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Abstract
This essay aims to provide a modal logic for rational intuition. Sim-

ilarly to treatments of the property of knowledge in epistemic logic, I
argue that rational intuition can be codified by a modal operator gov-
erned by the modal µ-calculus. Via correspondence results between fixed
point modal propositional logic and the bisimulation-invariant fragment
of monadic second-order logic, a precise translation can then be provided
between the notion of ’intuition-of’, i.e., the cognitive phenomenal prop-
erties of thoughts, and the modal operators regimenting the notion of
’intuition-that’. I argue that intuition-that can further be shown to entrain
conceptual elucidation, by way of figuring as a dynamic-interpretational
modality which induces the reinterpretation of both domains of quantifi-
cation and the intensions and hyperintensions of mathematical concepts
that are formalizable in monadic first- and second-order formal languages.
Hyperintensionality is countenanced via a topic-sensitive epistemic two-
dimensional truthmaker semantics.

1 Introduction
‘The incompleteness results do not rule out the possibility that there is a

theorem-proving computer which is in fact equivalent to mathematical
intuition’ – Gödel, quoted in Wang (1986: 186).1

In his remarks on the epistemology of mathematics, Gödel avails of a notion
of non-sensory intuition – alternatively, ‘consciousness’, or ‘phenomenology’ (cf.
Gödel, 1961: 383) – as a fundamental, epistemic conduit into mathematical

∗I changed my name from Hasen Joseph Khudairi to Timothy Alison Bowen, in March,
2023. Please cite this paper and my published book and articles under ‘Bowen, Timothy
Alison’.

1Note however that, in the next subsequent sentence, Gödel records scepticism about the
foregoing. He remarks: ‘But they imply that, in such a – highly unlikely for other reasons –
case, either we do not know the exact specification of the computer or we do not know that
it works correctly’ [Gödel, quoted in Wang (op. cit.)].
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truths.2 According to Gödel, the defining properties of mathematical intuition
include (i) that it either is, or is analogous to, a type of perception (1951: 323;
1953,V: 359; 1964: 268); (ii) that it enables subjects to alight upon new axioms
which are possibly true (1953,III: 353,fn.43; 1953,V: 361; 1961: 383, 385; 1964:
268); (iii) that it is associated with modal properties, such as provability and
necessity (1933: 301; 1964: 261); and (iv) that the non-sensory intuition of
abstracta such as concepts entrains greater conceptual ‘clarification’ (1953,III:
353,fn.43; 1961: 383). Such intuitions are purported to be both of abstracta
and formulas, as well as to the effect that the formulas are true. The distinc-
tion between ‘intuition-of’ and ‘intuition-that’ is explicitly delineated in Parsons
(1980: 145-146), and will be further discussed in Section 2.3

In this chapter, I aim to outline the logical foundations for rational intuition,
by examining the nature of property (iii).4 The primary objection to Gödel’s
approach to mathematical knowledge is that the very idea of rational intuition is
insufficiently constrained.5 Subsequent research has thus endeavored to expand

2Another topic that Gödel suggests as being of epistemological significance is the notion of
‘formalism freeness’, according to which the concepts of computability, demonstrability (i.e.,
absolute provability), and ordinal definability can be specified independently of a background
formal language (cf. Gödel 1946, and Kennedy 2013 for further discussion). Kennedy notes
however that, in his characterizations of demonstrability and definability, Gödel assumes ZFC
as his metatheory (op. cit.: 383). Further examination of the foregoing is beyond the scope
of the present essay.

3For differences between Gödel’s conception of intuition, and that of, respectively, Kant,
Brouwer, and Hilbert, see Parsons (2008: ch. 5).

4Parsons (1980) suggests that intuition, which he refers to, further, as the imagination, is a
type of mathematical modality, although he does not provide a modal logic for the modality.
Parsons writes: ‘We can call the possibility in question mathematical possibility; this expresses
the fact that we are not thinking of the capabilities of the human organism, and it may even
be extraneous to think of this "construction" as an act of the mind. The latter construal
agrees with the viewpoint of Kant and Brouwer. It is very tempting if we want to say that
any string of strokes is perceptible or imaginable. (It is preferable to reserve these words for
tokens, but then one can speak of the intuitability of the type.) The idea is that no matter how
many times the operation of constructing one more stroke in imagination has been repeated,
"we" can still construct one more. However, I think there is really a hidden assumption
that there is no constraint on what "we" can perceive beyond the open temporality of these
experiences, and some very gross aspects of spatial structure. Kant and Brouwer thought
these were contributions of our minds to the way we experience the world. Kant of course
thought that we could not know these things a priori unless our minds had contributed
them. I am not persuaded by this, and in any case I do not want my argument to rest
on the notion of a priori knowledge’ (158-159). Parsons (2008) is, however, sceptical about
the interpretation of mathematical modality as an epistemic modality. Parsons interprets
informal provability as an epistemic modality (82), and writes that formal provability is ‘prima
facie epistemic’ and epistemic modalities might ‘be related to the fact that mathematical
knowledge is characteristically obtained by proof’ (81-82). Formulas and the modality in
modal-structuralism are argued, however, not to be epistemic, because their truth and the
existence of mathematical structures are independent of epistemic states (80-83).

