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Abstract
This paper aims to provide a mathematically tractable background

against which to model both modal cognitivism and modal expressivism.
I argue that epistemic modal algebras, endowed with a hyperintensional,
topic-sensitive epistemic two-dimensional truthmaker semantics, comprise
a materially adequate fragment of the language of thought. I demonstrate,
then, how modal expressivism can be regimented by modal coalgebraic
automata, to which the above epistemic modal algebras are categorically
dual. I examine five methods for modeling the dynamics of conceptual
engineering for intensions and hyperintensions. I develop a novel topic-
sensitive truthmaker semantics for dynamic epistemic logic, and develop
a novel dynamic epistemic two-dimensional hyperintensional semantics. I
examine then the virtues unique to the modal expressivist approach here
proffered in the setting of the foundations of mathematics, by contrast
to competing approaches based upon both the inferentialist approach to
concept-individuation and the codification of speech acts via intensional
semantics.

1 Introduction
This essay endeavors to reconcile two approaches to the modal foundations of
thought: modal cognitivism and modal expressivism. The novel contribution
of the paper is its argument for a reconciliation between the two positions, by
providing a hybrid account in which both internal cognitive architecture, on the
model of epistemic possibilities, as well as modal automata, are accommodated,
while retaining what is supposed to be their unique and inconsistent roles.

The notions of cognitivism and expressivism here targeted concern the role of
internal – rather than external – factors in countenancing the nature of thought
and information (cf. Fodor, 1975; Haugeland, 1978). Possible worlds or hyper-
intensional semantics is taken then to provide the most descriptively adequate
means of countenancing the structure of the foregoing.1 Whereas the type

1Delineating cognitivism and expressivism by whether the positions avail of internal repre-
sentations is thus orthogonal to the eponymous dispute between realists and antirealists with
regard to whether mental states are truth-apt, i.e., have a representational function, rather
than being non-representational and non-factive even if real (cf. Dummett, 1959; Blackburn,
1984; Price, 2013).
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of modal cognitivism examined here assumes that thoughts and information
take exclusively the form of internal representations, the target modal expres-
sivist proposals assume that information states are exhaustively individuated by
both linguistic behavior and conditions external to the cognitive architecture of
agents.

Modal cognitivism is thus the proposal that the internal representations com-
prising the language of thought can be modeled via either a possible world or
hyperintensional semantics. Modal expressivism has, in turn, been delineated in
two ways. On the first approach, the presuppositions shared by a community of
speakers have been modeled as possibilities (cf. Kratzer, 1979; Stalnaker, 1978,
1984). Speech acts have in turn been modeled as modal operators which update
the common ground of possibilities, the semantic values of which are then de-
fined relative to an array of intensional parameters (Stalnaker, op. cit.; Veltman,
1996; Yalcin, 2007). On the second approach, the content of concepts is sup-
posed to be individuated via the ability to draw inferences. Modally expressive
normative inferences are taken then to have the same subjunctive form as that
belonging to the alethic modal profile of descriptive theoretical concepts (Bran-
dom, 2014: 211-212).2 Both the modal approach to shared information and the
speech acts which serve to update the latter, and the inferential approach to
concept-individuation, are consistent with mental states having semantic values
or truth-conditional characterizations.

So defined, the modal cognitivist and modal expressivist approaches have
been assumed to be in constitutive opposition. While the cognitivist proposal
avails of modal resources in order to model the internal representations com-
prising an abstract language of thought, the expressivist proposal targets infor-
mational properties which extend beyond the remit of internal cognitive archi-
tecture: both the form and the parameters relevant to determining the semantic
values of linguistic utterances, where the informational common ground is taken
to be reducible to possibilities; and the individuation of the contents of concepts
on the basis of inferential behavior.

In this paper, I provide a background mathematical theory, in order to ac-
count for the reconciliation of the cognitivist and expressivist proposals. I avail,
in particular, of the duality between Boolean-valued models of epistemic modal
algebras and coalgebras; i.e., labeled transition systems defined in the setting of
category theory.3 The mappings of coalgebras permit of flexible interpretations,

2Brandom writes, e.g.: "For modal expressivism tells us that modal vocabulary makes
explicit normatively significant relations of subjunctively robust material consequence and
incompatibility among claimable (hence propositional) contents in virtue of which ordinary
empirical descriptive vocabulary describes and does not merely label, discriminate, or classify.
And modal realism tells us that there are modal facts, concerning the subjunctively robust
relations of material consequence and incompatibility in virtue of which ordinary empirical
descriptive properties and facts are determinate. Together, these two claims give a definite
sense to the possibility of the correspondence of modal claimings with modal facts" (op. cit.:
2012).

3For an algebraic characterization of dynamic-epistemic logic, see Kurz and Palmigiano
(2013). Baltag (2003) develops a coalgebraic semantics for dynamic-epistemic logic, where
coalgebraic mappings are intended to record the informational dynamics of single- and multi-
agent systems. The current approach differs from the foregoing by examining the duality
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such that they are able to characterize both modal logics as well as discrete-state
automata. I argue that the correspondence between epistemic modal algebras
and modal coalgebraic automata is sufficient then for the provision of a math-
ematically tractable, modal foundation for thought and action, which wholly
captures both the modal cognitivist and modal expressivist proposals. What
will be accomplished is a model-theoretic account of the expression relation be-
tween mental states and their expression in action, via the categorical duality
between coalgebras which can model automata and epistemic modal algebras
which model thought.

In Section 2, I provide details concerning the target notion of epistemic
possibility at issue in this paper.

In Section 3, I provide the background mathematical theory, in order to
account for the reconciliation of the cognitivist and expressivist proposals.

In Section 4, I provide reasons adducing in favor of modal cognitivism, and
argue for the material adequacy of epistemic modal algebras as a fragment of
the language of thought.

In Section 5, I compare my approach with those advanced in the historical
and contemporary literature.

In Section 6, I provide new models for the dynamics of conceptual engineer-
ing of intensions and hyperintensions. The first method is via announcements
in dynamic epistemic logic. The second method is via dynamic interpretational
modalities which redefine intensions and hyperintensions which reassign topics
to atomic formulas. The third method is via dynamic hyperintensional belief
revision. The fourth method is via rendering epistemic two-dimensional seman-
tics dynamic, such that updates to the epistemic space for the first parameter
of a formula will determine an update to the metaphysical space for the second
parameter of the formula. The fifth method models updates to two-dimensional
intensions via the logic of epistemic dependency in the parameter for epistemic
space which then constrains interventions to structural equation models in the
parameter for metaphysical space.4

In Section 7, I examine reasons adducing in favor of an expressivist natu-
ral language semantics for epistemic modals, to complement the metaphysical
expressivism for epistemic modality examined in the paper.

In Section 8, modal coalgebraic automata are argued, finally, to be preferred
as models of modal expressivism, by contrast to the speech-act and inferentialist
approaches, in virtue of the advantages accruing to the model in the philosophy
of mathematics. The interest in modal coalgebraic automata consists, in partic-
ular, in the range of mathematical properties that can be recovered on the basis
thereof.5 By contrast to the above competing approaches to modal expressivism,
between static epistemic modal algebras and coalgebraic automata in a single-agent system.

4For the origins of two-dimensional intensional semantics, see Kamp, 1967; Vlach, 1973;
and Segerberg, 1973.) The distinction between epistemic and metaphysical possibilities, as
they pertain to the values of mathematical formulas, is anticipated by Gödel’s (1951: 11-
12) distinction between mathematics in its subjective and objective senses, where the former
targets all "demonstrable mathematical propositions", and the latter includes "all true math-
ematical propositions".

5See Wittgenstein (2001: IV, 4-6, 11, 30-31), for a prescient expressivist approach to the
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the mappings of modal coalgebraic automata are able both to model and explain
elementary embeddings in the category of sets; the intensions of mathematical
terms; as well as the modal profile of Ω-logical consequence.

Section 9 provides concluding remarks.

2 The Target Conception of Epistemic Possibil-
ity

Epistemically possible worlds or scenarios can be thought of, following Chalmers,
as "maximally specific ways things might be" (Chalmers, 2011: 60). One can
define epistemic possibility as a for all one knows operator following, informally,
Chalmers (op. cit.)6 and, formally, MacFarlane (2011: 164). Following Mac-
Farlane, FAK(Φ) (read: for all I know, Φ), relative to an agent α and time τ is
true at ⟨c,w,i,a⟩ iff Φ is true at ⟨c,w’,i’,a⟩, where c is a context, w is a possible
world, i is an information state comprising a set of worlds, a is an assignment
function, i’ is the set of worlds not excluded by what is known by the extension
of α at ⟨c,w,i,a⟩ at w and the time denoted by τ at ⟨c,w,i,a⟩, and w’ is some
world in i’ (op. cit.). MacFarlane writes: "[A] speaker considering ⌜FAKI

now:
Φ⌝ and ⌜Might: Φ⌝ from a particular context c should hold that an occurrence
of either at c would have the same truth value. This vindicates the intuition
that it is correct to say "It is possible that p" just when what one knows does
not exclude p" (167).

A second approach to epistemic possibility defines the notion in relation to
logical reasoning (Jago, 2009; Bjerring, 2012). Bjerring writes: "[W]e can now
spell out deep epistemic necessity and possibility by appeal to provability in n
steps of logical reasoning using the rules in R. To that end, let a proof of A
in n steps of logical reasoning be a derivation of A from a set Γ of sentences
– potentially the empty set – consisting of at most n applications of the rules
in R. Let a disproof of A in n steps of logical reasoning be a derivation of ¬A
from A – or from the set Γ of sentences such that A∈Γ – consisting of at most n
applications of the rules in R. Similarly, let a set Γ of sentences be disprovable in
n steps of logical reasoning whenever there is a derivation of A and ¬A from Γ
consisting of at most n applications of the rules in R. For simplicity, I will assume
that agents can rule out sets of sentence that contain {A,¬A} non-inferentially.
Finally, let ‘□n’ and ‘♢n’ be metalinguistic operators, where ‘♢n’ is defined as
¬□n¬. Read ‘□n’ as ‘A is provable in n steps of logical reasoning using the
rules in R’, and read ‘♢n’as ‘A is not disprovable in n steps of logical reasoning
using the rules in R’. We can then define:

(Deep-Necn) A sentence A is deeplyn epistemically necessary iff □n.
(Deep-Posn) A sentence A is deeplyn epistemically possible iff ♢n" (op. cit.).
Because I will not be concerned with the interaction between epistemic pos-

sibility and either knowledge or logical reasoning in this paper, I will define
modal profile of mathematical formulas.

