriminate between

different goods stemming from e.g. quantum mechanics, then non-transitive

preferences may be unavoidable. Non-transitivity arising from limited dis-

criminatory power can resolve problems associated with so-called ‘reckless-

ness’ and ‘fanaticism’, wherein a decision-maker acting in accordance with a

seemingly reasonable set of axioms counterintuitively prefers bets involving

arbitrarily small probabilities of sufficiently large or ‘infinite’ payoffs to any

given sure outcome.[25, 26, 27] This is because sufficiently small probabili-

ties in long shot bets may be indistinguishable from zero, regardless of the

magnitude of the payoff. The resolution amounts to dropping transitivity at

all scales as a normative requirement because it is inconsistent with physical

laws.

As an example, consider the problem of determining whether a coin is fair

with probability 1
2
of landing on heads, or slightly biased, with probability

(1
2
+ ϵ) of landing on heads. In order to do this, one might seek to make sure

the coin is completely symmetric about its axis of rotation, and that it starts

completely at rest with zero total momentum. Treating the system classically,

it may not be physically possible to determine positions and momenta with

arbitrary precision because some non-zero disturbance is introduced to the

system simply through measurement. An example illustrating this idea is

Heisenberg’s microscope.[38]

Alternatively, consider an explicitly quantummechanical system - a fermion

whose spin along a given axis may either be up or down. In order to know the

probabilities of these two outcomes, the wavefunction must be determined.

However, superposition states are never directly observed. One might hope
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to perform measurements on a number of identically prepared systems and

verify that the probability of either outcome is 1
2
within some margin of er-

ror. But if we are limited to a finite number of systems, this margin of error

is necessarily non-zero. Even then, no-cloning theorems show that it is not

possible in principle to create identical copies of an arbitrary superposition

state, and only imperfect copies can be made.[39]

In this view, fuzziness is a simple way of capturing vagueness/uncertainty

that arises because our underlying model cannot be physically accurate at

all scales, since it does not properly account for e.g. quantum mechanical

effects. Fuzzy preordered vector spaces may be thought of an effective theory

of population ethics that provides a simplified model focusing on the most

relevant length scales while omitting fine-grained details.

5.3 Asymptotic lexicographic order

Equation 5.1 is a generalisation of the lexical threshold view advocated in

[12]. In this section, I show that the membership function can allow for

a smooth transition between non Archimedean equivalent goods, with the

distinction only becoming manifest asymptotically.

To illustrate this idea, consider the case where x, y ∈ R2 with

y − x =

δ2

δ1

 . (5.3)

The crisp cone in Figure 2 is a special case where the membership function
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is a step function that abruptly transitions from 0 below the horizontal axis,

to 1 above it. This is plotted on the left hand side of Figure 3.

We will instead consider a membership function of the form

m(y − x) =
1

1 + e−(δ21+1)δ2
. (5.4)

This may be thought of as the logistic function with argument δ2, where

the growth rate is variable and equal to (δ21+1). The boundary only becomes

sharp in the limit where δ1 becomes large. A visualisation is provided on the

right hand side of Figure 3.

Figure 3: Left: Step function. Right: Sigmoid function.

This membership function takes value 1
2
on the δ2 = 0 plane, which can

be thought of as the ‘true’ boundary of the positive cone as in Figure 2. We

have

33



lim
δ2→∞

m(y − x) = 1 (5.5)

lim
δ2→−∞

m(y − x) = 0. (5.6)

In words, a sufficiently large difference in in the vertical dimension ensures

y ⪰ x. We also have

lim
δ1→±∞

m(y − x) =


1, if δ2 > 0,

1
2
, if δ2 = 0,

0, if δ2 < 0.

(5.7)

This is essentially the lexicographic order - any positive value for δ2 guaran-

tees y ⪰ x. However, this is not true for any finite value of δ1, since

y ⪰ x ⇐⇒ δ2 ≥
ln( α

1−α
)

δ21 + 1
. (5.8)

This means that in order for y ⪰ x, δ2 has to exceed a threshold that varies

with the value of δ1 and that approaches zero as δ1 becomes large. Thus the

lexicographic order only emerges asymptotically.

This membership function has the property that the greater δ1 is, the

smaller δ2 must be in order for y ≥ x. This can be interpreted as follows. To

the decision-maker, it is not clear whether e2 and e1 are Archimedean equiv-
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alent. It is only in the limit where the difference between two populations

along the e1 dimension becomes sufficiently large that it becomes apparent

they are in different Archimedean classes. The limit δ1 → ±∞ may be infor-

mally thought of as ‘looking at e1 through a magnifying glass’. Alternatively,

one can think of measuring the welfare of ne1, e2 and performing a statisti-

cal test of whether e2 ≥ ne1. As n becomes larger, we can be increasingly

confident that this is the case, with certainty only in the limit.

6 Conclusion

In this paper, I have introduced preordered vector spaces, transfinite se-

quences and fuzzy sets as suitable mathematical tools in population ethics. I

have shown that in this setting, not only is the existence of non-Archimedean

equivalent goods (i.e. goods for which no amount of one is better than a

single unit of the other) sensible, it is compulsory. I note that utilitarian-

ism and expected utility theory in their canonical form fail in this setting,

as does any attempt to use real numbers to represent orders in population

ethics. This is because non-Archimedean orders cannot generally be repre-

sented on Archimedean fields. Generalisations of the von Neumann Morgen-

stern utility theorem that weaken the continuity/Archimedean axiom lead

to multi-dimensional lexicographic expected utility representations. I argue

that the existence of non-Archimedean equivalent goods poses no additional

theoretical difficulty compared to the case where all goods are Archimedean

equivalent. I use a fuzzy set construction to show that there can be a smooth

transition between goods that are non-Archimedean equivalent, with the lex-
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icographic order only manifesting asymptotically. This may be a consequence

of intrinsic physical limitations on the ability to discriminate between differ-

ent goods arising from e.g. quantum mechanics. These limitations cause

preferences to be non-transitive, which can in turn resolve problems related

to ‘fanaticism’ and ‘recklessness’. The main implication of this work is that

the repugnant conclusion can be avoided without contradicting any moral

intuitions.
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