5See, e.g., Hale and Wright (2002). Wright (2004) provides a vivid articulation of the issue:
‘A major — but not the only – problem is that, venerable as the tradition of postulating
intuitive knowledge of first principles may be, no-one working within it has succeeded at
producing even a moderately plausible account of how the claimed faculty of rational intuition
is supposed to work — how exactly it might be constituted so as to be reliably responsive to
basic logical validity as, under normal circumstances, vision, say, is reliably responsive to the
configuration of middle-sized objects in the nearby environment of a normal human perceiver’
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upon the notion, and to elaborate on intuition’s roles. Chudnoff (2013) suggests,
e.g., that intuitions are non-sensory experiences which represent non-sensory en-
tities, and that the justificatory role of intuition is that it enables subjects to
be aware of the truth-makers for propositions (p. 3; ch. 7). He argues, fur-
ther, that intuitions both provide evidence for beliefs as well as serve to guide
actions (145).6 Bengson (2015: 718-723) suggests that rational intuition can be
identified with the ‘presentational’, i.e., phenomenal, properties of representa-
tional mental states – namely, cognitions – where the phenomenal properties at
issue are similarly non-sensory; are not the product of a subject’s mental acts,
and so are ‘non-voluntary’; are qualitatively gradational; and they both ‘dis-
pose or incline assent to their contents’ and further ‘rationalize’ assent thereof.7
Boghossian countenances intuitions as ‘pre-judgmental and pre-doxastic’ (2020:
201). He defines intuition as follows: ‘An intuition, as I understand it (follow-
ing many others), is an intellectual seeming. An intellectual seeming is similar
to a sensory seeming in being a presentation of a proposition’s being true; yet
dissimilar to it in not having a sensory phenomenology’ (200). He suggests that
‘intuitive judgments appear to instantiate a type of three-step process: you con-
sider a scenario and a question about it; after sufficient reflection, a particular
answer to that question comes to seem true to you, either because, as we saw
earlier, you work out that it is true, or because, without working it out, it just
comes to strike you as true; finally, you endorse this proposition’ (201). Nagel
(2013) examines an approach to intuitions which construes the latter as a type
of cognition. She distinguishes, e.g., between intuition and reflection, on the
basis of experimental results which corroborate that there are distinct types
of cognitive processing (op. cit.: 226-228). Intuitive and reflective cognitive
processing are argued to interact differently with the phenomenal information
comprising subjects’ working memory stores. Nagel notes that – by contrast to
intuitive cognition – reflective cognition ‘requires the sequential use of a pro-
gression of conscious contents to generate an attitude, as in deliberation’ (231).
We will here follow Nagel in taking intuitions to be a type of cognition, which
is consistent with it being a non-sensory phenomenal property of mental states
such as judgment as in Chudnoff (op. cit.) and Bengson (op. cit.). The identi-
fication of intuition as a type of cognition is further consistent with Boghossian
(op. cit.)’s claim that intuitions are a non-sensory intellectual seeming which
presents a proposition as being true.

Rather than target objections to the foregoing essays, the present discussion
aims to rebut the primary objection to mathematical intuition alluded to above,
by providing a logic for its defining properties. The significance of the proposal
is thus that it will make the notion of intuition formally tractable, and might
(op. cit.: 158).

6A similar proposal concerning the justificatory import of cognitive phenomenology – i.e.,
the properties of consciousness unique to non-sensory mental states such as belief – can be
found in Smithies (2013a,b). Smithies prescinds, however, from generalizing his approach to
the epistemology of mathematics.

7Compare Kriegel (2015: 68), who stipulates that ‘making a judgment that p involves a
feeling of involuntariness’ and ‘making a judgment always involves the feeling of mobilizing a
concept’.
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thus serve to redress the contention that the notion is mysterious and ad hoc.
In his (1933) and (1964), Gödel suggests that intuition has a constitutively

modal profile. Constructive intuitionistic logic is shown to be translatable into
the modal logic, S4, with the rule of necessitation, while the modal operator is
interpreted as concerning provability.8 Mathematical intuition of set-theoretic
axioms is, further, purported both to entrain ‘intrinsic’ justification, and to il-
luminate the ‘intrinsic necessity’ thereof. Gödel (1947/1964: 260-261) suggests
that intrinsic necessity is a property of axioms which are ‘implied’ by math-
ematical concepts, such as that of set. Gödel (1964) writes: ‘First of all the
axioms of set theory by no means form a system closed in itself, but, quite on
the contrary, the very concept of set on which they are based suggests their
extension by new axioms which assert the existence of still further iterations
of the operation ‘set of’ . . . These axioms show clearly, not only that the ax-
iomatic system of set theory as used today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which only unfold the con-
tent of the concept of set explained above’ (260-261).9 Extrinsic justifications
are associated, by contrast, with both the evidential probability of propositions,
and the ‘fruitful’ consequences of a mathematical theory subsequent to adopting
new axioms (op. cit.: 261, 269). Following Gödel’s line of thought, I aim, in
this paper, to provide a modal logic for the notion of ‘intuition-that’.10

Via correspondence results between modal propositional logic and the bisimulation-
invariant fragment of first-order logic, and fixed point modal propositional logic
and the bisimulation-invariant fragment of monadic second-order logic [see van

8For further discussion both of provability logic and of intuitionistic systems of modal logic,
see Löb (1955); Smiley (1963); Kripke (1965); and Boolos (1993). Löb’s provability formula
was formulated in response to Henkin’s (1952) problem concerning whether a sentence which
ascribes the property of being provable to itself is provable. (Cf. Halbach and Visser, 2014,
for further discussion.) For an anticipation of the provability formula, see Wittgenstein (1933-
1937/2005: 378), where Wittgenstein writes: ‘If we prove that a problem can be solved, the
concept ‘solution’ must somehow occur in the proof. (There must be something in the mech-
anism of the proof that corresponds to this concept.) But the concept mustn’t be represented
by an external description; it must really be demonstrated. / The proof of the provability of
a proposition is the proof of the proposition itself’ (op. cit.). Wittgenstein distinguishes the
foregoing type of proof from ‘proofs of relevance’ which are akin to the mathematical, rather
than empirical, propositions, discussed in Wittgenstein (2001: IV, 4-13, 30-31).

