
  

   

 

Integrating Philosophy of Understanding with the Cognitive Sciences 

Kareem Khalifa1*, Farhan Islam2, J.P. Gamboa3, Daniel A. Wilkenfeld4, Daniel Kostić5 1 

1Department of Philosophy, Middlebury College, Middlebury, VT, USA 2 

2Independent Scholar, Madison, WI, USA 3 

3Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA 4 

4Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA 5 

5Institute for Science in Society (ISiS), Radboud University, Nijmegen, The Netherlands 6 

 7 

* Correspondence:  8 

Kareem Khalifa 9 

kkhalifa@middlebury.edu 10 

Keywords: explanation, understanding, mechanism, computation, topology, dynamic systems, 11 

pluralism. (Min.5-Max. 8) 12 

Abstract 13 

We provide two programmatic frameworks for integrating philosophical research on understanding 14 

with complementary work in computer science, psychology, and neuroscience. First, philosophical 15 

theories of understanding have consequences about how agents should reason if they are to 16 

understand that can then be evaluated empirically by their concordance with findings in scientific 17 

studies of reasoning. Second, these studies use a multitude of explanations, and a philosophical 18 

theory of understanding is well suited to integrating these explanations in illuminating ways. 19 

1 Introduction 20 

Historically, before a discipline is recognized as a science, it is a branch of philosophy. Physicists 21 

and chemists began their careers as “natural philosophers” during the Scientific Revolution. Biology 22 

and psychology underwent similar transformations throughout the nineteenth and early twentieth 23 

centuries. So, one might think philosophical discussions of understanding will be superseded by a 24 

“science of understanding.” 25 

While we are no great forecasters of the future, we will suggest that philosophical accounts of 26 

understanding can make two important scientific contributions. First, they provide a useful repository 27 

of hypotheses that can be operationalized and tested by scientists. Second, philosophical accounts of 28 

understanding can provide templates for unifying a variety of scientific explanations.  29 

We proceed as follows. Section 2 presents these two frameworks for integrating philosophical 30 

ideas about understanding with scientific research. Sections 3 discusses the first of these frameworks, 31 

in which philosophical theories of understanding propose hypotheses that are tested and refined by 32 

the cognitive sciences. Section 4 discusses the second, in which considerations of understanding 33 
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provide criteria for integrating different scientific explanations.  Both of our proposals are intended to 34 

be programmatic. We hope that many of the relevant details will be developed in future work. 35 

2 Two Frameworks for Integration 36 

As several reviews attest (Baumberger, 2014; Baumberger, Beisbart, & Brun, 2016; Gordon, 2017; 37 

Grimm, 2021; Hannon, 2021), understanding has become a lively topic of philosophical research 38 

over the past two decades. While some work has been done to integrate these ideas with relevant 39 

findings from computer science, psychology, and neuroscience, these interdisciplinary pursuits are 40 

relatively nascent. While other frameworks are possible and should be developed, we propose two 41 

ways of effecting a more thoroughgoing synthesis between philosophy and these sciences (Figure 1). 42 

In the first framework for integrating philosophy with the cognitive sciences—what we call 43 

naturalized epistemology of understanding (Figure 1A)—the philosophy of understanding provides 44 

conjectures about reasoning that are tested and explained by the relevant sciences. In the second 45 

integrative framework—understanding-based integration (Figure 1B)—the philosophy of 46 

understanding provides broad methodological guidelines about how different kinds of scientific 47 

explanation complement each other. The two proposals are independent of each other: those 48 

unpersuaded by one may still pursue the other. We discuss each in turn. 49 

A. Naturalized Epistemology of Understanding 50 

 51 

B. Understanding-Based Integration 52 
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 53 

Figure 1. Two Ways to Integrate Philosophical Work on Understanding with Relevant 54 

Sciences.  55 

3 Naturalized Epistemology of Understanding 56 

In epistemology, naturalism is the position that philosophical analyses of knowledge, justification, 57 

and kindred concepts should be intimately connected with empirical science. Different naturalists 58 

specify this connection in different ways; see Rysiew (2020) for a review. Given that philosophical 59 

interest in understanding has only recently achieved critical mass, the more specific research program 60 

of a naturalized epistemology of understanding is nascent. We propose to organize much existing 61 

work according to the framework in Figure 1A. More precisely, philosophical theories of 62 

understanding propose how reasoning operates in understanding (Section 3.1), and these proposals 63 

are constrained by explanations and empirical tests found in sciences that study this kind of reasoning 64 

(Section 3.2). 65 

3.1 Philosophical Theories Propose Reasoning in Understanding (I) 66 

Two kinds of understanding have garnered significant philosophical attention: explanatory 67 

understanding (Greco, 2013; Grimm, 2010, 2014; Hills, 2015; Khalifa, 2012, 2013a, 2013b, 2017; 68 

Kuorikoski & Ylikoski, 2015; Potochnik, 2017; Strevens, 2013) and objectual understanding 69 

(Baumberger, 2019; Baumberger & Brun, 2017; Carter & Gordon, 2014; Dellsén, 2020; Elgin, 2004, 70 

2017; Kelp, 2015; Kvanvig, 2003; Wilkenfeld, 2021). Explanatory understanding involves 71 

understanding why or how something is the case. (For terminological convenience, subsequent 72 

references to “understanding-why” are elliptical for “understanding-why or -how”.) Examples 73 

include understanding why Caesar crossed the Rubicon and understanding how babies are made. 74 

Objectual understanding is most easily recognized by its grammar: it is the word “understanding” 75 

followed immediately by a noun phrase, e.g., understanding Roman history or understanding human 76 

reproduction. Depending on the author, the objects of objectual understanding are taken to be subject 77 

matters, phenomena, and for some authors (e.g., Wilkenfeld, 2013), physical objects and human 78 

behaviors. For instance, it is natural to think of Roman history as a subject matter but somewhat 79 

counterintuitive to think of it as a phenomenon. It is more natural to think of, e.g., the unemployment 80 

rate in February 2021 as a phenomenon than as a subject matter. Human reproduction, by contrast, 81 

can be comfortably glossed as either a subject matter or a phenomenon.  82 
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To clarify what they mean by explanatory and objectual understanding, philosophers have 83 

disambiguated many other senses of the English word “understanding.” Frequently, these senses are 84 

briefly mentioned to avoid confusion but are not discussed at length. They are listed in Table 1. 85 

Scientists may find these distinctions useful when characterizing the kind of understanding they are 86 

studying. That said, we will focus on explanatory understanding hereafter. Thus, unless otherwise 87 

noted, all subsequent uses of “understanding” refer exclusively to explanatory understanding. 88 

Kind of understanding  Typical Complement  Examples 

Propositional  that + declarative sentence  I understand that you might 

not enjoy reading this book. 

Broad Linguistic name of a language  Schatzi understands German. 

Narrow Linguistic what + a linguistic expression 

+ means 

Schatzi understands what 

“Ich bin ein Berliner” means. 

Procedural  how + infinitive  Miles understands how to 

play trumpet. 

Non-explanatory 

Interrogative 

embedded question that does 

not seek an explanation as its 

answer (most who, where, 

what, and when questions) 

I understand who my friends 

are.  

I understand where my 

friends will be going.  

I understand what my friends 

are doing.  

I understand when my friends 

need a good laugh. 

