
Robust Biomarkers: Methodologically Tracking Causal Processes in Alzheimer’s 

Measurement 

Vadim Keyser and Louis Sarry1 

Abstract: 

In biomedical measurement, biomarkers are used to achieve reliable prediction of, 
and useful causal information about patient outcomes while minimizing complexity of 
measurement, resources, and invasiveness. A biomarker is an assayable metric that 
discloses the status of a biological process of interest, be it normative, 
pathophysiological, or in response to intervention. The greatest utility from biomarkers 
comes from their ability to help clinicians (and researchers) make and evaluate clinical 
decisions. In this paper we discuss a specific methodological use of clinical biomarkers in 
pharmacological measurement: Some biomarkers, called ‘surrogate markers’, are used to 
substitute for a clinically meaningful endpoint corresponding to events and their 
penultimate risk factors. We confront the reliability of clinical biomarkers that are used to 
gather information about clinically meaningful endpoints. Our aim is to present a 
systematic methodology for assessing the reliability of multiple surrogate markers (and 
biomarkers in general). To do this we draw upon the robustness analysis literature in the 
philosophy of science and the empirical use of clinical biomarkers.  

After introducing robustness analysis we present two problems with biomarkers in 
relation to reliability. Next, we propose an intervention-based robustness methodology 
for organizing the reliability of biomarkers in general. We propose three relevant 
conditions for a robust methodology for biomarkers: (R1) Intervention-based 
demonstration of partial independence of modes: In biomarkers partial independence can 
be demonstrated through exogenous interventions that modify a process some number of 
“steps” removed from each of the markers. (R2) Comparison of diverging and 
converging results across biomarkers: By systematically comparing partially-
independent biomarkers we can track under what conditions markers fail to converge in 
results, and under which conditions they successfully converge. (R3) Information within 
the context of theory: Through a systematic cross-comparison of the markers we can 
make causal conclusions as well as eliminate competing theories. We apply our robust 
methodology to currently developing Alzheimer’s research to show its usefulness for 
making causal conclusions. 
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1. Introduction  

In biomedical measurement biomarkers are used to achieve reliable prediction of, 
and useful information about, patient outcomes while minimizing complexity of 
measurement, resources, and invasiveness. A biomarker is an assayable metric that 
discloses the status of a biological process of interest, be it pathophysiological or in 
response to intervention (De Gruttola et al., 2001). The greatest utility from biomarkers 
comes from their ability to help clinicians (and researchers) make and evaluate clinical 
decisions. As such, a clinical biomarker is any biomarker deemed universally applicable 
across the patient population that discloses the state of a biological process suitable to 
inform clinical decision-making and its subsequent assessment.  

Clinical biomarkers (CBs) are stratified in many ways. For example, by: 
measurement purpose (e.g., the extent of disease, nature of response); what they measure 
(e.g., function, biochemistry/histology, behavior, genetics, morphology); clinical use 
(e.g., predictive, diagnostic, prognostic); situation within a physiological model (e.g., 
causative, resultant, correlative); how they can be used to examine biology (e.g., 
interventional analysis); and composition (i.e. singular, composite, serial).2 

In this paper we analyze the methodological use of CBs in pharmacological 
measurement: some biomarkers are used to substitute for a clinically meaningful 
endpoint corresponding to events and their penultimate risk factors. For example, the 
biomarker LDL cholesterol (LDL-C) corresponds to the clinical endpoint heart attack, 
with penultimate risk factors such as coronary artery stenosis, atherosclerosis with 
unstable fibrous cap, and severe angina pectoris. A coveted CB is supposed to provide 
reliable information regarding processes that cannot reasonably be interrogated directly. 
Such reliable biomarkers are referred to as ‘surrogate markers’ (SMs).3 

The story becomes intriguing when multiple surrogate markers are combined for 
measurement purposes. It seems that a combination of SMs will provide more useful 
results than just a single SM, to the extent that that those SMs are independent and do not 
carry the same confounds. But there is neither a scientific nor a philosophical account 
that can be used to assess the reliability of multiple biomarkers. In this paper we present a 
systematic methodology for assessing the reliability of multiple surrogate markers (and 
biomarkers in general). To do this we draw upon the robustness analysis literature in the 
philosophy of science as well as the clinical use of biomarkers.  

In Section 2, we present background on robustness analysis to show that the focus 
within the philosophy of science literature has been on converging results. At first glance, 
CBs seem like a perfect candidate to be incorporated into a robustness analysis focused 
on converging results However, in Section 3 we analyze the reliability of CBs that are 
																																								 																					
2 See Mayeux (2004) and Aronson (2005) for classification of CBs.  
3 Katz (2004) describes all biomarkers as being “candidate” surrogate markers. 



used to gather information about clinically meaningful endpoints, both within single 
biomarkers and within combined biomarkers. We argue that even in surrogate markers 
that are validated, readings of a given surrogate marker may diverge from readings of 
nominally equivalent, or parallel, surrogate markers. For this reason, we focus on a type 
of robustness analyses that can account for diverging results between modes of 
measurement. In Section 4, we present an intervention-based systematic methodology for 
assessing the reliability of surrogate markers. This methodology draws on two key 
accounts in the robustness literature (Schupbach 2015 and Keyser 2016), both of which 
focus on elimination and provide uses for diverging results. In Section 5, we present a 
case study from Alzheimer’s research. We argue that current research in Alzheimer’s 
disease is fitting for specifying causal relations and revising theory based on diverging 
results of CBs.4   

 

 

2. Robustness Analysis  

In this discussion, we present an intervention-based systematic methodology for 
assessing the reliability of surrogate markers. This methodology draws on two key 
accounts in the robustness literature (Schupbach 2015 and Keyser 2016), both of which 
focus on elimination and provide uses for diverging results. Before discussing these 
robustness analyses, it is important to give a bit of background about the different uses of 
robustness analysis. 

 

2.1 Robustness Analysis: Uses 

Philosophers have discussed robustness analysis in the context of models5 as well 
as in the context of experiment and evidence.6 We can specify three robustness analyses 
that are relevant for setting up biomarker analysis. Woodward (2006) distinguishes 
‘inferential robustness,’ ‘measurement robustness,’ and ‘causal robustness.’ The details 
of these analyses are important because they can be applied to show how we can 
differentiate modes in biomarker measurement (Section 4.2) and how we can use 
robustness analysis to specify causal relationships (Sections 4.3 and 4.4).  

Woodward uses Aldrich’s (1989) account to characterize ‘inferential robustness’. 
This type of robustness is used when there is a fixed body of data (D) and a conclusion 
(S). This is for cases with a number of additional assumptions (Ai), with no strong 
scientific preference for any of them. Woodward says: “A number of writers suggest that 
																																								 																					
4 The modeling work for this project was completed in 2015 and 2016 when this was still an 
unfolding empirical puzzle.  
5 See Wimsatt (2007); Levins (1966); Weisberg (2006); and Glymour (1980).  
6 See Horwich (1982; 2011); Hacking (1983); Franklin (1997); Sober (1989); Trout (1998); Culp 
(1994); Stegenga (2009; 2012).  



if for each of these Ai, D supports S, this provides a strong reason for belief in S, even in 
the absence of information about which of these Ai is correct—S is said in this case to be 
robust or sturdy or insensitive to alternative assumptions Ai, given D” (2006, 219-220).7 
If S is not robust, then it is believed to be “fragile” and Woodward suggests a suspension 
of belief (2006, 220).  

