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A Multi-scale View of the Emergent Complexity of Life:  
A Free-energy Proposal 

Abstract 
We review some of the main implications of the free-energy principle (FEP) for the study of 

the self-organization of living systems – and how the FEP can help us to understand (and 

model) biotic self-organization across the many temporal and spatial scales over which life 

exists. In order to maintain its integrity as a bounded system, any biological system - from 

single cells to complex organisms and societies - has to limit the disorder or dispersion (i.e., 

the long-run entropy) of its constituent states. We review how this can be achieved by living 

systems that minimize their variational free energy. Variational free energy is an information 

theoretic construct, originally introduced into theoretical neuroscience and biology to explain 

perception, action, and learning. It has since been extended to explain the evolution, 

development, form, and function of entire organisms, providing a principled model of biotic 

self-organization and autopoiesis. It has provided insights into biological systems across 

spatiotemporal scales, ranging from microscales (e.g., sub- and multicellular dynamics), to 

intermediate scales (e.g., groups of interacting animals and culture), through to macroscale 

phenomena (the evolution of entire species). A crucial corollary of the FEP is that an 

organism just is (i.e., embodies or entails) an implicit model of its environment. As such, 

organisms come to embody causal relationships of their ecological niche, which, in turn, is 

influenced by their resulting behaviors. Crucially, free-energy minimization can be shown to 

be equivalent to the maximization of Bayesian model evidence. This allows us to cast 

evolution (i.e. natural selection) in terms of Bayesian model selection, providing a robust 

theoretical account of how organisms come to match or accommodate the spatiotemporal 

complexity of their surrounding niche. In line with the theme of this volume; namely, 

biological complexity and self-organization, this chapter will examine a variational approach 

to self-organization across multiple dynamical scales. 
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Introduction 

The emergence of life - and biological self-organization - is a fascinating topic for many 

working within the life sciences, as well as to laypersons and scholars outside biology. We 

review an integrative account of the self-organization of life across temporal and spatial 

scales, based on the free-energy principle1 (FEP, for short). Any view on biological self-

organization must explain how organisms remain alive; that is, resist systematic dispersion 

and entropic decay. Organisms need to retain a grasp on their own environment in order to 

maintain their integrity; i.e., structure and function. For example, bacteria have implicit 

expectations about the temperature range in which their metabolism fares best (resulting in 

behavior called thermotropism). In this way, they resist the natural tendency towards decay 

or disorder. More generally, organisms embody expectations that they need to ensure are 

brought about through adaptive action. 

Tropism in bacteria is an example of how organisms do not just passively predict 

their sensory states, but act on their environment to realize their own expectations (e.g., 

concerning their preferred temperature). In other words, an organism’s behavior can be cast 

in terms of self-fulfilling prophecies; what we call active inference (Friston, Daunizeau, & 

Kiebel 2009). Organisms need implicit beliefs about the outer world (like the direction of a 

heat source) to bring about an adaptive action (moving away from the heat). Yet, they never 

have direct access to the outer world; only to what impinges upon their sensory receptors. 

Conversely, the outer world is influenced by the actions of the organism, but not by its inner 

states. 

Thus, active inference forms a circle, from the inner world of the organism to its 

actions on the outer world, which feeds back to the organism through sensory stimulation. 

What makes this circularity virtuous rather than vicious is the information-theoretic concept 

of variational free energy (Friston 2010; 2013). Variational free energy is a measure of the 

difference between what the organism senses and what it expects to sense. Technically, 

variational free energy is an upper bound on ‘self information’, ‘surprisal’, or simply ‘surprise’, 

which reflects how surprising (or improbable) the current state of the world is for the 

organism (including its internal states). Although surprise itself cannot be evaluated explicitly 

by the organism, variational free energy can be; because it depends only on probabilistic 

beliefs about the world ‘out there’, which are encoded by the state of the organism. Thus, 

variational free energy is a proxy for surprise. 

The time average of surprise (i.e., self information) is informational entropy. This 

entropy is a measure of uncertainty, which means that free energy effectively places an 

upper limit on the entropy of organism’s sensory exchanges with the world and – if it acts in 

a way that minimizes expected free energy – uncertainty about its lived world. Free-energy 

minimization can be pursued in many ways; it has been suggested that it is an explanatory 

principle flexible enough to incorporate many (and possibly all) phenomena studied under 

the rubric of cognition (Badcock 2012; Clark 2015; Friston 2010; Hohwy 2013). 