Table 1. Kinds of understanding that philosophers infrequently discuss (Khalifa 2017, 2) 89 

Virtually all philosophers agree that one can possess an accurate explanation without 90 

understanding it, e.g., through rote memorization. In cases such as this, philosophers widely agree 91 

that the lack of understanding is due to the absence of significant inferential or reasoning abilities. 92 

However, philosophers disagree about which inferences characterize understanding. Three broad 93 

kinds of reasoning have emerged. First, some focus on the reasoning required to construct or 94 

consider explanatory models (De Regt, 2017; Newman, 2012, 2013, 2015). Second, others focus on 95 

the reasoning required to evaluate those explanatory models (Khalifa, 2017). On both these views, 96 

explanatory models serve as the conclusions of the relevant inferences. However, the third and most 97 

prominent kind of reasoning discussed takes explanatory information as premises of the relevant 98 

reasoning—paradigmatically the inferences about how counterfactual changes in the explanatory 99 

variable or explanans would result in changes to the dependent variable or explanandum ((Bokulich, 100 

2011; Grimm, 2010, 2014; Hills, 2015; Hitchcock & Woodward, 2003; Kuorikoski & Ylikoski, 101 

2015; Le Bihan, 2016; Potochnik, 2017; Rice, 2015; Verreault-Julien, 2017; Wilkenfeld, 2013; 102 
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Woodward, 2003). This is frequently referred to as the ability to answer “what-if-things-had-been-103 

different questions.” Many of these authors discuss all three of these kinds of reasoning—which we 104 

call explanatory consideration, explanatory evaluation, and counterfactual reasoning—often without 105 

explicitly distinguishing them in the ways we have here.  106 

3.2 Scientific Studies of Reasoning’s Contributions to the Philosophy of Understanding (II) 107 

A naturalized epistemology of understanding begins with the recognition that philosophers do not 108 

have a monopoly on studying these kinds of reasoning. Computer scientists, psychologists, and 109 

neuroscientists take explanatory and counterfactual reasoning to be important topics of research. 110 

Undoubtedly, each discipline has important insights and contributions. Moreover, these scientific 111 

disciplines may raise interesting questions about understanding that are not on the current 112 

philosophical agenda.  113 

 Cognitive psychological investigations into the nature of explanation and understanding 114 

frequently focus on the role of those states in our cognitive lives. To the extent that one can derive a 115 

general lesson from this literature, it is probably that both having and seeking explanations aid other 116 

crucial cognitive tasks such as prediction, control, and categorization. Developmental psychologists 117 

argue that having proper explanations promotes survival, and that at least the sense of understanding 118 

evolved to give us an immediate reward for gaining such abilities (Gopnik, 1998). In cognitive 119 

psychology, Koslowski, Marasia, Chelenza, and Dublin (2008) have argued that having an 120 

explanation better enables thinkers to incorporate evidence into a causal framework. Lombrozo and 121 

collaborators have done extensive empirical work investigating the epistemic advantages and 122 

occasional disadvantages of simply being prompted to explain new data. They find that under most 123 

normal circumstances trying to seek explanations enables finding richer and more useful patterns 124 

(Williams & Lombrozo, 2010). This work also has the interesting implication that the value of 125 

explanation and understanding depends on the extent to which there are genuine patterns in the 126 

world, with fully patterned worlds granting the most advantages from prompts to explain (ibid.), and 127 

more exception-laden worlds providing differential benefits (Kon & Lombrozo, 2019). It has also 128 

been demonstrated that attempts to explain can (perhaps counterintuitively) systematically mislead. 129 

For example, attempts to explain can lead to miscategorization and inaccurate predictions when there 130 

are no real patterns in the data (Williams, Lombrozo, & Rehder, 2013). Similarly, laypeople can be 131 

misguided by the appearance of irrelevant neuroscientific or otherwise reductive explanations 132 

(Hopkins, Weisberg, & Taylor, 2016; Weisberg, Keil, Goodstein, Rawson, & Gray, 2008). In more 133 

theoretical work, Lombrozo (2006; Lombrozo & Wilkenfeld, 2019) considers how different kinds of 134 

explanation can lead to understanding that is either more or less tied to specific causal pathways 135 

connecting explananda and explanantia versus understanding focused on how different pathways can 136 

lead to the same end result.  Thagard (2012) has argued that explanatory reasoning is key to science’s 137 

goals both intrinsically and as they contribute to truth and education. 138 

 One recent thread in the cognitive science and philosophy of understanding combines insights 139 

from information theory and computer science to characterize understanding in terms of data 140 

compression. Data compression (Grünwald, 2004) involves the ability to produce large amounts of 141 

information from relatively shorter hypotheses and explicitly encoded data sets—in computer science 142 

and model-centric physics, there is a burgeoning sense that understanding is tied to pattern 143 

recognition and data compression. Petersen (ms) helpfully documents an array of such instances. Li 144 

and Vitányi (2008) use compression and explanation almost interchangeably, and at some points 145 

even suggest a possible equivalence between compression and the scientific endeavor generally, as in 146 

Davies (1990). Tegmark (2014) likewise connects the notion of compression with the explanatory 147 
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goals of science. Wilkenfeld (2019) translates the importance of compression to good scientific (and 148 

non-scientific) understanding into the idiom of contemporary philosophy of science. While part of 149 

the inspiration characterizing understanding in terms of compression comes from the traditional 150 

“unificationist” philosophical position that understanding involves having to know fewer brute facts 151 

(Friedman, 1974) or argument patterns (Kitcher, 1989), the introduction of compression helps evade 152 

some objections to unificationist views, such as the fact that such views require explanations to be 153 

arguments (Woodward, 2003) and the fact that they allow for understanding via unification that no 154 

actual human agent can readily use (Humphreys, 1993). (Compression as a marker for intelligence 155 

has come under recent criticism (e.g., Chollet, 2019) as only accounting for past data and not future 156 

uncertainties; we believe Wilkenfeld’s (2019) account evades this criticism by defining the relevant 157 

compression partially in terms of usefulness, but defending that claim is beyond the scope of this 158 

paper). 159 

 There has also been more direct work on leveraging insights from computer science in order 160 

to try to build explanatory schema and even to utilize those tools to reach conclusions about true 161 

explanations. Schank (1986) built a model of computerized explanations in terms of scripts and 162 

designed programs to look for the best explanations. Similarly, Thagard (1989, 1992, 2012)—who 163 

had previously (1978) done seminal philosophical work on good-making features of explanation and 164 

how they should guide theory choice—attempted to automate how computers could use 165 

considerations of explanatory coherence to make inferences about what actually occurred. 166 

One underexplored area in the philosophy of understanding and computer science is the 167 

extent to which neural nets and deep learning machines can be taken to understand anything. While 168 

Turing (1950) famously argued that a machine that could behave sufficiently close to a person could 169 

thereby think (and thus, perhaps, understand), many argue that learning algorithms are concerned 170 

with prediction as opposed to understanding. The most extreme version of this position is Searle’s 171 

(1980) claim that computers by their nature cannot achieve understanding because it requires 172 

semantic capacities when manipulating symbols (i.e., an ability to interpret symbols and operations, 173 

and to make further inferences based on those interpretations). Computers at best have merely 174 

syntactic capabilities (they can manipulate symbols using sets of instructions, without understanding 175 

the meaning of either symbols or operation upon them). However, at the point where deep learning 176 

machines have hidden representations (Korb, 2004), can generate new (seemingly theoretical) 177 

variables (ibid.), and can be trained to do virtually any task to which computer scientists have set 178 

their collective minds (including what looks from the outside like abstract reasoning in IBM’s 179 

Watson and their Project Debater), it raises vital philosophical questions regarding on what basis we 180 

can continue to deny deep learning machines the appellation of “understander”. 181 

Elsewhere in cognitive science, early psychological studies of reasoning throughout the 1960s 182 

and 1970s focused on deductive reasoning and hypothesis testing (Osman, 2014). A major influence 183 

on this trajectory was Jean Piaget’s (1952) theory of development, according to which children 184 

develop the capacity for hypothetico-deductive reasoning around age 12. The kinds of reasoning 185 

studied by psychologists then expanded beyond their logical roots to include more humanistic 186 

categories such as moral reasoning (Kohlberg, 1958). The psychology literature offers a rich body of 187 

evidence demonstrating how people reason under various conditions. For example, there is ample 188 

evidence that performance on reasoning tasks is sensitive to the semantic content of the problem 189 

being solved. One interpretation of this phenomenon is that in some contexts, people do not reason 190 

by applying content-free inference rules (Cheng & Holyoak, 1985; Cheng, Holyoak, Nisbett, & 191 



