

International Review on Computers and Software (I.RE.CO.S.), Vol. 10, N. 7

ISSN 1828-6003 July 2015

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved

726

SP2MN: a Software Process Meta-Modeling Language

H. Khdair, Z. A. Othman

Abstract – In the last two decades, software process modeling has been an area of interest

within both academia and industry. Software process modeling aims at defining and representing

software processes in the form of models. A software process model represents the medium that

allows better understanding, management and control of the software process. Software process

metamodeling rather, provides standard metamodels which enable the defining of customized

software process models for a specific project in hand by instantiation. Several software process

modeling/meta-modeling languages have been introduced to formalize software process models.

Nonetheless, none of them has managed to introduce a compatible yet precise language to include

all necessary concepts and information for software process modeling. This paper presents

Software Process Meta-Modeling and Notation (SP2MN); a meta-modeling language that

provides simple and expressive graphical notations for the aim of software process modeling.

SP2MN has been evaluated based upon the well-known ISPW-6 process example, a standard

benchmark problem for software process modeling. SP2MN has proved that it presents a valid and

expressive software process modeling language. Copyright © 2015 Praise Worthy Prize S.r.l. -

All rights reserved.

Keywords: Software Process Model, Software Process Metamodel, Software Process

Modeling/Meta-Modeling, Software Process Modeling Language

I. Introduction

The software process is a critical factor for delivering

quality software systems, as it aims to manage and

transform the user need into a software product that

meets this need. The software process defines the way in

which software system development is conducted and

supported. A software process is a partially ordered set of

activities undertaken to manage, develop and maintain

software systems. In order to manage the software

process, a wide range of software process engineering

solutions have been proposed for that aim [1]-[50].

Software process modeling presents the most notable

software process engineering paradigm that aims at

enhancing the usefulness of the software process. As the

name refers, it is the act of defining explicit software

process models. A single software process model

provides an abstraction of a specific view of the software

process. However, a software process is not abstracted by

only one single view. In the literature, there are several

proposed software process models that intend to convey

different views of the software process [1]-[3].

A software process model can be a kind of an activity

process model, which focuses on the types, structure and

properties of the activities in the software process and

their interrelations. While, a product process model

describes the types, structure and properties of the

software artifacts of the software process.

A resource process model, on the other hand,

describes the resources which are either needed by or

provided to the software process.

Whereas, a role process model describes a particular

set of resources, known as the performing role, which

concerns the performing agents, the skills they provide

and the responsibilities they accept.

Since there is no single software process model that is

capable to represent all views of the software process,

software process meta-modeling paradigm presents a

shift in software process abstraction level, from software

process model to software process metamodel. Software

process meta-modeling, by analogy to software process

modeling, is defined as the act of creating and defining

software process abstract and generic software process

metamodels instead of software process models.

Thus, a specific software process model can be created

by instantiating a certain pre-defined software process

metamodel [4].

A software process modeling/meta-modeling

formalism denotes the modeling language or notation

that is used for modeling and formalizing the software

process. There are many different software process

formalisms have been provided, with different forms

(e.g. graphical, textual and etc.) and different levels of

formalism (formal, semi-formal, and informal). When a

software process formalism is formally formalized, it can

be described as a language, known as Software Process

Modeling Language (SPML).

Any designed SPML is based upon fulfilling an

objective of the essential software process modeling

objectives (see [42], [43]). For instance, programming

language-based SPMLs (such as [5]-[7]) play a vital role

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

727

in automating the software process itself, and its

execution. While, graphical-based SPMLs (such as [8]-

[10]) are very essential in facilitating the human

understandability of process software process models and

communication among large numbers of software

process model users (e.g. software process owners,

software process engineers, project managers, software

engineers and executives, and etc.).

A software process metamodel within a software

process meta-modeling approach presents a sort of

formal software process modeling language, where its

abstract syntax is denoted by the set of meta-elements

(each meta-element abstracts a single software process

concept) and the relationships among them. Yet, there are

many different and distinct software process meta-

modeling approaches have been introduced [5], [9], [11]-

[18]. Each of them still provides distinct concepts and

views for expressing the software process.

Since that some software process meta-modeling

approaches provide distinctive software process concepts

which are missed in others, this paper presents an

expressive language named as, SP2MN.