                                                 
1 The term free energy has been used with and without hyphenation in the literature. Throughout this 

chapter, we write “free energy” when used as a noun (e.g., organisms minimize free energy), and 
“free-energy” when used as an adjective (e.g., free-energy principle and free-energy minimization). 

https://paperpile.com/c/YeWYAH/k3T7
https://paperpile.com/c/YeWYAH/k3T7
https://paperpile.com/c/YeWYAH/NHPS+QRKB
https://paperpile.com/c/YeWYAH/8k4A+QRKB+yGuV+ObOE
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Crucially, because minimizing free energy places an upper bound on surprisal, it is 

equivalent to placing a lower bound on Bayesian model evidence (i.e., negative surprisal) for 

an implicit model (i.e., the organism) that produces expectations about sensory data. As 

such, free-energy minimization corresponds to a form of variational or approximate Bayesian 

inference, widely employed in machine-learning and statistics (Friston, 2010; Kirchhoff et al., 

2018; Ramstead, Badcock, & Friston, 2017). This recurrent, incremental process of 

optimization is by its nature approximate because organisms (and machines) do not have 

direct access to the outer world (in a statistical sense). Organisms themselves are the 

implicit model for which they gather evidence, resulting in the interpretation that they 

produce evidence for their own existence - they are effectively self-evidencing (Hohwy 

2016). This self-referential recurrence is central to active inference, in which all of life 

engages perpetually. We can therefore use approximate Bayesian inference and associated 

(implicit) probabilistic beliefs to characterize the interactions of an organism with its local 

niche. 

If biological systems did not minimize free energy efficiently, the disorder or entropy 

of their sensory states would not be sufficiently bounded and diverge, leading to 

disintegration and death (in accord with the fluctuation theorem that generalizes the second 

law of thermodynamics to open systems). Therefore, biological systems must minimize free 

energy. More generally, this line of reasoning suggests that any complex adaptive 

(sub)system that underwrites its own existence will minimize free energy and therefore 

engage in active inference with respect to its surrounding environment (Friston 2010; 2013). 

Indeed, later on we illustrate how random dynamical systems can give rise to such 

inferential behaviors (Section 3.1). 

Special care needs to be taken when relating the information-theoretic 

constructs that are employed in the variational free energy formulation to 

thermodynamic constructs such as Gibbs entropy and Gibbs free energy. This step is 

important if the FEP is to act as an integrative scientific framework that leverages, 

and connects to, the physical sciences in the study of biological self-organization. We 

emphasize that variational free energy is conceptually distinct from thermodynamic 

free energy. The fact that both quantities share the same label (i.e., “free energy”) 

derives from their analogous mathematical definitions. Otherwise, the relationship 

between the two quantities is non-trivial and much of the work relating them remains 

to be done (Ramstead et al., 2018b; see, e.g., Sengupta, Stemmler, & Friston 2013, for 

an account of this connection based on neuronal processing efficiency). The same 

holds for information-theoretic entropy and thermodynamic entropy, although these 

two constructs are more closely and straightforwardly related (e.g., through 

Boltzmann’s famous entropy formula). The difficulty in relating these concepts stems 

largely from the fact that the FEP operates in a different regime from that usually 

considered under statistical physics. The FEP is formulated appropriately for the 

study of biological self-organization, since it pertains to systems at non-equilibrium 

steady state (NESS); whereas statistical mechanics focuses primarily on equilibrium 

(or near-equilibrium) states that allow for robust descriptions of physical systems in a 

particular equilibrated state. Having said this, the FEP and thermodynamics are 

internally consistent in the sense that thermodynamics – particularly stochastic 

thermodynamics (Ao, 2008; Seifert, 2012) – can be regarded as a special case of the 

FEP when certain conditions are met (Friston & Ao, 2012). 

https://paperpile.com/c/YeWYAH/qMOl+QRKB+SVXj
https://paperpile.com/c/YeWYAH/qMOl+QRKB+SVXj
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With the above caveat in mind, we devote this chapter to reviewing the implications 

of the FEP for explaining the adaptive self-organization of living systems across different 

spatiotemporal scales, ranging from microscales (e.g., cells) to intermediate scales (e.g., 

learning processes of animals), and eventually to the evolutionary macroscale (i.e., the 

emergence of entire species). We suggest that once the FEP is extended to these different 

scales of self-organization, these processes, which might appear miraculous, are not really 

as ‘surprising’ as one might have thought. The events that take place within the boundary of 

a living organism arise from the very existence of that boundary (called the Markov blanket, 

as explained below), the emergence of which is itself nearly inevitable in a physically lawful 

world like ours. 