Integrating Philosophy of Understanding 

 

7 

Oliver, 1986; Holyoak & Cheng, 1995). This empirical possibility is of particular interest for 192 

philosophers. In virtue of their (sometimes extensive) training in formal logic, philosophers’ 193 

reasoning practices may be atypical of the broader population. This in turn may bias their intuitions 194 

about how “people” or “we” reason in various situations, including when understanding. Another 195 

issue raised by sensitivity to semantic content is how reasoning shifts depending on the object of 196 

understanding. Although the distinctions explicated by philosophers (e.g., explanatory vs. objectual 197 

understanding) are clear enough, it is an open empirical question whether and how reasoning differs 198 

within these categories depending on the particular object and other contextual factors. As a final 199 

example, a further insight from psychology is that people may have multiple modes of reasoning that 200 

can be applied to the very same problem. Since Wason and Evans (1974) suggested the idea, dual-201 

process theories have dominated the psychology of reasoning.1 Although both terminology and 202 

precise hypotheses vary significantly among dual-process theories (Evans, 2011, 2012), the basic 203 

idea is that one system of reasoning is fast and intuitive, relying on prior knowledge, while another is 204 

slow and more cognitively demanding. Supposing two or more systems of reasoning can be deployed 205 

in the same situation, one important consideration is how they figure in theories about the reasoning 206 

involved in understanding. To the extent that philosophical accounts are not merely normative but 207 

also aim at describing how people actually reason when understanding, psychological studies provide 208 

valuable empirical constraints and theoretical considerations. 209 

With the aid of techniques for imaging brains while subjects perform cognitive tasks, 210 

neuroscientists have also made great progress in recent decades on identifying regions of the brain 211 

involved in reasoning. While that is certainly a worthwhile goal, it may seem tangential to 212 

determining the kind of reasoning that characterizes understanding. Here, we suggest two ways in 213 

which findings from neuroscience may help with this endeavor. First, neuroscientific evidence can 214 

help resolve debates where behavioral data underdetermine which psychological theory is most 215 

plausible. More precisely, in cases where competing psychological models of reasoning make the 216 

same behavioral predictions, they can be further distinguished by the kinds of neural networks that 217 

would implement the processes they hypothesize (Operskalski & Barbey, 2017). For example, Goel, 218 

Buchel, Frith, and Dolan (2000) designed a functional magnetic resonance imaging (fMRI) 219 

experiment to test the predictions of dual mechanism theory vs. mental model theory. According to 220 

the former, people have distinct mechanisms for form- and content-based reasoning, and the latter 221 

should recruit language processing structures in the left hemisphere. Mental model theory, by 222 

contrast, claims that reasoning essentially involves iconic representations, i.e., non-linguistic 223 

representations whose structure corresponds to the structure of whatever they represent (Johnson-224 

Laird, 2010). In early formulations of the theory, it was assumed that different kinds of reasoning 225 

problems depend on the same visuo-spatial mechanisms in the right hemisphere (Johnson-Laird, 226 

1995). Goel et al. (2000) tested the theories against one another by giving subjects logically 227 

equivalent syllogisms with and without semantic content. As expected, behavioral performance was 228 

similar in both conditions. Neither theory predicts significant behavioral differences. Consistent with 229 

both theories, the content-free syllogisms engaged spatial processing regions in the right hemisphere. 230 

However, syllogisms with semantic content activated a left hemisphere ventral network that includes 231 

 

1 Though see Keren and Schul (2009), Osman (2004), and Stephens, Dunn, and Hayes (2018) for 

examples of criticisms. 
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language processing structures like Broca’s area. Unsurprisingly, proponents of mental models have 232 

disputed the interpretation of the data (Kroger, Nystrom, Cohen, & Johnson-Laird, 2008). We do not 233 

take a stance on the issue here. We simply raise the case because it illustrates how neuroscience can 234 

contribute to debates between theories of reasoning pitched at the psychological level. 235 

Neuroscientific evidence can also guide the revision of psychological models of 236 

understanding and reasoning. The broader point is about cognitive ontology. In the sense we mean 237 

here, a cognitive ontology is a set of standardized terms which refer to the entities postulated by a 238 

cognitive theory (Janssen, Klein, & Slors, 2017). The point of developing a cognitive ontology is to 239 

represent the structure of psychological processes and facilitate communication through a shared 240 

taxonomy. One role for neuroscience is to inform the construction of cognitive ontologies. Price and 241 

Friston (2005), for instance, defend a strong bottom-up approach. In their view, components in a 242 

cognitive model (e.g., a model of counterfactual reasoning) should be included or eliminated 243 

depending on our knowledge of functional neuroanatomy. Others agree that neuroscience has a 244 

crucial role to play in theorizing about cognitive architecture but reject that it has any special 245 

authority in this undertaking (Poldrack & Yarkoni, 2016; Sullivan, 2017). We take no position here 246 

on how exactly neuroscience should influence the construction of cognitive models and ontologies. 247 

Instead, we highlight this important interdisciplinary issue to motivate the potential value of 248 

neuroscience for models of understanding and the reasoning involved in it, including those developed 249 

by philosophers. 250 

4 Philosophical Theories of Understanding Integrate Scientific Explanations (III) 251 

Thus, there appear to be ample resources for a naturalized epistemology of understanding, in which 252 

explanations and empirical tests from the cognitive sciences empirically constrain philosophical 253 

proposals about the kinds of reasoning involved in understanding. However, we offer a second and 254 

distinct proposal for how the philosophy of understanding can inform scientific practice: as an 255 

account of how different explanations can be integrated (Figure 1B). 256 

Such integration is needed when different explanations of a single phenomenon use markedly 257 

different vocabularies and concepts. This diversity of explanations is prevalent in several sciences—258 

including the cognitive sciences. To that end, Section 4.1 presents different kinds of explanations 259 

frequently found in the cognitive sciences. Whether these different explanations are complements or 260 

competitors to each other raises several issues that are simultaneously methodological and 261 

philosophical. To address these issues, Section 4.2 presents a novel account of explanatory 262 

integration predicated on the idea that explanations are integrated to the extent that they collectively 263 

promote understanding. To illustrate the uniqueness of this account, Section 4.3 contrasts our account 264 

of integration with a prominent alternative in the philosophical literature. 265 

Before proceeding, two caveats are in order. First, although we focus on the cognitive sciences, the 266 

account of explanatory integration proposed here is perfectly general. In principle, the same account 267 

could be used in domains ranging from particle physics to cultural anthropology. Second, our aim is 268 

simply to show that our account of integration enjoys some initial plausibility; a more thoroughgoing 269 

defense exceeds the current paper’s scope.  270 

4.1 A Variety of Scientific Explanations 271 
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Puzzles about explanatory integration arise only if there are explanations in need of integration, i.e., 272 

explanations whose fit with each other is not immediately obvious. In this section, we provide 273 

examples of four kinds of explanations found in the cognitive sciences: mechanistic, computational, 274 

topological, and dynamical. 275 

4.1.1 Mechanistic Explanations 276 

Mechanistic explanations are widespread in the cognitive sciences (Bechtel & Richardson, 1993; 277 

Craver, 2007; Craver & Tabery, 2019; Glennan, 2017; Illari & Williamson, 2010; Machamer, 278 

Darden, & Craver, 2000). Despite extensive discussion in the philosophical literature, there is no 279 

consensus on the proper characterization of mechanisms or how exactly they figure in mechanistic 280 

explanations.2 For our purposes, we illustrate basic features of mechanistic explanations by focusing 281 

on Glennan’s (2017, p. 17) minimal conception of mechanisms:  282 

A mechanism for a phenomenon consists of entities (or parts) whose activities and 283 

interactions are organized so as to be responsible for the phenomenon. 284 

This intentionally broad proposal captures a widely held consensus among philosophers about 285 

conditions that are necessary for something to be a mechanism. Where they disagree is about further 286 

details, such as the nature and role of causation, regularities, and levels of analysis involved in 287 

mechanisms. At minimum, mechanistic explanations account for the phenomenon to be explained 288 