9Note that intrinsic necessity and Gödel’s notion of analyticity as true in virtue of the
concepts involved might, for Gödel, be convergent notions. With regard to analyticity, Gödel
(1972a) writes: ‘It may be doubted whether evident axioms in such great numbers (or of
such great complexity) can exist at all, and therefore the theorem mentioned might be taken
as an indication for the existence of mathematical yes or no questions undecidable for the
human mind. But what weighs against this interpretation is the fact that there do exist
unexplored series of axioms which are analytic in the sense that they only explicate the content
of the concepts occurring in them, e.g., the axioms of infinity in set theory, which assert the
existence of sets of greater and greater cardinality or of higher and higher transfinite types and
which only explicate the content of the general concept of set’ (305-306, my emphasis). The
convergence in the notions of intrinsic necessity and analyticity for Gödel might have been
inspired by his interactions with the logical positivists of the Vienna Circle, who similarly
identified analyticity with necessity. Parsons (2014: 146) argues for the identification of the
two notions for Gödel, although doesn’t draw on the similarity between the definitions of the
two notions in the 1964 and 1972a works quoted above as evidence.

10Cf. Parsons (1979-1980; 1983: p. 25, chs.10-11; 2008: 176).
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Benthem (1983; 1984/2003), Janin and Walukiewicz (1996); and Venema (2014,
ms)], a precise translation can be provided between the notion of ‘intuition-of’,
i.e., intuitions of objects, and the modal operators regimenting the notion of
‘intuition-that’. I argue that intuition-that can thus be codified by an operator
in fixed point modal propositional logic, where the logic is given a dynamic-
interpretational interpretation. There is thus a formal correspondence between
the operators codifying the notion of ‘intuition-that’ and the predicates of the
second-order logic in which the predicates are interpreted so as to concern the
properties of ‘intuition-of’. This provides a precise answer to the inquiry ad-
vanced by Parsons (1993: 233) with regard to how ‘intuition-that’ relates to
‘intuition-of’.

I argue, then, that intuition-that can further be shown to entrain prop-
erty (iv), i.e. conceptual elucidation, by way of figuring as an interpretational
modality which induces the reinterpretation of domains of quantification (cf.
Fine, 2005; 2006) and the reinterpretation of the intensions and hyperintensions
of mathematical vocabulary (cf. Uzquiano, 2015). Fine (op. cit.) has counte-
nanced both postulational interpretational and postulational dynamic modal-
ities, where the latter is imperatival. I propose to combine interpretational
and dynamic modalities. Modalized rational intuition is therefore expressively
equivalent to – and can crucially serve as a guide to the interpretation of –
mathematical concepts which are formalizable in monadic first- and second-
order formal languages.

In Section 2, I countenance and motivate a modal logic, which embeds dy-
namic logic within the modal µ-calculus (see Carreiro and Venema, 2014). I
argue that the dynamic interpretational properties of modalized rational intu-
ition provide a precise means of accounting for the manner by which intuition
can yield the reinterpretation of quantifier domains and mathematical vocab-
ulary; and thus explain the role of rational intuition in entraining conceptual
elucidation. In Section 3, I examine remaining objections to the viability of
rational intuition and provide concluding remarks.

2 Modalized Rational Intuition and Conceptual
Elucidation

In this section, I will outline the logic for Gödelian intuition. The motivation for
providing a logic for rational intuition will perhaps be familiar from treatments
of the property of knowledge in formal epistemology. The analogy between
rational intuition and the property of knowledge is striking: Just as knowledge
has been argued to be a mental state (Williamson, 2001; Nagel, 2013b); to
be propositional (Stanley and Williamson, 2001); to be factive; and to possess
modal properties (Hintikka, 1962; Nozick, 1981; Fagin et al., 1995; Meyer and
van der Hoek, 1995), so rational intuition can be argued to be a property of
mental states; to be propositional, as recorded by the notion of intuition-that;
and to possess modal properties amenable to rigorous treatment in systems of
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modal logic.
I should like to suggest that the modal logic of Gödelian intuition is the

modal µ-calculus (see Carreiro and Venema, 2014).
Suppose that there is a language, L, with the following operations: ¬ (nega-

tion), ∧ (conjunction), ∨ (disjunction), ♢, □, µx (least fixed point), vx (greatest
fixed point); and the following grammar:

ϕ := T | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ψ | ♢ϕ | □ϕ | µx.ϕ | vx.ϕ

Let M be a model over the Kripke frame, ⟨W, R⟩; so, M = ⟨W, R, V⟩. W is
a non-empty set of possible worlds. R is a binary relation on W. R[w] denotes
the set {v∈W | (w,v)∈R}. V is a function assigning proposition letters, ϕ, to
subsets of W.

⟨M,w⟩ ⊩ ϕ if and only if w∈V(ϕ).
⟨M,w⟩ ⊩ ¬ϕ iff it is not the case that ⟨M,w⟩ ⊩ ϕ
⟨M,w⟩ ⊩ ϕ ∧ ψ iff ⟨M,w⟩ ⊩ ϕ and ⟨M,w⟩ ⊩ ψ
⟨M,w⟩ ⊩ ϕ ∨ ψ iff ⟨M,w⟩ ⊩ ϕ or ⟨M,w⟩ ⊩ ψ
⟨M,w⟩ ⊩ ϕ → ψ iff, if ⟨M,w⟩ ⊩ ϕ, then ⟨M,w⟩ ⊩ ψ
⟨M,w⟩ ⊩ ϕ ⇐⇒ ψ iff [⟨M,w⟩ ⊩ ϕ iff ⟨M,w⟩ ⊩ ψ]
⟨M,w⟩ ⊩ ♢ϕ iff ⟨Rw⟩(ϕ)
⟨M,w⟩ ⊩ □ϕ iff [Rw](ϕ), with
⟨Rd⟩(ϕ) := {w∈W | Rd[w] ∩ ϕ ̸= ∅}
[Rd](ϕ) := {w∈W | Rd[w] ⊆ ϕ}
⟨M,w⟩ ⊩ µx.ϕ iff

⋂
{U ⊆ W | ϕ ⊆ U} (Fontaine, 2010: 18)

⟨M,w⟩ ⊩ vx.ϕ iff
⋃

{U ⊆ W | U ⊆ ϕ} (op. cit.; Fontaine and Place, 2010),
RA :=

⋂
a∈A′

Ra.

