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Number is a major object in mathematics. Mathematics is a discipline which 
studies the properties of a number. The object is expressible by mathematical 
language, which has been devised more rigorously than natural language. However, 
the language is not thoroughly free from natural language. Countability of natural 
number is also originated from natural language. It is necessary to understand 
how language leads a number into mathematics, its’ main playground.  

Representation of number
 A mathematical object[1], number, has various properties which are not fully 
understood yet. What has been a principal role in the invention of real number as 
an entity? It is a line, the geometric object, therefore it is probable that geometric 
properties are incorporated into the entity unwittingly. How this geometric object is 
interpreted with? It is a number. 
First of all, it is decisive to understand how the points on line are coordinated. 
Suppose a straight line, which is homogeneous, infinitely and infinitesimally 
continuous. Pick an arbitrary point position around center and sign it. Define a 
unit interval and sign the point with the interval to the right direction. Apply the 
same procedure to the left direction. Label the points on the right direction 
successively with natural number. Apply the same procedure but prefixing an 
additional minus symbol to the label of points to the left direction. Important 
positions on the line are determined. The positions will be called integer later( ). 
The unit interval should be divided decimally for further representations. Sign the 
divided positions and label them successively with the number ai∈{0, 1, 2, 3, 4, 5, 
6, 7, 8, 9} for a time. The same procedures with sub-intervals can be repeated 
countless as long as infinitesimally continuous line is assumed. The more there 
are sub-intervals, the more it becomes precise. The positions determined by this 
can be represented systematically with a decimal point notation. 
It is expedient to recognize this procedure when they are represented 
schematically. Every interval for further representation is divided decimally like a 

     an€   �   ‚   ƒ   „   …   †   ‡   ̂    ‰   an′€,

where each sign represents 
  an€: a0.a1a2a3∙∙∙an000∙∙∙   
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    �: a0.a1a2a3∙∙∙an100∙∙∙   

    ‚: a0.a1a2a3∙∙∙an200∙∙∙   

    ƒ: a0.a1a2a3∙∙∙an300∙∙∙   

∙
∙
∙

   ‡: a0.a1a2a3∙∙∙an700∙∙∙   

   ˆ: a0.a1a2a3∙∙∙an800∙∙∙   

   ‰: a0.a1a2a3∙∙∙an900∙∙∙   

an′€: a0.a1a2a3∙∙∙an
′000∙∙∙   

respectively. Each ai∈{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}[2-4], and an
′ is a successor of an 

in the set.
Now, the coordination of a line with decimal notation is completed. It’s crucial to 
acknowledge the fact that only special points on the line are designated. There are 
only nine positions which are chosen, signed, and labelled, at each interval. 
Therefore it completes a decimal system with already designated one. The 
sub-intervals, however small, have an identical property due to their inductive 
structure. They are only insensible to our naked eye but the mechanisms are 
identical. Infinity in mathematics is defined by induction[4]. 

The line is classified into the coordinated positions and the infinitesimal intervals 
divided by the positions. The intervals actually occupy the line. The coordinated 
positions are fortunate ones as they are representable by decimal notation. The 
positions on the infinitesimal interval are not representable but they are more 
general ones from the perspective of points on line. The uncoordinated positions 
don’t have any special property with regard to decimal system. Instead, the 
coordinated positions are fortunate and special ones. The special positions are 
reference to their neighbors when analyzing a line. 

It is misleading to jump to the conclusion that a line is filled with coordinated 
positions as they are represented infinitely onto the infinitesimally continuous 
interval. It seems counter intuitive at first sight. A point is geometric object 
without magnitude. The point positions cannot fill the line, instead it is filled with 
infinitesimally continuous intervals. Filling is possible only when a magnitude is 
premised. A line is not filled with points but with intervals of certain magnitude. 
However, the line is not complete when a point is missing. It is legitimate to say 
that the line is complete when the coordinated positions and uncoordinated 
intervals are considered together. 

There is a matter of nomenclature on this classification. It’s related to the 



organization of number. How the numbers originated from a line are organized? 
We expect real number( ) to complete the continuous line without any missing 
element.[5] The coordinated positions and the positions on the intervals are called 
rational and irrational, respectively. Finally, they have formal and sophisticated 
names. There is a subtle difference between the definition and our intuition. There 
is no hole between any two rationals which are located close infinitesimally. 
Actually, it is an infinitesimal interval with certain magnitude. It is a misleading 
intuition that all real numbers are representable with decimal point notation. 