6"We normally say that is epistemically possible for a subject that p, when it might be
that p for all the subject knows" (60).
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epistemic possibility in a distinct, third manner. This third way to understand
epistemic possibility is via apriority, such that ϕ is epistemically possible iff ϕ
is primary conceivable, where primary conceivability (♢) is the dual of aprior-
ity (¬□¬, i.e. not apriori ruled out). Chalmers (2002) distinguishes between
primary and secondary conceivability. Secondary conceivability is counterfac-
tual, so rejecting the metaphysical necessity of the identity between Hesperus
and Phosphorus is not secondary conceivable. Primary conceivability targets
epistemically possible worlds considered as actual rather than counterfactual
worlds. Chalmers also distinguishes between positive and negative conceivabil-
ity and prima facie and ideal conceivability. A scenario is positively conceivable
when it can be imagined with perceptual detail. A scenario is negatively con-
ceivable when nothing rules it out apriori, as above. A scenario is prima facie
conceivable when it is conceivable "on first appearances". E.g. a formula might
be prima facie conceivable if it does not lead to contradiction after a finite
amount of reasoning. A scenario is ideally conceivable if it is prima facie con-
ceivable with a justification that cannot be defeated by subsequent reasoning
(op. cit.).

Chalmers distinguishes between deep and strict epistemic possibilities. He
writes: "[W]e might say that the notion of strict epistemic possibility – ways
things might be, for all we know – is undergirded by a notion of deep epistemic
possibility – ways things might be, prior to what anyone knows. Unlike strict
epistemic possibility, deep epistemic possibility does not depend on a particular
state of knowledge, and is not obviously relative to a subject" (62). About deep
epistemic necessity, he writes: "For example, a sentence s is deeply epistemically
possible when the thought that s expresses cannot be ruled out a priori / This
idealized notion of apriority abstracts away from contingent limitations" (66).
All references to epistemic possibility in this paper will be to Chalmers’ notion
of deep epistemic possibility.

Rossi and Özgün (2023) countenance epistemic possibility hyperintension-
ally, by defining it as a strict epistemic possibility operator, i.e. a for all one
knows operator, interpreted analogously to positive instead of negative con-
ceivability (2, 6-7). Hyperintensionality is secured via topic-sensitivity, and
supposed to entail a condition on agent non-ideality which they refer to as
‘epistemic reach’. The significance of the hyperintensionality condition is, simi-
larly to this paper, that it is supposed to circumvent the problem of omniscience
based on intensionalism about propositions. They write: ‘ϕ is within S’s epis-
temic reach iff no cognitive, computational, or conceptual limitations stand in
one’s way of getting to know ϕ’ (8). Hyperintensional knowledge is defined as
being satisfied by a ‘model-theoretic condition’ (3), MOD, truth in all worlds
, and a ‘hyperintensionality condition’, HYPE, i.e. ‘grasping ϕ’s topic’, i.e. ‘a
total function defined from the object language of the underlying logic to the
set {0, 1}’ (4). Thus,

KNOW(ϕ = 1 iff MOD(ϕ) =1 and HYPE(ϕ) = 1 (4).
Hyperintensional positive epistemic possibility is defined thus,
POSS(ϕ) = 1 iff MOD(¬ϕ) = 0 and HYPE(ϕ) = 1 (8).
Rossi and Özgün apply the foregoing to Stalnaker (2006)’s conception of
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strong or full belief as subjective certainty, where “believing implies believing
that one knows”: Bϕ → BKϕ; equivalently, Bϕ → ⟨K⟩ϕ (Rossi and Özgün, op.
cit.: 10; Stalnaker, 2006: 179). Construed as a positive operator because a con-
dition on the operator is grasp of topic (17), and hyperintensionally: BELStal(ϕ)
= 1 [i.e., POSS(Kϕ) = 1] iff MOD(¬Kϕ) = 0 HYPE(¬Kϕ) = 0 (Rossi and
Özgün, op. cit.: 11-12).7 ‘Bϕ, [...] Kϕ and ⟨K⟩ϕ express that "the agent has
grasped the topic of ϕ”′(15).∗∈{K, B} (16). □ is an analyticity or apriority
modality (14). An axiom of Rossi and Özgün’s logic is a restricted closure ax-
iom, [□(ϕ → ψ) ∧ ∗ϕ ∧ ∗ψ] → ∗ψ, interpreted as ‘the agent knows/believes a
priori consequences of what they know/believe as long as they grasp the top-
ics of these consequences’ (op. cit.). Strong negative introspection, ⊢ ¬Bϕ →
K¬Bϕ, is invalid in Rossi and Özgün’s logic.

Chalmers defines epistemic possibility as (i) not being apriori ruled out (2011:
63, 66),8 i.e. as the dual of epistemic necessity i.e. apriority (65),9 and as (ii)
being true at an epistemic scenario i.e. epistemically possible world (62, 64).
He accepts a Plenitude principle according to which: "A thought T is epistemi-
cally possible iff there exists a scenario S such that S verifies T" (64). Chalmers
advances both epistemic and metaphysical constructions of epistemic scenar-
ios. In the metaphysical construction of epistemic scenarios, epistemic scenarios
are centered metaphysically possible worlds (69). Canonical descriptions of
epistemically possible worlds on the metaphysical construction are required to
be specified using only "semantically neutral" vocabulary, which is "non-twin-
earthable" by having the same extensions when worlds are considered as actual
or counterfactual (Chalmers, 2006: §3.5). In the epistemic construction of epis-
temic scenarios, they are sentence types comprising an infinitary ideal language,
M, with vocabulary restricted to epistemically invariant expressions (Chalmers,
2011: 75). He defines epistemically invariant expressions thus: "[W]hen s is
epistemically invariant, then if some possible competent utterance of s is epis-
temically necessary, all possible competent utterances of s are epistemically
necessary" (op. cit.). The sentence types in the infinitary language must also
be epistemically complete. A sentence s is epistemically complete if s is epis-
temically possible and there is no distinct sentence t such that both s ∧ t and
s ∧ ¬t are epistemically possible (76). The epistemic construction of epistemic
scenarios transforms the Plenitude principle into an Epistemic Plenitude princi-
ple according to which: "For all sentence tokens s, if s is epistemically possible,
then some epistemically complete sentence of [M] implies s" (op. cit.).

I will assume the epistemic construction of epistemic scenarios in this paper.
I concur, as well, that epistemic possibility is the dual of epistemic necessity
i.e. apriority, but argue in this paper for an epistemic two-dimensional truth-

7Thanks here to Graham Priest for suggesting that the definition of the positivity property
of the hyperintensional knowledge operator be emphasized.

8"One might also adopt a conception on which every proposition that is not logically
contradictory is deeply epistemically possible, or on which every proposition that is not ruled
out a priori is deeply epistemically possible. In this paper, I will mainly work with the latter
understanding" (63).

9"We can say that s is deeply epistemically necessary when s is a priori: that is when s
expresses actual or potential a priori knowledge" (65).
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maker semantics which avails of hyperintensional epistemic states, i.e. epistemic
truthmakers or verifiers for a proposition, which comprise a state space (Fine
2017a,b; Hawke and Özgün, forthcoming). Epistemic states are parts of epis-
temically possible worlds, rather than whole worlds themselves. Apriority is
thus redefined in the hyperintensional semantics.

My topic-sensitive epistemic two-dimensional truthmaker semantics differs
from intuitionism in logic and mathematics by being governed by a classical logic
and being committed to the reality of the classical continuum. Unlike intuition-
ism, which reduces existence to constructions or proofs, there are epistemic,
non-maximally objective, and maximally objective i.e. metaphysical verifiers
for propositions. Epistemic states which serve as verifiers for the propositions
concern the conceivability thereof, rather than constructive provability as in
intuitionism, or ideal knowability as in epistemic arithmetic (Shapiro, 1985).
Similarly to epistemic arithmetic, however, epistemic two-dimensional truth-
maker semantics can capture the phenomenon of partial constructivity, e.g. a
conditional mathematical claim which can be formalized neither in Heyting
Arithmetic nor Peano Arithmetic, because the antecedent of the conditional
concerns a property which can be effectively found, and the consequent con-
cerns a property which cannot be effectively found (see e.g. Horsten, 1998: 7).
Note as well that the the notion of conceivability and apriority here is tied to the
notion of states of information which are independent of particular subjects, in
agreement with the proposal in Edgington (2004: 6) according to which "a priori
knowledge is independent of the state of information of the subject". While be-
ing states of information, epistemic states are yet parts of deeply epistemically
possible worlds, because they are not relativized to the contingent knowledge
bases of particular epistemic agents.

Schroeder (2008) provides a protracted examination of variations on the
expression relation. Schroeder argues that expressivists ought to opt for an
assertability account of the expression relation, such that the propositions ex-
pressed by sentences are governed by assertability conditions for the sentences
rather than their truth conditions, and the expression thus doesn’t concern the
conveyance of information but rather norms on correct assertion of the sen-
tence. He writes: "Every sentence in the language is associated with conditions
in which it is semantically correct to use that sentence assertorically . . . As-
sertability conditions, so conceived, are a device of the semantic theorist. They
are not a kind of information that speakers intend to convey. So there is no
sense in which a community of speakers could get by, managing to commu-
nicate information to each other about the world, by means of assertability
conditions alone. It is only because some assertability conditions mention be-
liefs, and beliefs have contents about the world, that speakers can manage to
convey information about the world" (op. cit.: 108, 110). The present account
is not committed to Schroeder’s proposed assertability expressivism. However,
I note in Section 7 that Hawke and Steinert-Threlkeld (2021)’s assertability
semantics for epistemic modals is consistent with the model-theoretic account
of expressivism here advanced. The present account might also converge with
a view which Schroeder attributes to Gibbard (1990, 2003), which he refers
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to as indicator expressivism, according to which mental states do not express
propositional contents, but rather express ur-contents owing to an agent’s inten-
tions (§4.1). Ur-contents differ from propositional contents, by the differences
in their roles in expressing normative and non-normative contents. Schroeder
objects to the appeal to ur-contents, arguing that they play a role too similar
to that of propositional contents because they convey descriptive information,
while Gibbard simultaneously rejects the similarity (107). I think that because
ur-contents express normative contents rather than non-normative ones, they
are sufficiently distinct from propositional contents, and that it is innocuous for
them to be descriptive in part. The present model-theoretic account of expres-
sivism might thus be thought to be consistent with indicator expressivism.

In the following section, I provide models of epistemic modal algebras, coal-
gebras, and their duality, along with models for a novel topic-sensitive two-
dimensional truthmaker semantics and the properties for an abstraction prin-
ciple for (hyper-)intensions. In the sections that follow, I discuss the material
adequacy of the approach, precedents to the approach in the literature, a novel
account of conceptually engineering hyperintensions via dynamic epistemic logic
and a novel dynamic epistemic two-dimensional hyperintensional semantics, and
I close by discussing the limits of competing approaches.