The expressiveness (also expressivity or expressive

power) of a language is the breadth of ideas and concepts

that can be represented and communicated within that

language [19], [20]. SP2MN is designed in order to be as

expressive as to include the most common software

process modeling concepts, in terms of the most common

software process engineering modeling concepts, as well

as situational method engineering concepts (as discussed

in Section 2). Furthermore, it’s essential for this language

to enhance human understandability and communication

as well, therefore, SP2MN presents a graphic-based

language that provides simple and expressive graphical

notation. As a final point, SP2MN is evaluated with the

well-known ISPW-6 Software Process Example [21], a

standard benchmark software process problem developed

by experts in the field of software process modeling.

This paper is organized as follows; Section 2

introduces a discussion on the software process, its

associated modeling and engineering concepts, with

respect to the most prominent software process

engineering/meta-modeling languages. Section 3 presents

the specification of the proposed SP2MN formalism,

while Section 4 provides the validation and evaluation of

such proposal. Finally, Section 5 concludes the work

presented in this paper.

II. Related Works

Modeling and/or Meta-modeling is a widely embraced

approach in software engineering field. For instance, in

the context of Model Driven Architecture (MDA),

models play a very essential role, not only in the

description and representation of the concepts within the

domain but also in the production and the automation

process [44]-[46]. The success of MDA has attracted

several researchers to apply its principles on software

process meta-modelling.

Software process meta-modeling provides a mean for

software organizations to create their specific software

process model by instantiating a certain pre-defined

software process metamodel [4]. Hence, a software

process metamodel is a description at the type level of a

software process model, and at the meta-type level with

respect to a process [22]-[24], as depicted in Fig. 1, that

follows.

Fig. 1. Software process abstraction levels

Generally, modeling/meta-modeling is not only

captured in one single perspective. It considers recording

the static concepts and data of the domain, in addition to

the activities and other dynamic concepts of the

methodical development [25], [26]. Therefore, software

process meta-modeling has to be considered in those

various perspectives using suitable modeling formalism

(language and/or notation) for conceptual (data)

modeling plus activity modeling.

This section presents a critical analysis of the most

widely used and prominent software process meta-

modeling approaches. The approaches are discussed

based on their metamodels with respect to the constituent

static software process concepts and the underlying

semantics of such concepts, along with their associated

modeling formalisms. Additionally, the dynamic activity

modeling concepts and formalisms are further illustrated

and studied as well. The aim of this section is to exhibit

the concepts as well as the requirements that SP2MN

should encompass and achieve.

II.1. Software Process Engineering

Software Process Engineering Metamodel (SPEM), is

a wide known standard software process metamodel

currently in version 2.0 [18]. SPEM presents an activity-

oriented (also known as, process-focused) metamodel,

which focuses on describing the concepts that allow

building software process models concentrating on the

activities and tasks performed in producing software

artifacts together with their ordering.

SPEM 2.0 separates the concept of the reusable

method from its application in a software process.

According to SPEM, a method provides step-by-step

explanations, describing how specific development goals

are achieved independent of the placement of these steps

within a development lifecycle. A Process, on the other

hand, takes these method elements and relates them into

semi-ordered sequences that are customized to specific

types of projects.

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

728

A method is represented by Method Content meta-

package, while software process structure is represented

by Software Process Structure meta-package, see SPEM

2.0 [18]. Main meta-classes (concepts) that present

reusable methods are; Tasks, Work Products and Roles.

Tasks are the work steps to be performed. Tasks have

Work Products as input and output and which are being

performed by Roles. Roles define important

responsibility relationships to work products.

A software process would apply these elements in

Activities in a different parts of a lifecycle differently.

The Activity meta-element presents the structured

work definitions which describes the work to be

performed along a timeline or lifecycle and organize it in

so called breakdown structures. Fig. 2 below shows how

such main concepts are related together to represent a

real time software process. SPEM 2.0 reuses elements

from the Unified Modeling Language (UML) (version

2.0 [47]) metamodel, as UML profile model.

This meta-package presents the set of UML 2.0

stereotypes which provides the necessary meta-elements

(concepts) as well as the notation for modeling and

formalizing the software process. A UML profile

presents a good chance to use existing generic UML 2.0

modeling tools for software process modeling instead of

inventing new inventing tools. Fig. 3 shows a UML Class

Diagram that represents several SPEM 2.0 concepts as

UML classes with their respective stereotypes applied.