‘Measurement robustness’ consists of using different measurement procedures to 
measure the value of some quantity (Woodward 2006, 234). One of the important 
features of measurement robustness is that different procedures are used. This increases 
our confidence that we have measured the quantity “accurately” (234). Woodward says,  

The underlying rationale is usually taken to be something like this: The different 
measurement procedures are in some relevant sense or senses ‘independent’ of 
each other—they involve instruments of different design, operating according to 
different causal principles, they employ different assumptions to interpret the data 
they produce and so on. This suggests that while each procedure may be subject 
to various sources of error, they are unlikely to be subject to exactly the same 
kinds of error…” (2006, 234) 

Both inferential robustness and measurement robustness increase our confidence about an 
invariant result. However, the mechanism in each analysis differs: inferential robustness 
data may be produced by a single procedure, even though the assumptions differ. In a 
case of measurement robustness, there may be shared assumptions whereas measurement 
procedures differ.8 

Finally, ‘causal robustness’ consists of finding a structural relationship that is 
invariant over changes in intervention. For example, a regression equation is robust if the 
causal relationship between the independent and dependent variables remains invariant 
over some class of manipulations on the independent variable (Woodward 2006, 235).  

Woodward’s account breaks down important features of robustness analyses, 
namely, theoretical assumptions, procedures, and causal conditions. We can use these 
features as building blocks to individuate modes. 

 

2.2 Individuating Modes  

  

																																								 																					
7 Woodward adds that inferential robustness “…is taken to show that D supports S or provides a 
reason for believing S” (2006, 220). 
8 For example, assumptions in kinetic theory of heat can be used to explain the function of two 
different thermometry procedures. 



There are different ways to differentiate modes 9 . Recall Woodward’s 
characterization of independence in assumptions (inferential robustness) vs. 
independence in physical procedures (measurement robustness). This offers a precise 
way of characterizing different accounts of ‘independence’. Culp (1994) posits that the 
use of different background theories for evidential processes contributes to the success of 
robustness analysis. Stegenga (2009) discusses the absence of shared problematic 
background assumptions to individuate modes. Specifically, converging modes of 
evidence are more likely to signal truth, if they do not share problematic background 
assumptions.10  

The second approach in characterizing ‘independence’ draws on Woodward’s 
general characterization of different “procedures”. These may differ because of 
underlying physical principles or processes. For example, optical microscopes and 
electron microscopes are governed by different physical principles. The electron 
microscope uses a high voltage electron beam to form the image (transmission electron 
microscope), or it uses detection of low energy “secondary electrons” emitted by the 
surface of the object as a result of excitation by the “primary electron beam” (scanning 
electron microscope). In contrast, light microscopes use techniques involving light—such 
as interference, polarization, phase contrast, direct transmission, and fluorescence. 

Physical principles are not sufficient in differentiating modes. For example, both 
the scanning electron microscopes and transmission electron microscopes use the same 
physical principles (Stegenga 2012). However, it matters in what way the physical 
principles are employed. Both microscopes use high-energy beams of electrons but there 
is a difference between how, in each of the processes, the beams interact with the 
samples. Similarly, a given set of biomarkers may use the same physiological pathways, 
but it matters in what way these biomarkers interact with a given clinical intervention. 
The physical principle account can be modified to a physical process account.  

Woodward’s (2006) specification of causal robustness is useful for this. Causal 
robustness focuses on invariant relationships over interventions or manipulations in 
conditions. So, if we observe invariance in some EHR result after we have modified 
recordings of social and behavior choices, we can specify under what conditions 
invariance occurs. Trends that survive modified conditions are robust and, to use 
Woodward’s (2006) reasoning, indicate causal structure. We can also specify the 

																																								 																					
9 Philosophers have addressed the “individuation” (independence) of modes of evidence See 
Nagel (1939); Horwich (1982); Franklin (1984); Sober (1989); Trout (1993); Culp (1994); Keeley 
(2002); Staley (2004); Douglas (2004); Wimsatt (2007); and Stegenga (2009; 2012); Lloyd 
(2010); Schupbach (2015); Keyser (2016).  
10 For example, consider data on some disease derived from electronic health record (EHR) by 
clustering health and lifestyle variables, and lab data on the development of the same condition 
from animals exposed to a specific toxin. The EHR data build on the idealized assumption that 
patients surveyed in the given sample, do not all share a specific hidden confound that would 
skew the effect. The lab data build on the idealized assumption that the animal physiology used is 
relevantly similar to human physiology for this type of effect. Because these assumptions are not 
shared, convergence of results is less likely to come from the same systematic error. 



conditions under which the robust result remains invariant—e.g., some result R occurs 
under admissible changes in a specified range of conditions C. 

This section serves as proper background to set up the methodological puzzle of 
surrogate markers that we present in the subsequent section. At first glance it seems like 
robustness analysis and the evaluation of independent modes are straightforward in 
clinical biomarkers. But what we see is that both robustness analysis and independence 
analysis require re-conceptualization to make adequate solutions in the complex and 
divergence-filled realm of biomarkers.  

 

3. Surrogate Markers  

In this section, we describe surrogate markers (SM) and the methodological 
difficulty of evaluating their reliability as well as the reliability of unvalidated 
biomarkers. First, we define the specific role of surrogate markers according to the 
standards in clinical practice. Second, we describe the problematic use of multiple 
biomarkers: whether biomarkers are validated or unvalidated, the use of multiple markers 
often yields discordant or diverging results.  

 

3.1 Surrogate Markers and Clinical Standards 

Broadly defined, a SM is any assayable metric, which substitutes for a clinically-
meaningful endpoint or penultimate pathological state, relating to important patient-
centered outcomes—including affective measures and physiological function or survival 
(De Gruttola et al. 2001). Because an SM achieves its expected value prior to the 
consummation of the clinical endpoint—i.e. it precedes it in time—surrogate endpoints 
are of great utility in contexts where the clinical endpoint is grave and best not sampled in 
a patient or subject population (e.g. kidney failure). Surrogate endpoints are also of great 
utility in contexts where the clinical endpoint is beyond our ability to easily or reliably 
measure it—e.g., it would require a measurement of progression over years, prohibitively 
expensive equipment, or a technical demand beyond current capabilities.  

Before describing a problem for SMs and biomarkers in general, it is important to 
note that there are stringent tests to establish a marker as a ‘validated surrogate maker’. 
The methodological goal is to have surrogate markers that provide reliable information 
regarding processes that cannot be interrogated directly. We characterize ‘reliability’ in 
two senses: predictive and causal-explanatory. ‘Predictive reliability’ means that there is 
a high predictive value, resultant in the diagnostic device having both high sensitivity and 
high specificity. ‘Causal-explanatory reliability’ means that the use of biomarkers 
provides key causal information about a given state of a clinical endpoint.  

Predictive reliability: There is a high predictive value resultant in both high sensitivity 
and high specificity. High sensitivity conditions refer to the minimization of false 



negatives, whereby the marker always/often achieves an expected value when a process 
threshold11 or clinical endpoint is proximate. High specificity refers to the minimization 
of false positives, whereby the marker never/rarely achieves an expected value when a 
process threshold or clinical endpoint is not proximate.   

Causal-explanatory reliability: The use of biomarkers provides key causal information 
about a given state of a clinical endpoint. The biomarker provides information that is 
embeddable within available theoretical models. These models can explain the relations 
between biomarker, clinical endpoint, and the risk factors associated with the endpoint.  

In the literature on surrogate markers, most of the focus is placed on satisfying 
predictive reliability by looking at the close-knit relationship between surrogate (marker 
or endpoint) and clinical endpoint. Statistically, surrogate endpoints constitute “response 
variables” for which any manipulation on the surrogate variable will yield an effect that 
has a relevantly similar statistical significance to the effect (of the same manipulation) on 
the true clinical endpoint (Prentice 1989). Buyse et al. (2000) suggest that an adequate 
surrogate must be “tightly correlated” with the true clinical endpoint. In addition to this, 
any treatment effect on the surrogate must be tightly correlated with the treatment effect 
on the true clinical endpoint (Buyse et al. 2000). A simple example of this is that elevated 
concentrations of LDL cholesterol (LDL-C) have been associated with cardiovascular 
risk (Gofman and Lindgren, 1950; Gofman et al., 1950). With therapeutic interventions—
e.g., the use of agents which inhibit the rate-limiting enzyme of the cholesterol 
biosynthesis pathway (statins)—LDL levels were lowered, which induces a reduction in 
cardiovascular disease (Downs et al. 1998; LaRosa et al. 2005; Ridker et al. 2008). 