3 Models
3.1 Epistemic Modal Algebra
An epistemic modal algebra is defined as U = ⟨A, 0, 1, ¬, ∩, ∪, l, m⟩, with A
a set containing 0 and 1 (Bull and Segerberg, 2001: 28).10

l1 = 1,
l(a ∩ b) = la ∩ lb
ma = ¬l¬a,
m0 = 0,
m(a ∪ b) = ma ∪ mb, and
la = ¬m¬a (op. cit.).
A valuation v on U is a function from propositional formulas to elements of

the algebra, which satisfies the following conditions:
v(¬A) = ¬v(A),
v(A ∧ B) = v(A) ∩ v(B),
v(A ∨ B) = v(A) ∪ v(B),
v(□A) = lv(A), and
v(♢A) = mv(A) (op. cit.).
A frame F = ⟨W,R⟩ consists of a set W and a binary relation R on W (op.

cit.). R[w] denotes the set {v∈W | (w,v)∈R}. A valuation V on F is a function
such that V(A,x) ∈ {1,0} for each propositional formula A and x∈W, satisfying
the following conditions:

V(¬A,x) = 1 iff V(A,x) = 0,
10Boolean algebras with operators were introduced by Jonsson and Tarski (1951, 1952).
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V(A ∧ B,x) = 1 iff V(A,x) = 1 and V(B,x) = 1,
V(A ∨ B,x) = 1 iff V(A,x) = 1 or V(B,x) = 1 (op. cit.)
We augment the foregoing epistemic modal algebra with cylindrifications,

i.e., operators on the algebra simulating the treatment of quantification, and
diagonal elements.11 By contrast to Boolean Algebras with Operators, which are
propositional, cylindric algebras define first-order logics. Intuitively, valuation
assignments for first-order variables are, in cylindric modal logics, treated as
possible worlds of the model, while existential and universal quantifiers are
replaced by, respectively, possibility and necessity operators (♢ and □) (Venema,
2013: 249). For first-order variables, {vi | i < α} with α an arbitrary, fixed
ordinal, vi = vj is replaced by a modal constant ai,j (op. cit: 250). The
following clauses are valid, then, for a model, M, of cylindric modal logic, with
Ei,j a monadic predicate and Ti for i,j < α a dyadic predicate:

M,w ⊩ p ⇐⇒ w∈V(p);
M,w ⊩ ai,j ⇐⇒ w∈Ei,j ;
M,w ⊩ ♢iψ ⇐⇒ there is a v with wTiv and M,v ⊩ ψ (252).
Cylindric frames need further to satisfy the following axioms (op. cit.: 254):
1. p → ♢ip
2. p → □i♢ip
3. ♢i♢ip → ♢ip
4. ♢i♢jp → ♢j♢ip
5. ai,i

6. ♢i(ai,j ∧ p) → □i(ai,j → p)
[Translating the diagonal element and cylindric (modal) operator into, re-

spectively, monadic and dyadic predicates and universal quantification: ∀xyz[(Tixy
∧ Ei,jy ∧ Tixz ∧ Ei,jz) → y = z] (op. cit.)]

7. ai,j ⇐⇒ ♢k(ai,k ∧ ak,j).
Finally, a cylindric modal algebra of dimension α is an algebra, A = ⟨A, +,

•, –, 0, 1, ♢i, aij⟩i,j<α, where ♢i is a unary operator which is normal (♢i0 = 0)
and additive [♢i(x + y) = ♢ix + ♢iy)] (257).

3.2 Topic-Sensitive Two-Dimensional Truthmaker Seman-
tics

We will define a topic-sensitive truthmaker semantics over the foregoing epis-
temic modal algebra. According to truthmaker semantics for epistemic logic,
a modalized state space model is a tuple ⟨S, P, ≤, v⟩, where S is a non-empty
set of states, i.e. parts of the elements in A in the foregoing epistemic modal
algebra U , P is the subspace of possible states where states s and t comprise a
fusion when s ⊔ t∈P, ≤ is a partial order, and v: Prop → (2S x 2S) assigns a
bilateral proposition ⟨p+, p−⟩ to each atom p∈Prop with p+ and p− incompati-
ble (Hawke and Özgün, 2023). Exact verification (⊢) and exact falsification (⊣)
are recursively defined as follows (Fine, 2017a: 19; Hawke and Özgün, 2023):

11See Henkin et al (op. cit.: 162-163) for the introduction of cylindric algebras, and for the
axioms governing the cylindrification operators.
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s ⊢ p if s∈JpK+

(s verifies p, if s is a truthmaker for p i.e. if s is in p’s extension);
s ⊣ p if s∈JpK−

(s falsifies p, if s is a falsifier for p i.e. if s is in p’s anti-extension);
s ⊢ ¬p if s ⊣ p
(s verifies not p, if s falsifies p);
s ⊣ ¬p if s ⊢ p
(s falsifies not p, if s verifies p);
s ⊢ p ∧ q if ∃v,u, v ⊢ p, u ⊢ q, and s = v ⊔ u
(s verifies p and q, if s is the fusion of states, v and u, v verifies p, and u

verifies q);
s ⊣ p ∧ q if s ⊣ p or s ⊣ q
(s falsifies p and q, if s falsifies p or s falsifies q);
s ⊢ p ∨ q if s ⊢ p or s ⊢ q
(s verifies p or q, if s verifies p or s verifies q);
s ⊣ p ∨ q if ∃v,u, v ⊣ p, u ⊣ q, and s = v ⊔ u
(s falsifies p or q, if s is the fusion of the states v and u, v falsifies p, and u

falsifies q);
s ⊢ ∀xϕ(x) if ∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and s = s1 ⊔ . . .

⊔ sn

[s verifies ∀xϕ(x) "if it is the fusion of verifiers of its instances ϕ(a1), . . . ,
ϕ(an)" (Fine, 2017c)];

s ⊣ ∀xϕ(x) if s ⊣ ϕ(a) for some individual a in a domain of individuals (op.
cit.)

[s falsifies ∀xϕ(x) "if it falsifies one of its instances" (op. cit.)];
s ⊢ ∃xϕ(x) if s ⊢ ϕ(a) for some individual a in a domain of individuals (op.

cit.)
[s verifies ∃xϕ(x) "if it verifies one of its instances ϕ(a1), . . . , ϕ(an)" (op.

cit.)];
s ⊣ ∃xϕ(x) if ∃s1, . . . , sn, with s1 ⊣ ϕ(a1), . . . , sn ⊣ ϕ(an), and s = s1 ⊔ . . .

⊔ sn (op. cit.)
[s falsifies ∃xϕ(x) "if it is the fusion of falsifiers of its instances" (op. cit.)];
s exactly verifies p if and only if s ⊢ p if s∈JpK;
s inexactly verifies p if and only if s ▷ p if ∃s’≤S, s’ ⊢ p; and
s loosely verifies p if and only if, ∀v, s ⊔ v ⊢ p (35-36);
s ⊢ Aϕ if and only if for all u∈P there is a u’∈P such that u’ ⊔ u∈P and u’

⊢ ϕ, where Aϕ denotes the apriority of ϕ12; and
12In epistemic two-dimensional semantics, epistemic possibility is defined as the dual of

apriority or epistemic necessity, i.e. as not being ruled-out apriori (¬□¬), and follows Chalmers
(2011: 66). Apriority receives, however, different operators depending on whether it is defined
in truthmaker semantics or possible worlds semantics. Both operators are admissible, and
the definition in terms of truthmakers is here taken to be more fundamental. The definition
of apriority here differs from that of DeRose (1991: 593-594) – who defines the epistemic
possibility of P as being true iff "(1) no member of the relevant community knows that P is
false and (2) there is no relevant way by which members of the relevant community can come
to know that P is false" – by defining epistemic possibility in terms of apriority rather than
knowledge. It differs from that of Huemer (2007: 129) – who defines the epistemic possibility
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s ⊣ Aϕ if and only if there is a v∈P such that for all u∈P either v ⊔ u/∈P or
u ⊣ ϕ13;

s ⊢ A(Aϕ) if and only if for all u∈P there is a u’∈P such that u’ ⊔ u ∈P and
u’ ⊢ ϕ and there is a u”∈P such that u’ ⊔ u”∈P and u” ⊢ ϕ;

s ⊢ A(∀xϕ(x)) if and only if for all u∈P there is a u’∈P such that u ⊢ [u’ ⊢
∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and u’ = s1 ⊔ . . . ⊔ sn];

s ⊢ A(∃xϕ(x)) if and only if or all u∈P there is a u’∈P such that u ⊢ [u’ ⊢
ϕ(a)] for some individual a in a domain of individuals (op. cit.).

In order to account for two-dimensional indexing, we augment the model,
M, with a second state space, S*, on which we define both a new parthood
relation, ≤*, and partial function, V*, which serves to map propositions in a
domain, D, to pairs of subsets of S*, {1,0}, i.e. the verifier and falsifier of p,
such that JpK+ = 1 and JpK− = 0. Thus, M = ⟨S, S*, D, ≤, ≤*, V, V*⟩. The
two-dimensional hyperintensional profile of propositions may then be recorded
by defining the value of p relative to two parameters, c,i: c ranges over subsets
of S, and i ranges over subsets of S*.

(*) M,s∈S,s*∈S* ⊢ p iff:
(i) ∃csJpKc,c = 1 if s∈JpK+; and
(ii) ∃is∗JpKc,i = 1 if s*∈JpK+

(Distinct states, s,s*, from distinct state spaces, S,S*, provide a multi-
dimensional verification for a proposition, p, if the value of p is provided a
truthmaker by s. The value of p as verified by s determines the value of p as
verified by s*).

We say that p is hyper-rigid iff:

(**) M,s∈S,s*∈S* ⊢ p iff:
(i) ∀c’sJpKc,c′ = 1 if s∈JpK+; and
(ii) ∀is∗JpKc,i = 1 if s*∈JpK+

Epistemic (primary), subjunctive (secondary), and 2D hyperintensions can
be defined as follows, where hyperintensions are functions from states to ex-
tensions, and intensions are functions from worlds to extensions. Epistemic
two-dimensional truthmaker semantics receives substantial motivation by its
of P as it not being the case that P is epistemically impossible, where P is epistemically
impossible iff P is false, the subject has justification for ¬P "adequate for dismissing P", and
the justification is "Gettier-proof" – by not availing of impossibilities, and rather availing of
the duality between apriority as epistemic necessity and epistemic possibility.