(the explanandum) by identifying the organized entities, activities, and interactions responsible for it. 289 

Consider the case of the action potential. A mechanistic explanation of this phenomenon specifies 290 

parts such as voltage-gated sodium and potassium channels. It describes how activities of the parts, 291 

like influx and efflux of ions through the channels, underlie the rapid changes in membrane potential. 292 

It shows how these activities are organized such that they are responsible for the characteristic phases 293 

of action potentials. For example, the fact that depolarization precedes hyperpolarization is explained 294 

in part by the fact that sodium channels open faster than potassium channels. In short, mechanistic 295 

explanations spell out the relevant physical details.  296 

Importantly, not all theoretical achievements in neuroscience are mechanistic explanations. As a 297 

point of contrast, compare Hodgkin and Huxley’s (1952) groundbreaking model of the action 298 

potential. With their mathematical model worked out, they were able to predict properties of action 299 

potentials and neatly summarize empirical data from their voltage clamp experiments. However, as 300 

Hodgkin and Huxley (1952) explicitly pointed out, their equations lacked a physical basis. There is 301 

some disagreement among philosophers about how we should interpret the explanatory merits of the 302 

model (Craver & Kaplan, 2020; Favela, 2020a; Levy, 2014), but what is clear is that the Hodgkin and 303 

Huxley model is a major achievement that is not a mechanistic explanation of the action potential. 304 

We return to issues such as these in Section 4.3.  305 

4.1.2 Computational Explanations 306 

Mechanistic explanations are sometimes contrasted with other kinds of explanation. In the 307 

philosophical literature, computational explanations are perhaps the most prominent alternative. 308 

Computational explanations are frequently considered a subset of functional explanations. The latter 309 

 
2 See Craver (2014) for an overview of the latter issue. 
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explain phenomena by appealing to their function and the functional organization of their parts 310 

(Cummins, 1975, 1983, 2000; Fodor, 1968). Insofar as computational explanations are distinct from 311 

other kinds of functional explanations, it is because the functions to which they appeal involve 312 

information processing. Hereafter, we focus on computational explanations. 313 

In computational explanations, a phenomenon is explained in terms of a system performing a 314 

computation. A computation involves the processing of input information according to a series of 315 

specified operations that results in output information. While many computational explanations 316 

describe the object of computation as having representational content, some challenge this as a 317 

universal constraint on computational explanations (Dewhurst, 2018; Fresco & Miłkowski, 2021; 318 

Piccinini, 2015). We will use “information” broadly, such that we remain silent on this issue. Here, 319 

“operations” refer to logical or mathematical manipulations on information such as addition, 320 

subtraction, equation (setting a value equal to something), “AND”, etc. For example, calculating n! 321 

involves taking in input n and calculating the product of all natural numbers less than or equal to n 322 

and then outputting said product. Thus, we can explain why pressing “5”, “!”, “=”, in sequence on a 323 

calculator results in the display reading “120”; the calculator computes the factorial.  324 

More detailed computational explanations of this procedure are possible. For example, the 325 

calculator performs this computation by storing n and iteratively multiplying the stored variable by 326 

one less than the previous iteration from n to 1. In this case, the operations being used are equation, 327 

multiplication, and subtraction. The information upon which those operations are being performed 328 

are the inputted value for n and the stored variable for the value of the factorial at that iteration. 329 

4.1.3 Topological Explanations 330 

In topological or “network” explanations, a phenomenon is explained by appeal to graph-331 

theoretic properties. Scientists infer a network’s structure from data, and then apply various graph-332 

theoretic algorithms to measure its topological properties. For instance, clustering coefficients 333 

measure degrees of interconnectedness among nodes in the same neighborhood. Here, a node’s 334 

neighborhood is defined as the set of nodes to which it is directly connected. An individual node’s 335 

local clustering coefficient is the proportion of edges within its neighborhood divided by the number 336 

of edges that could possibly exist between the members of its neighborhood. By contrast, a network’s 337 

global clustering coefficient is the ratio of closed triplets to the total number of triplets in a graph. A 338 

triplet of nodes is any three nodes that are connected by at least two edges. An open triplet is 339 

connected by exactly two edges; a closed triplet, by three. Another topological property, average (or 340 

“characteristic”) path length, measures the mean number of edges needed to connect any two nodes 341 

in the network. 342 

In their seminal paper, Watts and Strogatz (1998) applied these concepts to a family of graphs 343 

and showed how a network’s topological structure determines its dynamics. First, regular graphs 344 

have both high global clustering coefficients and high average path length. By contrast, random 345 

graphs have low global clustering coefficients and low average path length. Finally, they introduced 346 

a third type of small-world graph with high clustering coefficient but low average path length. 347 

Highlighting differences between these three types of graphs yields a powerful explanatory 348 

strategy. For example, because regular networks have larger average path lengths than small-world 349 

networks, things will “diffuse” throughout the former more slowly than the latter, largely due to the 350 

greater number of edges to be traversed. Similarly, because random networks have smaller clustering 351 

coefficients than small-world networks, things will also spread throughout the former more slowly 352 

than the latter, largely due to sparse interconnections within neighborhoods of nodes. Hence, ceteris 353 
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paribus, propagation/diffusion is faster in small-world networks. This is because the fewer long-354 

range connections between highly interconnected neighborhoods of nodes shorten the distance 355 

between neighborhoods of nodes that are otherwise very distant and enables them to behave as if they 356 

were first neighbors. For example, Watts and Strogatz showed that the nervous system of C. elegans 357 

is a small-world network, and subsequent researchers argued that this system’s small-world topology 358 

explains its relatively efficient information propagation (Bullmore & Sporns, 2012; Latora & 359 

Marchiori, 2001).  360 

4.1.4 Dynamical Explanations 361 

In dynamical explanations, phenomena are accounted for using the resources of dynamic 362 

systems theory. At root, a system is dynamical if its state space can be described using differential 363 

equations, paradigmatically of the following form: 364 

�̇�(𝒕) = 𝒇(𝒙(𝒕); 𝒑, 𝒕) 365 

Here, x is a vector (often describing the position of the system of interest), f is a function, t is time, 366 

and p is a fixed parameter. Thus, the equation describes the evolution of a system over time. In 367 

dynamical explanations, these equations are used to show how values of a quantity at a given time 368 

and place would uniquely determine the phenomenon of interest, which is typically treated as values 369 

of the same quantity at a subsequent time. 370 

 For example, consider dynamical explanations of why bimanual coordination—defined 371 

roughly as wagging the index fingers of both hands at the same time—is done either in- or anti-phase. 372 

Haken, Kelso, and Bunz (1985) use the following differential equation to model this phenomenon: 373 

𝑑𝜙

𝑑𝑡
= −𝑎𝑠𝑖𝑛𝜙 − 2𝑏𝑠𝑖𝑛2𝜙 374 

Here 𝜙 is relative phase, having a value of either 0 degrees or 180 degrees (representing in- and anti-375 

phase conditions respectively) and b/a is the coupling ratio inversely related to the oscillations' 376 

frequency. The explanation rests on the fact that only the in- and anti-phase oscillations of the index 377 

fingers are basins of attraction. 378 

4.2 Understanding-Based Integration 379 

Thus far, we have surveyed four different kinds of explanation—mechanistic, computational, 380 

topological, and dynamical. Moreover, each seems to have some explanatory power for some 381 

phenomena. This raises the question as to how these seemingly disparate kinds of explanation can be 382 

integrated. We propose a new account of “understanding-based integration” (UBI) to answer this 383 

question. A clear account of understanding is needed if it is to integrate explanations. To that end, 384 