The structure of the chapter is as follows. In Section 1, we introduce the concept of a 

Markov blanket and its relation to free-energy minimization and active inference. In Section 

2, we generalize active inference across spatiotemporal scales, to formulate a multi-scale 

interpretative framework for biological self-organization. In Section 3, we examine some 

examples of active inference at the sub- and multi-cellular microscale, notably demonstrating 

how active inference: (i) emerges directly from a primordial soup; (ii) channels dendritic self-

organization of single neurons; and (iii) enables the collective organization of many cells into 

entire organs. In Section 4, we turn to the organismic level, where we consider: (i) the 

hierarchical brain; (ii) communication and dialogue through active inference; and (iii) cultural 

affordances and collective active inference. In Section 5, we consider the species 

macroscale. We first discuss how biological evolution can be viewed as a form of active 

inference over the order parameters of the lower levels treated in Sections 3-4. Finally, we 

focus on niche construction, and examine its role throughout both development and 

evolution to describe how species build their own eco-niche. 
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1. Markov Blankets and Active Inference  

A key aspect of living systems is that they function adaptively by means of their own self-

perpetuating, self-organizing boundaries (Varela, Maturana, & Uribe 1974). Adaptive self-

organization enables a living system to establish and maintain a boundary that separates its 

internal states from the states comprising its external milieu (Barandiaran & Moreno 2008), 

which in turn allows for active inference. This type of boundary can be viewed as a Markov 

blanket. Pearl (1988) introduced the notion of a Markov blanket to denote a set of 

epistemological properties specific to Bayesian networks (Figure 1). The Markov blanket is 

cast as the smallest set of nodes that renders an enclosed node conditionally independent of 

all others. The central point is that the behavior of the enclosed node can be predicted by 

knowing only the states of the nodes that constitute its Markov blanket. Nodes outside the 

Markov blanket provide no additional information. Conversely, when predicting the behavior 

of the nodes outside the Markov blanket, the enclosed node provides no additional 

information beyond that provided by the Markov blanket itself. 

 

 

 

Figure 1. A graphical depiction of a Markov blanket with full conditionals. Nodes represent random variables 

and arrows or edges represent conditional dependencies. In this figure, the Markov blanket for node (Sun, 

Gomez, #252, & Schmidhuber) is the union of its parents {2,3}, the children or direct successors of (Sun et al.), 

which are {6,7}, and the parents’ children {4}. Hence, (Sun et al.) = {6,7} U {2,3} U {4} = {2,3,4,6,7}. The union of 

(Sun et al.) does not include {1}. This implies that {1} and (Sun et al.) are conditionally independent given 

{2,3,4,6,7}, and shows that once the union of (Sun et al.) is given, the probability of (Sun et al.) will not be 

affected by the probability of {1}. Formally, (Sun et al.) is conditionally independent of {1} given {2,3,4,6,7}, if 

P((Sun et al.)|{1}, {2,3,4,6,7}) = P((Sun et al.)|{2,3,4,6,7}). This means that once all the neighboring variables for 

(Sun et al.) are known, knowing the state of {1} provides no additional information about the state of (Sun et al.). 

It is this kind of statistical neighborhood for (Sun et al.) that is called a Markov blanket (Pearl 1988). This figure is 

from (Kirchhoff et al., 2018); adapted from Murphy 2012, p. 329).  