13A more natural clause for apriority in truthmaker semantics might perhaps be thought to
be ’s ⊢ A(ϕ) iff there is a t∈P such that for all t’∈P t’∈P and t’ ⊢ ϕ’, because the latter echoes
the clause for the necessity operator according to which necessity is truth at all accessible
worlds, ‘M,w ⊩ □(ϕ) iff ∀w’[If R(w,w’), then M,w’ ⊩ ϕ]’. However, appealing to a single state
that comprises a fusion with all possible states and is a necessary verifier is arguably preferable
to the claim that necessity be recorded by there being all states comprising a fusion with a
first state serving to verify a proposition, p, because the latter claim is silent about whether
the corresponding verifier of p in the fusion of all of those states is necessary. Thanks here to
xx.
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capacity (i) to model conceivability arguments involving hyperintensional meta-
physics, and (ii) to avoid the problem of mathematical omniscience entrained
by intensionalism about propositions:

• Epistemic Hyperintension:
pri(x) = λs.JxKs,s, with s a state in the state space defined over the
foregoing epistemic modal algebra, U

• Subjunctive Hyperintension:
secv@(x) = λw.JxKv@,w, with w a state in metaphysical state space W

In epistemic two-dimensional semantics, the value of a formula or term rel-
ative to a first parameter ranging over epistemic scenarios determines the value
of the formula or term relative to a second parameter ranging over metaphysi-
cally possible worlds. The dependence is recorded by 2D-intensions. Chalmers
(2006: 102) provides a conditional analysis of 2D-intensions to characterize the
dependence: "Here, in effect, a term’s subjunctive intension depends on which
epistemic possibility turns out to be actual. / This can be seen as a mapping
from scenarios to subjunctive intensions, or equivalently as a mapping from (sce-
nario, world) pairs to extensions. We can say: the two-dimensional intension
of a statement S is true at (V, W) if V verifies the claim that W satisfies S.
If [A]1 and [A]2 are canonical descriptions of V and W, we say that the two-
dimensional intension is true at (V, W) if [A]1 epistemically necessitates that
[A]2 subjunctively necessitates S. A good heuristic here is to ask "If [A]1 is the
case, then if [A]2 had been the case, would S have been the case?". Formally,
we can say that the two-dimensional intension is true at (V, W) iff ’□1([A]1 →
□2([A]2 → S))’ is true, where ’□1’ and ’□2’ express epistemic and subjunctive
necessity respectively".

• 2D-Hyperintension:
2D(x) = λsλwJxKs,w = 1.

If a formula is two-dimensional and the two parameters for the formula
range over distinct spaces, then there won’t be only one subject matter for
the formula, because total subject matters are construed as sets of verifiers
and falsifiers and there will be distinct verifiers and falsifiers relative to each
space over which each parameter ranges. This is especially clear if one space is
interpreted epistemically and another is interpreted metaphysically. Availing of
topics, i.e. subject matters, however, and assigning the same topics to each of
the states from the distinct spaces relative to which the formula gets its value
is one way of ensuring that the two-dimensional formula has a single subject
matter.

Following the presentation of topic models in Berto (2018; 2019), Canavotto
et al (2020), and Berto and Hawke (2021), atomic topics comprising a set of
topics, T, record the hyperintensional intentional content of atomic formulas,
i.e. what the atomic formulas are about at a hyperintensional level. Topic
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fusion is a binary operation, such that for all x, y, z∈T, the following properties
are satisfied: idempotence (x � x = x), commutativity (x � y = y � x), and
associativity [(x � y) � z = x � (y � z)] (Berto, 2018: 5). Topic parthood is
a partial order, ≤, defined as ∀x,y∈T(x ≤ y ⇐⇒ x � y = y) (op. cit.: 5-6).
Atomic topics are defined as follows: Atom(x) ⇐⇒ ¬∃y < x, with < a strict
order. Topic parthood is thus a partial ordering such that, for all x, y, z∈T, the
following properties are satisfied: reflexivity (x ≤ x), antisymmetry (x ≤ y ∧ y
≤ x → x = y), and transitivity (x ≤ y ∧ y ≤ z → x ≤ z) (6). A topic frame can
then be defined as {W, R, T, �, t}, with t a function assigning atomic topics to
atomic formulas. For formulas, ϕ, atomic formulas, p, q, r (p1, p2, . . . ), and a
set of atomic topics, Utϕ = {p1, . . . pn}, the topic of ϕ, t(ϕ) = �Utϕ = t(p1) �
. . . � t(pn) (op. cit.). Topics are hyperintensional, though not as fine-grained
as syntax. Thus t(ϕ) = t(¬¬ϕ), tϕ = t(¬ϕ), t(ϕ ∧ ψ) = t(ϕ) � t(ψ) = t(ϕ ∨
ψ) (op. cit.).

The diamond and box operators can then be defined relative to topics:
⟨M,w⟩ ⊩ ♢tϕ iff ⟨Rw,t⟩(ϕ)
⟨M,w⟩ ⊩ □tϕ iff [Rw,t](ϕ), with
⟨Rw,t⟩(ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ∩ ϕ ̸= ∅ and t’(ϕ) ≤ t(ϕ)
[Rw,t](ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ⊆ ϕ and t’(ϕ) ≤ t(ϕ).
We can then combine topics with truthmakers rather than worlds, thus coun-

tenancing doubly hyperintensional semantics, i.e. topic-sensitive epistemic two-
dimensional truthmaker semantics:

• Topic-Sensitive Epistemic Hyperintension:
prit(x) = λsλt.JxKs∩t,s∩t, with s a truthmaker from an epistemic state
space.

• Topic-Sensitive Subjunctive Hyperintension:
secv@∩t(x) = λwλt.JxKv@∩t,w∩t, with w a truthmaker from a metaphysical
state space.

• Topic-Sensitive 2D-Hyperintension:
2D(x) = λsλwλtJxKs∩t,w∩t = 1.

Topic-sensitive two-dimensional truthmaker semantics can be availed of to
account for the interaction between the epistemic and metaphysical profiles
of abstraction principles, set-theoretic axioms including large cardinal axioms,
rational intuition, and indefinite extensibility.

3.3 An Abstraction Principle for Epistemic (Hyper)intensions
In this section, I specify a homotopic abstraction principle for epistemic (hy-
per)intensions. Intensional isomorphism, as a jointly necessary and sufficient
condition for the identity of intensions, is first proposed in Carnap (1947: §14).
The isomorphism of two intensional structures is argued to consist in their logi-
cal, or L-, equivalence, where logical equivalence is co-extensive with the notions
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of both analyticity (§2) and synonymy (§15). Carnap writes that: ’[A]n expres-
sion in S is L-equivalent to an expression in S’ if and only if the semantical
rules of S and S’ together, without the use of any knowledge about (extra-
linguistic) facts, suffice to show that the two have the same extension’ (p. 56),
where semantical rules specify the intended interpretation of the constants and
predicates of the languages (4).14 The current approach differs from Carnap’s
by basing the equivalence relation necessary for an abstraction principle for
epistemic intensions on Voevodsky’s (2006) Univalence Axiom, which collapses
identity with isomorphism in the setting of intensional type theory.15

Topological Semantics
In the topological semantics for modal logic, a frame is comprised of a set of
points in topological space, X, and an accessibility relation, R:
F = ⟨X,R⟩;
X = (Xx)x∈X ; and
R = (Rxy)x,y∈X iff Rx ⊆ Xx x Xx, s.t. if Rxy, then ∃o⊆X, with x∈o s.t.
∀y∈o(Rxy),
where the set of points accessible from a privileged node in the space is said to
be open.16 A model defined over the frame is a tuple, M = ⟨F,V⟩, with V a
valuation function from subsets of points in F to propositonal variables taking
the values 0 or 1. Necessity is interpreted as an interiority operator on the
space:
M,x ⊩ □ϕ iff ∃o⊆X, with x∈o, such that ∀y∈o M,y ⊩ ϕ.

Homotopy Theory
Homotopy Theory countenances the following identity, inversion, and
concatenation morphisms, which are identified as continuous paths in the
topology. The formal clauses, in the remainder of this section, evince how
homotopic morphisms satisfy the properties of an equivalence relation.17

14For criticism of Carnap’s account of intensional isomorphism, based on Carnap’s (1937:
17) ’Principle of Tolerance’ to the effect that pragmatic desiderata are a permissible constraint
on one’s choice of logic, see Church (1954: 66-67).

15Note further that, by contrast to Carnap’s approach, epistemic intensions are here dis-
tinguished from linguistic intensions. For topological Boolean-valued models of epistemic set
theory – i.e., a variant of ZF with the axioms augmented by epistemic modal operators in-
terpreted as informal provability and having a background logic satisfying S4 – see Scedrov
(1985), Flagg (1985), and Goodman (1990).

16In order to ensure that the Kripke semantics matches the topological semantics, X must
further be Alexandrov; i.e., closed under arbitrary unions and intersections. Thanks here to
xx.

17The definitions and proofs at issue can be found in the Univalent Foundations Program
(op. cit.: ch. 2.0-2.1). A homotopy is a continuous mapping or path between a pair of
functions.
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Reflexivity
∀x,y:A∀p(p : x =A y) : τ(x,y,p), with A and τ designating types, ’x:A’
interpreted as ’x is a token of type A’, p • q is the concatenation of p and q,
reflx: x =A x for any x:A is a reflexivity element, and e:

∏
x:Aτ(a,a,reflα) is

a dependent function18:
∀α:A∃e(α) : τ(α,α,reflα);
p,q : (x =A y)
∃r∈e : p =(x=Ay) q
∃µ : r = (p=(x=Ay)q) s.

Symmetry
∀A∀x,y:A∃HΣ(x=y → y=x)
HΣ := p 7→ p−1, such that
∀x:A(reflx ≡ reflx

−1).

Transitivity
∀A∀x,y:A∃HT (x=y → y=z → x=z)
HT := p 7→ q 7→ p • q, such that
∀x:A[reflx • reflx ≡ reflx].

Homotopic Abstraction∏
x:AB(x) is a dependent function type. For all type families A,B, there is a

homotopy:

H := [(f ∼ g) :≡
∏

x:A(f(x) = g(x)], where∏
f :A→B [(f ∼ f) ∧ (f ∼ g → g ∼ f) ∧ (f ∼ g → g ∼ h → f ∼ h)],

such that, via Voevodsky’s (op. cit.) Univalence Axiom, for all type families
A,B:U, there is a function:
idtoeqv : (A =U B) → (A ≃ B),
which is itself an equivalence relation:
(A =U B) ≃ (A ≃ B).

