HINSS Neutrosophic Sets and Systems, Vol. 58, 2023

m University of New Mexico
...'

Interpretation of Neutrosophic Soft cubic T-ideal in

the Environment of PS-Algebra

Neha Andaleeb Khalid', Muhammad Saeed!* and Florentin Smarandache?
!Department of Mathematics, University of Management and Technology, C-II, Johar Town, Lahore, 54700,
Pakistan.
2Department of Mathematics, University of New Mexico, USA.
muhammad.saced@umt.edu.pk!
£2022265012@umt.edu.pk?
smarand@unm.edu?

*Correspondence: muhammad.saeced@umt.edu.pk

Abstract. This study provides an innovative approach to neutrosophic algebraic structures by introducing a
new structure called Neutrosophic Soft Cubic T-ideal (NSCTID), which combines T-ideal (TID) and Neutro-
sophic Soft Cubic Sets (NSCSs) within the framework of PS-Algebra. Within the already-existing neutrosophic
cubic structures, the addition of soft sets with the characteristics of TID makes this structure more desirable.
The theoretical development of the proposed structure includes the application of fundamental ideas as union,
intersection, the Cartesian product, and homomorphism. We also introduce the notions of NSCTID-translation
and NSCTID-multiplication to further enhance the structure of NSCTID. By applying the idea of translation
and multiplication, we offer improved algorithm for neutrosophic cubic sets to deal with different parameters
that are satisying the TID’s distinctive characteristics. Through this thorough research, we offer an elementary

understanding of NSCTID and its capabilities, providing the way to new algebraic structures.

Keywords: Neutrosophic soft cubic set; T-ideal; PS-algebra; Cartesian product; Homomorphism; Translation

and Multiplication.

1. Introduction

Zadeh was the first who put up the notion of Fuzzy Sets (FSs) in 1965, which contained a
membership degree for each element say “t” [1,2]. The Intuitionistic FSs (IFSs) was established
by Atanassov [3], which is a general form of F'S on a universe U in which non-membership degree

was taken into consideration and presented Interval-Valued IFSs which are undoubtedly both
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IVFS and IFS extensions. Rahman et al. [4] employed a fresh approach of a refined intuitionis-
tic fuzzy set to conceptualize its fundamental characteristics through set theoretic procedures
such as extended union as well as intersection and same for restricted. The Neutrosophic Sets
(NSs) was developed by Smarandache [5] by proposing the concept of the indeterminate degree
of an element as an independent element in his 1995 manuscript, which was later published
in 1998. The Interval -Valued NSs was first given by Wang et al. [6]. A new methodology for
simulating fuzziness and uncertainty was established by Molodtsov in 1999 [7], which is called
“soft set theory”. Saeed et al. [§] conducted an exhaustive investigation of the idea of soft
elements as well as soft members in the respect of soft sets (SSs). Maji et al. [9,10] expanded
SSs to IFSSs and NSSs. Smarandache [11] generalized the soft set to the hypersoft set by
transforming the function F into a multi-attribute function and then introduced the hybrids
of Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic Hypersoft Set. In [12],
Distance and similarity measures using Max-Min operators were proposed in the environment
of neutrosophic hypersoft sets with application in MCDM. The concept of cubic sets considers
only the intervals of membership and ignores the segments of non-membership information.
However, expressing the degree of membership in fuzzy sets with exact values can be difficult
in real-world situations. In such cases, it may be simple to represent ambiguity both interval
and exact values instead of just one. Therefore, Jun et al. [13] proposed the cubic ISs which
combines two sets to represent membership degrees: an interval-valued IFS and an IFS. This
hybrid approach can be useful in decision-making when dealing with uncertain judgments. A
theoretical development of cubic pythagorean fuzzy soft set was established with its appli-
cation in MADM. Based on the established TOPSIS method and aggregation operators, the
decision-making algorithm is proposed under an intuitionistic fuzzy hypersoft environment to
resolve uncertain and confusing information [14}/15]. By combining the NS and IVNS, Ali et
al. |[16] proposed the definition of NCS. In [17], Mumtaz et al. made an adjustable approach to
NCS based decision making by similarity measure and is employed in pattern recognition to
show that they can be successfully applied to problems that contain uncertainties. The NCSS
was first introduced and some of its characteristics were proved by Chinnadurai et al. |1§]
in 2016. Gulistan et al. |19] developed a more general approach of neutrosophic cubic soft
matrices and used it in MCDM-problems. In 1978, Iseki et al. were the first who established
the idea of BCK-algebra [20]. In 1980, BCI-algebras were proposed [21]. The algebra named
as BCK is a subclass of BCl-algebras. PS-algebras is a generalization of algebras like BCI,
BCK, Q and KU and was first explored in [22] by Priya et al.. Shah et al. investigated images
as well as pre images of anti-homomorphism for semiprime, strongly prime, irreducible, and

highly irreducible fuzzy ideals in rings [23,24]. They also established the ideas of strongly
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primary fuzzy ideals and strongly irreducible fuzzy ideals in ring with unity as well as com-
mutativity and examined their importance in a Leskerian ring. The research conducted by
Senapati et al. [25] examined the cubic intuitionistic g-ideals within BCI-algebras. Kandasamy
et al. [26] were the first who introduced T- ideals, IFT-ideals, and IF closed T-ideals. Priya et
al. [27] investigated the concept of fuzzy translation and fuzzy multiplication in the context of
PS-algebra, In [28,29], Khalid et al. established the MBJ-neutrosophic T-ideal in B-algebra
and described several of its properties. The concept of NC translation and multiplication
of BF-subalgebra and BF-ideal was also introduced. In [30], they presented the ideas of IF
Alpha-Translation as well as multiplication and IF Magnified Beta-Alpha-Translation in the
context of PS-algebra. This paper introduces the Neutrosophic Soft Cubic Set (NSCS) and
its application in PS-algebra through the concept of T-ideal. Section two provides relevant
definitions, while section three presents the concept of NSCTID in PS algebra. Section four
examines NSCTID’s fundamental properties, followed by an exploration of its translation and
multiplication in section five. Finally, section six summarizes the results and suggests future

directions for research.

2. Preliminaries

To provide a clear understanding of the proposed work, some essential definitions that will

be utilized throughout the explanation are given.

Definition 2.1. [22]:Let P be a set with the constant ‘0" and the binary operation ’+" which
is nonempty. If P satisfies the axioms below, it is regarded to be PS-algebra.

i x99 =0

ii. 91 x0=0

iii. ¢ *x Y9 = 0, and Yo * Y1 = 0 implies V1 = J9 , for all ¥1,92 € P.

In any PS-Algebra (P,x*,0), the following characteristics also satisfy for every 91,92 € P.
iv. U1 % (Vg x01) = Vg * (V1 %)

v. Yo % (U1 % (92 %x91)) =0

vi. P91 % (01 % (91 x 92)) = ¥ * Vo

vil. 99 % (91 % (Y1 x1¥2)) =0

Definition 2.2. [26]:Let I be a nonempty subset of P. I be an ideal of P if:
i. 0l

ii. ¥ *x ¥y € I and Y9 € I implies ¥4 € 1,

A nonempty subset I be the T-ideal if it satisfies (i) with

iii. (Y1 xJ2) x5 € I and Y9 € I implies 91 x J3 € I for all 91,992,793 € P.

Definition 2.3. [26]:An IFS is said to be an IFT-ideal of P if it these three conditions holds:

i. aa(0) > aa (1), Ba(0) < Ba(vh),
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. ap (V1 *93) > min{aa (V1 * 92) * U3), aa(¥2)},
iil. Ba(% * ¥3) < max{fa((th * V2) *xI3), Ba(P2)}, for all ¥,92 € P.

Definition 2.4. [5]:A set in P represented by

A = {{01,aa(01),74(91), Ba (V1)) | V1 € P}

is called NS in which the mapping aa (1) : P —=]07, 11 [ya(91) : P —=]07, 17 and Ba(91) :
P —]07, 17 [ denotes the functions of truth, indeterminate, and falsity membership respectively,

and satisfy
07 < aa(v1) +7a(91) + Ba(th) < 37.

For an interval-valued NS, A in P, the mappings aa (1), 7 (91), BA(Q%) C [0,1] with aa (1) =
(@A (91), @A, (91)], Ba (1) = [Bay (1), Bay (91)] and Fa(91) = [, (91), Fa, (01)]-

Definition 2.5. [16]:A NCS in P is defined as C = (A, A) in which A is an interval-valued
NS and A is the NS. The collection of all NCSs in P is represented by C(P).