 

 

The notion of a Markov blanket, and the independencies between states it induces, can be 

directly applied to biological systems (Friston, 2013; Palacios et al., 2017). For example, the 

interior of a cell can be related to the internal states of the cell (e.g., cell metabolism), the 

extracellular environment to its external states, and the cell boundary to the Markov blanket 

that couples intracellular and extracellular states to one another. The states that constitute 

https://paperpile.com/c/YeWYAH/tVlz
https://paperpile.com/c/YeWYAH/qMOl
https://paperpile.com/c/YeWYAH/3JYc+NHPS
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the Markov blanket can be further partitioned into sensory and active states. As such, the 

presence of a Markov blanket implies a partitioning of states into external, sensory, active 

and internal states (see Figure 2; Friston et al. 2015). 

Figure 2 highlights the partitioning rule governing the Markov blanket formalism; 

namely, that hidden external states influence sensory states, which influence, but are not 

themselves influenced by, internal states. Conversely, internal states influence active states, 

which influence, but are not themselves influenced by, external states. This formulation 

relies on the statistical dependencies between the states comprising a biological system - 

internal states and their Markov blanket - and the kind of independencies induced between 

internal and external states. Importantly, this formulation echoes key themes of dynamical 

coupling between the organism and its environment in enactive and embodied approaches 

to biology and cognition (Engel, Friston, & Kragic, 2016; Noë, 2004; Thompson, 2007; 

Varela, Thompson, & Rosch, 2017). 

The dependencies established by a Markov blanket induce active inference, which 

rests on the principle that adaptive action reduces uncertainty or surprise about the causes 

of sensory data (Mirza et al. 2016). The statistical properties of Markov blankets result in 

emerging (self-organizing) processes that optimize Bayesian model evidence, such that it 

becomes possible to associate the internal states of a system with a model of the external 

states (Friston et al. 2015; Kirchhoff et al., 2018). Action, which is induced by the generation 

of inferences via internal states, drives an organism toward a free-energy minimum (Parr & 

Friston 2018). We will develop this point in further detail as we move through the various 

sections of our review. 

https://paperpile.com/c/YeWYAH/yNNc+AjbX+tW2e+t12b
https://paperpile.com/c/YeWYAH/yNNc+AjbX+tW2e+t12b
https://paperpile.com/c/YeWYAH/qMOl
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Figure 2. These two illustrations highlight the dependencies between states induced by the 

presence of the Markov blanket of a cell (top) and the brain (bottom). Internal states (black) 

are connected to the external states (blue) through the sensory (magenta) and active (red) 

states. (Figure taken from Friston (2013; Figure 1). 

https://paperpile.com/c/YeWYAH/NHPS
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2. Active Inference at Multiple Scales 

The variational approach has recently been extended to explicitly address living systems 

across spatial and temporal scales (Kirchhoff et al., 2018; Ramstead et al., 2017), relying 

heavily on the concept of a Markov blanket introduced in Section 1. Any (ergodic) system 

that exists must, in virtue of existing, be enshrouded by a Markov blanket that maintains it. 

This holds for the component states of any Markov blanketed system as well. In principle, 

we can describe the universe of biological systems as Markov blankets and their internal 

states, which are themselves composed of Markov blankets and their internal states. This 

formalism can be reiterated all the way up, and all the way down; i.e., across the manifold 

nested scales of organization at which biological systems exist, including their eco-niche. In 

this way, biotic systems (i.e., single cells, organisms, social and cultural groups) can be 

described as a (high-dimensional) phase space that is induced by a hierarchy of Markov 

blankets. This view of living systems has been labeled variational neuroethology (Ramstead 

et al., 2017). As humans, we are a prime example: our brains, sensory organs, and muscles 

are themselves composed of countless cells, each possessing their own Markov boundary. 

This multiscale extension of the Markov blanket formalism involves the notion of a 

scale space. Scale spaces enable us to carve out different structures at different spatial and 

temporal scales, and to flag which kinds of systems are relevant to our investigations at 

those scales. In this context, scale spaces are useful because they allow us to model the 

dynamics of integrated nested systems; that is, how systems at one scale produce or entail 

the composite system at a higher level. Moving up the hierarchy of Markov blankets entails 

an increase in spatial and temporal scales. Any system that can be distinguished from its 

environment (and thus, possesses a Markov blanket) can take part in a dynamical 

interaction that produces a Markov blanket at a higher level of organization (Palacios et al., 

2017). 