However, it has been argued that correlation, even if extensive, is not sufficient 
for a given metric to be considered a SM (Fleming &DeMets 1996). In order for a 
surrogate marker to be validated, the correlation must hold under distinct (causal) 
interventions. That is, a given SM and its corresponding endpoint would require causal 
robustness. For example, a marker specific for kidney failure such as cystatin C would 
need to be elevated under distinct causes of kidney damage—such as, poison-induced, 
ischemic, mechanical, genetic, and inflammatory—be they direct or indirect.   

By the recommendation of the International Conference on Harmonisation 
Guideline E9 Statistical Principles for Clinical Trials, a surrogate endpoint (and, by 
extension, an ideal clinical biomarker) should have biological plausibility, prognostic 
value for the disease outcome, and there should be a strong association between changes 
in the surrogate and changes in the outcome with therapeutic intervention (Cleophas et al. 
2007). Ideally, the change in the surrogate will correspond to changes in the target more 

																																								 																					
11 A process threshold is analogous to a point of no return or a penultimate risk factor that relates 
to some physical/structural/tissue change in the underlying workings of a system. For example, 
glomerulosclerosis precedes the endpoint of end-stage renal disease/kidney failure.  



or less linearly 12 —or according to a very well-characterized curve—e.g. 1-to-1, 
monotonic, or single-concavity—across their entire quantifiable range, and without 
respect to the trajectory of change (i.e. no observed hysteresis), and in both natural and 
interventional contexts. That is, the surrogate must act as both epidemiological marker 
and therapeutic responder (Cohn 2004).  

Lassere et al. (2007) and Lassere (2008) summarize three conditions for validated 
SMs:  

(1) serve as harbingers of an irreversible clinical burden of disease, major 
morbidity or mortality,  

(2) have been repeatedly validated in randomized controlled trials using a 
diversity of interventional targets, and  

(3) consistently meet the highest standards of predictive association within and 
between studies. 
 
For example, despite the fact that low HDL-C cholesterol may be causally relevant to 
coronary disease, due to the fact that HDL-raising interventions have not shown 
effectiveness for patient outcomes, HDL is not a classified as a validated surrogate 
whereas LDL has sufficiently satisfied these criteria (IOM 2010, Ch. 4).13 

 
 

3.2 Biomarkers in Practice: Problems with Uncertainty and Divergence. 
 
While idealized descriptions—e.g., Prentice (1989) and Lassere et al. (2007; 

2008)—aim at establishing high standards for validated SMs, in practice, SMs never  
reach 100% sensitivity or specificity. For example, in a meta-analysis on 
Alzheimer's disease, dementia was evaluated using the cerebrospinal fluid peptide Aß42 
as a biomarker (Mo 2015). In this meta-analysis, 436 out of 1349 participants 
developed Alzheimer's dementia. According to Ritchie et al. (2014), “Individual study 
estimates of sensitivity were between 36% and 100% while the specificities were 
between 29% and 91%” (7). Not only do sensitivity and specificity range between studies 
for a given surrogate marker, but sometimes it is even difficult to make a proper estimate 
																																								 																					
12 Woodward’s (2003) account of causation is relevant here. An interesting discussion would be 
to apply Woodward’s operation of manipulating one variable (surrogate marker) to see changes in 
another (the target variable).  
13 If a surrogate is “reasonably likely” to forecast an outcome, but such a tether is not fully 
conclusive based on the evidence, a surrogate may be considered unvalidated and used for 
accelerated approval of drugs and medical devices in pressing clinical situations with few 
alternatives. In accordance with FDA regulations (CFR Title 21 Subpart H), these unvalidated 
SMs must be subsequently validated (Katz, 2004). Unvalidated surrogates are also used in pre-
clinical or pilot trials exploring safety or reasonable likelihood alone. As the spectrum of disease 
far outstrips our toolkit of validated surrogates, most disease-centered biomedical literature 
utilizes unvalidated surrogates as sources of evidence. It is important to note that the FDA only 
lists four validated surrogate markers: systolic blood pressure (SBD), low density lipoprotein 
cholesterol (LDL) level, forced expiratory volume in 1 second (FEV1), and human 
immunodeficiency virus (HIV) viral load 
(http://www.fda.gov/AboutFDA/Innovation/ucm512503.htm). 



of sensitivity and specificity, because we do not have information about the true 
endpoint. That is, the diagnosis of the actual health status of the study participants is itself 
based on uncertain measures. Cure (2014) uses autopsy in order to tighten the range of 
uncertainty for Alzheimer’s measures. While effective for generating specificity and 
sensitivity, such outcome measures are rarely accessible. 

 
Overall, there is disagreement about cut-offs for sensitivity and specificity in CBs 

in general. Some researchers continue to posit high standards—e.g., 90% (Brower 2011). 
Others argue that sensitivity and specificity alone only work for discrete, not continuous 
variables (Cleophas 2007). Pepe et al. (2016) posits that the thresholds we accept for CBs 
should depend on the prevalence of the disease endpoint and also on the costs of making 
a mistake versus the benefits of correct identification. For example, there are unvalidated 
surrogates, “reasonably likely to predict clinical benefit (for a specific disease setting and 
class of interventions)”(Fleming and Powers 2012).  There are also “correlates that serve 
as measures of biological activity”, such as CD-4, in HIV infected patients and fever in 
Community Acquired Bacterial Pneumonia (Fleming & Powers 2012, our emphasis).  

Divergence between values of validated markers that are presumed to be 
systematically connected (and assumed to 'line up' in a causal structure), may also 
occur. When judging the difference in quantitative values between two biomarkers, 
whose values are expected to be aligned, scientists may refer to theory to embed both 
biomarker trajectories along a series of interventions and realize that one of the 
biomarkers is not following its theoretically predicted trajectory. For instance, in the 
aforementioned example, LDL-C was categorized as a validated SM; but Otvos et al. 
(2011) show the inconsistency of LDL measurement in relation to the clinical endpoint 
by comparing LDL-C and LDL particle number (LDL-P) measures.  

It is worth noting that pragmatic considerations are also important in judgments 
about converging or diverging biomarkers. Scientists may judge that a given biomarker is 
“similar enough” or “differs too much” based on considerations that are outside of the 
theoretical and methodological parameters.  

 
The problem of SM divergence is not directly solvable by referring to already 

available theoretical or explanatory considerations. Even in the category of validated 
SMs, causal complexity prevents clean-cut relationships between SMs and endpoints. 
This is where causal-explanatory reliability, i.e. extracting causal information from 
surrogates, becomes difficult. As reviewed in Fleming & Powers (2012), a marker may: 

(C1) be a parallel output of an upstream event in the causal pathway, but not tie 
into the downstream causal pathway of the outcome of interest; 

(C2) lie only within one of many parallel causal pathways in multifactorial 
disease processes;  



(C3) be the target of an intervention that has direct or indirect off-target effects on 
the outcome of interest.14 (See Figure 1) 

In selecting targets, we must be cautious before concluding that the marker is located 
squarely within the causal pathway for our disease of interest.  Even with perfect 
correlation and proximity, a marker may be part of a parallel process, an inert byproduct, 
an essential compensation mechanism, or an inessential compensation mechanism; and 
we can imagine that directly targeting the marker in this case might actually make for 
worsened outcomes.  Hence, (C1)-(C3) reduce the validity of the surrogate marker. 