The classification of number into rational and irrational is determined by the 
possibility of representation. There are well known irrationals such as  , π, and 
e [6]. They don’t have definite value when expressed decimally. Only their 
approximate values are expressed. Rigorously, they are unrepresentable such that 
expressed by their approximate values. Our expectation that the definite value of 
irrational has not yet known is wrong. It is indefinite by definition. That the 
definite value has not yet known is one thing, but that it is indefinite by definition 
is another. Some indefinite numbers may have definite value with the help of 
technology. They will be classified into rational when it happens. 
In this explanation, the definiteness and indefiniteness of number confines to 
decimal representation. It means that irrational may have definite value with a 
different and specially devised representation. 

A number on line was determined by coordination. However, it must be reminded 
that it is when you confront a difficulty in understanding the number more deeply. 
What means continuity of real number? Does it continuous and how? They need to 
be answered rigorously. Real number was originated from a line but it is. The line 
is classified into the coordinated positions and the uncoordinated intervals. It is 
the line itself continuous but also real number when it is defined to include the 
whole line. It’s important to recognize a priori one. Real number is continuous by 
its’ definition to complete a line. 

It is countable when you identify an object from its’ surrounding. You cannot 
count definitely when something is overlapped such that it is difficult to determine  
its’ distinctiveness. It is countable when an object has distinctive features such 
that it is possible to represent. How does this principle is applied to a number on 
line? It is feasible by coordinating a line. Only the positions which fit to the rule 
to pick a point are chosen. The rule is decimal division. 
There are countless points on the interval, however, only a special point is 
chosen. It is special and distinctive with regard to the rule of decimal choice. The 
choice itself means a speciality by rule. The chosen point is surrounded by 
unchosen points, which are unrepresentable as they do not fit to the rule. The 



choice premises that there are points which cannot be chosen. The chosen point 
is countable due to its’ distinctiveness by rule, but unchosen points are not so. It 
is a matter of choice from general ones. 
The countable one and the uncountable ones are called rational and irrational, 
respectively. Now, it’s back to mathematics. They correspond to a coordinated 
point and its’ surroundings. Rational is representable with decimal notation such 
that it is definite and countable, but irrationals are not so. In a sense, decimal 
notation itself is a definition of rational. 

There is no rule to represent all irrationals simultaneously with a unique notation, 
not to mention the decimal notation. It does not mean that irrational is absolutely 
not representable. The well known irrationals such as   [7], π [8], and e [6] 
have their unique representations to make them definite, respectively. The rule to 
make π definite does not guarantee that it also makes e definite. If you deploy 
them with power series, you will find a special rule of choice when a interval is 
divided and determined. You will find a clue on the relativity of a definite and 
representable point on line. As a point on line, irrational is not special one but 
the rule to make it definite is peculiar. 

Rationals are representable and countable because they fit to the rule but 
irrationals are the opposite case. It is a matter of representation. Once a rule is 
chosen, then a interval is classified into the representable positions and their 
surroundings. When you represent a interval with a peculiar rule, you will 
confront the same problem with decimal representation. Generally speaking, the 
difference between rationals and irrationals is the possibility of representation of a 
point on line by the rule of notation given. 
The power series representations below will provide you an insight into this 
matter.  
 
There are many different representations on the same reference. Each natural 
number(n) also be represented differently depending on circumstances. Each has a 
usage and merit.  The ordinary one is  

   ,
 where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} [2-4]. It’s simple and most widely used in  
textbook. 
It is possible to represent by power series

  
  

∞


    

  
  

  ∙∙∙ ,

  where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. It is not as simple as ordinary one but it 
provides an insight into its’ history. It includes an algebraic symbol and makes 
each decimal place definite. The ordering of natural number by indexｉis identical 



to the position of number on line[3-4]. 

Natural number can also be represented schematically,

∙∙∙00000000000.00000000000∙∙∙
∙∙∙00000000001.00000000000∙∙∙
∙∙∙00000000002.00000000000∙∙∙
∙∙∙00000000003.00000000000∙∙∙

∙
∙
∙
∙

∙∙∙00000000010.00000000000∙∙∙
∙
∙
∙

where all decimal places are designated. It is intuitive when understanding a 
number on line. 