This last clause characterizes the intersection of accessibility relations in
the modal logic for rational intuition, such that the pooled intuition can be
thought of as a type of distributive property among a set of agents. Interpreting
the property as knowledge, Baltag and Smets (2020: 3) write: ‘One can now
introduce, for each group [A’] ⊆ A, a distributed knowledge operator KA′;ϕ
as the Kripke modality [RA] ... The logic of distributed knowledge LD has as
language the set of all formulas built recursively from atomic formulas p ∈ Prop
by using negation ¬ϕ, conjunction ϕ ∧ ψ, and distributed knowledge operators
KA′ϕ (for all groups [A’] ⊆ A). The logic of distributed knowledge and common
knowledge LDC is obtained by extending the language of LD with common
knowledge modalities [O]A′ . These logics are known to be decidable and have
the finite model property. [The following comprise] complete proof systems LDC
and LD for these logics:

(I) Axioms and rules of classical propositional logic
(II) S5 axioms and rules for distributed knowledge
(K-Necessitation) From ϕ, infer KA′ϕ
(K-Distribution) KA′(ϕ →ψ) → (KA′ϕ → KA′ψ)
(Veracity) KA′ϕ → ϕ
(Pos. Introspection) KA′ϕ → KA′KA′ϕ
(Neg. Introspection) ¬KA′ϕ → KA′¬KA′ϕ
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(III) Special axiom for distributed knowledge:
(Monotonicity) KA′ϕ → KQϕ, for all A’ ⊆ Q ⊆ A’.
The notion of pooled rational intuition among a set of agents, as formalized

by the logic of distributive knowledge, might be one way formally to account
for one aspect of the communitarian conditions on practices, techniques, uses,
customs, and institutions which subserve the metasemantic determination and
normative status of linguistic contents in the work of the later Wittgenstein
(2009).

With regard to the axioms which rational intuition satisfies, K states that
□(ϕ→ψ) → (□ϕ→□ψ); i.e., if one has an intuition that ϕ entails ψ, then if one
has the intuition that ϕ then one has the intuition that ψ. 4 states that □ϕ
→ □□ϕ; i.e., if one has the intuition that ϕ, then one intuits that one has the
intuition that ϕ. Necessitation states that ⊢ϕ → ⊢□ϕ. Because intuition-that
is non-factive, we eschew in our modal system of axiom T, which states that □ϕ
→ ϕ; i.e., one has the intuition that ϕ only if ϕ is the case [cf. BonJour (1998:
4.4); Parsons (2008: 141)].

In order to account for the role of rational intuition in entraining conceptual
elucidation (cf., Gödel, 1961: 383), I propose to follow Fine (2006) and Uzquiano
(2015) in suggesting that there are dynamic interpretational modalities associ-
ated with the possibility of reinterpreting both domains of quantification (Fine,
op. cit.) and the non-logical vocabulary of mathematical languages, such as the
membership relation in ZF set theory (Uzquiano, op. cit.).11

Fine (2005) has advanced modalities which are postulational, and prescrip-
tive. He (op. cit.) suggests, further, that the postulational modality might
be characterized as a program in dynamic logic, whose operations can take the
form of ‘simple’ and ‘complex’ postulates which enjoin subjects to reinterpret
the domains. Uzquiano’s (op. cit.) generalization of the interpretational modal-
ity, in order to target the reinterpretation of the intensions of terms such as the
membership relation, can similarly be treated.

In propositional dynamic logic (PDL), there are an infinite number of di-
amonds, with the form ⟨π⟩.12 π denotes a non-deterministic program, which
in the present setting will correspond to Fine’s postulates adumbrated in the
foregoing. ⟨π⟩ϕ abbreviates ‘some execution of π from the present state entrains
a state bearing information ϕ’. The dual operator is [π]ϕ, which abbreviates ‘all
executions of π from the present state entrain a state bearing information ϕ’.
π* is a program that executes a distinct program, π, a number of times ≥ 0.
This is known as the iteration principle. PDL is similarly closed under finite and
infinite unions. This is referred to as the ‘choice’ principle: If π1 and π2 are pro-

11A variant strategy is pursued by Eagle (2008). Eagle suggests that the relation between
rational intuition and conceptual elucidation might be witnessed via associating the fundamen-
tal properties of the entities at issue with their Ramsey sentences; i.e., existentially generalized
formulas, where the theoretical terms therein are replaced by second-order variables bound
by the quantifiers. However, the proposal would have to be expanded upon, if it were to
accommodate Gödel’s claim that mathematical intuitions possess a modal profile.

12Cf. Blackburn et al., op. cit.: 12-14. A semantics and proof-theory for PDL are outlined
in Hoare (1969); Pratt (1976); Goldblatt (1987: ch. 10; 1993: ch. 7) and van Benthem (2010:
158).
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grams, then so is π1 ∪ π2. The forth condition is codified by the ‘composition’
principle: If π1 and π2 are programs, then π1;π2 is a program (intuitively: the
composed program first executes π1 then π2). The back condition is codified by
Segerberg’s induction axiom (Blackburn et al., op. cit: p. 13): All executions
of π* (at t) entrain the following conditional state: If it is the case that (i) if ϕ,
then all the executions of π (at t) yield ϕ; then (ii) if ϕ, then all executions of
π* (at t) yield ϕ. Formally, [π*](ϕ → [π]ϕ) → (ϕ → [π*]ϕ).

Crucially, the iteration principle permits π* to be interpreted as a fixed point
for the equation: x ⇐⇒ ϕ ∨ ♢x. The smallest solution to the equation will be
the least fixed point, µx.ϕ ∨ ♢x, while the largest solution to the equation, when
π* ∨ ∞♢, will be the greatest fixed point, vx.ϕ ∨ ♢x. Janin and Walukiewicz (op.
cit.) have proven that the modal µ-calculus is equivalent to the bisimulation-
invariant fragment of second-order logic.