Epistemic intensions take the form,
pri(x) = λc.JxKc,c,
with c an epistemically possible world.
Abstraction principles for epistemic intensions take, then, the form of func-

tion type equivalence:

• ∃f,g[f(x) = g(x)] ≃ [f(x) ≃ g(x)].19

18A dependent function is a function type ‘whose codomain type can vary depending on
the element of the domain to which the function is applied’ (Univalent Foundations Program
(op. cit.: §1.4).

19Observational type theory countenances ‘structure identity principles’ which are
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3.4 Modal Coalgebraic Automata
Modal coalgebraic automata can be thus characterized. Let a category C be
comprised of a class Ob(C) of objects and a family of arrows for each pair of
objects C(A,B) (Venema, 2007: 421). A functor from a category C to a category
D, E: C → D, is an operation mapping objects and arrows of C to objects and
arrows of D (422). An endofunctor on C is a functor, E: C → C (op. cit.).

A E-coalgebra is a pair A = (A, µ), with A an object of C referred to as the
carrier of A, and µ: A → E(A) is an arrow in C, referred to as the transition
map of A (390).

As, further, a coalgebraic model of modal logic, A can be defined as follows
(407):

For a set of formulas, Φ, let ∇Φ := □
∨

Φ ∧
∧

♢Φ, where ♢Φ denotes the
set {♢ϕ | ϕ∈Φ} (op. cit.). Then,

♢ϕ ≡ ∇{ϕ, T},
□ϕ ≡ ∇∅ ∨ ∇ϕ (op. cit.).
J∇ΦK = {w∈W | R[w] ⊆

⋃
{JϕK | ϕ∈Φ} and ∀ϕ∈Φ, JϕK ∩ R[w] ̸= ∅}

(Fontaine, 2010: 17).
Let an E-coalgebraic modal model, A = ⟨S,λ,R[.]⟩, where λ(s) is ‘the col-

lection of proposition letters true at s in S, and R[s] is the successor set of s
in S’, such that S,s ⊩ ∇Φ if and only if, for all (some) successors σ of s∈S,
[Φ,σ(s)∈E(⊩A)] (Venema, 2007: 399, 407), with E(⊩A) a relation lifting of the
satisfaction relation ⊩A ⊆ S x Φ. Let a functor, K, be such that there is a
relation K ⊆ K(A) x K(A’) (Venema, 2012: 17)). Let Z be a binary relation
s.t. Z ⊆ A x A’ and ℘Z ⊆ ℘(A) x ℘(A’), with

℘Z := {(X,X’) | ∀x∈X∃x’∈X’ with (x,x’)∈Z ∧ ∀x’∈X’∃x∈X with (x,x’)∈Z}
(op. cit.). Then, we can define the relation lifting, K, as follows:

K := {[(π,X), (π’,X’)] | π = π’ and (X,X’)∈℘Z} (op. cit.), with π a projection
mapping of K.20

The relation lifting, K, associated with the functor, K, satisfies the following
properties (Enqvist et al, 2019: 586):

• K extends K. Thus Kf = Kf for all functions f : X1 → X2;
type equivalences between identification types, and the theory is said to be observa-
tional because the type formation rules satisfy structure preserving definitional equal-
ity. Higher observational type theory holds for propositional equality. ‘The idea of
higher observational type theory is to make these and analogous structural characteri-
zations of identification types be part of their definitional inference rules, thus building
the structure identity principle right into the rewrite rules of the type theory’ (2023:
https://ncatlab.org/nlab/show/higher+observational+type+theory). Shulman (2022) argues
that higher observational type theory is one way to make the Univalence Axiom computable.
Wright (2012: 120) defines Hume’s Principle as a pair of inference rules, and higher observa-
tional type theory might be one way to make Hume’s Principle and other abstraction principles
computable.

20The projections of a relation R, with R a relation between two sets X and Y such that R
⊆ X x Y, are

X ←−(π1) R (π2)−→ Y such that π1((x,y)) = x, and π2((x,y)) = y. See Rutten (2019:
240).
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• K preserves the diagonal. Thus KIdX = IdKX for any set X and functor,
Id, where IdC maps a set S to the product S x C (583, 586);

• K is monotone. R ⊆ Q implies KR ⊆ KQ for all relations R,Q ⊆ X1 x
X2;

• K commutes with taking converse. KR◦ = (KR)◦ for all relations R ⊆
X1 x X2;

• K distributes over relation composition. K(R ; Q) = KR ; KQ, for all
relations R ⊆ X1 x X2 and Q ⊆ X2 x X3, provided that the functor K
preserves weak pullbacks (op. cit.). Venema and Vosmaer (2014: §4.2.2)
define a weak pullback as follows: "A weak pullback of two morphisms f
: X → Z and g : Y → Z with a shared codomain Z is a pair of morphisms
pX : P → X and pY : P → Y with a shared domain P, such that (1) f ◦
pX = g ◦ pY , and (2) for any other pair of morphisms qX : Q → X and
qY : Q → Y with f ◦ qX = g ◦ qY , there is a morphism q : Q → P such
that pX ◦ q = qX and pY ◦ q = qY . This pullback is "weak" because we
are not requiring q to be unique. Saying that [a set functor] T : Set →
Set preserves weak pullbacks means that if pX : P → X and pY : P →
Y form a weak pullback of f : X → Z and g : Y → Z, then TpX : TP →
TX and TpY : TP → TY form a weak pullback of Tf : TX → TZ and
Tg : TY → TZ".

A coalgebraic model of deterministic automata can finally be thus defined
(Venema, 2007: 391). An automaton is a tuple, A = ⟨A, aI , C, Ξ, F⟩, such that
A is the state space of the automaton A; aI∈A is the automaton’s initial state;
C is the coding for the automaton’s alphabet, mapping numerals to the natural
numbers; Ξ: A X C → A is a transition function, and F ⊆ A is the collection
of admissible states, where F maps A to {1,0}, such that F: A → 1 if a∈F and
A → 0 if a/∈F (op. cit.).

Modal automata are defined over a modal one-step language (Venema, 2020:
7.2). With A being a set of propositional variables the set, Latt(X), of lattice
terms over X has the following grammar:

ϕ ::= ⊥ | ⊤ | x | ϕ ∧ ϕ | ϕ ∨ ϕ,

with x∈X and ϕ∈Latt(A) (op. cit.).
The set, 1ML(A), of modal one-step formulas over A has the following gram-

mar:

α∈A ::= ⊥ | ⊤ | ⋄ϕ | □ϕ | α ∧ α | α ∨ α (op. cit.).

A modal P-automaton A is a triple, (A, Θ, aI), with A a non-empty finite
set of states, aI∈A an initial state, and the transition map

Θ: A x ℘P → 1ML(A)
maps states to modal one-step formulas (op. cit.: 7.3).
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The crux of the reconciliation between algebraic models of cognitivism and
the formal foundations of modal expressivism is based on the duality between
categories of algebras and coalgebras: A = ⟨A, α:A → E(A)⟩ is dual to the
category of algebras over the functor α (417-418). For a category C, object A,
and endofunctor E, define a new arrow, α, s.t. α:EA → A. A homomorphism,
f , can further be defined between algebras ⟨A, α⟩, and ⟨B, β⟩. Then, for the
category of algebras, the following commutative square can be defined: (i) EA
→ EB (Ef); (ii) EA → A (α); (iii) EB → B (β); and (iv) A → B (f) (cf.
Hughes, 2001: 7-8). The same commutative square holds for the category of
coalgebras, such that the latter are defined by inverting the direction of the
morphisms in both (ii) [A → EA (α)], and (iii) [B → EB (β)] (op. cit.).

The significance of the foregoing is twofold. First and foremost, the above
demonstrates how a formal correspondence can be effected between algebraic
models of cognition and coalgebraic models which provide a natural setting for
modal logics and automata. The second aspect of the philosophical significance
of modal coalgebraic automata is that – as a model of modal expressivism –
the proposal is able to countenance fundamental properties in the foundations
of mathematics, and circumvent the issues accruing to the attempt so to do by
the competing expressivist approaches.

4 Material Adequacy
The material adequacy of epistemic modal algebras as a fragment of the repre-
sentational theory of mind is witnessed by the prevalence of possible worlds and
hyperintensional semantics – the model theory for which is algebraic (cf. Black-
burn et al., 2001: ch. 5) – in cognitive psychology and artificial intelligence.

Contemporary vision science endeavors to account for the issue of underde-
termination, with regard to the transition from the receipt of retinal lightwave
spectra to the perceptual representations of physical particulars. In order to
account for the transition, the visual system is taken to be comprised of implicit
computations that are governed by the Bayesian probability calculus, and the
probability measure is interpreted as a function of likelihood (cf. Mamassian
et al, 2002; Burge, 2010; Rescorla, 2013). The visual system is presented with
a distribution of possibilities, concerning e.g. whether light is emanating from
above or emanating from below. The set of possibilities is pointed, as the vi-
sual system calculates the likelihood that one of the possibilities is actual. The
visual system’s implicit calculations are a vindication of Helmholtz’s conjecture
that visual perception is derived by types of "unconscious inductive inference"
(see Helmholtz, 1878/1977: 132, 175-176). The possibility assigned the highest
likelihood of being actual is referred to as a perceptual constancy. The desig-
nated possibility places, then, a condition on the accuracy of the attribution of
properties, such as boundedness and volume, to distal, physical objects.

In artificial intelligence, the subfield of knowledge representation draws on
epistemic logic, where belief and knowledge are interpreted as necessity oper-
ators (Meyer and van der Hoeck, 1995; Fagin et al., 1995). Possibility and
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necessity may receive other interpretations in mental terms, such as that of
conceivability and apriority (i.e. truth in all epistemic possibilities, or incon-
ceivability that not ϕ). The language of thought hypothesis maintains that
thinking occurs in a mental language with a computational syntax and a seman-
tics. The philosophical significance of cognitivism about epistemic modality is
that it construes epistemic intensions and hyperintensions as abstract, compu-
tational functions in the mind, and thus provides an explanation of the relation
that human beings bear to epistemic possibilities. Intensions and hyperinten-
sions are semantically imbued abstract functions comprising the computational
syntax of the language of thought. The functions are semantically imbued be-
cause they are defined relative to a parameter ranging over either epistemically
possible worlds or epistemic states in a state space, and extensions or semantic
values are defined for the functions relative to that parameter. Cognitivism
about epistemic modality argues that thoughts are composed of epistemic in-
tensions or hyperintensions. Cognitivism about epistemic modality provides a
metaphysical explanation or account of the ground of thoughts, arguing that
they are grounded in epistemic possibilities and either intensions or hyperinten-
sions which are themselves internal representations comprising the syntax and
semantics for a mental language. This is consistent with belief and knowledge
being countenanced in an epistemic logic for artificial intelligence, as well. Epis-
temic possibilities are constitutively related to thoughts, and figure furthermore
in the analysis of notions such as apriority and conceivability, as well as belief
and knowledge in epistemic logic for artificial intelligence.21

5 Precedent
The proposal that possible worlds semantics comprises the model for thoughts
and propositions is anticipated by Wittgenstein (1921/1974); Chalmers (2011);
and Jackson (2011). Their approaches depart, however, from the one here ex-
amined in the following respects.