Definition 2.6. |[7]:Let E be the collection of parameters and V be the universal set. The
set Sk which is defined as Sk = {(v,S(e)),v € V,e € K,S(e) € P(V)} is said to be a soft set
over V. Where S : E — P(V) in which the P(V) represents the power set of V and K C E.

Definition 2.7. [18]:A SS denoted by Sk is said to be a NCSS in P if Sk is the mapping from
E to the set C(P). i.e. Sk:E— C(P) where K C E. The NCSS is denoted by Sk = (B, B).
Where B = {(1,ag_(V1),75, (V1),Bg_ (V1)) | 1 € P,e; € E} is the interval-valued NSS and
B = {(d1, an,, (1), 15, (91), B5,(91)) | 1 € P,e; € B} is the NSS.

Definition 2.8. [29]:Let C = (A, A) be an NCS of P and for the set A, the u,v € [[0,0], ©]
and A\ € [[0,0],1], where for the set A,u,v € [0,T] and A € [0,¢]. An object of the form

CE}W\ = (;‘:)E,v,)\’ (A)EMQ is called an NC-Translation of C, when
(KT)EY(M) = Ap(t1) + p ADT(t1) = Ar(t1) + 0, Ap) T (1) = Ap(ty) —
(A)i"(t1) = Ap(t1) + g, (Ar)y" (t1) = Ar(t1) + v, (Ap)y"(t1) = Ar(t1) —

for all t; € P.

A
A

Definition 2.9. [29]:Let C = (A,A) be an NCS of P and ¢ € [0,1]. A set having the
representation as CyP = (k7)o (k1)a®, (k1)o®), ((v1)o, (v1)o®, (vp)5P)) is called an NC-

Multiplication of C, when
(k)3 P (t1) = 0 - mr(ta), (k1) D(t1) = 0 - ka(tr), (kp)5 D (t1) = 0 - kp(t1)
(v1)5 P (t1) = 8- vr(ty), (v)5P(t1) = 6 - vi(ta), (vE)5 D (t1) = 8 - ve(t1)
for all t; € P.
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3. Neutrosophic soft cubic T-ideal

This section aims to present the notion of a NSCTID, accompanied by an illustrative ex-

ample. Additionally, we explore several properties that are pertinent to this concept.

Definition 3.1. Let an NSC-set which is denoted as K = (Ng)a ™, (Ax)a™ ), where NKei
and AKei represents an interval-valued NSS and NSS respectively in PS-algebra P. The set
K is termed as Neutrosophic soft cubic T-ideal (NSCTID) in P if it achieves the following

assertions:

L (Ng)Z(0) > NI (t1), (Nk)L (0) > (Ng)L (t1), (Nk)E (0) > (Ng)E (1),
(Ak)e, (0) < (Ak) (t1), (Ak)E, (0) < (Ak)g, (t1), (Ak)§ (0) < (Ak)g (1)

i, (Ng)(tr# t3) > rmin{ (Ng) I ((t1 * to) * t3), (NK)2 (t2)},
(Nk)Z, (b1 * t3) > rmin{ (Nic)!, (b1 * t2) * t3), (N)E, (t2)},

(NK)E (t1 % t3) > rmin{ (Nk)E ((t1 * ta) * t3), (Nk)E (t2)},

i (Ak)d (61 % t3) < max{(AK)q ((t1 * t2) * t3), (Ax)d (t2)}
(AK) (tl * tg) < max{ AK ((tl * tg) * t3), (AK)Iel (tg)},

(AK)E (61 % t3) < max{(Ak)s ((t1 * t2) * t3), (AK)E (t2)},
For all t1, t2,t3 € P. Where (Ng)a™" and (Ax)e™" € [0,1].

Example 3.2. Let P = {0,t1, t2, t3} be a PS-algebra with the following Cayley table. We

TABLE 1. Cayley table of (P, *,0).

x 0 t1 to t3
0 0 to t1 ts
tp 0 0 0 ¢t
ta 0 0 0 to
ts 0 ta to O

define a NSCS represented as K = (Ng,, Ag,) in P as in Table 2 and Table 3. The set K with
the aforementioned values satisfies all of the requirements of the definition 3.1 above.
The calculations below show a few outcomes.
[0.5,0.7) = (Nk)g (b1  t3) = (k) (t2) > rmin{(Nk){ (t3), (Nk)2 (t2)} = rmin{[0.4,0.6], [0.5,0.7]},
[0.4,0.6] (NK) (tl * tg) (NK) (tQ) > rmln{(NK) ( 3), (1/\\]}(); (tg)} = rmin{[0.3,0.5], [0.4, 06]},

[0.4,0.5] = (NK) (t1 xt3) = (NK) (t2) > rmln{(NK) (t3), (NK)};(tg)} = rmin{[0.2,0.4], [0.4, 0.5] },
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TABLE 2. Interval-valued NSS (Nei).

* 0 t1 to t3
(NI [0.6,0.8] [0.3,0.6] [0.5,0.7] [0.4,0.6]
(Ng)L [0.5,0.7] [0.3,0.4] [0.4,0.6] [0.3,0.5]
(Ng)E [0.4,0.9] [0.3,0.6] [0.4,0.5] [0.2,0.4]

TABLE 3. NSS (Ag,).

* 0 t1 to t3
(Ak)e 02 03 05 0.6
(Ak)., 05 0.6 08 1
(Ax)F 0.3 0.7 04 05

0.5 = (AK)g(tl *t3) = (AK)eTi(tg) < max{(AK);ri(tg), (AK)eTi(tg)} = 0.6,
0.8 = (Ak)& (t1 * t3) = (Ak)q (t2) < max{(Ak){ (t3), (Ak)d (t2)} = 1,
0.4 = (Ak)d (t1 * t3) = (Ak)e (t2) < max{(Ax)q (t3), (Ax)a (t2)} = 0.5

Hence K = (Ng)&M, Ag) &) is NSCTID in P.

Theorem 3.3. Every NSCTID K = ((NK);E.’I’F, (A)e"") of P fulfills the following inequal-
ities for all x,t1,t2,t3 € P.
1. If t1 % to < t3, then

(Ni)e ™ (b1 # %) = rmin{(Ni) " (63), (N (82))

(Ak)e T (b1 # x) < max{(Ak) S (), (Ak)e " (t2)}-

Proof. Let x, 1, t2, t5 € P such that t; %ty = t3. Now, (Ng)e " (t1#x) > {rmin{(Ng)a" ((t1 *
t2) %), (Ni)e, ™ (82)} > rminfrmin{ (Nic)e; ™ (((t1  t3)  t2) # ), (Nic)e, ™ (t3)}, (Nic)e ¥ (82)}
= mmin{rmin{(Nx)e;"" (0), (Nk)e, " (t3)}, Nk )e, " (t2)} = rmin{(Nk)e,"(ts), (Nk)e; " (t2)}
(AR)a™M (£ % x) < {fmax{(Ax)a"((t1 *t2) *x), (AK)a™ (t2)} < max{max{(Ax)e"" (((t1 *t3) *
t2)*x)), (Ak)e ™ (t3)}, (Ak)e;” (t2)} = max{max{(Ak)e, " (0), (Ax)e; ™" (3)}, (Ax)e;" (t2)} =
max{(Ak)e," (t3), (Ao, (t2)}.
Hence

(Ni)e ™ (61 %) > rmin{ (Ni) ¥ (83), (N )" (t) }

(Ax)o™ (b1 x) < max{(Ax)o "™ (t3), (Ax),M" (t2)}

forall tq,to,t3 € P. 0
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1. Iftl S tg, then
(NK)&F (61 %) > (Ng)o M (t2)
(Ag)e " (81 % %) < (Ak)e M (t2)

fOT all x,t1,t9,t3 € P.

Proof. Let x,t1,t2,t3 € P such that t; <t — t1xt2 = 0, Now, (NK)g’I’F(tl *X) > {rmin{(l/\\TK)
e (61 % ta) %), (Nig)e ™ (t2)} = {rmin{(Ni)e ™ (0), (Ni)e, ™ (t2)} = (i)™ (ta).

And

(Ak)e, " (t1+%) < {max{(Ak)e, " (81 #t2) #x), (Ax)e, " (82) }. = {max{(Ax)e;"" (0), (Ax)e, ™"
(t2)}} = (A& (t2).

Hence (N )a " (t1xx) > (NI (19) and (A& (61 #x) < (Ak)a™" (t2) for all t1, ta, t3 € P.