Note, that the Task ―Use Case Analysis‖ is actually

represented by a UML 2.0 Activity which is a

specialization of UML 2.0 Class and can therefore have

associations and be used in a UML Class Diagram.

II.2. Situational Method Engineering

SME is a special software process engineering meta-

modeling paradigm [27]. SME concerns about improving

the decomposability, hierarchy and understandability of

the methods/software process by introducing

modularization concepts and principles.

MilestoneDescriptor

WorkProduct
(from CoreContentElements)

WorkProductDescriptor

0..1

*

0..1

*

Task
(from CoreContentElements)

TaskDescriptor

0..1

*

0..1

*

TeamProfile

RoleDescriptor

*

*

+teamRole*

*

Role
(from CoreContentElements)

0..1

*

0..1

* CompositeRole

*

*

+aggregatedRole
*

*

Activity

BreakdownElement

*

*

+breakdownElement

*

+superActivity

*

Nesting

PlanningData0..1

+planningData

0..1

ProcessElement

MethodElement
(from BasicElements)

WorkBreakdownElement

WorkOrder

WorkDefinition
(from CoreContentElements)

DescribableElement
(from BasicElements)

Fig. 2. SPEM 2.0 Software Process Structure meta-package

Fig. 3. Sample software process structure represented by SPEM 2.0

Moreover, it ensures flexibility and adaptability of the

methods/software process models where their modular

components/constructs can be reused and adapted into

different applications with similar situational

applicability, based on reuse strategy [28].

Therefore, SME meta-modeling approaches present

specific concepts concerning the situational

discoverability, retrieval and selections of the modular

method/software process components.

Yet, there are many different and distinct software

process meta-modeling approaches have been proposed

(for illustration, [10], [13]-[15], [17], [27], and etc.).

Each one presents its own modularization concepts,

notions, semantics and consequently distinct situation,

retrieval and selection concepts.

SME metamodels present sort of context-oriented

software process metamodels which allow building

software process models representing the situation and

the intention of an actor at a given moment of the project

[23]. The key concepts of this kind of metamodel are the

Context that is composed of a Situation and an Intention.

The situation is a part of a product under design that is

the object of a decision. The intention represents the

objective, i.e. the goal that an actor wants to achieve

according to the situation [24], [29].

Although all approaches adopt component-based

modularization of software process. Method chunk [10]

presents the most complete component-based software

process/method modular construct. Contrary to method

fragment concept [27] and [14], in which the modular

construct represents a process part (activities, tasks, etc.)

or product part (work products) of the software process,

method chunk ensures a tight coupling of some process

part and its related product part of the software process.

Thus, any software process is viewed as a set of

loosely coupled method chunks expressed at different

levels of granularity [9]. Furthermore, a method chunk is

based on the decomposition of the software process

model into reusable represented modularization, known

as guidelines. Thus, the core of a method chunk is its

guideline to which are attached the associated product

parts needed to perform the process encapsulated in this

guideline. A guideline is built upon intention and

situation concepts (context), where the body of the

guideline represents the body of the method chunk

(process part associated to product part of the software

process) that achieves the intention.

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

729

Fig. 4 shows the structure, interrelation and semantics

of such concepts. Guidelines have three distinct kinds of

modeling formalisms, as; simple, tactical and strategic.

A strategic guideline is also known as a MAP [9], (for

more information about these modeling formalisms, see

[10]) which uses a graph structure to relate its sub-

guidelines. A MAP is a labelled directed graph in which

the nodes are the intentions and the edges between

intentions are strategies to achieve such intentions. For

illustration, Fig. 5 shows an example of MAP for

representing a part of a method chunk.

Fig. 4. Method chunk metamodel

Fig. 5. Sample process part of a method chunk represented by MAP

Another interesting idea introduced by SME is method

service [15], [17]. A method service proposes to capture

the software process/ method modular construct in a

service-based specification. This in turn would pave the

way for new promises in software process knowledge

sharing and reuse in the service-oriented architecture

[48]. However, the modularization of software process

models and its presentation in such approaches is not

handled according to concepts, principles and modeling

formalism that conform to service-oriented architecture

and service-orientation design principles.