Fine’s simple postulational dynamic modality takes, then, the form:

‘(i) Introduction. !x.C(x)’, which states the imperative to: ‘[I]ntroduce an
object x [to the domain] conforming to the condition C(x)’.

Fine’s complex dynamic-postulational modalities are the following:

(ii) ‘Composition. Where β and γ are postulates, then so is β;γ. We may read
β;γ as: do β and then do γ; and β;γ is to be executed by first executing β and
then executing γ.
(iii) Conditional. Where β is a postulate and A an indicative sentence, then A
→ β is a postulate. We may read A → β as: if A then do β. How A → β is
executed depends upon whether or not A is true: if A is true, A → β is
executed by executing β; if A is false, then A → β is executed by doing
nothing.
(iv) Universal. Where β(x) is a postulate, then so is ∀xβ(x). We may read
∀xβ(x) as: do β(x) for each x; and ∀xβ(x) is executed by simultaneously
executing each of β(x1), β(x2), β(x3), . . . , where x1, x2, x3, . . . are the values
of x (within the current domain). Similarly for the postulate ∀Fβ(F), where F
is a second-order variable.
(v) Iterative Postulates. Where β is a postulate, then so is β*. We may read
β* as: iterate β; and β* is executed by executing β, then executing β again,
and so on ad infinitum’ (op. cit.: 91-92).

Whereas Fine avails of postulational interpretational modalities in order
both to account for the notion of indefinite extensiblity and to demonstrate
how relatively unrestricted quantification can be innocuous without foundering
upon Russell’s paradox (op. cit.: 26-30), the primary interest in adopting modal
µ-logic with modal operators interpreted as dynamic interpretational modali-
ties as the logic of rational intuition is its capacity to account for dynamic
reinterpretations of mathematical vocabulary and quantifier domains; and thus
to illuminate how the precise mechanisms codifying modalized rational intuition
might be able to entrain advances in conceptual elucidation.
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The computational profile of modalized rational intuition can be outlined as
follows. In category theory, a category C is comprised of a class Ob(C) of objects
a family of arrows for each pair of objects C(A,B) (Venema, 2007: 421). An
E-coalgebra is a pair A = (A, µ), with A an object of C referred to as the carrier
of A, and µ: A → E(A) is an arrow in C, referred to as the transition map of A
(390). A coalgebraic model of deterministic automata can be thus defined (391).
An automaton is a tuple, A = ⟨A, aI , C, Ξ, F⟩, such that A is the state space of
the automaton A; aI∈A is the automaton’s initial state; C is the coding for the
automaton’s alphabet, mapping numerals to the natural numbers; Ξ: A X C →
A is a transition function, and F ⊆ A is the collection of admissible states, where
F maps A to {1,0}, such that F: A → 1 if a∈F and A → 0 if a/∈F (op. cit.).
The modal profile of coalgebraic automata can be witnessed both by construing
the transition function as a counterfactual conditional (cf. Stalnaker, 1968;
Williamson, 2007), and in virtue of the convergence of coalgebraic categories of
automata with coalgebraic models of modal logic (407). Let

♢ϕ ≡ ∇{ϕ, T},
□ϕ ≡ ∇∅ ∨ ∇ϕ (op. cit.)
J∇ΦK = {w∈W | R[w] ⊆

⋃
{JϕK | ϕ∈Φ} and ∀ϕ∈Φ, JϕK ∩ R[w] ̸= ∅} (Fontaine,

2010: 17).
Let an E-coalgebraic modal model, A = ⟨S,λ,R[.]⟩, where λ(s) is ‘the col-

lection of proposition letters true at s in S, and R[s] is the successor set of s
in S’, such that S,s ⊩ ∇Φ if and only if, for all (some) successors σ of s∈S,
[Φ,σ(s)∈E(⊩A)] (Venema, 2007: 399, 407), with E(⊩A) a relation lifting of the
satisfaction relation ⊩A ⊆ S x Φ. Let a functor, K, be such that there is a
relation K ⊆ K(A) x K(A’) (Venema, 2012: 17)). Let Z be a binary relation
s.t. Z ⊆ A x A’ and ℘Z ⊆ ℘(A) x ℘(A’), with

℘Z := {(X,X’) | ∀x∈X∃x’∈X’ with (x,x’)∈Z ∧ ∀x’∈X’∃x∈X with (x,x’)∈Z}
(op. cit.). Then, we can define the relation lifting, K, as follows:

K := {[(π,X), (π’,X’)] | π = π’ and (X,X’)∈℘Z} (op. cit.), with π a projection
mapping of K.13

Modal automata are defined over a modal one-step language (Venema, 2020:
7.2). With A being a set of propositional variables the set, Latt(X), of lattice
terms over X has the following grammar:

ϕ ::= ⊥ | ⊤ | x | ϕ ∧ ϕ | ϕ ∨ ϕ,

with x∈X and ϕ∈Latt(A) (op. cit.).
The set, 1ML(A), of modal one-step formulas over A has the following gram-

mar:

α∈A ::= ⊥ | ⊤ | ♢ϕ | □ϕ | α ∧ α | α ∨ α (op. cit.).
13The projections of a relation R, with R a relation between two sets X and Y such that R
⊆ X x Y, are

X ←−(π1) R (π2)−→ Y such that π1((x,y)) = x, and π2((x,y)) = y. See Rutten (2019:
240).
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A modal P-automaton A is a quadruple (A, Θ, aI), with A a non-empty
finite set of states, aI∈A an initial state, and the transition map

Θ: A x ℘P → 1ML(A)
maps states to modal one-step formulas, with ℘P the powerset of the set of

proposition letters, P (op. cit.: 7.3).
The philosophical significance of the foregoing is that the modal logic of

rational intuition can be interpretable in the category of modal coalgebraic
automata. The foregoing accounts for the distinctively computational nature
of the modal profile of rational intuition, while the modalities are interpreted
as dynamic-interpretational modalities which effect reinterpretations of (hyper-
)intensions and quantifier domains and thus effect conceptual elucidation.