By way of illustration, consider an ensemble of cells, each bounded by their 

respective plasmalemmas. We can mathematically model the self-organization of the cellular 

ensemble by appealing to the dynamic interactions between their sensory and active states, 

shaped by their collective effort to minimize free energy. Exchanges at one scale (e.g., the 

scale of cellular interactions) have a sparsity structure that, in turn, can induce a Markov 

blanket at the scale above. For example, some group of cells in that ensemble could be 

epithelial cells that, in turn, constitute the boundary of an entire organ. Conversely, within the 

cell, the various organelles have their own Markov blanket. Despite the difference in scale, 

the dynamics involved have a formally identical statistical structure; namely, that prescribed 

by the Markov blanket formalism. 

The hierarchical nesting of Markov blankets provides a vantage point from which to 

model the self-organization of biological systems across spatial and temporal scales. 

Crucially, it also provides a principled explanation of how each level contextualizes (that is, 

constrains) ongoing dynamics at other scales. The very same variational, entropy-bounding 

dynamics are operative at each scale, and provide an integrative dynamics for the entire 

system. Free-energy minimization unifies these various scales and allows them to be 

evaluated simultaneously. In the following sections, we will first address the emergence of 

https://paperpile.com/c/YeWYAH/SVXj+qMOl
https://paperpile.com/c/YeWYAH/SVXj
https://paperpile.com/c/YeWYAH/SVXj
https://paperpile.com/c/YeWYAH/3JYc
https://paperpile.com/c/YeWYAH/3JYc
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the Markov blanket and then proceed to explore the application of the free-energy principle 

to the various scales at which life exists. 
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3. Microscale: Sub- and Multicellular Self-

organization 

3.1 Emergence of Markov blankets and active inference in a 

primordial soup 

A complete treatment of the origins of life would have to address the emergence of 

prokaryotic cells and their capability to produce descendants that carry their (epi)genetic 

inheritance. As noted before, the structure and function of the cell is a prime example of how 

Markov blankets induce active inference. In line with these insights, we choose to first 

address how random dynamical systems can give rise to sub-systems that maintain 

themselves through active inference (Friston, 2013). This is a crucial step, because once 

such a “primal Markov blanket” is established, the sub-system becomes self-sustaining and, 

hence, susceptible to innovations and organization into larger composite systems. For 

example, it is thought that some of the organelles within eukaryotic cells used to be 

prokaryotic cells themselves (i.e., mitochondria and chloroplasts). Although this is far from a 

full account of life as we know it, we can use abstract representations of dynamical 

processes to illustrate some simple but fundamental aspects of adaptive self-organization. 

These processes may serve as a metaphor for dynamical interactions across various levels 

of biological self-organization. 

         The following theorem will serve as a guideline in what follows: if a random 

dynamical system is ergodic and has a Markov blanket, it actively maintains its own 

structure and dynamics (i.e., autopoiesis; Friston 2013). Ergodicity is a key concept, which 

formally means that the average of any measurable function within the system converges 

over time. This definition implies that a limited number of states are being revisited, because 

not all functions would converge for an infinite number of possible states. By virtue of 

ergodicity, the average proportion of time a certain state is occupied (within a sufficiently 

large window) is equivalent to the probability of the system being in that state when 

observed at random. In other words, an ergodic random dynamical system is tractable in 

terms of probabilities, which is crucial for any type of inference. Ergodicity is readily identified 

as a key property of biological systems. For example, neurons switch between their resting, 

firing, and refractory states. 

         Friston (2013) provided a proof of principle of this simple but fundamental property of 

living systems. He modelled a “primordial soup” that exhibited the type of behavior described 

in the theorem presented above. These simulations consisted of a collection of dynamical 

subsystems, which can be likened to macromolecules. Each of these macromolecules could 

reside in a number of possible structural and functional states, and was coupled by these 

states with other nearby macromolecules. The type of dynamics employed in these 

simulations is similar to those in the wealth of literature on pattern formation in dissipative 

systems; e.g., turbulence in hydrodynamics (e.g., Manneville, 1995). In the context of 

Friston’s simulations, structural states represented the locations and motions of these 

macromolecules, while functional states represented their electrochemical states. Through 

electrochemical interactions, functional states can influence the location and velocities 

(structural states) of nearby molecules, as well as the electrochemical states of those 

https://paperpile.com/c/YeWYAH/NHPS
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molecules. The intention of this exercise is not to analyze the precise patterns that emerge 

from these interactions, but rather to demonstrate that a basic form of active inference can 

emerge from a “primordial soup”. 