0

(RiTM (1 # (t2 1)) #3) > (N T (1)

(

((Ar)e, ™" (b1 % (b2 % t1)) % %) < (Ak)o, ™" (b2)-
)
)

Proof. Let K is an NSCTID. Then, (Nk)a™ ((t1# (ta#t1))*x) > rmin{(NK)T’I(((tl*(tg*tl))
t2)#x), (N e, ™" (t2)} = rmin{(Nk)e; " (0), (Nk)e ™ (t2)} = (Ni)e (t2), (Ax)e; " (b1 (bt1)) %
x) < max{(Ak)e, " (((t1# (b2 % t1)) #t2) #x), (Ak)e " (t2)} = max{(Ak)e," (0), (Ax)e;" (t2)} =
(Ao (ta).

Hence . ~
(NK)PF((t1 # (t2 % t1)) #x) > (Ng)&F ()

(Ao, M (b1 % (b2 % 1)) % %) < (Ak)g," (t2),
for all x,t1,t9,t3 € P. 0

Theorem 3.4. Suppose K = (N )L™ (A)e™) and L = (Np)a", (ALY are NSC-
TIDs of P. Then their union K UL is also an NSCTID of P.

Proof. Tf t1,ts € K UL, then ty,ts € K and ty,t2 € L. Then, (N,)iit (0) = (Ney) g, (b1 % t1)
= rmax{(Ng)e ™ (t1 #t1), (NL)EM (41 # £1)} > rmax{rmin{ (Ng)a"F (¢1), (N)E (t1)}, rmin
{(NL)e ™ (1), (NL)& ™ (01)}) = rmax{ (Ni)o ™" (t1), (N (81)} = (Ne ) (t1), And (As,)
E0) = (Ag )l (b1 % t1) = min{ (A ey " (61 % t1), (AL)ey " (41 % t1)} < min{max{(Ag)e, "
(t1), (Ax)e, " (81) }, max{ (AL)e, ™" (81), (An)e ™" (1)} = min{(Ak)e ™ (t1), (AL)e, ™ (81)} = (
e, (t1)- Thus (Ne )i (0) = (Nep)gei, (t1) and (A >£é§ (0) < (Ae)) i (01).

Now, (Ne, )it (t1 % t3) = rmaxc{ (Ng)e " (t1 % t3), (NL)e ™" (b1 % t3)} > rmax{rmin{(Nx e (
(b1 % t2) % t3), (NK e (t2)}, rmin{ (N )e, ((t1 % t2) % ts), (NL)a™ (t2)}} = rmin{rmax{(Ng)&™""
(b1 %t2) *t3), (NL)e ™ (brta) )} rmax{ (Ni)e ™ (t2), (Np)e ™ (t2)}} = rmin{ (N >Kff§ (1%
t2) * t3), (Ne, )i (82)}, And (Ag)iiy (t1 # t3) = min{(Ax)e,™ (t1 * t3), (AL)e,"" (1 * t3)}
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< min{max{(Ak)e" (b1 * ta) * t3), (Ak)e"" (t2)}, max{(AL)e, " ((t1 * t2) * t3), (AL)e, " (62)}}
= max{min{(Ak )& ((t1#t2) xt3), (AL)e"" (b1 xt2) xt3)}, min{(Ax)e, ™" (t2), (AL)e " (t2) }}
e icur (b1 % £2) * t3), (Ae, )ity (t2)}

Hence the union ” KUL ” is also an NSCTID of P.

= max{(A

Theorem 3.5. Suppose K = (Nx)a™", (Ax)e™) and L = <(1/\\IL)eTi’I’F,(AL);Fi’I’F> are two
NSCTIDs of a PS-algebra P. Then the intersection KN L is also NSCTID of P.

Proof. Let t1,t, € KN L, then t1,t; € K and t1,ts € L. As (Ng )E’é’LF(O) = (N, )ng(tl *t1)
= rmin{ (N & PF (41 % t1), (NL)a™ (6 % t1)} > rmin{rmin{ (N (61), (Ng)a™ (1)}, rmin{
(NL)e " (61), (NL)e ™ (82) 1} = rmin{ (Nk)e, ™" (t1), (NL)e, " (81)}= (Ne, )t (£1). And (Ag,)
S(0) = (Mg gt (b1 % 61) = max{ (Ak)ey " (b1 % 1), (Ap)e ™ (t1 % 1)} < max{max{(Ag)e, "
(t1), (Ak)e, " (t1) }, max{ (ApL)e, ™" (1), (An)e ™ (b1)}} = max{(Ak)e ™" (t1), (AL)e ™" (81)} = (
Ac)int, (01). Thus(Ne,)ght (0) > (Ne))gehi, (61) and (Ae)iht (0) < (Ae)gehr, (01).

Now, (Ne, )t (t1%t3) = rmin{ (Ng)e, " (t1#t3), (Np)e ™ (b1 #t3)} > rmin{rmin{ (N )" ((t,
t) #t3), (NK ), ™ (t2) }, rmin{ (N ), ((t1 #t) #ts), (NL)e, " (62)}} = rmin{rmin{ (N )e, ™" ((t1
t2) * ta), (NL)e ™ (01 % t2) * ta)} rmin{(Ni)e ™" (t2), (Np)e ™ (82)}} = rmin{(Ne )it (01
t2) * t3), (Ne,)ir, (t2)}, And A (t1 + t3) = max{(Ak)e"" (t1 # t3), (AL)e"" (81 # t3)} <
max{max{(Ag)e; " (b1 * t2) * t3), (A )e; " (t2)}, max{(ArL)e ™" (b1 * t2) * t3), (Ap)e " (t2)}}
= max{max{(Ax)e, " ((t1#t2) #t3), (AL)e ™ ((t1%t2) xt3) }, max{(Ak)e, ™ (t2), (AL)e ™" (t2)}}
= max{(A )KnL (b1 % t2) * t3), (Ae )Kr‘]L (t2)}

Hence, KN L is an NSCTID of P.

*

*

*

4. Cartesian product and Homomorphism of NSCTID

In this section, the interpretation of the cartesian product and homomorphism of NSCTID

is given by proving some theorems.

Definition 4.1. Let K = ((NK)eTIIF (AR)e™) and L = ((NL)a™, (Ap)a™) are two
NSCTIDs of R and P respectively. The cartesian product K x L = (R x P, (Ng)a™" x
NL) e (AREM % (AL IF)Y is defined as:

(N ™ ¢ (L) (b, 82) = rmin{ (Ni) 1 (80), (N) S (82))

(AP x (AL T (1, t2) < max{(Ak)e " (t1), (AL)o T (t2)}-

Where (Ng)e™ x (NDEM R x P = [0,1] and (Ak)e™ x (Ap)e™ i R x P — [0,1] for all
t1 € R and to € P.

Theorem 4.2. Let K and L be two NSCTIDs of P, then K x L is an NSCTID of R x P.
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Proof. Let R and P be two PS-algebras.For any ti,to € R x P, We have ((NK)TIF X
(NL)&")(0,0) = rmin{(Nk)e" (0), (NL)e " (0)} > rmin{(N)e;" (¢ ) (NL)e" (t2)} =
(Nk)e™ x (NL)&" ) (b1, t2) (Ak)e™ x (AL)e)(0,0) = max{(Ak)e™ (0), (AL)e""(0)}
< max{(Ax)e" (t1), (AL)e " (82)} = ((Ak)e" x (AL)e™")(t1,t2) That is (Nx)e,™ x
(N)e)(0,0) > (Ni)e™ x (Nt te) (Ax)e™ x (AL)e™)(0,0) < ((Ak)e™" x
(AL)e")(t1, t2).
Now, Let (x1,x2),(t1,t2) and (yi,y2) € R x P.Then, ((NK)EI X (NL)g’I)(tl * X1, bg *
Xg) = rmin{(ﬁK)T’I’F t1 * x1), (NL)T’IF(‘GQ % X9)} > rmin{rmin{(NK)g’I((tl % y1) %
x1), (Ng)ey ™ (y1)}, rmin{ (Np)e ™" ((t2 * y2) * x2), (NL)e "™ (y2)}} = rmin{rmin{ (N )& ™" ((t1 *
y1) # x1), (NL)e " (b2 # y2) # x2)} tmin{(Nk)e;"" (y1), (NL)e ™ (y2)}} = rmin{((Ng)e, ™" x
(NL)e ") (((t1 % y1)xa) ((t2 * y2) * x2)), (Nk)e, ™ x (NL)e ™) (y1,y2)} = rmin{((Nk)e ™" x
(NL)e ") (b1 5 31, b2 % %) # (v1,¥2)), (Ni)e ™ x (N )o ™) (1, v2)-
And (Ag)e™ x (AL)e ) (b1 * x1,t2 * x2) = max{(Ax)e"" (t1 * x1), (AL)e " (t2 * x2)}
< max{max{(Ak)e,"" ((t1%y1) #x1), (Ax)e;" (v1)}, max{(Ar)e; ((t2 y2) #x), (AL)e " (v2) }}
= max{max{(Ak)e;"" ((trxy1)%x1), (AL)e " ((b2y2) #x2) }, max{ (Ak)e, ™" (y1), (AL)e, ™ (v2)}
= max{((Ak)e,"" x (AL)e")(((b1xy1) #x1), (b2 xy2) #x2)), (Ak)e ™" x (AL)e ") (v1,¥2)} =
max{(Ak)e,"" % (AL)e ™) (b1 %31, ta # X2) * (y1,¥2)), (Ak)e™ % (AL)e ") (y1,v2).
Thus (Nk)a™ x (NL)e ") (61 % x1, tg * x2) > rmin{ (Ng)a™ x (NL)& ") (b1 * x1, b * x2)%
(1, ¥2)), (Ni)e ™ 5 (Ne)e ™) (v1, v2)- (As)e ™ x (A ™) (b1, t3) < max{ (Ao X
(AL ) (b1 % x1, 82 % x2)% (y1,¥2)), (Ak)e" % (AL)e™)(y1.¥2)- 0