3 Hyperintensionality
The hyperintensionality of rational intuition can be countenanced in two ways.
The first way is via truthmaker semantics, which we here present in a two-
dimensional guise. The truthmakers are interpreted as states of intuition. The
second way is via topic-sensitivity, which countenances ‘two-component’ con-
tents comprised of worlds and a mereology of topics i.e. subject matters. In
this paper, I will render two-dimensional truthmakers topic-sensitive.

Following the presentation of topic models in Berto (2018; 2019), Canavotto
et al (2020), and Berto and Hawke (2021), the diamond, box, and least and
greatest fixed point operators can be sensitive to topics, i.e. hyperintensional
subject matters. Atomic topics comprising a set of topics, T, record the hyperin-
tensional intentional content of atomic formulas, i.e. what the atomic formulas
are about at a hyperintensional level. Topic fusion is a binary operation, such
that for all x, y, z∈T, the following properties are satisfied: idempotence (x �
x = x), commutativity (x � y = y � x), and associativity [(x � y) � z = x
� (y � z)] (Berto, 2018: 5). Topic parthood is a partial order, ≤, defined as
∀x,y∈T(x ≤ y ⇐⇒ x � y = y) (op. cit.: 5-6). Atomic topics are defined
as follows: Atom(x) ⇐⇒ ¬∃y < x, with < a strict order. Topic parthood
is thus a partial ordering such that, for all x, y, z∈T, the following properties
are satisfied: reflexivity (x ≤ x), antisymmetry (x ≤ y ∧ y ≤ x → x = y), and
transitivity (x ≤ y ∧ y ≤ z → x ≤ z) (6). A topic frame can then be defined as
{W, R, T, �, t}, with t a function assigning atomic topics to atomic formulas.
For formulas, ϕ, atomic formulas, p, q, r (p1, p2, . . . ), and a set of atomic topics,
Utϕ = {p1, . . . pn}, the topic of ϕ, t(ϕ) = �Utϕ = t(p1) � . . . � t(pn) (op.
cit.). Topics are hyperintensional, though not as fine-grained as syntax. Thus
t(ϕ) = t(¬¬ϕ), tϕ = t(¬ϕ), t(ϕ ∧ ψ) = t(ϕ) � t(ψ) = t(ϕ ∨ ψ) (op. cit.).

The diamond, box, and least and greatest fixed point operators for rational
intuition can then be defined relative to topics:

⟨M,w⟩ ⊩ ♢tϕ iff ⟨Rw,t⟩(ϕ)
⟨M,w⟩ ⊩ □tϕ iff [Rw,t](ϕ), with
⟨Rw,t⟩(ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ∩ ϕ ̸= ∅ and t’(ϕ) ≤ t(ϕ)
[Rw,t](ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ⊆ ϕ and t’(ϕ) ≤ t(ϕ)

10



⟨M,w⟩ ⊩ µx.ϕt iff
⋂

{U ⊆ W | ϕt
τ [x 7→U ] ⊆ U}

⟨M,w⟩ ⊩ vx.ϕt iff
⋃

{U ⊆ W | U ⊆ ϕt
τ [x7→U ]}.

Turning to hyperintensional truthmaker semantics, by contrast, a modalized
state space model is a tuple ⟨S, P, ≤, v⟩, where S is a non-empty set of states,
P is the subspace of possible states where states s and t comprise a fusion when
s ⊔ t∈P, ≤ is a partial order, and v: Prop → (2S x 2S) assigns a bilateral
proposition ⟨p+, p−⟩ to each atom p∈Prop with p+ and p− incompatible (Fine
2017a-c; Hawke and Özgün, forthcoming: 10-11). The state space comprises
hyperintensional states of rational intuition. Exact verification (⊢) and exact
falsification (⊣) are recursively defined as follows (Fine, 2017a: 19; Hawke and
Özgün, forthcoming: 11):

s ⊢ p if s∈JpK+

(s verifies p, if s is a truthmaker for p i.e. if s is in p’s extension);
s ⊣ p if s∈JpK−

(s falsifies p, if s is a falsifier for p i.e. if s is in p’s anti-extension);
s ⊢ ¬p if s ⊣ p
(s verifies not p, if s falsifies p);
s ⊣ ¬p if s ⊢ p
(s falsifies not p, if s verifies p);
s ⊢ p ∧ q if ∃v,u, v ⊢ p, u ⊢ q, and s = v ⊔ u
(s verifies p and q, if s is the fusion of states, v and u, v verifies p, and u

verifies q);
s ⊣ p ∧ q if s ⊣ p or s ⊣ q
(s falsifies p and q, if s falsifies p or s falsifies q);
s ⊢ p ∨ q if s ⊢ p or s ⊢ q
(s verifies p or q, if s verifies p or s verifies q);
s ⊣ p ∨ q if ∃v,u, v ⊣ p, u ⊣ q, and s = v ⊔ u
(s falsifies p or q, if s is the fusion of the states v and u, v falsifies p, and u

falsifies q);
s ⊢ ∀xϕ(x) if ∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and s = s1 ⊔ . . .

⊔ sn

[s verifies ∀xϕ(x) "if it is the fusion of verifiers of its instances ϕ(a1), . . . ,
ϕ(an)" (Fine, 2017c)];

s ⊣ ∀xϕ(x) if s ⊣ ϕ(a) for some individual a in a domain of individuals (op.
cit.)

[s falsifies ∀xϕ(x) "if it falsifies one of its instances" (op. cit.)];
s ⊢ ∃xϕ(x) if s ⊢ ϕ(a) for some individual a in a domain of individuals (op.

cit.)
[s verifies ∃xϕ(x) "if it verifies one of its instances ϕ(a1), . . . , ϕ(an)" (op.

cit.)];
s ⊣ ∃xϕ(x) if ∃s1, . . . , sn, with s1 ⊣ ϕ(a1), . . . , sn ⊣ ϕ(an), and s = s1 ⊔ . . .