Decimal point also be represented similarly because natural number is 
meta-language on this representation. The interval between zero and one is 

  ,
where a0 ∈ {0}, and ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The power series  is

   
  

∞


     


 


 


 ∙∙∙ ,

where a0 ∈ {0}, and ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.   It is insightful into the 
decimal point notation. At each indexｉ, a interval is divided decimally and it is 
divided again for further representation. It repeats infinitely into the infinitesimally 
continuous interval. Ordering of decimal point by indexｉis not identical to the 
position of number on line. This is different from the power series of natural 
number.

They are also schematically represented by
∙∙∙00000000000.00000000000∙∙∙
∙∙∙00000000000.10000000000∙∙∙
∙∙∙00000000000.20000000000∙∙∙
∙∙∙00000000000.30000000000∙∙∙

∙



∙
∙
∙

∙∙∙00000000000.01000000000∙∙∙
∙
∙
∙

where all places are designated. Each place includes only ai ∈ {0, 1, 2, 3, 4, 5, 6, 
7, 8, 9} by decimal notation. 
 
Real number on line is represented by combing the notation of natural number 
and decimal point. 

        
  

∞


 

  

∞


 

     
 

  ∙∙∙

   
   

     ∙∙∙

, where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, b0 ∈ {0}, and bi ∈ {0, 1, 2, 3, 4, 5, 6, 7, 
8, 9}.

When a unit interval is divided ternary, the sub-interval point representation is 
  , 

or 

  
  

∞




   


 


 


 ∙∙∙

where a0 ∈ {0}, ai ∈ {0, 1, 2}, respectively. Number 3 is used instead of 10 of 
ternary system for notational convenience. Rational number 1/3 becomes more 
definite 0.1 with this representation instead of 0.333∙∙∙ in decimal point 
representation. 

Irrational indefinite by decimal system can be represented definitely by a unique 
method. The well known irrational e is indefinite with decimal system, 

e= 2.718281...
, but it is represented definitely with power series

  
  

∞




   


 


 


 ∙∙∙ [6].

Here is a trick to make the number definite for sub-interval point representation. 
The following power series is a specially devised one for a definite expression of e. 

It is 



  
  

∞




 


 


 


 


 ∙∙∙

, where a0 ∈ {0}, a1 ∈ {0, 1}, a2 ∈ {0, 1, 2}, a3 ∈ {0, 1, 2, 3}, ...., respectively.
The division of unit interval to sub-interval is determined by factorial with an 

inductive property.
With this representation, the irrational e becomes definite

e = 2 + r,
where r= 0.111∙∙∙∙. 

 Irrational indefinite by the definition of decimal system is not always indefinite 
when it is represented by other unique method. It is possible to represent  
definitely with a unique one if it does not matter on the unification of 
representations. There is only a matter of conversion between different 
representations. 

The explanation above must be confined to a number on line. A number on 
different references[9-11] may have unexpected properties. A substantial properties 
of the number lie in what it refers. The expressions ‘fortunate’, ‘special’, and 
‘general’ are mentioned from a perspective of a point on line. They should not be 
confused with the intuition you already have. 

Fallacy in naive set theory
Russell’s paradox[4] is a legitimate example against the way Georg Cantor defines a 
terminology. In his use of word, there is a inherent contradiction or else  a 
misleading interpretation due to the ambiguity of definition. These necessarily 
result in paradox which again nullifies his arguments. The diagonal argument[12] 
and Cantor’s theorem[4] are good examples. Consistent use of word is important to 
make an argument logical. It should be faithful to the definition and axioms on 
which it is based. 

Infinity in mathematics becomes definite by induction. Rigorous definition of 
natural number is also based on this. Peano’s axioms[13] are set-theoretic version 
of natural number( ). 

1) ø∈ .
2) For any n∈ there is one and only one successor n′∈ .
3) If m, n∈   and if m′=n′, then m=n. 
4) If n∈ then n′≠ø
5) Let S⊂ . Suppose n∈S. If n∈S implies n′∈S, then S= .