~—~~

Theorem 4.3. Let K and L are two NSCSs of R and P such that K x L is an NSCTID of
R x P, Then
t. For allty € R and ty € P,

(NK)eT{I’F(O) > (NK)eTi’I’F(tl), (Ak)e T (0) < (AR)EMF(t2),

(NL)ZTF(0) > (NS (t1), (AL)STF(0) < (AL)ZF (ta).

4. For all t1 € P, If (Ng)&"F (0) > (Ng )LD (41) then,

~

(NL)& M (0) > (N)& " (tn) and (NL)S(0) > (NU)S (4),
Also if (Ax)ee (0) < (Ax)e™ (t1) then

(AL)e " (0) < (Ak)e ™ (t1) and (Ar)g"(0) < (AL)g ™ (ta).
tis. For all t1 € P, If( )T’I’F(O) > (NL)g’I’F(tl) then,

(Ni)eF(0) = (Ni) M (t1) and (Ni) ™ (0) = (NL)SHF (1),
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Also if (AL)&M(0) < (Ap)e"F (t1) then
(AK)eMT(0) < (Ak)e M (t1) and(Ak ) ™" (0) < (AL)GT (81).

Proof. i. Suppose (Ng)a™(t1) > (Nk)&™ (0) or (Np)a"F(ta) > (Np)a"F(0) for all t; €
R and ty € P. Then, (NK)a™ x (NL)aM)(t1,t2) = rmin{(Nx)a™"" (t1), (NL)eM (t2)}
> min{ (NI 0), (NI 0 = (Rt x (NS 0,0).  Thus (Ng)EbF
(NL)e ") (b1, t2) > (Ng)a™ x (NL)e ") (0,0) for all t; € R and ty € P, which is the contra-
diction to (Ng)a™" x (Np)a™") is a NSCTID of R x P.

Also, if (Ax)e™(t1) < (Ax)a™(0) or (Ap)e™(t2) < (ApL)a™f(0) for all t; € R
and to € P. Then, (Ax)e™ x (AL)ETF)(ty,t0) = max{(Ax))e F(t1), (AL)TM (1)) >
max{(Ax)e"" (0), (AL)e ™ (0)} = ((Ak)e™" x (AL)e)(0,0),

Thus (Ak)e™ x (AL)a™ ) (t1,t2) < (A)e™ x (AL)eM)(0,0) for all t; € R and ty € P,
which is the contradiction to (AK)T’I’F X (AL);E’I’F) is an NSCTID of R x P.

Proof. 4. Suppose (NL)a"(0) < (Ng)o " (t1) or (Ng)a™(0) < (Ng)a™F (t1) for all t; €
R,P. Then, ((Ng)e™ x (NL)a(0,0) = rmin{(Nk)e"(0), (NL)&™ (0)} = (NL)EM(0), And
(N)er ™ x (NL)o ) (b, t1) = rmin{ (N )e, ™ (81), (NL)e ™ (t1)} > (NL)e" (0) = (Nk)e x
(NL)e")(0,0). This implies  (Ni)o™" x (NL)e™) (b1, t1) = (Nk)e™ x (Np)e™7)(0,0).
Which is the contradiction to ((Ng)a" x (NL)EFF) is an NSCTID of R x P. Hence if
(Ni)e "7 (0) = (Ni)e ™ (t1) then (Np)e™(0) > (Np)e ™ (t1) and (N)e, (0) > (Np)e(t1) for
all t; € R, P. Now suppose (Ar)e™ (0) > (Ax)atF (t1) or (Ax)aF(0) > (Ak)a"F (t1) for all
t1 € R, P. Then, (Ax)e,™" x (AL)e"")(0,0) = max{(Ax)e " (0), (AL)e (0)} = (AL)e; (0).
And (A)e™ x (AL)e™)(t1,t1) = max{(Ak)e" (t1), (AL)e ™ (t)} > (AL)e"T(0) =
(Ak)e™ x (AL)e"")(0,0).

This implies (Ag)e™ x (Ap)e ™) (b1, t1) = (Ak)e™ x (AL)e")(0,0). Which is a contradiction
to (Ag)a™" x (AL),rr) is an NSCTID of R x P.

Proof. 1it. The proof is quite the same as 2.

Theorem 4.4. Let X : P — R is a homomorphism of PS -algebra. If
K = ((Ng)e™ (Ax)e™™) be an NSCTID of R then the pre-image LK) =
(X~ (N )&M), S ((Ak)e ™)) of P under S is an NSCTID in P.

Proof. For any t; € P, we have

S (NS (0) = N)&HF (1)
AT (1) = (A)BPF (5(0))

Also,
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S HNK)G ) (b1 % x) = (Ni)e, ™ (S(t1 #x)) > rmin{ (N e, (B(t1) * E(t2)) * 2(x)), (Nk)e, "
(B(t2))} = rmin{(Nk)e " (S((t1 * t2) +x), (Nk)& " (S(t2))} = rmin{S 1 (Nk)e, ") ((t1 * ta)
%), S (NK)e ") (t2)} B (Ak)e ™) (t1+x) = (A)&F (B(t%x)) < max{ (Ak)e™" (S(((t1)
S(t2)) * B(x)), (Ak)e" (S(t2))} = max{(Ak)e ™" (S((t1 #t2) %), (Ak)e " (B(t2))} = max{S~!
(A ) (01 # t2) * %), 27 (Ak)e ) (t2)} o

Theorem 4.5. Let ¥ : P — R be an epimorphism of PS-algebra. Then
K = (Ri)T'F, (A)EMT) is an NSCTID of P, if 71 K) = (5 (Ri)=MF), 51 (k)&
)) of P under ¥ is an NSCTID in P.

Proof. For any t; € R, there exist a € P such that ¥(a) = t;. Then, (ﬁK)EIF(tl) =
(N ™ (2(a)) = B7H((Nk)e ") (@) < B7H((Nk)e™)(0) = (Ni)e " (2(0)) = (Nk)e, " (0),
And (A" () = (A" (Z@) = TTH(AK)GM)(@) > TTH((Ak)eT)(0) =
(Ak)e™ (2(0) = (Ak)e™" (0).

Let y,t1,t2 € R then 3(x) =y, 3(a) = t; and 3(b) = ty for some a,b,x € P.

Now, (Ni)e, " (81 y) = (Ni)e, " (Z(a %)) = 71 (N )e ™) (2 x) > rmin{S 1 (Ni)e, " ((a *
b)#x)), 271 (Ni)e, " (b))} = rmin{ (Nk e, (S((a b) #x)), (N ), (2(b))} = rmin{ (Ni)e; ™"
(B(a) * £(b)) * £(x)), (Ni)e; (2(b))} = rmin{ (Nic)e; ™ (61 % ta) * ¥), (Ni)e, ™ (t2) .

And (Ag)e ™ (b1 +y) = (A)e " (B(a* x)) = B7H((Ak)e (a* x) < max{Z ' ((Ak)e " ((a *
b) x)), £~ ((Ak)e; (b))}—max{(AK)TIF(E((a*b) %)), (Ak)e " (2(b)} = max{(Ak)e ™"
(3(a) * (b)) * B())}, (Ax)e, ™ (Z(b))} = max{(Ax)e, ™ (01 * ta) # ¥), (Ax)e ™ (t2)} o

5. Translation and Multiplication of Neutrosophic Soft Cubic T-Ideal

In this section, the interpretation of NSCTID-translation and NSCTID-multiplication is
given. For the simplicity, the notation K =< t, (Ng)a"" (t1), (Ak)e(t1) | t1 € P > for the
NSCS is used.