⊔ sn (op. cit.)
[s falsifies ∃xϕ(x) "if it is the fusion of falsifiers of its instances" (op. cit.)];
s exactly verifies p if and only if s ⊢ p if s∈JpK;
s inexactly verifies p if and only if s ▷ p if ∃s’≤S, s’ ⊢ p; and

11



s loosely verifies p if and only if, ∀v, s.t. s ⊔ v ⊢ p (35-36);
s ⊢ Aϕ if and only if for all u∈P there is a u’∈P such that u’ ⊔ u∈P and u’

⊢ ϕ, where Aϕ denotes that ϕ is a necessary truthmaker; and
s ⊣ Aϕ if and only if there is a v∈P such that for all u∈P either v ⊔ u/∈P or

u ⊣ ϕ;
s ⊢ A(Aϕ) if and only if for all u∈P there is a u’∈P such that u’ ⊔ u ∈P and

u’ ⊢ ϕ and there is a u”∈P such that u’ ⊔ u”∈P and u” ⊢ ϕ;
s ⊢ A(∀xϕ(x)) if and only if for all u∈P there is a u’∈P such that u ⊢ [u’ ⊢

∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and u’ = s1 ⊔ . . . ⊔ sn];
s ⊢ A(∃xϕ(x)) if and only if or all u∈P there is a u’∈P such that u ⊢ [u’ ⊢

ϕ(a)] for some individual a in a domain of individuals (op. cit.).
In order to account for two-dimensional indexing, we augment the model,

M, with a second state space, S*, on which we define both a new parthood
relation, ≤*, and partial function, V*, which serves to map propositions in a
domain, D, to pairs of subsets of S*, {1,0}, i.e. the verifier and falsifier of p,
such that JpK+ = 1 and JpK− = 0. Thus, M = ⟨S, S*, D, ≤, ≤*, V, V*⟩. The
two-dimensional hyperintensional profile of propositions may then be recorded
by defining the value of p relative to two parameters, c,i: c ranges over subsets
of S, and i ranges over subsets of S*.

(*) M,s∈S,s*∈S* ⊢ p iff:
(i) ∃csJpKc,c = 1 if s∈JpK+; and
(ii) ∃is∗JpKc,i = 1 if s*∈JpK+

(Distinct states, s,s*, from distinct state spaces, S,S*, provide a multi-
dimensional verification for a proposition, p, if the value of p is provided a
truthmaker by s. The value of p as verified by s determines the value of p as
verified by s*).

We say that p is hyper-rigid iff:

(**) M,s∈S,s*∈S* ⊢ p iff:
(i) ∀c’sJpKc,c′ = 1 if s∈JpK+; and
(ii) ∀is∗JpKc,i = 1 if s*∈JpK+

Epistemic (primary), subjunctive (secondary), and 2D hyperintensions can
be defined as follows, where hyperintensions are functions from states to ex-
tensions, and intensions are functions from worlds to extensions. Epistemic
two-dimensional truthmaker semantics receives substantial motivation by its
capacity (i) to model conceivability arguments involving hyperintensional meta-
physics, and (ii) to avoid the problem of mathematical omniscience entrained
by intensionalism about propositions14:

• Epistemic Hyperintension:
pri(x) = λs.JxKs,s, with s a state in the epistemic state space S

14See Author (ms1) through (msn) for further discussion.
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• Subjunctive Hyperintension:
secv@(x) = λw.JxKv@,w, with w a state in metaphysical state space W

In epistemic two-dimensional semantics, the value of a formula or term rel-
ative to a first parameter ranging over epistemic scenarios determines the value
of the formula or term relative to a second parameter ranging over metaphysi-
cally possible worlds. The dependence is recorded by 2D-intensions. Chalmers
(2006: 102) provides a conditional analysis of 2D-intensions to characterize the
dependence: "Here, in effect, a term’s subjunctive intension depends on which
epistemic possibility turns out to be actual. / This can be seen as a mapping
from scenarios to subjunctive intensions, or equivalently as a mapping from (sce-
nario, world) pairs to extensions. We can say: the two-dimensional intension
of a statement S is true at (V, W) if V verifies the claim that W satisfies S.
If [A]1 and [A]2 are canonical descriptions of V and W, we say that the two-
dimensional intension is true at (V, W) if [A]1 epistemically necessitates that
[A]2 subjunctively necessitates S. A good heuristic here is to ask "If [A]1 is the
case, then if [A]2 had been the case, would S have been the case?". Formally,
we can say that the two-dimensional intension is true at (V, W) iff ’□1([A]1 →
□2([A]2 → S))’ is true, where ’□1’ and ’□2’ express epistemic and subjunctive
necessity respectively".

• 2D-Hyperintension:
2D(x) = λsλwJxKs,w = 1.

We can then combine topics with truthmakers rather than worlds, thus coun-
tenancing doubly hyperintensional semantics, i.e. topic-sensitive epistemic two-
dimensional truthmaker semantics:

• Topic-sensitive Epistemic Hyperintension:
prit(x) = λsλt.JxKs∩t,s∩t, with s a truthmaker from an epistemic state
space.

• Topic-sensitive Subjunctive Hyperintension:
secv@∩t(x) = λwλt.JxKv@∩t,w∩t, with w a truthmaker from a metaphysical
state space.

• Topic-sensitive 2D-Hyperintension:
2D(x) = λsλwλtJxKs∩t,w∩t = 1.

We here propose a topic-sensitive truthmaker semantics for dynamic epis-
temic logic and dynamic interpretational modalities.

The language of public announcement logic has the following syntax (see
Baltag and Renne, 2016):

ϕ := p | ϕ ∧ ϕ | ¬ϕ | [a]ϕ | [ϕ!]ψ
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[a]ϕ is interpreted as the ‘the agent knows ϕ’. [ϕ!]ψ is an announcement
formula, and is intuitively interpreted as "whenever ϕ is true, ψ is true after we
eliminate all not-ϕ possibilities (and all arrows to and from these possibilities)".