 
When multiple surrogate markers are used, the methodological situation 

worsens.15 Suppose that two surrogate markers diverge in results. Each marker may 
diverge for any of the specified reasons (C1)-(C3). But in each case we do not know what 
is producing the divergence. Take the example of LDL as a surrogate for cardiovascular 
disease: 

 
 Serum lipoproteins are particles that transport water-insoluble lipids such as 

triglycerides, cholesterol and cholesterol esters between the organs of energy 
transformation (liver, kidneys) and the organs of energy expenditure and storage 
(musculature, adipose). Low-density lipoprotein cholesterol (LDL-C), a measure of the 
total amount cholesterol contained within all LDL particles, is an accepted surrogate 
marker for cardiovascular disease risk, despite the fact that about half of hospitalized 
cardiovascular disease occurring in individuals with normal or “optimal” LDL-C (<100 
mg/dL) (Sachdeva et al. 2009). Unsurprisingly, since the carriage capacity of lipoprotein 
particles is bound by lower and upper limits, the number of LDL particles (LDL-P) 
correlates strongly with LDL-C and has emerged as a strong predictor of risk.  

 
In a large cohort, LDL-C and LDL-P values differed by more than 12 percentile 

units in half of the participants, with one-quarter of them confined to high LDL-C/low 
LDL-P and another quarter to low LDL-C/high LDL-P subgroups.  Moreover, there 
seemed to be a difference in predictive value. The low LDL-C/high LDL-P subjects had: 
a 67% greater risk of a cardiovascular event than the high LDL-C/low LDL-P group; a 
25% greater risk than the non-discordant group; and they were found to have a greater 
prevalence of the metabolic syndrome (MetS) and its associated biomarkers such as 
elevated triglycerides.  Furthermore, in those with LDL-P below the 30th percentile, low 
LDL-C (also below the 30th percentile) increased cardiovascular event rates by 30%, 
while in those with LDL-P above the 30th percentile, low LDL-C increased event rate to a 
similar extent (Otvos et al. 2011).  

																																								 																					
14 That is, the intervention may produce other causal interactions that are relevant to the outcome 
of interest. Additionally, combinations of (C1), (C2), and (C3) are probable in biological systems. 
15 There is disagreement about combining bimarkers to make useful predictions. In Alzheimer’s 
research, Lehman et al. (2014) say that combining adequate markers (e.g., 80% specificity and 
sensitivity) improves their utility. Palmqvist et al. (2015) argue that combining markers does not 
improve their predictive utility—although he does not directly address higher ranges of 
specificity and sensitivity. 



 

In such cases where SMs diverge in results, the causal conclusions are puzzling. 
The primary methodological instinct is to weed out the SM with low sensitivity and 
specificity.16 But in each case we do not know what is producing the divergence. We 
offer a methodological suggestion: to use multiple surrogate markers in order to make 
causal conclusions at the theoretical level. The solution that we will focus on for the 
remainder of the discussion is how to methodologically account for multiple surrogate 
markers with converging and diverging results. 

 

4. Robustness Analysis and Divergence  

In this section, we present an intervention-based methodology for assessing the 
reliability of surrogate markers. We do this by discussing a new method for individuating 
modes in Section 4.1 and then discussing the importance of converging and diverging 
results in biomarker readings in Section 4.2. Our intervention-based methodology will 
refer to two eliminative robustness analyses that use diverging results to make 
conclusions (Schupbach 2015 and Keyser 2016), both of which focus on elimination and 
indicate possible inferential uses of diverging results.  

 

4.1 Individuating Modes; (partially) independent pathways vs.  physical principles 

To use Woodward’s (2006) reasoning, it is unlikely that different physical 
processes would share the same source for error: it is unlikely that different types of 
biomarkers share the same error source.17 Standard accounts of robustness analysis rely 
on distinct physical principles or distinct physical processes underpinning the 
independence of modes of observation. 18 There	are	difficulties	 in	specifying	what	counts	
as	 a	 ‘different	 physical	 process’	 (Keyser	 2016).	 Applied	 to	 biomarkers,	 there	 are	 many	
questions	 about	 differences	 in	 process:	 Do	 small	 adjustments,	 e.g.,	 in	 only	 some	 of	 the	
conditions,	constitute	changes	in	physical	process?	What	kinds	of	differences	are	important	
between	biomarkers:	the	source,	composition,	and/or	use?	If	only	some	of	these	conditions	
differ	in	two	given	biomarkers,	are	the	biomarkers	relevantly	similar?	 

Keyser (2016) presents a heuristic-based account for differentiating physical 
modes: the manipulation indicator. One way to differentiate biomarkers is to look for 
indicators of physical independence:  

																																								 																					
16 As discussed, because sensitivity and specificity carry uncertainty, it would not be a simple 
case of using the “highest” scoring surrogate marker.  
17 Here, “error” does not refer to measurement error. In other words, we assume that the 
measurements reflect the actual value of the biomarker. In the case of biomarkers, “error” refers 
to the interference or confounding of unspecified biological variables in a physiological network. 
18 See Hacking (1983), Barad (2007), Stegenga (2009; 2012), and Keyser (2016), Woodward 
(2006). 



In the presence of the manipulation indicator, one measurement process can 
manipulate the results of other processes, and independence is 
compromised. For example, suppose that in (robustness analysis applied to 
the measurement process) you have two modes of gathering information 
through measurement, M1 and M2. To see if M1 and M2 are individuated 
modes, we can introduce a manipulation to the measurement conditions 
(e.g., instrumental, preparatory, etc.) behind M1 to see if it produces a 
change in M2. If it does, then there is successful manipulation, and we 
conclude that M1 and M2 are not independent. (2016, 17) 

This account can be modified to be useful for individuating biomarkers. In the 
case of Keyser’s (2016) measurement individuation, independence is demonstrated 
through a manipulation indicator in upstream measurement processes. It would not be 
sufficient to demonstrate independence by altering a downstream determinant just prior 
to or at the point of measurement output.  

In using biomarkers as individuation indicators there are some difficulties. The 
first difficulty is that because we are using biology to probe biology, we are dealing with 
interconnected systems. This means that full independence of modes may be out of the 
question. This is where pragmatic considerations become important: modes are 
independent enough for the diagnostic purpose. Our account of the 
individuation/independence of biomarkers has a pragmatic component. However, 
whether partial or full, independence will also be determined using causal models that 
characterize a given intervention. So, we propose that partial independence is determined 
by using causal models—that characterize a given intervention, including the variables 
and values that constitute the model—in addition to pragmatic considerations about the 
purposes of a given intervention.20 

Demonstrating (partial) independence in biomarkers involves the use of 
exogenous interventions that do not interact with one of the biomarkers of interest, but 
rather modify a process some number of “steps” (factors, voxels) removed from each of 
the markers.21  

Here, pharmacological intervention is proven to be a fertile device for 
demonstrating independence in biomarkers. In this case, all we need to show is that, for 
any two biomarkers, the equation describing the curve of their relationship under natural 
conditions, is non-identical to the equation describing the curve of their relationship 
under interventional conditions that are indirect. If this is demonstrated, we have (partial) 
independence. In simple terms, the intervention does not affect each biomarker in the 
same way. The following two examples are presented for illustrative purposes: 

																																								 																					
20 We thank an anonymous reviewer for the suggestion that ‘partial independence’ involves 
causal models.  
21 Absent of this, we run into the circularity that two metrics are partially-independent because we 
observe discordance and we can glean causal information from discordance among said markers 
because they are partially-independent.   



biomarkers of inflammation (CRP and ESR), and biomarkers of cognitive impairment 
(PET Amyloid and CSF Aβ). 