Wittgenstein writes: "Logical pictures can depict the world. / A picture has
a logico-pictorial form in common with what it depicts. / A picture depicts
reality by representing a possibility of existence and non-existence of states of
affairs. / A picture represents a possible situation in logical space. / A picture
contains the possibility of the situation that it represents . . . A logical picture
of facts is a thought. / ‘A state of affairs is thinkable’: what this means is that
we can picture it to ourselves. / The totality of true thoughts is a picture of the
world. / A thought contains the possibility of the situation of which it is the
thought. What is thinkable is possible too" (op. cit.: 2.19-2.203, 3-3.02).

21I claim only that epistemic intensions and hyperintensions – i.e. functions from epistemi-
cally possible worlds or epistemic states to extensions – are computable functions comprising
a fragment of the language of thought, leaving it open whether the mind is more generally
a Turing machine. I thus hope to avoid taking a position here on whether human cognition
is generally computational in light of Gödel’s (1931) incompleteness theorems. For further
discussion, see Gödel (1951), the essays in Horsten and Welch (2016), and Koellner (2018a,b).
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Wittgenstein (op. cit.: 1-1.1) has been interpreted as endorsing an identity
theory of propositions, which does not distinguish between internal thoughts
and external propositions (cf. McDowell, 1994: 27; and Hornsby, 1997: 1-3).
How the identity theory of propositions is able to accommodate Wittgenstein’s
suggestion that a typed hierarchy of propositions can be generated – only if
the class of propositions has a general form and the sense of propositions over
which operations range is invariant by being individuated by the possibilities
figuring as their truth and falsity conditions (cf. Wittgenstein, 1979: 21/11/16,
23/11/16, 7/11/17; and Potter, 2009: 283-285 for detailed discussion) – is an
open question. Wittgenstein (1921/1974: 5.5561) writes that "Hierarchies are
and must be independent of reality", although provides no account of how the
independence can be effected.

Jackson (2008: 48-50) distinguishes between personal and subpersonal the-
ories by the role of neural science in individuating representational states (cf.
Shea, 2013, for further discussion), and argues in favor of a "personal-level im-
plicit theory" for the possible worlds semantics of mental representations.

Chalmers’ approach comes closest to the one here proffered, because he ar-
gues for a hybrid cognitivist-expressivist approach as well, according to which
epistemic intensions – i.e. functions from epistemically possible worlds to ex-
tensions – are individuated by their inferential roles (2012a: 462-463; 2021).
Chalmers endorses what he refers to as "anchored inferentialism", and in partic-
ular "acquaintance inferentialism" for intensions, according to which "there is a
limited set of primitive concepts, and all other concepts are grounded in their
inferential role with respect to these concepts", where "the primitive concepts
are acquaintance concepts" (2012a: 463, 466) and "[a]cquaintance concepts may
include phenomenal concepts and observational concepts: primitive concepts
of phenomenal properties, spatiotemporal properties, and secondary qualities"
(2010b: 11). According to Chalmers, "anchored inferential role determines a
primary intension. The relevant role can be seen as an internal (narrow or
short-armed) role, so that the content is a narrow content" (5). The infer-
ences in question are taken to be "suppositional" inferences, from a base class of
truths, PQTI – i.e. truths about physics, consciousness, and indexicality, and a
that’s all truth – determining canonical specifications of epistemically possible
worlds, to other truths (3). With regard to how suppositional inference, i.e.
"scrutability", plays a role in the definitions of intensions, Chalmers writes that
"[t]he primary intension of [a sentence] S is true at a scenario [i.e. epistemically
possible world] w iff [A] epistemically necessitates S, where [A] is a canonical
specification of w", where "[A] epistemically necessitates S iff a conditional of the
form ‘[A] → S’ is apriori" and the apriori entailment is the relation of scrutabil-
ity (2006). Chalmers (2012a: 245) is explicit about this: "The intension of a
sentence S (in a context) is true at a scenario w iff S is a priori scrutable from
[A] (in that context), where [A] is a canonical specification of w (that is, one of
the epistemically complete sentences in the equivalence class of w) . . . A Priori
Scrutability entails that this sentence S is a priori scrutable (for me) from a
canonical specification [A] of my actual scenario, where [A] is something along
the lines of PQTI". "The secondary intension of S is true at a world w iff [A]
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metaphysically necessitates S", where "[A] metaphysically necessitates S when
a subjunctive conditional of the form ‘if [A] had been the case, S would have
been the case’ is true" (op. cit.). Thus, suppositional inference, i.e. scrutability,
determines the intensions of two-dimensional semantics.

In this paper, intensions and hyperintensions are countenanced as semanti-
cally imbued functions. Intensions and hyperintensions as functions comprise
the computational syntax for the language of thought, but they are semantically
imbued because they are functions from epistemic possibilities to extensions.22

This is consistent with the inferences of scrutability playing a role in the
individuation of intensions and hyperintensions, but whereas Chalmers grounds
inferences in dispositions (2010: 10; 2021), I claim that the inferences drawn
from the canonical specifications of epistemic possibilities to arbitrary truths
are apriori computations between mental representations.

6 Conceptual Engineering of Intensions and Hy-
perintensions

How can intensions and hyperintensions be revised, given that they are here
countenanced as computable functions comprising the syntax of the language
of thought? Note that the epistemically possible worlds or hyperintensional
truthmakers, and the topics to which they are sensitive, which figure as input
to intensions and hyperintensions, can be externally individuated. If so, then
they are susceptible to updates by external sources. One might want further to
engage in the project of conceptually engineering one’s intensions and hyperin-
tensions, perhaps in order to engage in an ameliorative project relevant to using
more socially just concepts (see Haslanger, 2012, 2020 for further discussion).
Conceptual engineering of intensions and hyperintensions can then be effected
by five methods. The first is via announcements in dynamic epistemic logic.
The second method is via dynamic interpretational modalities which concern
the possible reassignment of topics to atomic formulas. The third method is via
dynamic hyperintensional belief revision. We here propose a novel truthmaker
semantics for the first and second methods.

22An anticipation of this proposal is Tichy (1969), who defines intensions as Turing ma-
chines. Adriaans (2020) provides an example of intensions modeled using a Turing machine,
as well. The expression

UjTi(x) = y
has the following components. "The universal Turing machine Uj is a context in which

the computation takes place. It can be interpreted as a possible computational world in
a modal interpretation of computational semantics. / The sequences of symbols Tix and y
are well-formed data. / The sequence Ti is a self-delimiting description of a program and
it can be interpreted as a piece of well-formed instructional data. / The sequence Tix is an
intension. The sequence y is the corresponding extension. / The expression UjTi(x) = y

states the result of the program Tix in world Uj is y. It is a true sentence".
Approaches to conceiving of intensions as computable functions have been pursued, as well,

by Muskens (2005), Moschovakis (2006), and Lappin (2014). The computational complex-
ity of algorithms for intensions has been investigated by Mostowski and Wojtyniak (2004),
Mostowski and Szymanik (2012), and Kalocinski and Godziszewski (2018).
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The language of public announcement logic has the following syntax (see
Baltag and Renne, 2016):

ϕ := p | ϕ ∧ ϕ | ¬ϕ | [a]ϕ | [ϕ!]ψ

[a]ϕ is interpreted as the ‘the agent knows ϕ’. [ϕ!]ψ is an announcement
formula, and is intuitively interpreted as "whenever ϕ is true, ψ is true after we
eliminate all not-ϕ possibilities (and all arrows to and from these possibilities)".

Semantics for public announcement logic is as follows:
M, w ⊩ ϕ if and only if w∈V(ϕ)
M, w ⊩ ϕ ∧ ψ if and only if M, w ⊩ ϕ and M, w ⊩ ψ
M, w ⊩ ¬ϕ if and only if M, w ⊮ ϕ
M, w ⊩ [a]ϕ if and only if M, w ⊩ ϕ for each v satisfying wRav
M, w ⊩ [ϕ!]ψ if and only if M, w ⊮ ϕ or M[ϕ!], w ⊩ ψ,
where M[ϕ!] = (W[ϕ!], R[ϕ!], V[ϕ!]) is defined by
W[ϕ!] := (v∈W | M, v ⊩ ϕ) (intuitively, "retain only the worlds where ϕ is

true") (op. cit.),
xR[ϕ!]ay if and only if xRay (intuitively, "leave arrows between remaining

words unchanged"), and
v∈V[ϕ!](p) if and only if v∈V(p) (intuitively, "leave the valuation the same

at remaining worlds").
Fine (2006) and Uzquiano (2015) countenance interpretational modalities.

Fine (2005)’s modality is postulational, dynamic, and prescriptive. The dynamic
modality is interpreted so as to concern the execution of computer programs
which entrain e.g. the introduction of objects into a domain which conform
to a certain property. Fine (2006) advances an interpretational modality which
concerns the possible reinterpretation of quantifier domains in accounting for in-
definite extensibility. Uzquiano’s modality is interpretational and also relevant
to capturing the property of indefinite extensibility. The modality is mathemat-
ical, and concerns the possible reinterpretations of the intensions of non-logical
vocabulary such as the membership relation, ∈.

In this paper, I propose to render Fine’s and Uzquiano’s interpretational
modalities dynamic. The dynamic interpretational modalities are interpreted
as program executions which entrain reinterpretations of intensions as well as
reinterpretations of hyperintensions, where the latter reassign topics to atomic
formulas.

My proposal is that both announcement formulas, [ϕ!]ψ, and Fine and
Uzquiano’s dynamic modalities ought to be rendered hyperintensional, such that
the box operators are further interpreted as topic-sensitive necessary truthmak-
ers. The dynamic interpretational modalities can just take the clause for A(ϕ)
as above. For announcement formulas, [ϕ!]ψ if and only if either (i) for all s∈P
there is no s’∈P such that s’ ⊔ s ∈P and s’ ⊢ ϕ or (ii) M[ϕ!], s ⊢ ψ,

where M[ϕ!] = ⟨S[ϕ!], ≤[ϕ!], v[ϕ!]⟩ is defined by
S[ϕ!] := s’∈S | M, s’ ⊢ ϕ (intuitively, retain only states which verify ϕ),
≤[ϕ!] if and only if s≤s’ (intuitively, leave relations between remaining states

unchanged), and
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v[ϕ!] if and only if v: Prop → (2S x 2S) which assigns a bilateral proposition
⟨ϕ+, ϕ−⟩ to ϕ∈Prop (intuitively, leave the valuation the same at remaining
states). States are topic-sensitive such that s in the foregoing abbreviates s ∩ t.