         While each of the sub-systems themselves only has a limited number of possible 

functional states (i.e., they are locally ergodic), the simulations also exhibited emergent 

ergodic behavior for the system as a whole. Initially, macromolecules pushed each other 

away; after a few cycles, they tended to clot together, forming a stable dense clump. Short-

distance interactions led to a pattern in which macromolecules were passed around until 

they only gently pushed and pulled on each other most of the time, with occasional bursts of 

movement. The collective motion and electrochemical states of this dense emerging clump 

could be characterized as a “restless soup”, as shown in Figure 3. 

 

 

 

Figure 3. Reproduced from Friston (2013; Figure 1), this figure shows the structure and temporal dynamics of 

the simulated primordial soup. Panel a(i) illustrates the spatial position (large cyan dot) and functional states 

(three dark blue dots) for each of the 128 subsystems, after the states have converged on their global (random 

dynamical) attractor. Panel a(ii) shows the same snapshot of time with the three functional states coded by color, 
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illustrating the synchronization of electrochemical states across the clump. Panels b and c show, respectively, the 

functional states and motion as a function of time (in seconds, processor time). internal states are shown in blue 

and external states in cyan. The circle in panel c indicates one of the occasional bursts of motion due to the non-

linear dynamics within the clump of macromolecules. See Friston (2013) for technical details.  

 

 

Is there any active inference evident in this synthetic mess? Given that the global attractor state 

of the system as well as the subsystems themselves are ergodic, we can characterize their 

behaviors in probabilistic terms. We can then use the coupling between the states of these 

macromolecules to disentangle their spheres of influence. Based on this information, we can 

identify the Markov blanket (if present), and the states enclosed by it. Friston (2013) found that 

amidst the densest region of the “soup” were a number of macromolecules that were very tightly 

coupled to one another, and whose states were completely hidden from those residing on the 

outer edges of the system. Figure 4 shows the macromolecules representing internal states 

(dark blue) and those representing the Markov blanket as the sensory (magenta) and active (red) 

states. The active macromolecules, which allow the internal states to affect the outer world 

indirectly, lie within the sensory subsystems that are exposed to the outer world. Interestingly, 

biological cells have a somewhat similar configuration, with an (active) cytoskeleton surrounded 

by (sensory) epithelia or receptors. 

 

 

Figure 4. This figure shows the emergence of the Markov blanket from the primordial soup after the global 

attractor state was reached. The left panel shows the coupling between the 128 macromolecules over 256 

seconds (adjacency matrix), ordered according to the internal (blue), active (red), sensory (purple), and external 

hidden (cyan) subsystems. The circle indicates instances of active subsystems influencing external states (owing 

to the periodic bursts of motion) without the external states influencing the active states. The right panel shows 

the spatial organization of this partition. Reproduced from Friston (2013; Figure 2). 

 

 

Crucially, a minimalistic form of perception was also identified within the clump of 

macromolecules. Although particles in the interior were entirely insulated from the outer 
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world, their functional states were shown to have predictive value for the motion of the 

macromolecules outside the clump. In a self-organized fashion, these mindless, simplistic 

“representations” of macromolecules appeared to be producing implicit inferences about the 

world outside their synthetic bubble. 

Friston also showed that the implicit inferences – driven by the (sensorial) dynamics 

of the inner environment of the clump – directed the active states to maintain its structure. In 

this way, the clump of macromolecules essentially anticipated future perturbations induced 

by the outer world, and acted on these expectations: a basic form of active inference. 

We can now return to the theorem introduced above. Does the emergent clump of 

macromolecules indeed “actively maintain its structural and dynamical integrity”? This 

question can be answered by perturbing the system with “lesions”: selectively turning off the 

ability of certain macromolecules to affect the functional states of other macromolecules for 

the active states (Figure 5b), the sensory states (Figure 5c), and the internal states (Figure 

5c). Note that all of the electrochemical effects on motion were left intact; only the subtle 

interaction between electrochemical states was silenced. In all three cases, such a relatively 

mild perturbation caused the synthetic bubble to burst instantly. This empirical result 

substantiates the prediction that macromolecules will affect their neighbors in order to 

maintain the structural integrity of the entire clump. 