II.3. Activity Modeling Concepts and Formalisms

The preceding has mostly discussed static software

process modeling concepts and formalisms. However,

this is insufficient to model and formalize the dynamic

concepts of the software process, such as the ability to

express events, decisions, exceptions, interactions among

software process participants and so on.

In this context, as this work focuses on enhancing

human understandability and communication of software

process models, the concern is on graphical-based

formalisms. As discussed before, many SPMLs present

graphical-based formalisms. The most prominent

technique presented and adapted for such aim is UML,

the success of UML for activity modeling [49] has lured

many SPMLs to reuse and adapt this widely used

modeling standard instead of inventing from scratch. For

illustration; SPEM, PROMENADE language, Di Nitto et

al. approach, UML4SPM, and etc.

Alike, there are some promising activity modeling

formalisms have been introduced mainly for business

process modeling. Business Process Model and Notation

(BPMN) is a one contender process modeling technique

that has attracted many modelers in the industry as well

as researchers [50].

BPMN (currently in version 2.0 [30]) brings a series

of enhancements to process modeling, compared to UML

for instance, in regards to exclusive/parallel event-based

gateway, fine granular tasks and sub-processes for

activities, sequential multi-instance activity, flow

connections and interdependencies, data objects, a wide

set of events for a process, and so on [31]-[40].

Therefore, the work in this paper proposes to reuse

BPMN for software process modeling, and to extend its

concepts as well as notation to suit the software process

modeling specialty.

In summary, given these points, it is essential when

designing SP2MN in this paper to be as expressive as

possible to express the previously discussed software

process modeling concepts with their associated details

and semantics while preserving the meta-type level of

abstraction of software process models. To sum up, such

concepts comprise; activity-oriented software process

concepts (such as, activity, task, phase, lifecycle, and

etc.), product concepts (including work products details,

categories and states), resources and responsibilities

concepts (role, human actors/agents, and tools), in

addition to modularization and context-oriented concepts

(situation and intention).

The essence of this effort is to provide a SPML that

acts as a common medium for software process modeling

with an understandable, clear, simple and widely used set

of graphical notation and diagrams. We believe that this,

in turn, would enhance the adoptability and the use of

SPMLs from software process users. The following

section provides the detailed specification of SP2MN.

III. The SP2MN Formalism

SP2MN presents a new SPML. Generally, a language

is composed of syntax and semantics [41]. The syntax of

a language means the structure of that language and it is

further divided into two complementary types, namely,

abstract and concrete syntax. Abstract syntax presents the

rules that specify well-formed expressions of symbols

(presented here as a conceptual metamodel). While,

concrete syntax is the set of graphical and textual

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

730

symbols used to render the software process model and

other related representing diagrams (in this context,

reuses and extends BPMN 2.0). On the other hand, the

semantics of a language refers to the meaning and

interpretations of the meta-model constructs, attributes,

properties as well as the relationships with other

constructs and the things being modeled.

The abstract syntax of SP2MN is represented by UML

compliant metamodel. It is divided into Software Process

Structure metamodel and the Foundation metamodel, as

mentioned in Sub-section 1 and Sub-section 2,

respectively.

III.1. SP2MN Software Process Structure

Software process structure metamodel, as shown in

Fig. 6, provides the overall syntax and semantics needed

for software process modeling. At the very highest level,

a software process is decomposed into a number of Work

Units which can be a coarse-grained Activities or finer-

grained Tasks. Work Units are specified by the Context

and situation of applicability.

An Activity in turn is composed a number of Tasks. A

Task therefore is the adopted unit of work in this

specification. A Task handles a number of Work

Products as input and/or outputs.

A single Work Unit can be under the responsibility of

a number of Roles that are performed by a number of

assigned individuals or Human Actors. Automated

software or Tools can help such individuals in

performing their work as well. A Task is identified by an

intention. A Technique models the way of performing or

implementing a specific task.

A Work Product is an abstraction of the descriptions

of content elements that are used to define anything used,

produced, or modified by a Task. In a software process

model, a Work Product is either an Artifact or a

Deliverable work product or an Outcome.