This would suffice for what Chalmers (2020) refers to as conceptual re-
engineering, rather than "de novo" conceptual engineering, of intensions and
hyperintensions. Conceptual re-engineering concerns the refinement or replace-
ment of extant concepts, while de novo engineering concerns the introduction of
new concepts. The third method for conceptual re-engineering contents would
be via Berto and Özgün (2021)’s logic for dynamic hyperintensional belief re-
vision, which includes a topic-sensitive upgrade operator. On this method, the
worlds and topics for formulas are both updated in cases of belief revision.

A fourth novel method can be countenanced, namely making epistemic two-
dimensional semantics dynamic. On this approach, an epistemic action such as
an announcement which updates the first, epistemic parameter for a formula
would entrain an update to a second parameter ranging over metaphysically
possible worlds or states in a state space. Using two-dimensional intensions, such
that the value of a formula relative to a first parameter ranging over epistemic
states determines the value of the formula relative to a second parameter ranging
over metaphysical states, an update (announcement, epistemic action) to the
epistemic space over which the first parameter of a formula ranges induces an
update to the metaphysical space over which a second parameter for a formula
ranges. With M* a model including a class of epistemic states, S, and a class of
metaphysical states, W, two-dimensional updates have the form:

M*, w ⊩ [ϕ!]ψ if and only if M*, w ⊮ ϕ or M*[ϕ!], w ⊩ ψ,
where M*[ϕ!] = (S[ϕ!], W[ϕ!]S[ϕ!], R[ϕ!], V[ϕ!]). W[ϕ!]S[ϕ!] records the dy-

namic two-dimensional update of metaphysical states, W, conditional on the
update of epistemic states, S, and the rest is defined as above.

A fifth method for modeling updates might be via the interventions of struc-
tural equation models which reassign values to exogenous variables which then
determines the values of endogenous variables (see e.g. Pearl, 2009).23 Using
two-dimensional intensions, the updates to the epistemic parameter of a for-
mula might be modeled using Baltag (2016)’s Logic of Epistemic Dependency.
As Baltag writes: ‘An epistemic dependency formula Kx1,...,xn

a y says that an
agent knows the value of some variable y conditional on being given the values
of the variables x1, ... , xn . . . if we use the abbreviation (w(−→x )) = (v(−→x )) for
the conjunction (w(x1)) = (v(x1)) ∧ (w(xn)) = (v(xn)), then we put

w ⊩ Kx1,...,xn
a y iff ∀v ∼a w (w(−→x )) = (v(−→x ))⇒ v(y) = w(y).

In words: an agent knows y given x1, ... , xn if the value of y is the same in
all the epistemic alternatives that agree with the actual world on the values of
x1, ... , xn. This operator has connections with Dependence Logic and allows us
to "pre-encode" the dynamics of the value-announcement operator [!x]ϕ" (136).

Epistemic updates via announcements would then, via two-dimensional in-
tensions and hyperintensions, induce an intervention in the metaphysical space

23Thanks here to xx for mentioning structural equation models with regard to a possible
example of metaphysical updates.
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in the parameter defining the second dimension of a formula, by reassigning val-
ues of exogenous variables so as to constrain the values of endogenous variables
in structural equations.

The Epistemic Church-Turing Thesis can receive a similar two-dimensional
hyperintensional formalization. Carlson (2016: 132) presents the schema for the
Epistemic Church-Turing Thesis as follows:

With □ interpreted as a knowledge operator, ‘□∀x∃y□ϕ → ∃e□∀x∃y[E(e, x,
y) ∧ ϕ],

‘where e does not occur free in ϕ and E is a fixed formula of LP A [i.e the
language of Peano Arithmetic] with free variables v0, v1, v2 such that, letting
N be the standard model of arithmetic,

‘N ⊩ E(e, x, y)[e, x, y | a, m, n]
‘iff on input m, the ath Turing machine halts and outputs n. For convenience,

we will write {t1}{t2} ≃ t3 for E(t1, t2, t3) when t1, t2, t3 are terms’. Carlson
defines (x1, . . . , xn) | (y1, . . . , y1) as denoting the ‘function which maps xi to
yi for each i = 1, . . . , n’ (op. cit.: 130). Hyperintensionally reformalized, the
Epistemic Church-Turing Thesis is then:

A∀x∃yAϕ → ∃eA∀x∃y[E(e, x, y) ∧ ϕ].
The two-dimensional hyperintensional profile of the Epistemic Church-Turing

Thesis can be countenanced by adding a topic-sensitive truthmaker from a meta-
physical state space and making its value dependent on the value of the epis-
temically necessary truthmaker A(ϕ), which has the same clause as truthmaker
apriority above. Thus:

A(w∩t)∀x∃yA(w∩t)ϕ → ∃eA(w∩t)∀x∃y[E(e, x, y) ∧ ϕ].
An application of the two-dimensional Epistemic Church-Turing Thesis is to

the foregoing dynamic epistemic two-dimensional semantics. Two-dimensional
Turing machines can be availed of in order to provide mechanistic, constructive
definitions of the epistemic actions and metaphysical interventions and their de-
pendence in the two-dimensional semantics. Aside from defining epistemic in-
tensions as computable functions, where the functions comprise the computable
syntax of the language of thought, the author records here their preference for
non-mechanistic approaches to epistemic modality, such as the interpretation
thereof as informal provability or as an inference package.

7 Expressivist Natural Language Semantics for
Epistemic Modals

I assume a dissociation between the natural language semantics for epistemic
modals and an account of mental states as epistemic possibilities or hyperin-
tensional epistemic states. However, my expressivism about epistemic modality
might be thought to adduce in favor of expressivism about epistemic modals.
Let expressivism about a domain of discourse be the claim that an utterance
from that domain expresses a mental state, rather than states a fact (Hawke and
Steinert-Threlkeld, 2021). Hawke and Steinert-Threlkeld (op. cit., 480) distin-
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guish between semantic expressivism and pragmatic expressivism. Expressivism
about epistemic modality takes the property expressed by ♢ϕ to be {s ⊆ W : s
⊮ ¬p}, where s is a state of information, W is a set of possible worlds, and s
⊩ ϕ if and only if ϕ is assertable relative to s, if and only if the state of infor-
mation is compatible with ϕ (op. cit.). Semantic expressivism incorporates a
"psychologistic semantics" according to which the value of ϕ is a partial function
from information states to truth-values, such that "the mental type expressed
by ϕ is characterized in terms of the assertability relation ⊩" and "the definition
of ⊩ is an essential part of that of J K" (481). Pragmatic expressivism rejects
the psychologistic semantics condition, and "allows for a gap between the com-
positional semantic theory and ⊩" (op. cit.). Hawke and Steinert-Threlkeld’s
semantic expressivist semantics for epistemic modals converges with the meta-
physical expressivism about epistemic modality here adumbrated, although the
proposal in this paper is also consistent with pragmatic expressivist accounts of
epistemic modals which reject psychologistic semantics.

Another development which is worth mentioning is Holliday and Mandelk-
ern (forthcoming)’s orthologic and possibility semantics for epistemic modals,
which is non-classical by rejecting the laws of distributivity, disjunctive syllo-
gism, and orthomodularity, while negation is defined as orthocomplementation
rather than psuedocomplentation such that the inference from ‘p ∧ ♢¬p ⊢⊥’ to
‘♢¬p ⊢ ¬p’ does not hold. An issue for Holliday and Mandelkern’s approach is
that there might an inconsistency in the semantics for their logic. Possibility
semantics rejects e.g. a primeness condition according to which a world x makes
disjunction true iff it makes the disjuncts true. Rather, in possibility semantics,
x makes a disjunction true just in case for every refinement x’ ⊑ x, there is a
further refinement x” ⊑ x’ which makes one of the disjuncts true (see Holliday,
2021, for further discussion). Holliday (p.c.) notes that possibility semantics is
consistent with distribution over disjunction, such that ♢(ϕ ∨ ψ) → ♢(ϕ) and
♢(ψ). There might however be an inconsistency between accepting distribution
over disjunction and the rejection of the primeness condition. A second issue
is that possibility semantics appears to be unnatural, by relying on refinements
of refinements to make one of the disjuncts of a disjunction true, instead of one
instance of refinements making one of the disjuncts true.

In the the remainder of the paper, I endeavor to demonstrate the advan-
tages accruing to the present approach to countenancing modal expressivism
via modal coalgebraic automata, via a comparison of the theoretical strength of
the proposal when applied to characterizing the fundamental properties of the
foundations of mathematics, by contrast to the competing approaches to modal
expressivism and the limits of their applications thereto.
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8 Modal Expressivism and the Philosophy of
Mathematics

When modal expressivism is modeled via speech acts on a common ground of
presuppositions, the application thereof to the foundations of mathematics is
limited by the manner in which necessary propositions are characterized.

Because for example a proposition is taken, according to the proposal, to be
identical to a set of possible worlds, all necessarily true mathematical formulas
can only express a single proposition; namely, the set of all possible worlds (cf.
Stalnaker, 1978; 2003: 51). Thus, although distinct set-forming operations will
be codified by distinct axioms of a language of set theory, the axioms will be
assumed to express the same proposition: The axiom of Pairing in set theory
– which states that a unique set can be formed by combining an element from
each of two extant sets: ∀x,y.∃z.∀w.w∈z ⇐⇒ w = x ∨ w = y – will be supposed
to express the same proposition as the Power Set axiom – which states that a
set can be formed by taking the set of all subsets of an extant set: ∀x.∃y.∀z.z∈y
⇐⇒ z ⊆ x. However, that distinct operations – i.e., the formation of a set
by selecting elements from two extant sets, by contrast to forming a set by
collecting all of the subsets of a single extant set – are characterized by the
different axioms is readily apparent. As Williamson (2016: 244) writes: "...if
one follows Robert Stalnaker in treating a proposition as the set of (metaphys-
ically) possible worlds at which it is true, then all true mathematical formulas
literally express the same proposition, the set of all possible worlds, since all
true mathematical formulas literally express necessary truths. It is therefore
trivial that if one true mathematical proposition is absolutely provable, they all
are. Indeed, if you already know one true mathematical proposition (that 2 +
2 = 4, for example), you thereby already know them all. Stalnaker suggests
that what mathematicians really learn are in effect new contingent truths about
which mathematical formulas we use to express the one necessary truth, but
his view faces grave internal problems, and the conception of the content of
mathematical knowledge as contingent and metalinguistic is in any case grossly
implausible."