According to Cantor’s diagonal argument, there is a number which cannot be 
corresponded to natural number. The number differs in diagonal places of 



enumerable numbers which are mapped bijectively to natural number. Therefore, 
Cantor concluded that the cardinality of real number is greater than natural 
number. It is an illogical jump. 
The representations of natural number and decimal point are inversely related. It 
is clear from the schematic representations of each number, which are presented 
in previous sections. They are identical in that there are only decimal choices in 
each places of representation. 
When diagonal argument is applied to natural number, it confronts a paradox. 
“There is a number which is different from all natural number.” Is this number a 
natural number or not? The number is definitely a natural number by appearance 
but it should be different from all natural numbers. How this is possible? If a 
number is different from all elements of the set, it cannot be included in the set. 
The paradox originates from the misleading interpretations of definition. Infinite 
structure of natural number is based on mathematical induction. Inductive set is 
defined by the property 2) above. Here is a fallacy in our intuition. The word “all” 
only quantifies n∈  but not its successor n′∈ . Rigorously speaking, the logic is 
“For all n∈ , arbitrary one n∈  is chosen and then its’ successor n′∈  is 
defined”. Cantor’s argument originates from the misunderstanding of definition, 
especially what the definition assumes implicitly. 
There are two interpretations on the above question, inconsistent one and 
consistent one. Cantor’s argument is inconsistent one such that it confronts a 
paradox. He implicitly assumed the word ‘all’ quantifies all n, n′∈ , 
simultaneously, or he interpreted it arbitrarily depending on circumstance.  
The consistent one is “The natural numbers which differ from all n∈   are m>n, 
where m∈ . Here the word ‘all’ quantifies all numbers between 0 and n. 

By the same principle, Cantor’s argument on the cardinality[12] of  is 
inconsistent. It should be faithful to the definition. For all n∈ , how many 
integers possibly be represented with those? How these integers are mapped with 
all n∈  by one-to-one correspondence?  The answer on cardinality can be replied  
from these questions. It is also clear from our intuition on the inclusion 
relationship ∈ ∈ . Integer includes all natural numbers and additional numbers 
which is different from the numbers. The same is applied to rational. Cantor’s 
argument is possible as long as they are enumerable and infinite, however, it is 
inconsistent with the definition. 

Cantor’s theorem which states a set and its’ power set should also be revised. He 
defined a special set to maintain his argument. He attributed the contradiction to 
the assumption of surjection, but it actually originated from misinterpretation of 
the set he himself defined. The definition is a major premise and an interpretation 
on the assumption of surjection must be a corollary. He maintained his argument 



without sufficient considerations on the matter of quantification. 

Cantor developed a logic arbitrarily. According to his argument on the cardinality 
of , a bijection is possible between  and its’ power set P( ) as long as 
they are enumerable and infinite. However, rigorous use of the word ‘all’ makes it 
definite between n∈   and P(n). The cardinality between them also becomes clear. 

The continuum hypothesis[4],[12] is based on the expectation that there is a 
absolute truth on the relationship between  and . The answer to this question 
can be found from a different and unexpected perspective. A distorted intuition 
needs to be corrected in advance. Decimal point representation does not complete 
the interval [0,1). It  represents only a rational. A representable number of cases 
are identical to natural number as it is clear in the schematic representation of 
previous section. 
The answer depends on how uncoordinated intervals are represented. There are 
many kinds of representation as in previous section, but the interpretation of 
cardinality must be faithful to the definition from which a logic develops. The 
hypothesis itself is not critical in the foundation of mathematics. A correct use of 
language is much more important. 

The role of an language on number
Real number on line represents a point on it. It is classified into rational and 
irrational. Rational corresponds to a coordinated point. The point is recognizable 
by rule, therefore representable. It is definite by rule, therefore countable. If not 
so, it is the opposite case. Irrationals correspond to uncoordinated points on 
interval. Irrationals surround a rational. Some irrationals but not all once become 
recognizable by a unique rule such that they are representable, where they have 
the properties of rational. Our intuition on number has been mislead. It should be 
revised with rigorous ones above. 

Understanding a language thoroughly means to grasp what it assumes, implicitly or 
unwittingly. Some languages materializes only when a premise is self-evident. 
The number on line is a point without magnitude. However, the point is defined by 
the distance from origin. This enables the number two-faced. It has a magnitude 
when manipulated algebraically but not so when it represents a point on line. It 
can have any kinds of magnitude when it expresses a natural language. 
Sometimes, the elusive characteristics distorts our intuition to fill the line with  
numbers. Does it have magnitude? It depends on the reference what natural 
language is to express. It is fateful to struggle against the pitfall of language for 
rigorous reasoning. 



I have no idea what is absolute truth on number. However, it is essential to use a 
language consistently to avoid paradox. When a language  is evolved or applied to 
other fields, its’ history must be recognized definitely. Fallacy is not in an entity 
itself but in the way of recognition. Coherent use of language makes a logic 
consistent as well. 
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