A Stage is an abstract meta-class that models the

intended timing of the performance of a temporally

cohesive set of activities during the enactment of a

software process. A Life Cycle consists of all phases

during which a single system or application is produced,

used, and retired. The role of the life cycle is to provide

overall organization to the associated activities and

milestones. And to support top-level scheduling of

activities, personnel, and resource acquisition.

The Context is composed of a Situation and an

Intention. The Situation is a part of a product under

design that is the object of a decision. The Intention

represents the objective, i.e. the goal that an actor wants

to achieve according to the situation.

Fig. 6. SP2MN software process structure metamodel

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

731

III.2. SP2MN Foundation

Foundation package represents the subset of BPMN

2.0 [30] elements that are reused in SP2MN metamodel

and other elements that are extended and adapted to suit

the software process modeling.

As shown in Fig. 7, the dynamic concepts for software

process modeling are shown in white background

classes, while other related static concepts that to be

reused are shown in light gray background classes,

whereas new extension concepts are shown in dark gray

back ground classes. As shown in the metamodel, BPMN

basic elements are a special classes of the generalized

BaseElement meta-class.

BaseElement is the abstract super class for most

BPMN basic elements. It provides the attributes, id and

documentation, which other elements will inherit.

The basic elements are particularly; a set of Flow

Elements (Activities, Events, Gateways, Sequence

Flows, Message flows), In addition to Data Objects,

Pools, and Lanes, as well as other BPMN Artifacts, such

as Groups, Text Annotations, and Associations. A

FlowElement is a special class from BaseElement and it

the abstract super class for Activities, Events, Gateways,

Sequence Flows, and Message flows. Where such meta-

elements constitute the key elements that affect the flow

of process and the interaction between its participants.

Fig. 7. SP2MN foundation metamodel

III.3. SP2MN Notation

The concrete syntax of SP2MN is a graphical-based

notation adopted, adapted and extended from BPMN 2.0

constructs. Each of the aforementioned software process

elements and constructs in the abstract syntax is mapped

to a visual graphical symbol.

Due to limited space, Table I below shows a subset of

the most important SP2MN constructs.

IV. Evaluation of SP2MN with ISPW-6

Software Process Example

The 6th International Software Process Workshop has

produced a standard benchmark software process

modelling example problem [21]. A problem that

comprehensively exercises the various modeling

approaches being developed, throughout coverage of

several important components of real-world software

processes. The primary purpose behind that was to

facilitate understanding, assessing and comparing the

various approaches that are being pursued for software

process modelling. The core problem is scoped as a

relatively confined portion of the software change

process. It focuses on the designing, coding, unit testing,

and management of a localized change to a software

system. The change is prompted by a change in

requirement that happens during the development life-

cycle.

The entire example process is entitled Develop

Change and Test Unit, and it is decomposed of a set of

major tasks as: Schedule and Assign Tasks, Modify

Design, Review Design, Modify Code, Modify Test

Plans, Modify Unit Test Packages, Test Unit, and finally

Monitor Progress. The process is described by a narrative

description.

The software process problem as described in [21] is

considered to demonstrate the applicability and validity

of the SP2MN. Due to limited space, Fig. 7 shows an

instance of the ISPW-6 software process problem as

represented by SP2MN notation, whereas Fig. 8

respectively shows the overall represented software

process model.

V. Results

The following shows how SP2MN has fullfiled the

stated requirements and design goals.

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

732

TABLE I

SP2MN NOTATION

Software

Process

Concept

Notation (Graphical Symbol)

Work Units

(Tasks or

Activities)

Techniques

Work

Products

(Artifacts,

Deliverables,

, Outcomes)

Graphical Artifact Textual Artifact Deliverable Outcome

Role

Primary Role

Additional Performer

Actor

 Human Actor Tool

Life Cycle

Stage

Context

(Intention

plus

situation)

Events

Gateways

The expressiveness of SP2MN was defined as the

breadth of ideas and concepts that can be represented and

communicated within it. These concepts include, static

software process concepts, such as, work unit and stage,

work product, role, actor, and context, in addition to

dynamic software process concepts, such as,

communication within the software process and between

participants, software activities coordination, and

software process events, as well as other concepts, such

as, representing a modularized software process entities.

By applying SP2MN on the standard benchmark

ISPW-6 software process example [21] it has proved its

applicability and validity. It also has shown how each of

the aforementioned concepts have been demonstrated on

its software process elements, as mentioned in the

previous section and shown in Fig. 8. For illustration,

Work units are represented as tasks, sub-processes.