Thomasson (2007) argues for a version of modal expressivism which she
refers to as ‘modal normativism’, according to which alethic modalities are to
be replaced by deontic modalities taking the form of object-language, modal in-
dicative conditionals (op. cit.: 136, 138, 141). The modal indicative conditionals
serve to express constitutive rules pertaining, e.g., to ontological dependencies
which state that: "Necessarily, if an entity satisfying a property exists then a
distinct entity satisfying a property exists" (143-144), and generalizes to other
expressions, such as analytic conditionals which state, e.g., that: "Necessarily, if
an entity satisfies a property, such as being a bachelor, then the entity satisfies
a distinct yet co-extensive property, such as being unmarried" (148).

A virtue of Thomasson’s interpretation of modal indicative conditionals as
expressing both analytic and ontological dependencies is that it would appear
to converge with the ‘If-thenist’ proposal in the philosophy of mathematics. ‘If-
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thenism’ is an approach according to which, if an axiomatized mathematical
language is consistent, then (i) one can either bear epistemic attitudes, such as
fictive acceptance, toward the target system (cf. Leng, 2010: 180) or (ii) the
system (possibly) exists [cf. Russell (op. cit.: §1); Hilbert (1899/1980: 39);
Menger (1930/1979: 57); Putnam (1967); Shapiro (2000: 95); Chihara (2004:
Ch. 10); and Awodey (2004: 60-61)].24 However, there are at least two issues for
the modal normativist approach in the setting of the philosophy of mathematics.

One general issue for the proposal is that the treatment of quantification
remains unaddressed, given that there are translations from modal operators,
such as figure in modal indicatives, into existential and universal quantifiers.25

A second issue for the normative indicative conditional approach is that
Thomasson’s normative modalities are unimodal. They are thus not sufficiently
fine-grained to capture distinctions such as Gödel’s (op. cit.) between math-
ematics in its subjective and objective senses.26 Further distinctions between
the types of mathematical modality can be delineated which permit epistemic
types of mathematical possibility to serve as a guide as to whether a formula
is metaphysically mathematically possible.27 The convergence between epis-
temic and metaphysical mathematical modalities can be countenanced via a
two-dimensional semantics. Thus, by eschewing alethic modalities for unimodal,
normative indicatives, the normative modalities are unable to account for the
relation between the alethic interpretation of modality and, e.g., logical math-
ematical modalities treated as consistency operators on languages (cf. Field,
1989: 249-250, 257-260; Leng: 2007; 2010: 258), or for the convergence be-
tween epistemic possibilities concerning decidability and their bearing on the
metaphysical modal status of undecidable sentences.

24See Leng (2009), for further discussion. Field (1980/2016: 11-21; 1989: 54-65, 240-
241) argues in favor of the stronger notion of conservativeness, according to which consistent
mathematical theories must be satisfiable by internally consistent theories of physics. More
generally, for a class of assertions, A, comprising a theory of fundamental physics, and a class of
sentences comprising a mathematical language, M, any sentences derivable from A+M ought to
be derivable from A alone. Another variation on the ‘If-thenist’ proposal is witnessed in Field
(2001: 333-338), who argues that the existence of consistent forcing extensions of set-theoretic
ground models adduces in favor of there being a set-theoretic pluriverse, and thus entrains
indeterminacy in the truth-values of undecidable sentences. For a similar proposal, which
emphasizes the epistemic role of examining how instances of undecidable sentences obtain
and fail so to do relative to forcing extensions in the set-theoretic pluriverse, see Hamkins
(2012: §7).

25The formal correspondence between modalities and quantifiers is anticipated by Aristotle
(De Interpretatione, 9; De Caelo, I.12), who defines the metaphysical necessity of a proposition
as its being true at all times. For detailed discussion of Aristotle’s theory, see Waterlow
(1982). For a contemporary account of the multi-modal logic for metaphysical and temporal
modalities, see Dorr and Goodman (2019). For contemporary accounts of the correspondence
between modal operators and quantifiers see von Wright (1952/1957); Montague (1960/1974:
75); Lewis (1975/1998; 1981/1998); Kratzer (op. cit.; 1981/2012); and Kuhn (1980). For the
history of modal logic, see Goldblatt (2006).

26See footnote 4 for the relevant definitions.
27A precedent is Reinhardt (1974: 199-200), who proposes the use of imaginary sets, classes,

and projections, as "imaginary experiments" (204), in order to ascertain the consequences of
accepting new axioms for ZF which might account for the reduction of the incompleteness of
Orey sentences. See Maddy (1988,b), for critical discussion.
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According, finally, to Brandom’s (op. cit.) modal expressivist approach,
terms are individuated by their rules of inference, where the rules are taken
to have a modal profile translatable into the counterfactual forms taken by
the transition functions of automata (cf. Brandom, 2008: 142). In order to
countenance the metasemantic truth-conditions for the object-level, pragmatic
abilities captured by the automata’s counterfactual transition states, Brandom
augments a first-order language comprised of a stock of atomic formulas with an
incompatibility function (141). An incompatibility function, I, is defined as the
incoherence of the union of two sentences, where incoherence is a generalization
of the notion of inconsistency to nonlogical vocabulary.

x ∪ y ∈ Inc ⇐⇒ x ∈ I(y) (141-142).
Incompatibility is supposed to be a modal notion, such that the union of

the two sentences is incompossible (126). A sentence, β is an incompatibility-
consequence, ⊩I , of a sentence, α, iff there is no sequence of sentences, <γ1, . . . ,
γn>, such that it can be the case that α ⊩I <γ1, . . . , γn>, yet not be the case
that β ⊩I <γ1, . . . , γn> (125). To be incompatible with a necessary formula
is to be compatible with everything that does not entail the formula (129-130).
Dually, to be incompatible with a possible formula is to be incompatible with
everything compatible with something compatible with the formula (op. cit.).

There are at least two, general issues for the application of Brandom’s modal
expressivism to the foundations of mathematics.

The first issue is that the mathematical vocabulary – e.g., the set-membership
relation, ∈ – is axiomatically defined. I.e., the membership relation is defined by,
inter alia, the Pairing and Power Set axioms of set-theoretic languages. Thus,
mathematical terms have their extensions individuated by the axioms of the lan-
guage, rather than via a set of inference rules that can be specified in the absence
of the mention of truth values. Even, furthermore, if one were to avail of modal
notions in order to countenance the intensions of the mathematical vocabulary
at issue – i.e., functions from terms in intensional contexts to their extensions
– the modal profile of the intensions is orthogonal to the properties encoded by
the incompatibility function. Fine (2006) avails, e.g., of interpretational modali-
ties in order to countenance the possibility of reinterpreting quanitifier domains,
and of thus accounting for variance in the cardinality of the domains of quan-
tifier expressions. The interpretational possibilities are specified as operational
conditions on tracking increases in the size of the cardinality of the universe.
Uzquiano (2015) argues, as mentioned, that it is always possible to reinterpret
the intensions of non-logical vocabulary, as one augments one’s language with
stronger axioms of infinity and climbs thereby farther up the cumulative hierar-
chy of sets. The reinterpretations of, e.g., the concept of set are effected by the
addition of new large cardinal axioms, which stipulate the existence of larger
inaccessible cardinals. However, it is unclear how the incompatibility function –
i.e., a modal operator defined via Boolean negation and a generalized condition
on inconsistency – might similarly be able to model the intensions pertaining to
the ontological expansion of the cumulative hierarchy.

The second issue is that Brandom’s inferential expressivist semantics is not
compositional (Brandom, 2008: 135-136). While the formulas of the semantics
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are recursively formed – because the decomposition of complex formulas into
atomic formulas is decidable28 – formulas in the language are not compositional,
because they fail to satisfy the subformula property to the effect that the value
of a logically complex formula is calculated as a function of the values of the
component logical connectives applied to subformulas therein (op. cit.).29

By contrast to the limits of Brandom’s approach to modal expressivism,
modal coalgebraic automata can circumvent both of the issues mentioned in the
foregoing. In response to the first issue, concerning the axiomatic individuation
and intensional profiles of mathematical terms, mappings of modal coalgebraic
automata can be interpreted in order to provide a precise delineation of the
intensions of the target vocabulary. In response, finally, to the second of the
above issues, the values taken by modal coalgebraic automata are both decidable
and computationally feasible, while the duality of coalgebras to Boolean-valued
models of modal algebras ensures that the formulas therein retain their compo-
sitionality. The decidability of coalgebraic automata can further be witnessed
by the role of modal coalgebras in countenancing the modal profile of Ω-logical
consequence, where – given a proper class of Woodin cardinals – the values
of mathematical formulas can remain invariant throughout extensions of the
ground models comprising the set-theoretic universe (cf. Woodin, 2010; Au-
thor, 2019). The individuation of large cardinals can further be characterized
by the functors of modal coalgebras, when the latter are interpreted so as to
countenance the elementary embeddings constitutive of large cardinal axioms
in the category of sets (Author, 2023).

9 Concluding Remarks
In this essay, I have endeavored to account for a mathematically tractable back-
ground against which to model both modal cognitivism and modal expressivism.
I availed, to that end, of the duality between epistemic modal algebras and
modal coalgebraic automata. Epistemic modal algebras were shown to com-
prise a materially adequate fragment of the language of thought, given that
models thereof figure in both cognitive psychology and artificial intelligence.
With regard to conceptual engineering of intensions and hyperintensions, I in-
troduced a novel topic-sensitive truthmaker semantics for dynamic epistemic
logic as well as a novel dynamic epistemic two-dimensional hyperintensional
semantics. It was then shown how the approach to modal expressivism here
proffered, as regimented by the modal coalgebraic automata to which the epis-
temic modal algebras are dual, avoids the pitfalls attending to the competing
modal expressivist approaches based upon both the inferentialist approach to

28Let a decision problem be a propositional function which is feasibly decidable, if it is a
member of the polynomial time complexity class; i.e., if it can be calculated as a polynomial
function of the size of the formula’s input [see Dean (2015) for further discussion].

29Note that Incurvati and Schlöder (2020) advance a multilateral inferential expressivist
semantics for epistemic modality which satisfies the subformula property. (Thanks here to
xx.) Incurvati and Schlöder (2021) extend the semantics to normative vocabulary, but it is
an open question whether their semantics is adequate for mathematical vocabulary as well.
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concept-individuation and the approach to codifying the speech acts in natural
language via intensional semantics. The present modal expressivist approach
was shown, e.g., to avoid the limits of the foregoing in the philosophy of math-
ematics, as they concerned the status of necessary propositions; the inapplica-
bility of inferentialist-individuation to mathematical vocabulary; and failures of
compositionality.
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