Section 4.2.1 presents Khalifa’s (2017) model of understanding. Section 4.2.2 then extends this 385 

account of understanding to provide a framework for explanatory integration. 386 

4.2.1 An Account of Understanding 387 

We highlight two reasons to think that Khalifa’s account of understanding is especially promising as 388 

a basis for explanatory integration. First, as Khalifa (2019) argues, his is among the most demanding 389 

philosophical accounts of understanding. Consequently, it serves as a useful ideal to which scientists 390 

should aspire. Second, this ideal is not utopian. This is especially clear with Khalifa’s requirement 391 

that scientists evaluate their explanations relative to the best available methods and evidence. Indeed, 392 

among philosophical accounts of understanding, Khalifa’s account is uniquely sensitive to the 393 
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centrality of hypothesis testing and experimental design in advancing scientific understanding 394 

(Khalifa, 2017, forthcoming), and thus makes contact with workaday scientific practices. In this 395 

section, we present its three core principles. 396 

Khalifa’s first central principle is the Explanatory Floor:  397 

Understanding why Y requires possession of a correct explanation of why Y. 398 

The Explanatory Floor’s underlying intuition is simple. It seems odd to understand why Y while 399 

lacking a correct answer to the question, “Why Y?” For instance, the person who lacks a correct 400 

answer to the question “Why do apples fall from trees?” doesn’t understand why apples fall from 401 

trees. Since explanations are answers to why-questions, the Explanatory Floor appears platitudinous. 402 

Section 4.3.2.1 provides further details about correct explanation. 403 

The Explanatory Floor is only one of three principles comprising Khalifa’s account and 404 

imposes only a necessary condition on understanding. By contrast, the second principle, the Nexus 405 

Principle, describes how understanding can improve: 406 

Understanding why Y improves in proportion to the amount of correct explanatory 407 

information about Y (= Y’s explanatory nexus) in one’s possession. 408 

To motivate the Nexus Principle, suppose that one person can correctly identify two causes of a fire, 409 

and another person can only identify one of those causes. Ceteris paribus, the former understands 410 

why the fire occurred better than the latter. Crucially in what follows, however, “correct explanatory 411 

information” is not limited to correct explanations. The explanatory nexus also includes the 412 

relationships between correct explanations. We return to these “inter-explanatory relationships” 413 

below. 414 

 Furthermore, recall our earlier remark that gaps in understanding arise when one simply has 415 

an accurate representation of an explanation (or explanatory nexus) without significant cognitive 416 

ability. This leads to the last principle, the Scientific Knowledge Principle: 417 

Understanding why Y improves as one’s possession of explanatory information about Y bears 418 

greater resemblance to scientific knowledge of Y’s explanatory nexus. 419 

Once again, we may motivate this with a simple example. Consider two agents who possess the same 420 

explanatory information that nevertheless differ in understanding because of their abilities to relate 421 

that information to relevant theories, models, methods, and observations. The Scientific Knowledge 422 

Principle is intended to capture this idea. Khalifa provides a detailed account of scientific knowledge 423 

of an explanation: 424 

An agent S has scientific knowledge of how/why Y if and only if there is some X such that S’s 425 

belief that X explains Y is the safe result of S’s scientific explanatory evaluation (SEEing). 426 

The core notions here are safety and SEEing. Safety is an epistemological concept that requires an 427 

agent’s belief to not easily have been false given the way in which it was formed (Pritchard, 2009). 428 

SEEing then describes the way a belief in an explanation should be formed to promote 429 

understanding. SEEing consists of three phases: 430 

1. Considering plausible potential explanations of how/why Y; 431 
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2. Comparing those explanations using the best available methods and evidence; and  432 

3. Undertaking commitments to these explanations on the basis these comparisons. 433 

Paradigmatically, commitment entails that one believes only those plausible potential 434 

explanations that are decisive “winners” at the phase of comparison. 435 

Thus, scientific knowledge of an explanation is achieved when one’s commitment to an explanation 436 

could not easily have been false given the way that one considered and compared that explanation to 437 

plausible alternative explanations of the same phenomenon.  438 

4.2.2 Understanding-Based Integration 439 

With our account of understanding in hand, we now argue that it provides a fruitful account of how 440 

different explanations, such as the ones discussed in Section 4.1, can be integrated. The Nexus 441 

Principle is the key engine of integration. As noted above, this principle states that understanding 442 

improves in proportion to the amount of explanatory information possessed. In the cognitive 443 

sciences, a multitude of factors explain a single phenomenon. According to the Nexus Principle, 444 

understanding improves not only when more of these factors are identified, but when the “inter-445 

explanatory relationships” between these factors are also identified.  446 

One “inter-explanatory relationship” is that of relative goodness. Some explanations are 447 

better than others, even if both are correct. For instance, the presence of oxygen is explanatorily 448 

relevant to any fire’s occurrence. However, oxygen is rarely judged as the best explanation of a fire. 449 

Per the Nexus Principle, grasping facts such as these enhances one’s understanding. Parallel points 450 

apply in the cognitive sciences. For example, it has been observed that mental simulations that 451 

involve episodic memory engage the default network significantly more than mental simulations that 452 

involve semantic memory (Parikh, Ruzic, Stewart, Spreng, & De Brigard, 2018). Hence, episodic 453 

memory better explains cases in which the default network was more active during a mental 454 

simulation than does semantic memory. 455 

However, correct explanations can stand in other relations than superiority and inferiority. 456 

There are also “structural” relationships between different correct explanations. For instance, the 457 

aforementioned explanation involving the default network contributes to a more encompassing 458 

computational explanation of counterfactual reasoning involving three core stages of counterfactual 459 

thought (Van Hoeck, Watson, & Barbey, 2015). First, alternative possibilities to the actual course of 460 

events are mentally simulated. Second, consequences are inferred from these simulations. Third, 461 

adaptive behavior and learning geared toward future planning and problem-solving occurs. The 462 

default network figures prominently in the explanation of (at least) the first of these processes (Figure 463 

2). 464 

As this example illustrates, grasping the relationships between different kinds of explanations 465 

can advance scientists’ understanding. In Figure 2, a computational account of mental simulation 466 

explains certain aspects of counterfactual reasoning, but mental simulation is then explained 467 

mechanistically: the default network consists of parts (e.g., ventral medial prefrontal cortex, posterior 468 

cingulate cortex) whose activities and interactions (anatomical connections) are organized so as to be 469 

responsible for various phenomena related to mental simulations. Quite plausibly, scientific 470 

understanding increases when the relationship between these two explanations is discovered. 471 

Importantly, this is but an instance of an indefinite number of other structures consisting of 472 

inter-explanatory relationships (see Figure 3 for examples). In all of these structures, we assume that 473 

for all i, Xi is a correct explanation of its respective explanandum. Intuitively, a person who could not 474 
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distinguish these different explanatory structures would not understand Y as well as someone who 475 

did. For instance, a person who knew that X1 only explains Y through X2 in Figure 3A, or that X1 and 476 

X2 are independent of each other in Figure 3B, or that X3 is a common explanation or “deep 477 

determinant” of both X1 and X2 in Figure 3D, etc. seems to have a better understanding than a person 478 

who did not grasp these relationships. Undoubtedly, explanations can stand in other relationships that 479 

figure in the nexus. 480 

Thus, the Nexus Principle provides useful guidelines for how different kinds of explanations 481 

should be integrated. Moreover, we have already seen that different kinds of explanations can stand 482 

in fruitful inter-explanatory relationships, and that these relationships enhance our understanding. In 483 

some cases, we may find that one and the same phenomenon is explained both mechanistically and 484 

non-mechanistically, but one of these explanations will be better than another. As noted above, 485 

“better than” and “worse than” are also inter-explanatory relationships. So, the Nexus Principle 486 

implies that knowing the relative strengths and weaknesses of different explanations enhances 487 

understanding. 488 

The Scientific Knowledge Principle also plays a role in UBI. Suppose that X1 and X2 are 489 

competing explanations of Y. SEEing would largely be achieved when, through empirical testing, X1 490 

was found to explain significantly more of Y’s variance than X2. This gives scientists grounds for 491 

thinking X1 better explains Y than X2 and thereby bolsters our understanding of Y. Importantly, 492 