 

CRP and ESR: The acute-phase response is a systemic defense program initiated by the 
liver in response to rising levels of interleukin-6 (IL-6), an innate inflammatory 
messenger produced in response to tissue damage, infectious agents, environmental 
toxicants and other salient abnormalities in cellular function. During the acute-phase 
response, levels of several serum proteins change to assist the organism in meeting those 
needs, which commonly prove most adaptive under such challenges. Therefore, 
hallmarks of the acute phase response are commonly used as indicators of all-cause 
inflammation. Two such markers are C-reactive protein (CRP), a protein that 
approximates the function of a non-specific antibody (Marnell et al. 2005), and the 
erythrocyte sedimentation rate (ESR) that is essentially a measure of blood viscosity 
resulting from the abundance of other acute-phase proteins such as fibrinog en and α-
globulins.  

Despite both markers traditionally being considered interchangeable, given that 
they derive from the same organ under presumptively identical conditions, CRP and ESR 
may be discordant/divergent in 10-30% of cases, with singly-elevated ESR being 6-fold 
more common (Costenbader et al. 2007; Colombet et al. 2010; Feldman et al. 2013; 
Sbong& Feldman 2015).  The observation of discordance in simultaneous measurement 
of these markers is important in exploring their partial independence.  

By introducing a pharmacological intervention we can see how each biomarker is 
affected. Prednisone is a synthetic glucocorticoid that reduces inflammation by strong 
activation of the glucocorticoid receptor in various tissues throughout the body. Over 140 
days of prednisone administration, CRP will decline monotonically, while ESR will show 
a backwards-J-shaped non-monotonic decrease over the same time period (McConkey et 
at 1979). This illustrates that the two biomarkers respond differently to intervention and 
are therefore partially-independent.  

 

PET Amyloid and CSF Aβ: The drug Semagacestat is an inhibitor of the integral 
membrane protease complex known as γ-secretase, which is the terminal processing step 
in the production of the Aβ peptides and other essential protein cleavage products within 
neurons (and other tissues). As an intervention, Semagacestat is therefore indirect for the 
biomarkers under consideration. 22  Semagacestat dose-dependently reduces CSF Aβ 
production in humans (Imbimbo&Giardina 2011). Furthermore, similar compounds, 
administered to humanized transgenic mice, have been shown to prevent new plaque 

																																								 																					
22 Due to a significant worsening of cognitive scores and the emergence of several alarming off-
target effects in the semagacestat groups, the full panel biomarker assessments were not 
completed in humans prior to termination of clinical trials. 



formation with no change in existing plaques as visualized with amyloid plaque labels 
(Garcia-Alloza 2009). Therefore one may conclude that in the presence of these agents, 
PET-measured amyloid and CSF Aβ change with independent dynamics in contrast to the 
natural history of Alzheimer’s disease.  

An intervention-based account of individuation/independence can be useful for 
understanding robustness analysis. Once biomarkers are shown to be partially-
independent we can begin to ask questions about what we can conclude from converging 
and diverging results in the presence of intervention. In the next section we discuss how 
robustness analysis can be used in biomarkers in order to make conclusions about causal 
relations.  

 

4.2 Robustness and Elimination: Specifying Causal Relations. 

Traditionally, robustness analysis with respect to the modeling process provides a 
way to illuminate the relationship between the robust consequence and certain aspects of 
each model in order to conclude that the inessentials of the model (the idealizations) are 
not producing the robust consequence. Framing robustness analysis this way, we focus on 
eliminating the inessentials of the model.23 Two philosophical accounts that focus on 
elimination in robustness analysis are useful: Schupbach (2015) and Keyser (2016). The 
former focuses on using robustness analysis to eliminate competing hypotheses. The 
latter focuses on tracking causal relations based on multimodal comparison.  

Schupbach (2015) uses Horwich’s (1982) eliminative account of evidential 
robustness, the emphasis of which is using evidence to eliminate competing hypotheses 
in relation to some hypothesis (H) (2015, 314). According to Schupbach:  

What really matters for (Robustness Analysis (RA))-diversity is that the 
means (which may actually be quite similar in most respects) are different 
in just the sense required to rule out H’s salient competitors. Accordingly, 
when seeking to increase the RA-diversity of our evidence, we search for 
a new way of detecting (the robust result) R that rules out some of H’s 
still-standing competitors. (2015, 316) 

According to Schupbach, new modes of evidence need not be fully independent. 
Rather, they just have to be “relevantly different” for the purpose of eliminating 
competing hypotheses (2015, 316). This fits nicely with our use of ‘partial independence’ 
in biomarkers.24 Finding modes that are different enough is important for biomarker 

																																								 																					
23 Orzack and Sober’s (1993) criticism still looms. Perhaps it is some common core, shared by the 
individual modes, that is driving the robust result. See Justus (2012) for a summary of the 
concern: robustness analysis may only reflect shared properties of models rather than anything 
about the real world system (798).  
24 To illustrate his point, Schupbach uses the example of Perrin’s modes of measuring Brownian 
motion. While Perrin’s use of varieties of pollen are not “strongly heterogeneous” because each 



analysis. In Alzheimer’s research, PET amyloid & CSF Aβ are biomarkers that are 
individuated enough within the context of intervention. We can slightly change 
Schupbach’s account, so that robustness offers hypothesis revision, not just elimination. 
As we will see in the Alzheimer’s research application in Section 5, revision gets at an 
important process in robustness analysis: the theoretical specification of causal details.  

To make the eliminativist picture even more fine-grained, we can focus on the use 
of multiple modes to figure out what parts of each mode are producing causally relevant 
results. This is where we can use Woodward’s (2006) specification of causal robustness. 
Causal robustness focuses on invariant relationships over manipulations. Manipulation is 
relevant to the case of biomarkers that undergo interventions because some relationships 
remain invariant while others produce diverging results. Trends that survive modified 
conditions are robust and, to use Woodward’s (2006) reasoning, indicate causal structure. 
We can specify the conditions under which the robust result remains invariant—e.g., 
some result R occurs under admissible changes in a specified range of conditions C. 
However, as discussed in Section 3, many biomarkers do not maintain converging results, 
and results from multiple biomarkers often diverge. So we need a robustness account that 
provides causal information while effectively interpreting diverging as well as 
converging results.  

Keyser (2016) offers an account of robustness analysis in measurement that 
consists of the comparison between independent modes of measurement along with the 
use of theory to make sense of that comparison. He illustrates that theory in the presence 
of diverging measurement results can pinpoint what is producing the divergence. For 
example, when multiple thermometers converge but others diverge, theory is used to 
analyze the conditions behind the divergence (Keyser 2016, 10). Keyser proposes that 
after initial cross-comparison of measurement methods and results, we use theory to 
home in on specific physical differences in thermometers—e.g., the liquid used in a given 
thermometer—in order to explain how those features produce differences in results 
(2016, 10-11).25 This differential comparison and explanation process in the presence of 
theory is useful for measurement in terms of specifying causal relations within the 
measurement set-ups, not only in terms of which conditions are difference-makers but 
also in terms of how error is “tracked”—i.e., located (Keyser 2016, 11). This is precisely 
why this account is useful for biomarkers: Cross-comparison allows for locating relevant 
causal relations in biomarker measures. We can refine and structure Keyser’s (2016) 

																																								 																																								 																																								 																																								 																					
experiment uses a type of pollen; the experiments with varieties of pollen are different enough in 
order to rule out potential confounding hypotheses—such as, Brownian motion is only due to a 
specific type of pollen (2015, 316). 
25 Keyser (2016) draws on van Fraassen’s (2008) discussion of the relation between theory and 
measurement practice: Theory classifies what is being measured. However, as Keyser points out, 
this does not have to be a fully developed theory. It can even amount to a theory of how the 
instruments work. This may be applicable to cases of biomarker measurement where there is no 
overarching theory.  



account in order to provide useful steps for our proposed intervention-based robustness 
methodology.  