In this paper, we use & = [1,1] — rsup{(Nx)e™ (t1) | t; € P}, ¥ = rinf{(NK)F( t1) |
t; € P}, ¢ = 1— sup{(Ag)e’(t1) | t € P}, ® = inf{(Ak)E (t1)} | t1 € P for any NSCS
K = (Nk)e,™", (Ak)e, ") of P,

Definition 5.1. Let K = (Nk)a™", (Ax)a™ ) be an NSCS of P. For (Nk)e™, a, 8 € [[0,0],¢]

and 7 € [[0,0], U], where for (Ag)a™, o, B €[0,¢] and v € [0, ®]. A set of the form KTfﬁ,Y =

(((NK)EIF)QYM((AK)EIF)}}M) is called an Neutrosophic Soft Cubic Translation NSCTr of

K, As for all t; € P.
(NK)DEE(61) = (N)E (t1)+, (Ng)L) T (81) = (N)L (61)+8, (Ng)E) T (t1) = (Nk)E (81) -,

(AK)e)a (t1) = (Ak)q, (1) +a, (Ak)E)E™ (t1) = (Ak)e, (t1)+6, (Ak)§ )7  (t1) = (A& (t1)—-
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Definition 5.2. Let K be an NSCS of P and n € [0,1]. An object having the form

K = (N3P, (N, (Ni)E)nP), (Ax)a)n' ™ (AL (A )n™)) s called
a Neutrosophic Soft Cubic Translation NSCMp of K, Where

(NP (t1) = n- (Nk)E (t1), (Ng)E)n (61) = n- (N, (41), (N5 (t1) = n- (Nk)E (t1),
(AR)D)P (1) =1+ AT (01), (A)L) P (t1) = 0+ (Ak)L (b1), (AK)E)n P (61) = 1+ (AK)E (81)
for all t1eP.

5.1. Neutrosophic Soft Cubic T-Ideal Translation

This section defines neutrosophic soft cubic T-Ideal translation with a theorem and example.

Theorem 5.3. If K is an NSCTID of P, then NSCTr ﬁgfﬁﬁ of K is an NSCTID of P.

Proof. Let K = (Nk)e,"", (Ak)e;™") of P be an NSCTID of P. Then we have ((Nx)Z)(0) =
(NK)Z(0) +a > (N )e,(tl) +a = ((Ng)D)I(ty), ((NK)éi)Er(O) = (Ng)L(0)+ 8 > (Ng)L (t1) +
B = ((Ng)L)F (1), (N)E)T(0) = (AK)E(0) +7 > (AK)E (t1) +7 = (Nk)E)TF (1),

And ((Ak)e)a'(0) = (Ak)&(0) +a < ((Ak)e(t) +a = ((Ax)$)a (1) (Ak)E) 5 (0) =

(Ak), (0) + 8 < (Ak)g (t1) + 8 = (Ax)g) 5" (t1) ((Ak)E)TT(0) = (Ax)e (0) +7 < (Ak)g (t1) +
v = ((AR)E)T (81) Now (N2 (t1xt5) = Ne, (t1%t3)+a > rmin{Ne, ((t1t2) xt3), Neyr (82)} +
a = rmin{Ne, ((t1 * t2) * t3) + o, Ne, (t2) + o} = rmin{(Ng)D)Z (1 * t2) # ts), (Nk) D)2 (82)},
(N T (6 * t3) = (Nk)L(t1 % t3) + 8 > mmin{(Ng)L ((t1 = t2) * t3), (Nk)L (t2)} +

B = min{(Ng)L((t1 * t2) * t3) + B (N (t2) + B} = rmin{((N)L)F((t1 * t2)

ta), (N)L)F (e HNKE) T (b1 = t3) = (N)E(t1 * t3) + v > mmin{(N)5((t1 * t2) =
t), (NK)E (t2)} + v = rmin{ (Ng)E (61 * t2) * t3) + 7, (Nk)E (t2) + 7} = rmin{ (Nk)E) T ((t1 *
t2) * t3), (NK)5)¥ (t2)} And ((Ak)D)E (61 # t3) = (Ak)E (61 t3) + o < max{(Ak)I((t1 * t2) =
t3), (AK ), (t2) } + a = max{(Ak)q, ((t1 * t2) * t3) + o, (Ax)¢ (t2) + a} = max{((Ak)e )a"((t1 *
t2) * t3), (Ak)e)a (t2)}, (Ak)E)E (81 * t3) = (Ak)g (t1 * t3) + B < max{(Ak)g, ((t1 * t2)*
t3), (Ak)e, (t2)} + 8 = max{(A)q, ((t1 * t2) * t3) + 8, (Ax)g, (t2) + B} = max{((Ak)g,) 5" ((t1 *
ta) * t3), (Ak)e, )5 (t2) }, (Ak)e )7 (61 * t3) = (Ax)e (t1 * ta) + v < max{(Ax) ((t1 * t2)*
t3), (Ak)& (t2)} + v = max{(Ak)§ ((t1 * t2) * t3) + 7, (Ax)g (t2) + v} = max{((Ax)E)7 ((t *
to) * t3), ((A)E )7 (t2)}, Hence Ka,ﬁ,’y of K is an NSCTID of P.

Example 5.4. Let P = {0,t1,t2,t3} be a PS-algebra with the cayley’s table as shown in
Table 1. The NSCS K = (Ng)&M (Ak)a™™) of P is defined as

(Ng)Z(t) = {[0.7,0.9] if t; = 0 and [0.3,0.6] if otherwise
(Ng)L (t) = {[0.6,0.8] if t; = 0 and [0.4,0.5] if otherwise
(Ng)¥ (t;) = {[0.5,1] if t; = 0 and [0.2,0.7] if otherwise
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And
(AK)g‘(tz) = {0.2 if t; = 0 and 0.7 if otherwise

(Ak)L (t;) = {0.5 if t; = 0 and 0.9 if otherwise
(Ak)E (t;) = {0.4 if t; = 0 and 1 if otherwise.
The set K is an NSCTID of P as it satisfies (i) but fulfills (ii) and (iii) with the condition:
If i = j then t; * t; = 0 with
(Ng)X (ti xt;) =[0.7,0.9], (Ng)L (ti x t;) = [0.6,0.8], (Ng)E (ti x ;) = [0.5,1],

Otherwise

(NK) (ti * t) = [0.3,0.6], (t;i * tj) = [0.4,0.5], (NK) (ti * t;) = [0.2,0.7]
And
(Ak)E(t) = 0.2, (Ak)L (t:) = 0.5, ( Ax)E (t:) = 0.4,

Otherwise (Ak)Z(t;) = 0.7, (Ak)ZL (t;) = 0.9, (Ak)Z(t;) = 1 given in definition 3.1. Now, for
(Nk)e"F we choose a = [0.04,0.08], 8 = [0.05,0.09],7 = [0.03,0.07] and for (A)e"F, a =
0.03,8 = 0.04,v = 0.05. Then the mapping I~(Tr 5 | P — [0, 1] is given by

(NK)2) 0 oa0.08(0) = (NK)& (0) +[0.04,0.08] = [0.74,0.98]

((NK)&)b05.0.00 (0) = (NK)g, (0) + [0.05,0.09] = [0.65, 0.89]

((NK)Q)[D 03.0.07(0) = (Ng)E(0) — [0.03,0.07) = [0.47,0.93]

((NK) ) bros.0.08 (1) = (NK)& () + [0.04,0.08] = [0.34,0.68]

(N )8, ){br05.0.00 (1) = (Nk)& (8) + [0.05,0.09] = [0.45,0.59)

((NK)E)br0s.0.0m (1) = (Nk)& (83) — [0.03,0.07) = [0.17,0.63]
((Ak)e)003(0) = (Ak)e, (0) +0.03 = [0.23]
((AK)&)004(0) = (AK)E (0) +0.04 = [0.54]
(AK)E)305(0) = (Ak)E (0) — 0.05 = [0.35]
((AK)d)obs(ti) = (Ax)e (t:) +0.03 = [0.73]
((Ax)e)o0a(ti) = (Ax)q, (ti) +0.04 = [0.94]
((Ax)e)o0s(ti) = (Ax)q, (ti) — 0.05 = [0.95]

Hence K 1s an NSCTID of P.