SEEing is also how scientists discover other inter-explanatory relationships. An example is the 493 

aforementioned study that identified the inter-explanatory relationships between episodic memory, 494 

semantic memory, the default network, and mental simulation (Parikh et al., 2018). 495 

 496 

Figure 2. Computational and Mechanistic Explanations Involved in Counterfactual Reasoning 497 

Mental simulation (gray box) both contributes to the computational explanation of counterfactual 498 

reasoning (black box) and is mechanistically explained by the activation of the default network. 499 
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 500 

Figure 3. Different Inter-Explanatory Relationships. 501 

Letters at the head of an arrow denote phenomena to be explained; those at the tail, factors that do the 502 

explaining. For example, X1 explains X2 and X2 explains Y in Figure 3A. 503 

4.3 Mechanism-Based Integration 504 

Aside from UBI, several other philosophical accounts of explanatory integration in the cognitive 505 

sciences are available (Kaplan, 2017; Miłkowski & Hohol, 2020). We provide some preliminary 506 

comparisons with the most prominent of these accounts, which we call mechanism-based integration 507 

(MBI). According to strong MBI, all models in the cognitive sciences are explanatory only insofar as 508 

they provide information about mechanistic explanations. In response, several critics of MBI—whom 509 

we call pluralists—have provided examples of putatively non-mechanistic explanation (see Table 2). 510 

When presented with putatively non-mechanistic explanations, e.g., of the computational, 511 

topological, and dynamical varieties, mechanists (i.e., MBI’s proponents) have two strategies 512 

available. First, the negative strategy argues that closer scrutiny of the relevant sciences reveals the 513 

putatively non-mechanistic explanation to be no explanation at all (Kaplan, 2011; Kaplan & Craver, 514 

2011). The assimilation strategy argues that closer analysis of the relevant sciences reveals the 515 

putatively non-mechanistic explanation to be a mechanistic explanation, often of an elliptical nature 516 

(Hochstein, 2016; Miłkowski, 2013; Piccinini, 2006, 2015; Piccinini & Craver, 2011; Povich, 2015; 517 

Zednik, 2011). Mechanists inclined toward strong MBI frequently use the negative and assimilation 518 

strategies in a divide-and-conquer-like manner: the negative strategy applies to some putatively non-519 

mechanistic explanations and the assimilation strategy applies to the rest. However, more prevalent is 520 

a modest form of MBI that simply applies these strategies to some putatively non-mechanistic 521 

explanations.  522 

Modest MBI diverges from pluralism on a case-by-case basis. Such cases consist of an 523 

explanation where the negative or assimilation strategy seems apt but stands in tension with other 524 

considerations that suggest the model is both explanatory and non-mechanistic. On this latter front, 525 
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several pluralists argue that computational, topological, and dynamical explanations’ formal and 526 

mathematical properties are not merely abstract representations of mechanisms (Chirimuuta, 2018; 527 

Darrason, 2018; Egan, 2017; Huneman, 2018; Lange, 2017; Rusanen & Lappi, 2016; Serban, 2015; 528 

van Rooij & Baggio, 2021; Weiskopf, 2011). Others argue that these explanations cannot (Chemero, 529 

2009; Rathkopf, 2018; Silberstein & Chemero, 2013) or need not (Shapiro, 2019) be decomposed 530 

into mechanistic components or that they cannot be intervened upon in the same way that 531 

mechanisms are intervened upon (Meyer, 2018; Ross, 2020; Woodward, 2013). Some argue that 532 

these putatively non-mechanistic explanations are non-mechanistic because they apply to several 533 

different kinds of systems that have markedly different mechanistic structures (Chirimuuta, 2014; 534 

Ross, 2015). Pluralist challenges specific to different kinds of explanations can also be found (e.g., 535 

Kostić, 2018; Kostić & Khalifa, manuscript). 536 

In what follows, we will show how UBI is deserving of further consideration because it 537 

suggests several plausible alternatives to the assimilation and negative strategies. As such, it contrasts 538 

with both strong and modest MBI. While we are partial to pluralism, our discussion here is only 539 

meant to point to different ways in which mechanists and pluralists can explore the issues that divide 540 

them. Future research would determine whether UBI outperforms MBI.  541 

Explanans  Explanandum Scientific Example Philosophical 

Work Discussing 

Example 

Computational Explanations 

Difference of 

Gaussians 

Stereoscopic 

Vision 

Marr (1982); Rodieck 

(1965) 

Bechtel and 

Shagrir (2015); 

Egan (2017); 

Kaplan (2011*); 

Kaplan and Craver 

(2011); Rusanen 

and Lappi (2016); 

Shagrir (2010); 

Shapiro (2019) 

Exhaustive Search Recall (Memory) Sternberg (1969) Shapiro (2017, 

2019) 

Gain Field 

Encoding 

Hand-Eye 

Coordination 

 

Pouget, Deneve, and 

Duhamel (2002); Pouget 

and Sejnowski (1997); 

Shadmehr and Wise (2005); 

Zipser and Andersen (1988)  

 

Egan (2017); 

Kaplan (2011*); 

Rusanen and 

Lappi (2016); 

Serban (2015); 

Shagrir (2006*) 
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Geon Composition Object 

Recognition 

Hummel and Biederman 

(1992) 

Buckner (2015*); 

Povich (2015*); 

Weiskopf (2011) 

Hybrid 

Computation 

Efficiency of 

Brain 

Sarpeshkar (1998) Chirimuuta (2018) 

Inhibitory 

Feedback 

Normalization Carandini and Heeger 

(2012) 

Chirimuuta 

(2014); Serban 

(2015) 

Internal 

Integration 

Eye Movement 
Seung, Lee, Reis, and Tank 

(2000) 

Egan (2017) 

Line Attractor of 

Choice Axis, 

Stimuli’s Selection 

Vector 

Context-

Dependent 

Decision Making 

Mante, Sussillo, Shenoy, 

and Newsome (2013) 

Chirimuuta (2018) 

Mapping Non-

Coplanar Points to 

Unique Rigid 

Configuration  

Three-

Dimensional 

Visual Structure 

of Moving 

Objects 

Ullman (1979) Egan (2017); 

Shagrir and 

Bechtel (2014*) 

Optimization of 

Spatial and 

Spectral 

Information 

Recovery (Gabor 

Function) 

V1 Receptive 

Fields 

Daugman (1985) Chirimuuta (2014, 

2018) 

Similarity of 

Stimulus to Stored 

Exemplars 

Categorization Kruschke (2008); Love, 

Medin, and Gureckis (2004) 

Buckner (2015*); 

Povich (2015*); 

Weiskopf (2011) 

Topological Explanations 

Closeness 

Centrality  

 

Speech and Tonal 

Processing  

 

Mišić et al. (2018) 
Kostić (2020)  

 

Mean 

Connectivity 

Ictogenicity Helling, Petkov, and 

Kalitzin (2019) 

Kostić and Khalifa 

(2021) 
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Motif Frequency Functional 

Connectivity 

Adachi et al. (2011) Kostić and Khalifa 

(2021, 

manuscript) 

Navigation 

Efficiency, 

Diffusion 

Efficiency 

Efficiency of 

Neuronal 

Communication  

 

Seguin, Razi, and Zalesky 

(2019) 
Kostić (2020) 

Network 

Communicability 

 

Cognitive Control Gu et al. (2015) Kostić (2020) 

Small-Worldness Information 

Propagation 

Watts and Strogatz (1998) Kostić and Khalifa 

(manuscript) 

Dynamical Explanations 

Coupling of Eye 

and Bodily 

Movements 

Onset of Motor 

Control 

Kelso et al. (1998); Shenoy, 

Sahani, and Churchland 

(2013) 

Chemero and 

Silberstein (2008); 

Favela (2020b); 

Vernazzani 

(2019*) 