The two methods of eliminative robustness can be used in a complementary 
fashion. One focuses on eliminating alternative hypotheses (or revising hypotheses). The 
other can be used to further specify relations between variables within the context of 
theory. We can generate three conditions for robustness analysis in biomarkers, which 
draw on these two methods. These conditions are useful for producing causal 
information.  

 

R1) Partial independence of modes: Demonstrating partial physical independence in 
biomarkers involves an exogenous intervention that does not directly interact with one of 
the biomarkers of interest, but rather modifies a process some number of “steps” removed 
from each of the markers. Partially-independent biomarkers can serve as crosschecks on 
each other’s results. 

 

R2) Comparison of diverging and converging results across biomarkers: Partially-
independent biomarkers (along with the relevant external causal conditions) are 
systematically juxtaposed to see: A) where they converge and diverge in results; and B) 
what conditions are responsible for the convergence and divergence. By systematically 
comparing partially-independent biomarkers we can track under what conditions they fail 
to converge in results, and under which conditions they successfully converge. Here, in 
addition to focusing on the robust result (the result that is invariant over biomarker 
measures), we also focus on the contextual failure of convergence in the cross-
comparison of biomarkers (divergence). From both converging and diverging results in 
cross-comparison we get causal information about how the biomarkers work.  

 

R3) Through (R1) and (R2), theoretical information is generated within the context of 
theory. By applying theory, cross-comparison provides information about causal 
relations. That is, through a systematic cross-comparison of the markers we can discover 
under what conditions certain changes are being produced, including confounding results. 
This kind of causal specification is useful for theory revision. That is, based on the 
juxtaposition of results, theories are eliminated and/or revised in order to provide 
adequate representations of the system being studied.  

 

We apply (R1)-(R3) to analyze how biomarker modes can be useful for making 
causal conclusions in Alzheimer’s research.  

 



5. Robustness Analysis Applied to Alzheimer’s Research. 

Before we apply our intervention-based robustness analysis, in Section 5.1 we 
briefly introduce theory and measurement in Alzheimer’s disease research with particular 
attention to the revision of theory in the context of multiple biomarkers. In Section 5.2, 
we apply our methodology to Alzheimer’s research in order to show its adequacy for 
analyzing currently developing empirical research. Following our robustness 
methodology conditions (R1)-(R3), we show that when systematically combining 
different interventions on multiple biomarkers, promising causal information emerges.  

 

5.1 Alzheimer’s and Theoretical Revision 

The theoretical and biomarker details of Alzheimer’s research are important for 
our applied account of robustness analysis. Through the details, we show how theoretical 
models are refined in relation to the converging and diverging results in biomarker 
measures. A way to usefully apply robustness analysis to Alzheimer’s research is to look 
at how biomarker robustness leads to specifications in theoretical robustness. 

Traditionally, Alzheimer’s disease was presumptively diagnosed based on clinical 
observation, such as cognitive testing battery biomarkers like the Mini-Mental State 
Exam (MMSE), and it was confirmed via autopsy by presence of the neuropathological 
signs of disease—e.g., amyloid plaques, neurofibrillary tangles, synaptic decay and 
neuronal loss. Recently, the development of bio-analytics and advanced neuroimaging 
has allowed these hallmarks of disease to be tracked and visualized in living subjects.  
Massive initiatives have helped to establish the current use of clinical biomarkers, which 
themselves have given rise to a multi-decade staging of the disease process (Jack & 
Holtzman 2013; Young et al. 2014). Notable are the refinements to the prevailing 
theoretical disease model, the amyloid cascade hypothesis (ACH) as a consequence of 
multiple biomarker measures.   

Currently, the biomarkers in greatest use are cerebrospinal fluid (CSF) tau protein 
(the principal component of neurofibrillary tangles), CSF 42-amino acid amyloid-β 
(Aβ42; hereafter CSF Aβ). regional brain volume as determined by structural MRI, 
neuronal metabolism measured by glucose analog uptake and positron emission 
tomography (FDG-PET), and amyloid plaques measured with PET detection of amyloid-
binding dyes. CSF Aβ is the protein cleavage product believed to precipitate disease by 
forming neuron-damaging plaques as it aggregates, and “42 amino acids” refers to the 
length of this large peptide, measured by the number of basic amino acid building blocks 
it possesses.26  

Based on the ACH, it was posited that CSF Aβ would be elevated in Alzheimer’s 
dementia. Thus the discovery that levels were significantly reduced in Alzheimer’s was 
																																								 																					
26	Additional imaging techniques are being adapted and blood plasma measurements of Aβ are 
being developed.	



initially met with surprise (Hampel et al. 2008). Hardy &Allsop (1991) argued that an 
imbalance between amyloid production and clearance (potentially caused by a number of 
factors) led to an accumulation of Aβ which eventually precipitated into plaques, 
damaged neurons and sequentially led to the downstream pathology (tangles of modified 
tau, neuronal stress, damage, and ultimately loss) of AD.  

Youngkin (1995) advanced that a 42-amino acid (rather than a 40-amino acid) Aβ 
peptide was likely the culprit by. This peptide was characterized as being “stickier” in the 
sense of more likely to aggregate, and it was correlated better with the 
production/elimination imbalance, especially in genetic (early-onset) forms of AD. 

Over time many potentially toxic mechanisms of Aβ were characterized, such as 
triggering inflammation and excitotoxicity (Behl 1997; Canevari et al. 2004; Carillo-
Mora et al. 2014)—with many, now hypothesized to result from repeating units of 
adhered misfolded Aβ peptides referred to as Aβ oligomers. Recently, the discussion of 
oligomeric forms of Aβ 42 has expanded.27 Very soon, a gestalt shift in theoretical 
explanation allowed for a crucial discovery: amyloid plaques within the brain were acting 
as sinks for the circulating CSF Aβ and, beyond a critical concentration, Aβ would 
precipitate into these plaques, or, at the very least, newly produced Aβ would be 
sequestered in plaques to diminish steady-state levels of CSF Aβ.  If the brain were 
imaged, one should observe the retention of amyloid-stains as CSF Aβ dropped.  

This specification of the original amyloid cascade hypothesis (call it ACH*) 
relied on different assumptions about the nature of Aβ and amyloid plaques. In ACH* the 
assumption is not that soluble monomers (single units) are elevated throughout the time 
course of pathology; also they are not a primary agent responsible for damage.28 Even 
though the importance of Aβ is invariant over both theoretical models, ACH* provided 
most of the useful explanation. But it too required empirical confirmation; and this was 
done in relation to multiple diverging biomarker results.  

ACH* predicted that depressed CSF Aβ and an elevated amyloid plaque PET 
signal would be fully correlated over their numerical range, in that they were assumed to 
be dependent biomarkers. That is, PET signals should increase as CSF Aβ levels decrease 
																																								 																					
27	Currently, these are thought to be the most toxic form, but lesser or interacting toxicity of other 
forms of Aβ is not discounted. The current discussion revolves around the many forms and sizes 
of oligomers: some toxic, some not, prefibrillar forms, and fibrillary (fiber-like) forms which can 
form either diffuse or dense plaques.  The general order of formation is asserted to be: peptides, 
small oligomers, larger oligomers, prefibrillar forms, fibrillary forms, diffuse plaques, dense 
neuritic plaques. But this formation order is in no way invariant, as there are branches, two-way 
streets and overlaps.  It is important to note that much of this information on ACH and oligomers 
was hypothesized before the biomarkers were characterized.  It can be argued that such 
theoretical explanations were not fully integrated into the theoretical model of ACH until recently 
with the help of biomarkers. The most current model of the theory is discussed by Selkoe (2016).	
28 The second reason had been suspected (Reviewed in Walsh &Selkoe 2007; Review that 
monomers may actually be protective: Guifridda et al. 2009). 



and vice-versa. Indeed, they were shown to correlate on the order of 85% using threshold 
values (Landau et al. 2013; Zwan et al. 2014; Vos et al. 2016), but even a 15% 
discordance appeared to indicate missing causal specifications. So another theoretical 
model is now needed. In fact, biomarker discordance, especially in the preclinical and 
early stages of Alzheimer’s coupled with the lack of success of targeted pharmacologic 
agents has led many to question the accuracy of the ACH/ACH*. 