Theorem 5.5. The union of any two NSC-translations of an NSCTID is an NSCTID of P.

Proof. Suppose IN(E}B and K ! g are two NSC-translations of NSCTID of P respectively.
I KT, for (Nk)e,a,8 € [[0,0], €] and 7 € [[0,0), %], where for (Ax)e™,a, 8 € [0,(]
and v € [0, 9], and in KT, gy for (Ng)a™ o/, 8" € [[0,0],€] and + € [[0,0], U], where for
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(Ak)e™F, o/, 8 €[0,¢] and v/ € [0,®]. and a > o/, 8 > B,y >+ as we know that, Kgrﬁy and
K;E‘rﬁ  are NSCTID of P. Then

(Nk)E)a" U (N)EIN0) = (Nk)E)a" VNG (b1 01) = rmax{ (N3 (11 # t0), (
NK)I)E <t1*t1>}>rmax{rmm{<<NK>eT>$f<t1> (N)DE (61) }, rmin{ (N ) B (81), (N D)5
(t)}} = rmax{(Nk)E)a" (), () (0)} = rmax{(Ni)(t1) + e (N)g(t1) + o'} =
(NODEU NDI) (), (Nk)L)E U (Nk)L)E(0) = (N)E)E U (NKL)E) (b1 % t1) =
rmax{((N)L)F (brt1), (Ni)L) B (br#t1)} > rmax{rmin{ (Nk)L) 5 (1), (Nk)E) 5 (1)}, rmin

(

{((ﬁK)ii)Ef(tl),((NK) )Tr(t1)}}=rmax (NK)L)F(t), (Ng)L)F (t1)} = rmax{(Nk)L, (t1) +
B,(Nk)L (t1) + 8} = (Nk)L)E UNK)L)E) (t1), (Ne)E)T U (N)E)IH)(0) = (Nk)E)TF U
F
e

(NK)&) ) (tretr) = rmax{ (Ni)§ )7 (b1#t1), (N

b ) (tl*tl)}>rmax{rm1n{((NK)) (

K)e t1),
((NK)E)TE(61) }, rmin{ (Nk)E) T (81), (Ne)E) T (61)} = rmax{ (Ng)E) T (1), (Nk)E) T (t1)}
= rmax{(Nk)E (t1) +7, (Nk)E (t1) +9'} = (N)E) T UNK)E) ) (t1), (AT T U (A D)
(0) = ((Ax)a)a" U((AK) &) o) (brxt1) = min{ ((Ax)E)a" (trxt1), ((Ak)d)ar (t1xt1)} < min{max
{((AK)a)a" (t1), (Ax)&)a" (t1)} max{((Ak)q,) & (t1), (Ak)e)or (tl)}} min{((Ax)q )" (t1); ((
Ax)e) o (t1)} = min{(Ak)g, (t1) +a, (Ax)g (t1) +'} = ((Ak)e )a  U(AK)e,)ar) (61)-((Ak)e,) 5°U
((Ak)&)3)(0) = ((Ak)e) 5" U (Ax)e) 5 ) (b1 * t1) = mln{((AK)) "tk ), ((AK)ey) o (81 % 1
)} < min{max{((Ax)e,) 5 (t1); (Ax)e,) 5 (t1) }, max{((Ax)e, )5 (t1), (Ak)e,) 5 (61)}} = min{((
Ax)e) 5 (1), (Ax)e) 5 (1)} = min{(Ak)e (1) + B, (Ax)s(t1) + B} = ((Ak)L)E" U
(Ak)&)E (1) ((Ak)E)T U((AK)E)T)0) = ((Ak)E )y U((Ak)e) 3 (trxt) = min{((Ax ) )7
(t1 % t1), (Ak)e)7 (t1 * t1)} < min{max{((Ax)e)7" (t1), (Ax)e )5 (t1)} max{((Ax)e )7 (t1), ((
Ax)e) 3 (1)1} = min{((Ak)e )77 (61), ((Ak)e)7F (t1)} = min{(Ax)g, (t1) + 7, (Ax)g, (1) +7'} =
(AK)e)7" U (AK)E)I) (t1)-

K)e
K)o

Now
(Nk)e ") Iy U((NK)e™)E 5 ) (trxts) = rmax{ (Nk)e, )2, (b1#ts), (Nk)e I 5 (b1%
t3)} > rmax{rmin{((Ni)e, ™" )2, ((t1 * t2) * t3), (Ni)e; )2, (82), rmin{(Nk)e,")E 5,

(b1 t2) * t3), (Nk)e, ™ )2 5 (t2)}, = rmin{rmax{ (N )e; ")y (b1 * t2) * t3), (Nk)e™")
T g (b1 % 2) # tg)}, rmax{ (Nk)e, "), (t2), (N)e " )E 5 (t2)}} = rmin{ (Nk)e, ")

T U (NI 5 ) (61 % t2) % ts), (Ni)&™)Is U (Nk)e ™I 5 ) (t2) )

And

(AR)e ™I U((AK)e )T 5 ) (01 #t3) = min{(Ak)e; )y (b15ts), (Ak)e "I 4 ) (b1 *
t3)} < min{max{((A)e; "I (tret2)xts), (Ak)e "I - (t2) }, max{ (Ax)&™ ) 5 (b1
to)#t3), (Ax)e,"" I 5 (t2)}} = max{min{((Ax)e; ") I5  ((br#t2)#ts), (Ax)e )T 5 (b1
t) *tg) b, min{ ((Ax)e; ™" )5 (t2), (Ak)e I 4 ) (62)}} = max{((Ak)e" )25, U((Ak)e™")
B g0k % 82) # t3), ((Ax)e )25, U ((A)e ™) E 5 ) (k).

o By );
Hence K U Ka B is an NSCTID of P.

N8
R
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Theorem 5.6. The intersection of any two NSC-translations of an NSCTID is an NSCTID
of P.

Proof. Suppose IN(Efﬁﬁ and Kg,,@/,y/ are two NSC-translations of NSCTID of P respectively.
Where in ﬁzfﬁﬁ for (Nk)o"", a, B € [[0,0],£] and ~ € [[0,0], ¥], where for (Ak)e""", a,8 €
[0,¢] and € [0,®], and in K 5 _,, for (Nk)o,", o/, 8 € [[0,0],€] and 7' € [[0,0], ¥], where
for (Ax)e™", o/, 8 € [0,¢] and ' € [0 ®]. and a < o/, 8 < ',y <4 as we know that, Kgﬂ,y
and Kzr/j ) are NSCTID of P.Then

(Ng)Da" 1 (N)2)E)(0) = (Ni)2)a" N((N)E)E) (01 % t1) = rmind (Nie) &) & (01 % 1), ((
Ni)a) i (b xt1)} > rmin{rmin{ (Nio)g) & (¢1), (Ni))ar (t1)}, rmind (Ni)g) o (01), (Nio) &) 2
(t)} = rmin{(Ni)a)a" (t1), (NS (1)} = min{(Nk)3 (1) + o, (Ng)§(tr) + o} =
(N))ar 0 (Ne)D)an ), (Ne)R)F N (N F)0) = (Nx)g)F N (Nt F) (b * t)
= rmin{((Ni)}, )5 (t1 tl)j((NK)i) (t1 % t)} > rminfrmin{((Nio)},) 5 (t1), (Ni)L) 5 (t0)
rmin{ ((Ni)§,) 3 (t1), (Nk) )?(t )1} = rmin{(Nio)g) 5 (01), (Ni)£) 3 (t1)} = rmin{ (Ni)g, (ta

I
) + B, (NLt) + 8 = (N)DF N NI (t), (Ne)E)T ((N e )31 )(0)
(t1

((Ak)e)5" N (Ak)e)3)(0) = (((Ax)e)5" N ((Ak)e) 5 (b1 * ta)