In this section, we have seen the emergence of a Markov blanket and resulting active 

inference in a random dynamical system. Functionally speaking, the simulated clump of 

macromolecules is probably most reminiscent of the various protein components that allow 

viruses to maintain their structure. We can see them as a metaphor for more extensive 

forms of biological self-organization. Intriguingly, Friston did not require a very “special” 

setup to arrive at this result in a bottom-up fashion; very little was required, in fact. This 

motivates our proposal to consider the recursive self-organization of Markov blankets into 

Markov blankets at higher levels. Each of these blankets and their internal states again 

constitute a unit of free-energy minimization (Ramstead et al., 2017; Sengupta et al., 2016). 

With this in mind, we will now proceed by taking free-energy minimization “for granted” and 

focus instead on how this process  shapes function-specificity for a single neuron (dendritic 

self-organization), and form-specificity at multi-cellular levels (morphogenesis). 

https://paperpile.com/c/YeWYAH/6Cha+SVXj
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Figure 5. This figure demonstrates the self-maintaining dynamics (i.e., autopoiesis) of the clump of 

macromolecules, by slightly impairing the components of the emergent Markov blanket. Impaired 

macromolecules are rendered unable to influence the electrochemical states of other macromolecules (but all 

other interactions are left intact). In the top left panel, the configuration without a lesion is shown, with the internal 

(blue), active (red) and sensory (pink) macromolecules forming a stable configuration. In the top right panel, 

active macromolecules are impaired, causing them to be expelled into the exterior. In the bottom left panel, the 

sensory macromolecules are impaired, causing them to drift off into the exterior. In the bottom right panel, 

internal macromolecules are impaired, causing the entire configuration to collapse – as the internal states 

migrate rapidly across the Markov blanket. This figure is adapted from Friston (2013; Figure 4). 
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3.2 Dendritic self-organization 

Different types of neurons code for different types of synaptic input sequences, as evidenced 

by their different morphologies and connections (Torben-Nielsen & Stiefel, 2009). Pyramidal 

neurons have been shown to engage in sequence-specific processing (Branco, Clark, & 

Häusser, 2010). Apparently, dendritic branches allow the dynamics within a single neuron to 

distinguish various sequences of input from each other. In the following, we discuss how the 

FEP has been used to study the emergence of such function-specificity by (Kiebel & Friston, 

2011). 

As stated in the introduction, under the FEP, the variational free energy represents 

the difference between what a biological (sub)system senses and what it expects to sense. 

These expectations are derived from an implicit (generative) model of those sensory inputs. 

The biological system itself is this model, which specifies the type of inputs it is looking for 

(note, once again, the inherent circularity). The minimization of free energy has been used to 

simulate systems that decode their sensory states and actively select the types of input they 

expect to sense (Kiebel, Daunizeau, & Friston, 2008). The implicit nature of these 

expectations and models is worth emphasizing, because it means that these Bayesian 

concepts do not require the system itself to be “conscious” of inferences in any way, or that 

these inferences need to be “explicit” and couched in propositional or linguistic terms. 

         A single neuron or one of its dendrites can also be understood as a biological system 

that engages in free-energy minimization. As we will see, this view can explain the 

emergence of the sequence-specific functionality of neurons towards presynaptic inputs with 

a certain temporal pattern. Selection of synapses occurs via synaptic gain control – 

synapses with low gain are pruned, and synapses with high gain stimulate the formation of 

synaptic connections (Lendvai et al., 2000). The concept of synaptic gain control can itself 

be derived from the FEP; and it can be used to capture the behavior of neuronal dynamics 

across multiple timescales, from fast electrochemical potentials, to variations in synaptic 

gain, through to slowly changing synaptic connections. In a series of simulations, Kiebel and 

Friston (2011) incorporated these three temporal scales in a computational model by using 

three levels of simultaneous free-energy minimization: a single quantity is minimized at the 

three scales that enclose the scale in which synaptic gain is determined. Figure 6 illustrates 

the type of sequence selectivity that emerged in these simulations. 