In normal subjects and those with mild cognitive impairment (MCI), PET 
positivity and CSF Aβ “negativity” (that is, higher values) is the most common form of 
discordance (Landau et al. 2013).29 This is despite the fact that early on it was observed 
that, in cases of discordance, CSF Aβ decline would precede PET positivity 
(Musiek&Holzman 2012; Zwan et al. 2014).  

Such discordant/diverging results supported the current development of a new 
sub-model according to which: 

(1) either Aβ is incorporated into soluble oligomers (Lesne 2015), pre-fibrillary 
forms and/or diffuse fibrillary precipitates prior to the appearance of dye-retaining 
plaques—an issue of laddering (oligomer submodel, OSM, Walsh et al. 2000), 

(2) or potential blood-brain barrier dysfunctions increase the dilution of CSF Aβ 
into peripheral compartments (Erickson & Banks 2013).  

 The OSM produces useful explanations with new causal components neither 
included in ACH nor in ACH*. On the basis of OSM, cognitive impairment can precede 
amyloid biomarker positivity despite later progression to Alzheimer’s dementia.30 
Oligomers seem to form to some degree prior to plaques, so we could have high CSF Aβ 
without much plaquing.31  

Juxtaposing OSM with ACH and ACH* shows some robustness.  Each model—
ACH, ACH*, and OSM’s agree that Aβ is an important factor in Alzheimer’s disease, but 
they do not posit the same causal relations.  

However, the robust explanation, which has to do with the causal role of Aβ in 
Alzheimer’s, doesn’t result from using different models to explain a result. Rather, these 

																																								 																					
29 Such discordance has been observed in 21% of normal individuals, 12% of MCI cases and in 
6% of cases with diagnosed Alzheimer’s dementia (Mattsson et al. 2015). It is worth noting that 
the oligomer sub-model, discussed later in the paragraph, can account for both types of 
discordance mentioned in this study: the larger discordance of the florbetapir+ (PET positivity) 
/CSF Aβ(-) group and the smaller discordance of the florbetapir- (PET negativity)/CSF Aβ(+) 
group. 
30	This has indeed been demonstrated by Toledo et al. 2014 and Ritchie et al. 2016.	
31	Additionally, OSM can account for the fact that an individual may have cognitive decline even 
with low CSF Aβ and no plaques because processing enzymes that produce Aβ are also necessary 
for the production of neurotrophic and neurodifferentiation factors (Willem et al. 2006; Woo et al. 
2009; De Strooper et al. 2010).  Thus, low activity might lower both CSF Aβ and factors 
important for optimal neuronal function.  This may be seen in neuroinflammation or CNS 
infection as well (Krut et al. 2013).	



models are refined in relation to the converging and diverging results in biomarker 
measures.  

One could argue that there are two types of robustness occurring here: the 
robustness of biomarker measures (biomarker robustness) and the robustness of 
theoretical models (theoretical robustness). A way to usefully apply robustness analysis 
to Alzheimer’s research is to look at how biomarker robustness leads to specifications in 
theoretical robustness. As we have just seen, in Alzheimer’s research, diverging 
biomarker readings catalyzed the specification of new theoretical models. Discrepancies 
in multiple biomarkers in various studies facilitated the move from ACH to ACH* and 
then to OSM. This can be analyzed as a case where multiple modes (biomarkers) support 
theoretical revision. As mentioned in Section 4 and illustrated in this section, this is 
precisely why it is important to change Schupbach’s account so that robustness offers 
hypothesis revision, not just elimination. Relevant details of ACH*, for example, were 
eliminated for OSM, but some previous aspects did not change. As we will see next, 
revision is an important process in robustness analysis because it is behind the theoretical 
specification of causal details. 

 

5.2 Intervention-Based Robustness Analysis Applied to Alzheimer’s Measurement 

 Under the amyloid cascade models discussed above (ACH, ACH*, and OSM), 
reduction of cerebral Aβ is expected to reduce cognitive decline and may afford neurons 
a chance to repair, either by delaying debilitating dementia or restoring cognitive 
function. It is predicted that a 25% reduction in Aβ species may prove to be an adequate 
therapeutic target for delayed disease progression to be observed (Toyn 2015).  

Human trials of these agents have heretofore been disappointing largely because 
agents proved to be poorly tolerated at biochemically active doses. At those same doses 
disagreement among clinical biomarker findings as well as between biomarkers and 
established functional endpoints were observed (Toyn 2015). Altogether, this has 
contributed to several calls for a rejection of the ACH, or at the very least, its role as the 
cardinal focal point of disease research. Though difficult to interpret resultant to 
biomarker discordance, fragmentary positive findings have shifted focus toward more 
upstream interventions as desirable targets in antibody trials (Toyn 2015).  

Presently, promising research has emerged: The PRIME trial (Sevigny et al. 
2016) is a Phase 1b clinical trial (a dose-escalation trial in a limited number of patients) 
conducted across 33 locations within the United States  testing the efficacy of 
Aducanumab. Aducanumab specifically targets Aβ fibrils as well a toxic Aβ oligomers 
including decamers (arc-, disc- or pore-shaped composites consisting of 10 regularly 
repeated Aβ monomers adhered together) (Ratner 2015).  Binding studies reveal that 
Aducanumab does, in fact, bind fibrils in both diffuse deposits and compact plaques and 
that chimeric mouse-adapted versions of the drug precipitate Aβ oligomers in vitro by 



clumping them together into large complexes.32  Aducanumab binds CAA deposits (see 
above) with less prominence and has 10,000-fold target selectivity for these composite 
forms over Aβ monomers.  

Subjects were divided into five arms, to receive monthly IV infusions of either 
placebo or 1, 3, 6 or 10 mg/kg bodyweight aducanumab over a one-year period. After 12 
months, the 10 mg/kg group had PET dye retention reduced 25-30%, almost to the cutoff 
level for admission into the trial. Dose- and time-dependent reductions in PET positivity 
were seen across the intervention arms. 

Despite being neither designed nor powered to assess efficacy with respect to 
cognitive outcomes, there was also a dose- and duration-dependent slowing of cognitive 
decline (but not reversal or improvement) in the Clinical Dementia Rating-Sum of Boxes 
(CDR-SB) and Mini-Mental State Examination (MMSE) scores. The 10 mg/kg group 
retained significantly more cognitive function than the placebo group and had effectively 
unchanged cognitive performance over the 12 months. Placebo-exposed subjects had no 
more PET-detected amyloid accumulation over the yearlong trial but continued to 
experience cognitive decline, pointing to one or more unidentified variables, presumably 
Aβ oligomers. In the 10 mg/kg group, despite continued reductions in PET amyloid 
positivity from 6 to 12 months, CDR-SB scores did not continue to improve. This 
indicates that changes in plaque abundance and cognitive function are divorced over their 
dynamic ranges.33  

Following our robustness methodology conditions (R1)-(R3), when systematically 
combining different interventions on multiple biomarkers, promising causal information 
emerges. We discuss this by directly comparing bapineuzumab and solanezumab 
interventions, along with aspects of the aducanumab intervention. 