((A )-
(Ak)e)5 (t1 * t1), (Ak)e) (t1 * ta
I

(NI n (N5 t1) = min{((N)E)(t1 * 1), (Nx)F )
rmin{rmin{((Nx)5)2*(t1), (Nk)E)T (t1) }, rmin{ (Ng)5) T (81), (Ng)E) T (6 )}}—rmln{((
I (), (Nk)E)TF (81) = rmin{ (Ng)E (t1) + 7, (Nk)E (81) +9'} = (N)5) T 0 (Ng)E) ) (1)
(((AK)T)T (AK)e)a)(0) = (((Ak)e)a" N (Ax)E) S (b1 t1) = max{((Ak)e)a"(t1 * t1), ((
Ax)e)ar (b1 % t1)} < max{max{((Ax)e)a" (t1), (Ax)g)a’ (t1)}, max{((Ax)§) N (t1), (Ax)d) o
(t1)}} = max{((Ak)e)a"(t1), (Ak)e)ar (t1)} = max{(Ak)g(t1) + @, (Ak)q (t1) + o'} =
Ke)a N (AK)e) o) (t1)- (( '
x{(

y

= max 1 )} < max{max{((Ak)e,)3 (t1), (Ak)e )5 (t1)},

maX{((AK)I)Er( 1), (Ak)e) 5 (t1)}} = max{((Ak)e, )5 (t1), (Ak)e, ) 57 (1)} = max{(Ak)g, (t1)

+6. (Ak)g (1) + 8} = (Ao ) 5" N (Ak)e) 51 ) (t1) ((Ak)e)7" N (Ak)e)7)(0) = (((Ax)E )3 N

(A ) )37 ) (b1 t1) = max{((Ak)g)7" (t1 % t1), (Ak)e,)3/ (b1 # t1)} < max{max{((Ak)e,);" (t1),

((Ak)e)3 (61} max{((Ak)) 7 (t1), (Ak)e )y (t1)}} = max{((Ak) )" (81), (Ak)e, )y (t1)}
K)e,

max{(Ak)g, (t1) +7, (Ax)e (t1) + 7' = ((Ax)g )y N (Ax)g )37 (k).

Now

((N)&") (N 5 ) (br#ts) = rmin{ (N e M )E, - (br#ts) > ((NK)TIF)ﬂB

(t1 *t3)} > rmln{rmln{((NK)TIF)a B‘Y((tl % t9) * t3), ((NK)TIF)Q 57(,@)} rmln{((NK) F)
Nk)

T (b5 t2) #ts), (Nk)e ™) 5 ()1} _rmm{rmmi((NK)TIF)EYM((Mm)*tg) ((
o) oy (b1 % t2) sta)}, emin{((Nier ™) 2., (82), (Ni)er ™) (82)}} = {rmind (((
Nie )i N (NI ) ) (01 t2) ), (V)™ s, 0 (N ) ) (82))
And

(Ak)e )5 N (AR)e ™D 5 ) (b1 % t3) = max{((Ax)e, "), (b1 ts), (Ax)e " )E 5

(t1%t3)} < max{max{( (AK)T = F)grﬂ 7((’61 *to)*t3), ((AK)T & F)a B, 7(t2)} max{((AK)T & F)gﬁ A
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(61 % t)  t3), (A)er ") 5 (62) 1} = max{max{((Ak)e; ™" I, ((t1 % t2) * ts), (Ax)e™)
g (1% 1) ta}max{«AK)“F)W( 2), (A)er ™) 5 (t) {max{ ((A)e ™" )R, N

o

T,F T,LF T,LLF
(Ao )ar gy ) (b % 82) % t3), ((Ax)e )alg N ((AK)e ™ )ar g1, (62) -
Hence KI';_ NKY ,, , is an NSCTID of P.

5.2. Neutrosophic Soft Cubic T-Ideal Multiplication

This section defines neutrosophic soft cubic T-Ideal multiplication with a theorem and

example.

Theorem 5.7. If K is an NSCTID of P, then NSCMp I~<I,7Mp of K is an NSCTID of P, for all
ne [0, 1].

Proof. Let K be an NSCTID of P and 7 € [0,1]. Then we have ((Ng)T O MP(0) = - (Ng)T (0) >
n - (Nglt) — <<N*K>Ei>?fp<o>; (Ni)2)n ™ (1), (Ni)e)n™(0) = <N )6 (0) = n-
(Nic)e,(01) = (N ) (0) = (Nt )™ (01), (Ni)E)™(0) = - (N (O)Zn (Ni)gi(t1) =

(NK)E)™(0) > (N5 ) (t1),

And ((A >eT> P0) = 7 (AL0) < 7 ARIM) = (ADRP0) < (A5 < 1),
(AK)L)nP(0) = n-<AK>£i<o> < - (ALE) = (ADLP0) < (AL (),
(A K>e> P(0) = n- (AREO0) < 7 (AE() — (AE)R™0) < (A)EP(t1), Now
(NI (ta *t) = 0 (NIt = t3) > n - rmin{(Ng)Z (61 * t2) * t3), Ng)Z(t2)} =
rmin{n - (NK)Z((tr # t2) * t3),7 - (N)Z(t2)} (NP1 * tg) = rmin{ (Ng)D)yP((ts =
)+ t3), (NP (t2)} (NK)E)™ (b1 #t3) > rmin{ (Nk)Z)n P (b1 #ta) = t3), (Nk)Z)NP (t2)},
(NInP(ty % ts) = 5 (Ng)L (b1 % ts) > - rmm{(NK)i((tl*tz)*ts),( Nk (t2)} =
rmin{n - (Nk)L ((t1 # t2) * t3),n - (Nk)L (62)} (Ng)L)nP(t1 * ts) = rmin{(Ng)L)nP((ts =
ta) *t3), (Ng)L )0 (t2)} (N)E)n™ (b1 % t3) > rmin{ (N)L )y P ((t1 * t2) * t3), (Ng)L)n™ (t2)},
(NQEWP(t1 % t3) = 5 - (Ng)E (b1 % ts) > - rmm{(NKL((tl*tz)*ts),( K)E(t2)} =
rmin{n - (N (61 * t2) * t3),7 - (NeE (t2)} (N)E)P(tr = t3) = rmin{(Ng)E)y™((t1

ta) #ts), (N5 )P (t2)} (Nk)E)N™ (b1 * tg) > rmin{ (Nk)E )y (61 # ta) * ts), (Nk)E )y (t2)

}
And ((AR)D)P(t1 #ts) = 1+ (AR)L(61 * ts) < 7 max{(A)I((t1 * t2) * t3), (A) T (t2)}
= max{n - (AT ((t1 * ta) * t3),7 - (AK)Z(t2)} (Ak)D)yP(t1 = t3) = max{((Ak)Y) *
t2) #ts), (AK)D)N P (t2)} (Ak)D) ™ (t1 *t3) < max{((Ag)Z)NP (b1 * ta) = t3), (Ak)%)
(ARt = ts) = 1+ (AL (61 * t3) < - max{(Ak)L ((t1 * t2) * t3), (Ax)L (t2)} =
max{n - (Ak)L (b1 # t2) * t3), 7 (AL (t2)} ((AK)L)n P (t1 * t3) = max{((Ag)L)n"™
t3), (Ak)L)n P (t2)} (AL P(t1 * t3) < max {((AK) D P (b1 % t2) * t), ((Ak)L
(AP (k1 * t3) = - (AK) (tl *t3) < n - max{(Ak)g ((t1 * t2) * t3), (Ax)g
max {7 - (Ax)g, ((t1 * t2) * t3),7 ey (t2)} (A ) D P (b # tg) = max{((Ax)E )y
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t3), (AK)E )y P (62)} ((Ak)E)NT (b1 * t3) < max{((Ak)E )y P((t1 * ta) * t3), (Ak)E )R (t2) 1.
Hence K)™® of K is an NSCTID of P, for all 5 € [0,1].

Example 5.8. Let P = {0, t1, t2,t3} be a PS-algebra with the cayley’s table as shown in Table
1. The NSC-set K = <(ﬁK)TIF (Ak)e"") of P is defined as
(Ng)Z(t) = {[0.7,0.9] if t; = 0 and [0.3,0.6]. if otherwise
)L (t;) = {[0.6,0.8] if t; = 0 and [0.4, 0.5]. if otherwise
Nk)E () = {[0.5,1] if t; = 0 and [0.2,0.7]. if otherwise.