Moreover, the technique, as well as the stage and

lifecycle concepts representations are also represented.

Moreover, different kinds of work products (such as

deliverable, or artifact) and the delivered product types

(graphical, or textual), as well as the products formalism,

in addition to product state are represented.

ISPW-6’s pre-condition process elements are

represented by intentions which are associated to tasks

labels. While post-condition elements are represented by

situations which are associated to flow connectors.

Where, the communication within the process is by

signal events and data association flow. While the

communication between software process participants is

by messages. Above all, modularization is supported by

tasks that are represented as autonomous sections

(associated with Contexts), which are eligible to be

defined and represented as method services.

Finally, SP2MN was designed with the aim to achieve

the human understandability. This achieved by reusing

sets of BPMN 2.0 elements and notations. This is

considered as a good significance, since that BPMN 2.0

has attractive features. It is standard, graphical, intuitive,

and easy to understand. A wide community of software

process modeling is already familiar with BPMN2.0 and

variety of tools and training supports are proposed.

Therefore, SP2MN has an important competitive

advantage compared to any existing SPML.

VI. Conclusion

While there are multiple SPMLs have been proposed,

nonetheless, they have failed to gain the attention of the

industry. They are abandoned from many software

process users. The mere existence of existing software

process metamodels and consequently the distinct

software process concepts, notions and structures are

seen as the main causes of such a problem. Additionally,

it might be due to the complexity and ambiguity of their

formalisms. SP2MN presents a SPML that concerns the

reusing and adapting BPMN, as a clear, simple,

understandable, as well as being standard, widely

acceptable and used formalism for process modeling.

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

733

Fig. 8. Overall ISPW-6 software process represented by SP2MN

More importantly, SP2MN is designed with an aim to

be expressive to the most common software process

modeling concepts that are being recorded within real

time software process modeling.

SP2MN metamodel is a UML-compliant metamodel,

which simply can be instantiated in order to produce

specific software process models. In conclusion,

validating and evaluating SP2MN on the standard ISPW-

6 benchmark for software process modeling has

demonstrated its workability, validity and significance.

The constructs of the language and its graphical

notation has proved its power to express all software

process elements and concepts of the standard

benchmark ISPW-6 software process example [21].

However, SP2MN notation has been introduced as

conceptual graphical symbols. Yet, implementing such

symbols within a specific and compliant to SP2MN

software process modelling tool is planned to be a future

work.

References

[1] V. Ambriola, R. Conradi, and A. Fuggetta, "Assessing process-

centered software engineering environments," ACM Transactions

on Software Engineering and Methodology (TOSEM), vol. 6, pp.

283-328, 1997.

[2] J.-C. Derniame, B. A. Kaba, and D. Wastell, Software process:

principles, methodology, and technology, vol. 1500: Springer,

1999.

[3] A. Finkelsteiin, J. Kramer, and B. Nuseibeh, Software process

modelling and technology: John Wiley & Sons, Inc., 1994.

[4] B. Henderson-Sellers and C. Gonzalez-Perez, "On the ease of

extending a powertype-based methodology metamodel," Meta-

Modelling and Ontologies. WoMM 2006, pp. 11-25, 2006.

[5] S. Brinkkemper, K. Lyytinen, and R. Welke, Principles of

Method Construction and Tool Support: Springer, 1996.

[6] N. Goldman and K. Narayanaswamy, "Solution to ISPW-7

Process Example‖, Manuscript USC Information Sciences

Institute, Marina Del Rey CA October 1991.

[7] M. P. Christopher M. Lott , H. Dieter Rombach, "A MVP-L

Solution for the Software-Process Modeling Problem," 1991.

[8] F. Karlsson and K. Wistrand, "Combining method engineering

with activity theory: theoretical grounding of the method

component concept," European Journal of Information Systems,

vol. 15, pp. 82-90, 2006.

[9] J. Ralyte and C. Rolland, "An approach for method

reengineering," in Conceptual Modeling—ER 2001: Springer,

2001, pp. 471-484.

[10] J. Ralyte, "Ingénierie des méthodes à base de composants," 2001.