Semantics for public announcement logic is as follows:
M, w ⊩ ϕ if and only if w∈V(ϕ)
M, w ⊩ ϕ ∧ ψ if and only if M, w ⊩ ϕ and M, w ⊩ ψ
M, w ⊩ ¬ϕ if and only if M, w ⊮ ϕ
M, w ⊩ [a]ϕ if and only if M, w ⊩ ϕ for each v satisfying wRav
M, w ⊩ [ϕ!]ψ if and only if M, w ⊮ ϕ or M[ϕ!], w ⊩ ψ,
where M[ϕ!] = (W[ϕ!], R[ϕ!], V[ϕ!]) is defined by
W[ϕ!] := (v∈W | M, v ⊩ ϕ) (intuitively, "retain only the worlds where ϕ is

true") (op. cit.),
xR[ϕ!]ay if and only if xRay (intuitively, "leave arrows between remaining

words unchanged"), and
v∈V[ϕ!](p) if and only if v∈V(p) (intuitively, "leave the valuation the same

at remaining worlds").
My proposal is that both announcement formulas, [ϕ!]ψ, and Fine and

Uzquiano’s dynamic modalities ought to be rendered hyperintensional, such that
the box operators are further interpreted as topic-sensitive necessary truthmak-
ers. The dynamic interpretational modalities can just take the clause for A(ϕ)
as above. For announcement formulas, [ϕ!]ψ if and only if either (i) for all s∈P
there is no s’∈P such that s’ ⊔ s ∈P and s’ ⊢ ϕ or (ii) M[ϕ!], s ⊢ ψ,

where M[ϕ!] = ⟨S[ϕ!], ≤[ϕ!], v[ϕ!]⟩ is defined by
S[ϕ!] := s’∈S | M, s’ ⊢ ϕ (intuitively, retain only states which verify ϕ),
≤[ϕ!] if and only if s≤s’ (intuitively, leave relations between remaining states

unchanged), and
v[ϕ!] if and only if v: Prop → (2S x 2S) which assigns a bilateral proposition

⟨ϕ+, ϕ−⟩ to ϕ∈Prop (intuitively, leave the valuation the same at remaining
states). States are topic-sensitive such that s in the foregoing abbreviates s ∩ t.
Thus topic-sensitive truthmakers, conceived as states of intuition, can receive
an interpretation on which they induce reinterpretations of (hyper-)intensions
and quantifier domains, and thus effect conceptual elucidation.

4 Concluding Remarks
In this note, I have endeavored to outline the modal logic of Gödel’s conception
of intuition, in order both (i) to provide a formally tractable foundation thereof,
and thus (ii) to answer the primary objection to the notion as a viable approach
to the epistemology of mathematics. I have been less concerned with providing
a defense of the general approach from the array of objections that have been
proffered in the literature. Rather, I have sought to demonstrate how the mech-
anisms of rational intuition can be formally codified and thereby placed on a
secure basis.

Among, e.g., the most notable remaining objections, Koellner (2009) has
argued that the best candidates for satisfying Gödel’s conditions on being in-
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trinsically justified are reflection principles, which state that the height of the
hierarchy of sets, V, cannot be constructed ‘from below’, because, for all true
formulas in V, the formulas will be true in a proper initial segment of the
hierarchy. Koellner’s limitative results are, then, to the effect that reflection
principles cannot exceed the use of second-order parameters without entrain-
ing inconsistency or triviality (op. cit.). Another crucial objection is that the
properties of rational intuition, as a species of cognitive phenomenology, lack
clear and principled criteria of individuation. Burgess (2014) notes, e.g., that
the role of rational intuition in alighting upon mathematical truths might be
distinct from the functions belonging to what he terms a ‘heuristic’ type of in-
tuition. The constitutive role of the latter might be to guide a mathematician’s
non-algorithmic insight as she pursues an informal proof. A similar objection
is advanced in Cappelen (2012: 3.2-3.3), who argues that – by contrast to the
properties picked out by theoretical terms such as ‘utility function’ – terms pur-
porting to designate cognitive phenomenal properties both lack paradigmatic
criteria of individuation and must thereby be a topic of disagreement, in virtue
of the breadth of variation in the roles that the notion has been intended to
satisfy. Williamson (2020) advances an argument against whether intuitions –
as understood by Boghossian (2020) and described above – are fit for purpose in
internalist epistemologies, as well as an argument against intuition’s theoretical
significance in general. As explicated by Boghossian (2020: 222), Williamson’s
argument against whether intuitions are fit for purpose for the internalist runs
as follows:

‘1. To have reason to believe in a certain type of mental state, it must either
be consciously available or reasonably postulated.

2. Intuitions are not consciously available (mere introspection does not reveal
them).

3. Hence, to have reason to believe in intuitions, they must be reasonably
postulated.

4. If a type of mental state is postulated, then it is not consciously available.
5. If a type of mental state is to serve an internalist purpose, it must be

consciously available.
6. Hence, even if we had reason to believe in intuitions, they would not be

able to serve an internalist purpose’ (op. cit.).
Our proposal above would reject premise 2 of Williamson’s argument, be-

cause intuitions are defined, following Nagel (op. cit.), as a phenomenally real
type of cognition.

Williamson’s argument against the theoretical significance of intuitions in
general is that they are ‘in danger of justifying bigoted beliefs’ (Williamson,
2020: 237). He mentions the possibility of there being e.g. Nazis with consis-
tent belief sets (238), and asks of intuitions: ‘Why should they be impervious
to all the usual distortions from ignorance and error, bigotry and bias’ (213)?
Arguably, there are not sufficient constraints on intuition to rule out that intu-
itions provide prima facie justification even for the most abhorrently unethical
belief sets.

The foregoing issues notwithstanding, I have endeavored to demonstrate that
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– as with the property of knowledge – an approach to the notion of intuition-that
which construes the notion as a modal operator, and the provision thereof with a
philosophically defensible logic, might be sufficient to counter the objection that
the very idea of rational intuition is mysterious and constitutively unconstrained.
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