And
(Ak)X (t;) = {0.2 if t; = 0 and 0.7. if otherwise

(AK) (ti) = {0.5 if t; = 0 and 0.9. if otherwise

(AK)ei (ti) = {0.4 if t; = 0 and 1. if otherwise.
The set K is an NSCTID of P as it satisfies (i) but fulfills (ii) and (iii) with the condition: Ifi = j
then t; t; = 0 with (Ng)T (ti # ;) = [0.7,0.9], (Nk)L (ti * t;) = [0.6,0.8], (Nx )£ (t; * t;) = [0.5, 1]

Otherwise
(N (5 t5) = 0.3, 0.6, (Ni)L, (8 % t5) = [0.4,0.5], (Nio)F (8 # t;) = [0.2,0.7],
And
(Ax)e, (t1) = 0.2, ( Ax)e, (t) = 0.5, ( Ax)g, (ti) = 0.4
Otherwise (Ak)Z(t;) = 0.7, (Ak)L, (t;) = 0.9, (Ak)Z(t;) = 1 given in definition 3.1. Now, for
(Nk)e"Fn € [0.2,0.5] and for (A)e™" 7 = 0.2. Then the mapping IN(%/IP | Parrow[0, 1] is given

by
T0) =10.14,0.45]

(Nk)D{oh05(0) = 0.2,0.5] - (Ni) ]
(NK)& )b 05(0) = [0.2,0.5] - (Nk)E, (0) = [0.12,0.4]
(Nk)E)(oh 05(0) = 0.2,0.5] - (Nio)§ (0) = [0.1,0.5]
(NK)a) 05,05 () = [0-2,0.5] - (Nio) 2 () = [0.06,0.3]
(Nk)E)fos 0.5 (8) = 0-2,0.5] - (Ni)y, (t5) = [0.08, 0.25]
(NK)&) {0505 (8) = [02,0.5].(Nk)§ (t:) = [0.04,0.35],
And
(AK)&)083(0) = 0.2.(AK)E (0) = [0.04]
((AK)¢)p5 (0) = 0.2.(A)¢ (0) = [0.08]
(AK)e)o3 (1) = 0-2.(Ax)e (ti) = [0.14)
(AK)E)o3 (1) = 0-2.(Ak)e (t5) = [0.18]

(AR)D)O® (45) = 0.2.(AK)S (t:) = 0.2]
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Hence Kj'™® is an NSCTID of P.

Theorem 5.9. The union of any two NSC-multiplications of an NSCTID is an NSCTID of
P.

Proof. Suppose IN(,I;/I P and fi}fp are two NSC-multiplications of an NSCTID is an NSCTID of
P, where n,7' € (0,1] and n < ’. As we know that I?Mp and I?Mp are NSCTIDs of P. Then
(S0 ) 0) = (R MNP (R ) 6 ) = e () D
P 00), (R)e ™ )P (0 * 0} > rmin{rmin{(Ni)e ™) (02), (Ni)e ™)™ (1)},
rmin{ (e, ") P (02), <<ﬁK>T”>Mp< )} = min{(Ni)e ™)™ (), (N)e ") (00)} =
exninfn - (N T (6. - ()T (1)) = (R TONP U (Rig) D) MP) ).

And

((ARETRP U (A)EEF)IMP) (0) = ((A)EFIP U (Ar)ETF)MP) (81 % t1) = max{((Ax)e

(
TR (brtn), (Ax)e " )p® (b1%t1)} < max{max{(( AK)TIF)M‘D(t ) (Ak)e; ™)y " (t1)}, max

[((AR)EHF Mg ><<AK>T’LF>2AP< 603} = max{ (AT TP (), (A)E)NP(t1)} = max

- (AR (00 - (AT (1)) = (A Ka P UAK)e )P (t1)- (N >TIF>Mpu<<ﬁK>ei
TJ’F%(W@) = rmin{((Nk)e, ™" )y P (b1#ts), (Ni)e, " )P (t1t3) } > rmin{rmin{((Ng)e;"")
1 P((61 % t2) % ta), (Ni)e, ™ )n'P(t2)}, rmin{ (Nk)e ™) P (b1 # t2) # ta), (Ni)e ™" )P (t2)}} =
rmin{rmin{ (N )e, ")y ((t1 # ta) * ts), <<NK>EIF>MP<<1:1 *t2) xtg)}, rmm{((NK)TIF)Mp(tz)
(N)e PP (t2)}} = {rmin{ ((N)e ™)™ U (Ni)ey ™) P) (1 % ta) = t3), (Ni)e ™)y U
<<NK>;€IF>MP><t2>}

And

AT+ ta) = max{(A)STNP (0  ta), (A& (0 +

(A0S U (
< ATV R (1 + ) + ). (AT TP (0. ma (A (1 5

t3)} (A

t2) * t3), (A 2P (t2)}} = max{max{((Ak)e"" )y P (b1 * t2) * t3), (A" (1 * t2)
#t3) b, max{ (A)e )™ (b2), (A)E T )NP (62)}} = {max{((Ax)&™" )P U((Ak >T1F>24p><<t1
t2) % t3), (((Ax)e™" )0 U ((Ak L)) 1))

n
Hence K}y{p U Kn,p is an NSCTID of P. g

(
max{max{(
Ko

Theorem 5.10. The intersection of any two NSC-multiplications of an NSCTID is an NSC-
TID of P.

Proof. Suppose IN{%/[ P and K%p are two NSC-multiplications of an NSCTID is an NSCTID of
P, where 7,7/ € (0,1] and 1 < 7/'. As we know that K,'” and I~(Mp are NSCTIDs of P. Then

(N ") N (Nk)e, MNP (0) = ((Nk)e, ")y N (N >EIF>M*’><M st1) = rmin{(Nk)e,

TLE)P (6 5 t), (Nie ™0 )P (b1 % t1)} > rmm{rmm{((NK)T’I’F)Mp( t1), (Nk)e " )n P (t1)},
rmin{(Ni)e; ") P (t1), ((NK)T’I’F)MP( t1)}} = mmin{((Nk)e " )52 (t1), (Ni)e " )P (81)} =
exnin{n - (No) D (6. - ()2 (1)) = (i) DVFMP 1 (R BN ).
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And

<<<AK>£IF>%pn<<A ) "IMPY0) = ((Ax)e " PA(AK)ET)MP) (tr#t1) = max{ (Ak)e ™)
P(t1 % 1), (Ak)e™ )P (b 1)} < maxc{max{((Ax)e™" )y (81), (Ax)e; ™)™ (1)}, maxc{((

e Iy (t1), (A >TIF>MP<t1>}}—max{<<AK> DaP (00, (Ae™ )P (ta)} = max{n - (

O (), - (A8 (1)} = (BP0 e E ) ). (B R0 (i)

) P)(t1 *t3) :rmln{((A )T’I’F)Mp(t *t3), ((NK)T’I’F)M (t1xt3)} >rm1n{rm1n{((NK)T’I’F)Mp

(b1 % t2) = ta), (Ni)e ™)y (82)}, rmm{«NK)T’LF)Mp((m * ta) % tg), (Ni)e )P (k) }} =

rmin{rmin{((Ng)e, " )5 ((t1 * t2) * t3), ((ﬁK)eTIIF)Mp((tl *tg) *t3)}, fmm{((NK)T’I’F)%p(@)a (
(Nk)e "F)nP(t2)}} = {rmin{((Nk)e ")y N (N >£’I’F>Mp><<m xta) xt3) ((Nk)ey " )n® N ((

77
A
A

n

NI<):3F1’I’F)Mp)(t2)}

And

(AR)e ") N (AR)e ™ )P (b1 # t3) = max{((Ak)e ™ )n P (t1 % ta), (Ak)e; " )P (t1 * t3)}

< macfmax{ (AR)S NP (b1 * t2) * ta), (Ax)S)NP(t2)}, max{((Ax >T’I’F>,§“p<<t1 1) %

t), (AR)SP)MP(t2)}} = max{max{ (AT P (b * ta) * ), (Ax)EENP (1 %) #t3)},
el (k)T )NP(02), (AT (1)1 = famace (AT 1 ((A) 2 )8P) (11 1)
1), (AP ) (AP )P) 1)),

Hence Ky'P NK}P is an NSCTID of P.

6. Conclusion

This paper extensively explores the application of the neutrosophic soft cubic set to investi-

gate specific properties of the t-ideal in a PS-algebra. The derived definitions and fundamental
outcomes hold potential for broader use in other algebraic structures like Lie algebras and lat-
tices in the future. Moreover, there are several areas where this proposed structure can be
advantageous, such as DNA identification, formalizing procedures in genetic algorithms, ge-
nomics, fuzzy logic-based networks, and particularly complex networks. Within the already-
existing neutrosophic cubic structures, the addition of soft sets with T-ideal properties makes
this structure a better choice for future implementations. This can also be extended to the
hypersoft sets and can be advantegeous for MCDM algorithms in various real life applications
such as transportation, healthcare etc.
One potential limitation of our proposed structure NSCTID is the ground algebra because the
results and properties in this study may or may not be satisfy for other algebras in future. Also
the practical implementation and computational efficiency of the NSCTID framework in real-
world applications may pose challenges. The translation of theoretical concepts into efficient
algorithms and the handling of computational complexities could require further investigation
and optimization to fully realize the benefits of NSCTID in practical scenarios.
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