Bapineuzumab is a humanized mouse monoclonal antibody that targets the N-
terminal (front end) region of fibrillary (the principal configuration within plaques) and 
monomeric Aβ.  In APOE-ε4 gene carriers and non-carriers, bapineuzumab reduced Aβ 
PET positivity and decreased the neurodegeneration biomarker CSF tau, but did not alter 
levels of CSF Aβ (Toyn 2015). Subjects exposed to active treatment initially showed 
better retention of MMSE scores in the highest dose group but failed in late-stage clinical 
trials to improve cognition or activities of daily living versus control (Ratner 2015).  

 
In contrast to bapineuzumab, solanezumab, a humanized mouse monoclonal 

antibody targeting the central region of Aβ monomers and small oligomers, did not alter 

																																								 																					
32 In simpler terms, scientists replaced the “tail”, also known as the constant region of the 
antibody with that from a mouse so that the mouse’s immune system wouldn’t have an immune 
response to the human antibody. This shows that it is the specific antigen-binding region from the 
screen, which interacts with Aβ oligomers. 
33 While awaiting Phase III efficacy trials, which were begun immediately upon consolidation of 
positive findings, a lingering question (Lee et al, 2006) poses whether plaque destabilization 
could actually lead to increased exposure of neurons to toxic forms of amyloid as many structural 
models indicate that plaque-oligomer interconversion could be bidirectional. 



levels of plaque assayed by Aβ PET, nor did it alter CSF tau. In addition, it led to an 
increase in plasma Aβ and a reduction in CSF Aβ (recall, this reduction is a marker for 
poor cognitive outcome in the absence of intervention) (Toyn 2015; Ratner 2015; 
Selkoe& Hardy 2016).34 

 
Putting these results side by side (see Figure 2), we see that there is divergence in 

relation to multiple biomarkers:  

1) levels of plaque assayed by Aβ PET;  

2) CSF tau; and  

3) CSF Aβ.  

Bapineuzumab reduced (1) and (2), but did not alter levels of (3).  

Solanezumab did not alter (1) and (2) but led to a reduction in (3).35 

Methodologically, there are two important points here.  

1. There is a contrasting picture between three biomarkers in relation to two 
interventions (R1 and R2). The divergence and convergence is systematic in that 
one intervention shows changes in two biomarkers and no change in the final one, 
and the other intervention shows stability in two biomarkers and a change in the 
final one. Furthermore, there is a difference in the outcome of cognitive 
improvement. So, the two different interventions not only produce differences in 
biomarker measures, but they also produce differences in cognitive results.  

2. Within the context of theory, specifically OSM, this systematic divergence and 
convergence leads to useful causal conclusions (R3). Using robustness analysis, 
we specify multiple promising conclusions, which can be explored in further 
research: 

 

Conclusion 1) Oligomers are a more promising causal target for preserving cognitive 
function (C1):  

Following the antibody trials, solanezumab as well as aducanumab target 
oligomers as part of their specificity. Solaneuzumab results suggest improvement in 
cognition in mild cases based on the post-hoc pooling analysis. Aducanumab seems to 
improve cognition based on the Phase 1b results relative to control/placebo. 
Solaneuzumab and aducanumab target oligomers, but without a contrasting intervention 
																																								 																					
34 Solanezumab is currently undergoing pooled subgroup re-evaluation from two Phase III trials 
after small but significant positive findings (34% deceleration of cognitive decline over 18 
months versus placebo) were observed in Alzheimer’s Disease Assessment Scale (ADAS) 
cognitive domain scores in those with mild impairment (Toyn 2015; Ratner 2015;Selkoe& Hardy 
2016).Results of a follow-up Phase III study are in the offing 
(http://www.alzforum.org/therapeutics). 
35 As well as an increase in a factor not measured in the bapineuzumab study: plasma Aβ. 



that does not target oligomers, we cannot see if oligomer intervention is necessary for 
cognition improvement. Bapineuzumab provides such a contrast. It does not target 
oligomers and shows no evidence for improving cognition. The convergence between 
solaneuzumab and aducanumab compared to the divergence of bapineuzumab can be 
made sense of in a theoretical context. In this case OSM makes sense of how the 
targeting occurs in the case of the different interventions in order to conclude which 
interventions are and are not targeting oligomers. For example, OSM explains that 
aducanumab targets Aβ fibrils as well a toxic Aβ oligomers including decamers; 
solaneuzumab targets the central region of Aβ monomers and small oligomers; and 
bapineuzumab targets the N-terminal region of fibrillary (the principal configuration 
within plaques) and monomeric Aβ. From this we understand that solaneuzumab and 
aducanumab target oligomers and bapineuzumab does not. The converging results of 
cognition improvement in the oligomer-targeting interventions compared to the diverging 
results of the non-oligomer-targeting intervention supports causal specification  that 
oligomers modification is necessary for cognitive improvement. That is, without 
manipulation of oligomers, cognitive improvement will not occur.  

 

Conclusion 2) CSF tau may not be a complete marker of neurodegeneration (C2): 

It is assumed that cognition reflects neurodegeneration (Terry et al. 1991; Savva 
et al. 2009). In bapineuzumab, CSF tau declined (presumably less or at lower rate of 
neurodegeneration) but cognition did not change. In solanezumab, CSF tau did not 
change (no change in rate of neurodegeneration) but cognition improved relative to 
control.  

Neurodegeneration and cognition are not correlated in the way that we assume. 
For example, there could be extra variables related to rate or duration of damage in 
upstream or downstream processes that are causally linked to cognition. This option 
would imply that neurodegeneration and cognitive decline do not change in lockstep due 
to variable complexity. If tau is a marker for neurodegeneration, and tau and cognition do 
not correlate, then neurodegeneration and cognition do not correlate. The lack of 
correlation between tau and cognition is supported by the shared lack of convergence for 
tau and cognitive markers in bapineuzumab and solanezumab interventions. However, we 
need to further explore the first conjunct in the antecedent, which is that tau is a maker 
for neurodegeneration. 

 

Conclusion 3) PET positivity is not a surrogate for oligomers  (C3). 

Sevigny et al. (2016) refers to PET positivity as a “surrogate” of oligomers. After 
targeting oligomers, which cannot be measured directly in vivo, as well as plaques, 
Sevigny et al. (2016) found that PET-detected plaques decreased. This does not point to a 
clear relationship between PET positivity and oligomers because the latter were not 
directly measured. One theoretical option is that there is a transition of monomers to 



oligomers to plaques that is unidirectional, and reducing plaques will pull oligomers into 
new plaques (thus reducing them).36 

However, even without direct oligomer measurements, we can use robustness 
analysis to question Sevigny’s theoretical model. If it is the case that oligomers are 
causally connected with cognition37 and solanezumab actually targeted oligomers,38 then 
PET positivity cannot be a surrogate of oligomers, as Sevigny claims. The reason for this 
is that, in the solanezumab intervention, while oligomers were targeted which produced a 
change in cognition, PET positivity did not change. In addition to this, the bapineuzumab 
intervention resulted in a PET positivity decline but cognition did not change. Because of 
the support from C1, which posits a close connection between oligomers and cognition, 
we can argue that no cognition change indicates that there is no oligomer change. Both 
interventions converge on PET positivity change not being correlated with cognition 
change, even though oligomer change is. This implies that PET positivity is not a 
surrogate for oligomers.39   

 

6. Concluding Remarks 

We have presented an intervention-based robustness methodology that specifies 
how to check for partial independence in biomarkers, how divergence as well as 
convergence is useful for figuring out causal information related to biomarkers and 
endpoints, and how theory revision works in relation to biomarker analysis. The aim of 
this discussion was for the purpose of philosophical methodological analysis, but the 
application of our account results in important consequences for empirical research. 
When applied to Alzheimer’s research, our robustness methodology produces specific 
conclusions about promising causal culprits as well as decoupled biomarkers and 
endpoints (C1)-(C3). By transforming robustness analysis into an eliminative account, we 
have made it useful for dealing with complex and discordant/diverging results in 
biomarker measurement.  
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