[11] J. Ralyte and I. Mirbel, "DeneckèreR (eds)(2011) Engineering

methods in the service-oriented context," Proceedings of the 4th

IFIP WG8, vol. 1, 2011.

[12] C. Cauvet, "Method engineering: a service-oriented approach," in

Intentional Perspectives on Information Systems Engineering:

Springer, 2010, pp. 335-354.

[13] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita, "Method

fragments for agent design methodologies: from standardisation

to research," International Journal of Agent-Oriented Software

Engineering, vol. 1, pp. 91-121, 2007.

[14] D. G. Firesmith and B. Henderson-Sellers, The OPEN process

framework: An introduction: Pearson Education, 2002.

[15] G. Guzelian and C. Cauvet, "SO2M: Towards a service-oriented

approach for method engineering," presented at the 2007 World

Congress in Computer Science, Computer Engineering and

H. Khdair, Z. A. Othman

Copyright © 2015 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 10, N. 7

734

Applied Computing, in the proceedings of the international

conference IKE, 2007.

[16] A. F. Harmsen, J. N. Brinkkemper, and J. L. H. Oei, Situational

method engineering for information system project approaches:

University of Twente, Department of Computer Science, 1994.

[17] A. Iacovelli, C. Souveyet, and C. Rolland, "Method as a service

(MaaS)," presented at Research Challenges in Information

Science, 2008. RCIS 2008. Second International Conference on,

2008.

[18] OMG, "Software & Systems Process Engineering Metamodel

Specification (SPEM) - Version 2.0," 2008.

[19] M. Felleisen, "On the expressive power of programming

languages," Science of computer programming, vol. 17, pp. 35-

75, 1991.

[20] M. Felleisen, "On the expressive power of programming

languages," in ESOP'90: Springer, 1990, pp. 134-151.

[21] M. Kellner, P. Feiler, A. Finkelstein, T. Katayama, L. Osterweil,

M. Penedo, and D. Rombach, "ISPW-6 software process

example," 1991.

[22] C. Rolland, "Modeling the requirements engineering process,"

presented at Information Modelling and Knowledge Bases V:

Principles and Formal Techniques: Results of the 3rd European-

Japanese Seminar, Budapest, Hungary, May, 1993.

[23] C. Rolland, "A comprehensive view of process engineering,"

presented at Advanced Information Systems Engineering, 1998.

[24] C. Rolland, C. Souveyet, and M. Moreno, "An approach for

defining ways-of-working," Information Systems, vol. 20, pp.

337-359, 1995.

[25] J. Souer, I. Van De Weerd, J. Versendaal, and S. Brinkkemper,

"Situational requirements engineering for the development of

content management system-based web applications,"

International Journal of Web Engineering and Technology, vol.

3, pp. 420-440, 2007.

[26] I. van de Weerd, J. Souer, J. Versendaal, and S. Brinkkemper,

"Situational requirements engineering of web content

management implementation," presented at Proceedings of the

First International Workshop on Situational Requirements

Engineering Processes: Methods, Techniques and Tools to

Support Situation-Specific Requirements Engineering Processes

(SREP'05), Paris France, 2005.

[27] S. Brinkkemper, "Method engineering: engineering of

information systems development methods and tools,"

Information and software technology, vol. 38, pp. 275-280, 1996.

[28] B. Henderson-Sellers and J. Ralyte, "Situational Method

Engineering: State-of-the-Art Review," J. UCS, vol. 16, pp. 424-

478, 2010.

[29] N. Prat, "Goal formalization and classification for requirements

engineering, fifteen years later," presented at Research

Challenges in Information Science (RCIS), 2013 IEEE Seventh

International Conference on, 2013.

[30] OMG, "Business Process Model and Notation (BPMN)," 2011.

[31] W. M. P. van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski,

and A. P. Barros, "Workflow patterns," Distributed and parallel

databases, vol. 14, pp. 5-51, 2003.

[32] J. C. Recker, M. zur Muehlen, K. Siau, J. Erickson, and M.

Indulska, "Measuring method complexity: UML versus BPMN,"

2009.

[33] M. R. Khabbazi, M. K. Hasan, R. Sulaiman, A. Shapi'i, and A.

Taei-Zadeh, "Business Process Modelling in Production

Logistics: Complementary Use of BPMN and UML," Middle-

East Journal of Scientific Research, vol. 15, pp. 516-529, 2013.