Coupling Ratio Bimanual 

Coordination 

(Relative Phase) 

Haken et al. (1985) Chemero (2000, 

2001); Golonka 

and Wilson 

(2019*); Kaplan 

and Craver 

(2011*); Lamb 

and Chemero 

(2014); Meyer 

(2018); Stepp, 

Chemero, and 

Turvey (2011); 

Zednik (2011*) 

Strength of 

Memory Trace, 

Salience of 

Target, Waiting 

Time, Stance 

Infant Reaching 

(A-not-B Error) 

Thelen, Schöner, Scheier, 

and Smith (2001) 

Gervais (2015); 

Meyer (2018); 

Povich 

(forthcoming*); 

van Eck (2018*); 

Venturelli (2016); 
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Verdejo (2015); 

Zednik (2011*) 

Potassium and 

Sodium Ion Flows 

Neural 

Excitability 

FitzHugh (1961); Hodgkin 

and Huxley (1952); 

Nagumo, Arimoto, and 

Yoshizawa (1962) 

Craver and Kaplan 

(2011*); Favela 

(2020a, 2020b); 

Hochstein 

(2017*); Kaplan 

and Bechtel 

(2011*); Kaplan 

and Craver 

(2011*); Ross 

(2015) 

Table 2. Putatively non-mechanistic explanations discussed by philosophers.  542 

The explanans (first column) is the factor that explains. The explanandum (second column) is the 543 

phenomenon to be explained. An asterisk indicates that the author takes the explanation to be 544 

mechanistic. 545 

4.3.1 Assimilation Strategy 546 

According to mechanists’ assimilation strategy, many putatively non-mechanistic explanations are in 547 

fact elliptical mechanistic explanations or “mechanism sketches” (Miłkowski, 2013; Piccinini, 2015; 548 

Piccinini & Craver, 2011; Povich, 2015, forthcoming; Zednik, 2011). Thus, when deploying the 549 

assimilation strategy, mechanists take computational, topological, and dynamical models to fall short 550 

of a (complete) mechanistic explanation, but to nevertheless provide important information about 551 

such mechanistic explanations. Mechanists have proposed two ways that putatively non-mechanistic 552 

explanations can provide mechanistic information, and thereby serve as mechanism sketches. First, 553 

putatively non-mechanistic explanations can be heuristics for discovering mechanistic explanations. 554 

Second, putatively non-mechanistic explanations can constrain the space of acceptable mechanistic 555 

explanations. 556 

An alternative interpretation is possible. The fact that non-mechanistic models assist in the 557 

identification of mechanistic explanations does not entail that the former is a species of the latter. 558 

Consequently, putatively non-mechanistic explanations can play these two roles with respect to 559 

mechanistic explanations without being mere mechanism sketches. In other words, “genuinely” non-560 

mechanistic explanations can guide or constrain the discovery of mechanistic explanations. Earlier 561 

explanatory pluralists (McCauley, 1986, 1996) already anticipated precursors to this idea, but did not 562 

tie it explicitly as a response to mechanists’ assimilation strategy. 563 

Moreover, this fits comfortably with our account of scientific explanatory evaluation 564 

(SEEing) and hence with UBI. Heuristics of discovery are naturally seen as advancing SEEing’s first 565 

stage of considering plausible potential explanations. Similarly, since the goal of SEEing is to 566 

identify correct explanations and their relationships, it is a consequence of UBI that different kinds of 567 

explanations of the related phenomena constrain each other. For instance, suppose that we have two 568 

computational explanations of the same phenomenon, and that the key difference between them is 569 

that only the first of these is probable given the best mechanistic explanations of that phenomenon. 570 
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Then that counts as a reason to treat the first computational explanation as better than the second. 571 

Hence, SEEing entails mechanistic explanations can constrain computational explanations.  572 

More generally, UBI can capture the same key inter-explanatory relationships that mechanists 573 

prize without assimilating putatively non-mechanistic explanations to mechanistic explanation. 574 

Indeed, like many mechanists, UBI suggests that not only do putatively non-mechanistic explanations 575 

guide and constrain the discovery of mechanistic explanations, but that the converse is also true. 576 

(Section 4.3.2.2 provides an example of this.) Parity of reasoning entails that mechanistic 577 

explanations should thereby be relegated to mere “computational, topological, and dynamical 578 

sketches” in these cases, but mechanists must resist this conclusion on pain of contradiction. Since 579 

UBI captures these important inter-explanatory relationships without broaching the more 580 

controversial question of assimilation, it need not determine which models are mere sketches of 581 

adequate explanations. Future research would evaluate whether this is a virtue or a vice. 582 

4.3.2 Negative Strategy 583 

Mechanists’ assimilation strategy becomes more plausible than the UBI-inspired alternative if there 584 

are good grounds for thinking that the criteria that pluralists use to establish putatively non-585 

mechanistic explanations as genuine explanations are insufficient. This is the crux of the mechanists’ 586 

negative strategy. As with the assimilation strategy, we suggest that UBI provides a suggestive foil to 587 

the negative strategy. 588 

The negative strategy’s key move is to identify a set of non-explanatory models that 589 

pluralists’ criteria would wrongly label as explanatory. Two kinds of non-explanatory models—how-590 

possibly and phenomenological models—exemplify this mechanist argument. How-possibly models 591 

describe factors that could but do not actually produce the phenomenon to be explained. For instance, 592 

most explanations begin as conjectures or untested hypotheses. Those that turn out to be false will be 593 

how-possibly explanations. Phenomenological models, which accurately describe or predict the 594 

target phenomenon without explaining it, provide a second basis for the negative strategy. 595 

Paradigmatically, phenomenological models correctly represent non-explanatory correlations 596 

between two or more variables. Mechanists claim that pluralist criteria of explanation will wrongly 597 

classify some how-possibly and some phenomenological models as correct explanations. By contrast, 598 

since models that accurately represent mechanisms are “how-actually models,” i.e., models that cite 599 

explanatory factors responsible for the phenomenon of interest, MBI appears well-positioned to 600 

distinguish correct explanations from how-possibly and phenomenological models. 601 

However, UBI can distinguish correct explanations from how-possibly and phenomenological 602 

models. Moreover, it can do so in two distinct ways that do not appeal to mechanisms. First, it can do 603 

so on what we call structural grounds, i.e., by identifying non-mechanistic criteria of explanation that 604 

are sufficient for funding the distinction. It can also defuse the negative strategy on what we call 605 

procedural grounds, i.e., by showing that the procedures and methods that promote understanding 606 

also distinguish correct explanations from these non-explanatory models. 607 

4.3.2.1.Structural Defenses 608 

We suggest that the following provides a structural defense against the negative strategy: 609 

If X correctly explains Y, then the following are true: 610 

(1) Accuracy Condition: X is an accurate representation, and 611 
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(2) Counterfactual Condition: Had the objects, processes, etc. represented by X been different, 612 

then Y would have been different. 613 

These are only necessary conditions for correct explanations. They are also sufficient for 614 

distinguishing correct explanations from how-possibly and phenomenological models but are likely 615 

insufficient for distinguishing correct explanations from every other kind of non-explanatory model. 616 

Identifying these other models is a useful avenue for future iterations of the negative strategy and 617 

responses thereto. 618 

Situating this within UBI, these conditions are naturally seen as elaborating the Explanatory 619 

Floor, which claims that understanding a phenomenon requires possession of a correct explanation. 620 

Crucially, mechanists and pluralists alike widely accept these as requirements on correct 621 

explanations, though we discuss some exceptions below. Reasons for their widespread acceptance 622 

becomes clear with a simple example. Consider a case in which it is hypothesized that taking a 623 

certain medication (X) explains recovery from an illness (Y). If it were discovered that patients had 624 

not taken the medication, then this hypothesis would violate the accuracy condition. Intuitively, it 625 

would not be a correct explanation, but it would be a how-possibly model.  626 

More generally, how-possibly models are correct explanations modulo satisfaction of the 627 

accuracy condition. Consequently, pluralists can easily preserve this distinction without appealing to 628 

mechanisms; accuracy is sufficient. Just as mechanisms can be either accurately or inaccurately 629 

represented, so too can computations, topological structures, and system dynamics be either 630 

accurately or inaccurately represented. Similarly, just as inaccurate mechanistic models can be how-631 

possibly models but cannot be correct explanations, so too can inaccurate computational, topological, 632 

and dynamical models be how-possibly models but cannot be how-actually models. 633 

Analogously, the counterfactual condition preserves the distinction between correct explanations 634 

and phenomenological models. Suppose that our hypothesis about recovery is confounded by the fact 635 

that patients’ recovery occurred two weeks after the first symptoms, and that this is the typical 636 

recovery time for anyone with the illness in question, regardless of whether they take medication. 637 

Barring extenuating circumstances, e.g., that the patients are immunocompromised, these facts would 638 

seem to cast doubt upon the claim that the medication made a difference to their recovery. In other 639 

words, they cast doubt on the following counterfactual: had a patient not taken the medication, then 640 

that patient would not have recovered when she did. Consequently, the hypothesis about the 641 

medication explaining recovery violates the counterfactual condition. Moreover, the hypothesis does 642 

not appear to be correct, but would nevertheless describe the patients’ situation, i.e., it would be a 643 

phenomenological model.  644 

More generally, phenomenological models are correct explanations modulo satisfaction of the 645 

counterfactual condition. Just as a mechanistic model may accurately identify interacting parts of a 646 

system that correlate with but do not explain its behavior, a non-mechanistic model may accurately 647 

identify computational processes, topological structures, and dynamical properties of a system that 648 

correlate with but do not explain its behavior. In both cases, the counterfactual condition accounts for 649 

the models’ explanatory shortcomings; no appeal to mechanisms is needed. 650 

4.3.2.2.Procedural Defenses 651 

Admittedly, structural defenses against the negative strategy are not unique to UBI; other pluralists 652 

who are agnostic about UBI have invoked them in different ways. By contrast, our second 653 

procedural defense against the negative strategy is part and parcel to UBI. Procedural defenses show 654 
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that the procedures that promote understanding also distinguish correct explanations from how-655 

possibly and phenomenological models.  656 

The Scientific Knowledge Principle characterizes the key procedures that simultaneously 657 

promote understanding and distinguish correct explanations from these non-explanatory models. 658 

Recall that SEEing consists of three stages: considering plausible potential explanations of a 659 

phenomenon, comparing them using the best available methods, and forming commitments to 660 

explanatory models based on these comparisons. This provides a procedural defense against the 661 

negative strategy. How-possibly and phenomenological models will only be acceptable in the first 662 

stage of SEEing: prior to their deficiencies being discovered, they frequently deserve consideration 663 

as possible explanations of a phenomenon. By contrast, correct explanations must “survive” the 664 

remaining stages of SEEing: they must pass certain empirical tests at the stage of comparison such 665 

that they are acceptable at the stage of commitment. Indeed, it is often through SEEing that scientists 666 

come to distinguish correct explanations from how-possibly and phenomenological models. 667 

Crucially, consideration is most effective when it does not prejudge what makes something 668 

genuinely explanatory. This minimizes the possibility of missing out on a fruitful hypothesis. 669 

Consequently, both mechanistic and non-mechanistic explanations should be included at this initial 670 

stage of SEEing. However, our procedural defense supports pluralism only if some computational, 671 

topological, or dynamical explanations are acceptable in light of rigorous explanatory comparisons. 672 

As we see it, this is a strength of our procedural defense, for it uses the empirical resources of our 673 

best science to adjudicate debates between mechanists and pluralists that often appear intractable 674 

from the philosophical armchair.  675 

Nevertheless, we can point to an important kind of explanatory comparison—which we call 676 

control-and-contrast—that deserves greater philosophical and scientific attention when considering 677 

explanatory integration in the cognitive sciences. Control-and-contrast proceeds as follows. Let X1 678 

and X2 be two potential explanations of Y under consideration. Next, run two controlled experiments: 679 

one in which the explanatory factors in X1 are absent but those in X2 are present and the second in 680 

which the explanatory factors in X1 are present but those in X2 are absent. If Y is only present in the 681 

first experiment, then the pair of experiments suggests that X2 is a better explanation of Y than X1. 682 

Conversely, if Y is only present in the second experiment, the pair of experiments suggests that X1 is 683 

a better explanation of Y than X2. If Y is present in both experiments, the experiments are 684 

inconclusive. If Y is absent in both experiments, then the experiments suggest that the combination of 685 

X1 and X2 better explains Y than either X1 or X2 does in isolation. Since we suggest that both 686 

mechanistic and non-mechanistic explanations should be considered and thereby play the roles of X1 687 

and X2, we also suggest that which of these different kinds of explanations is correct for a given 688 

phenomenon Y should frequently be determined by control-and-contrast. 689 

In some cases, scientists are only interested in controlling-and-contrasting explanations of the 690 

same kind. However, even in these cases, the controls are often best described in terms of other kinds 691 

of explanation. For instance, as discussed above, the default mode network mechanistically explains 692 

mental simulations involved in episodic memory. By contrast, when mental simulations involve 693 

semantic memory, inferior temporal and lateral occipital regions play a more pronounced role (Parikh 694 

et al., 2018). Both episodic and semantic memory are functional or computational concepts that can 695 

figures as controls in different experiments designed to discover which of these mechanisms explains 696 

a particular kind of mental simulation. Less common is controlling-and-contrasting explanations of 697 

different kinds. Perhaps this is a lacuna in current research. Alternatively, it may turn out that 698 
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different kinds of explanation rarely compete and are more amenable to integration in the ways 699 

outlined above. 700 

The procedural defense complements the structural defense in two ways. First, not all 701 

pluralists accept the accuracy condition. Their motivations for this are twofold. First, given that 702 

science is a fallible enterprise, our best explanations today are likely to be refuted. Second, many 703 

explanations invoke idealizations, i.e., known inaccuracies that nevertheless enhance understanding. 704 

The procedural defense does not require the accuracy condition but can still preserve the distinction 705 

between correct explanations and non-explanatory models. Instead, the procedural defense only 706 

requires that correct explanations be acceptable on the basis of the best available scientific methods 707 

and evidence. 708 

Second, tests such as control-and-contrast regiment the subjunctive conditionals that 709 

characterize the counterfactual condition. In evaluating counterfactuals, it is notoriously difficult to 710 

identify what must be held constant, what can freely vary without altering the truth-value of the 711 

conditional, and what must vary in order to determine the truth-value of the conditional. Our account 712 

of explanatory evaluation points to important constraints on this process. Suppose that we are 713 

considering two potential explanations Xi and Xj of some phenomenon Y. To compare these models, 714 

we will be especially interested in counterfactuals such as, “Had the value of Xi been different (but 715 

the value of Xj had remained the same), then the value of Y would have been different,” and also, 716 

“Had the value of Xi been different (but the value of Xj had remained the same), then the value of Y 717 

would have been the same.” These are precisely the kinds of counterfactuals that will be empirically 718 

supported or refuted by control-and-contrast. 719 

5 Conclusion 720 

Fruitful connections between the philosophy and science of understanding can be forged. In a 721 

naturalized epistemology of understanding, philosophical claims about various forms of explanatory 722 

and counterfactual reasoning are empirically constrained by scientific tests and explanations. By 723 

contrast, in understanding-based integration, the philosophy of understanding contributes to the 724 

science of understanding by providing broad methodological prescriptions as to how diverse 725 

explanations can be woven together. Specifically, understanding-based integration includes 726 

identification of inter-explanatory relationships, consideration of different kinds of explanations, and 727 

evaluation of these explanations using methods such as control-and-contrast. As our suggestions have 728 

been of a preliminary character, we hope that future collaborations between philosophers and 729 

scientists will advance our understanding of understanding. 730 
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