[34] G. Aagesen and J. Krogstie, "BPMN 2.0 for modeling business

processes," in Handbook on Business Process Management 1:

Springer, 2014, pp. 219-250.

[35] L. Eloranta, E. Kallio, and I. Terho, "A Notation Evaluation of

BPMN and UML Activity Diagramsâ€–," Special course in

information systems, 2006.

[36] C. V. GEAMBAŞU, "BPMN vs. UML Activity Diagram for

Business Process Modeling," 2012.

[37] S. Meyer, K. Sperner, C. Magerkurth, and J. Pasquier, "Towards

modeling real-world aware business processes," presented at

Proceedings of the Second International Workshop on Web of

Things, 2011.

[38] D. Peixoto, V. Batista, A. Atayde, E. Borges, R. Resende, and C.

PÃ¡dua, "A comparison of BPMN and UML 2.0 activity

diagrams," presented at VII Simposio Brasileiro de Qualidade de

Software, 2008.

[39] W. M. P. Van der Aalst and K. M. van Hee, "Framework for

business process redesign," presented at 2012 IEEE 21st

International Workshop on Enabling Technologies: Infrastructure

for Collaborative Enterprises, 2012.

[40] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter

Hofstede, and N. Russell, On the suitability of BPMN for business

process modelling: Springer, 2006.

[41] G. Génova, "Modeling and metamodeling in Model Driven

Development - What is a model: syntax and semantics," 2009.

[42] S. T. Acuna and X. Ferre, "Software Process Modelling,"

presented at ISAS-SCI (1), 2001.

[43] S. T. Acuna and N. Juristo, Software process modeling, vol. 10:

Springer, 2006.

[44] Sabraoui, A., El Koutbi, M., Khriss, I., A MDA-based model-

driven approach to generate GUI for mobile applications, (2013)

International Review on Computers and Software (IRECOS), 8

(3), pp. 844-852.

[45] Rahmouni, M., Mbarki, S., Combining UML class and activity

diagrams for MDA generation of MVC 2 web applications,

(2013) International Review on Computers and Software

(IRECOS), 8 (4), pp. 949-957.

[46] Rahmouni, M., Mbarki, S., An end-to-end code generation from

UML diagrams to MVC2 web applications, (2013) International

Review on Computers and Software (IRECOS), 8 (9), pp. 2123-

2135.

[47] OMG, "UML Version 2.2," 2009.

[48] Hanafiah, M., Abdullah, R., Murad, M.A.A., Din, J., Towards

developing collaborative experience based factory model for

software development process in cloud computing environment,

(2015) International Review on Computers and Software

(IRECOS), 10 (3), pp. 340-350.

[49] Aabidi, M.H., Jakimi, A., El Kinani, E.H., Elkoutbi, M., A new

approach for code generation from UML state machine, (2013)

International Review on Computers and Software (IRECOS), 8

(2), pp. 500-506.

[50] Saib, S., Benmoussa, R., Bengoud, K., Collaborative business

process specification and a mapping from BPMN model to

service model, (2015) International Review on Computers and

Software (IRECOS), 10 (3), pp. 351-361.

Authors’ information

School of Computer Science, Faculty of Information Science and

Technology, Universiti Kebangsaan Malaysia (UKM), Malaysia.

Hisham Khdair received a BE degree in

Computer Systems Engineering in 2007 from

Al-Azhar University of Gaza – Palestine and a

MSc degree in Information Technology in 2010

from UUM university - Malayasia. He is

currently a PhD candidate in Computer Science

at UKM. His research interests include software

engineering and technology, software processes,

SDLC, software methods, and software process modeling.

E-mail: h.s.khdair@hotmail.com

Zulaiha Ali Othman was born in Malaysia. She

was awarded a PhD in Software Engineering by

Sheffield Hallam University, England, in 2004.

Since then she has been a lecturer and researcher

at Faculty of Information Science and

Technology, UKM. Associate Prof. Dr.Zulaiha

is a member of several computer science

committees. She has written more than 100

conference and journal papers that have been published around the

world and has several research awards.

E-mail: zao@ftsm.ukm.my

mailto:h.s.khdair@hotmail.com
mailto:zao@ftsm.ukm.my