 

https://paperpile.com/c/YeWYAH/XPBy
https://paperpile.com/c/YeWYAH/7Mh2
https://paperpile.com/c/YeWYAH/7Mh2
https://paperpile.com/c/YeWYAH/u6Hw
https://paperpile.com/c/YeWYAH/u6Hw
https://paperpile.com/c/YeWYAH/fnrM
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Figure 6.In this figure, we show the responses of the dendrite (right column) to three different sequences of 

presynaptic input (left column). The top row shows the expected sequence to which the dendrite is accustomed, 

showing a peak in the postsynaptic response (top right panel). The middle and bottom rows show how the 

dendrite responds to sequences that deviate from its expectation, with attenuated postsynaptic responses in both 

cases (middle and bottom right). The graded response in the bottom right panel is consistent with graded 

observed in neural responses to suboptimal input. Figure was taken from Kiebel and Friston (2011; Figure 7). 

 

On the fast level of electrochemical currents, Kiebel and Friston (2011) were able to 

show that this free-energy-minimizing dendrite model produced emergent dynamics that 

were entirely consistent with data-driven models of dendritic dynamics (Gulledge, Kampa, & 

Stuart, 2005). Their findings showed that such active dendritic dynamics are a self-

organizing function of this particular biological system under the FEP. The slow dynamics of 

the dendrite - rearranging the synaptic connections over time - is incorporated in the model 

as a form of Bayesian model selection. The various connections are essentially producing 

evidence for their own efficacy with varying degrees of success, instantiating a process of 

selection over time. Selection occurs stochastically, allowing for completely non-efficacious 

configurations, but also rendering the routine better equipped to escape local (sub-optimal) 

minima. In Section 5, we discuss how a similar kind of dynamics governs evolution by 

natural selection. Notably, a similar type of model selection is also believed to drive the fine-

tuning of entire neural networks, which has been broadly conceptualized as neural 

Darwinism (Edelman, 1987). 

https://paperpile.com/c/YeWYAH/EdFD
https://paperpile.com/c/YeWYAH/EdFD
https://paperpile.com/c/YeWYAH/BKCA
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In this sub-cellular example, the dendrite is minimizing free energy to improve: (i) its 

beliefs about presynaptic input sequences on short timescales; (ii) its beliefs about synaptic 

gain (or precision); and (iii) its implicit model of the input sequences over longer timescales. 

In this way, the dendrite adjusts its prior beliefs about the type of sequences it expects to 

observe, which results in the observed selective sensitivity. The sampling method of the 

dendrite is being adjusted over time, which boils down to a type of active inference. In the 

following, we consider how a group of cells (free-energy-minimizing units) can self-organize 

into larger structures; namely, organs. 
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3.3 Morphogenesis 

Now that we have established cells as units of free-energy minimization, we can consider 

how adaptive self-organization occurs under collective active inference; i.e., the group 

dynamics of cellular ensembles (Friston et al., 2015). An important example is the 

emergence and maintenance of the large-scale shape and function of entire subsystems 

(e.g., organs). How can cells at microscales coordinate to form pre-defined large-scale 

structures; e.g., during embryonic development? Or, at later stages, how can creatures like 

salamanders regenerate entire limbs and organs? It is an essential question for biology, both 

in development and throughout evolution, to consider how cellular ensembles control exact 

large-scale outcomes in order to allow for specific functions to emerge (e.g., brain or liver 

function). Insights into this issue are particularly crucial to medicine and bioengineering. 

As we will see, collective active inference can explain the self-organization of an 

ensemble of cells to generate entire organs (i.e., morphogenesis). The most pressing 

difficulty here is that organs will only function if they have a highly specific, predefined form, 

for which unguided pattern formation is insufficient. Since any one cell only has access to 

the signals reaching its boundary, it would seem that it can only infer its location and 

differentiate once the other cells have already migrated to their respective target positions 

and differentiated accordingly. However, that requirement cannot be reached if those other 

cells themselves are unable to determine their own target positions. 

This inherently circular problem of organ formation can be solved through active 

inference, if we assume that every (pluripotential) cell starts with a generative model of the 

entire ensemble. In this way, every cell can generate predictions about the sensory inputs it 

expects to encounter at any location in the target configuration. As with stem-cells, all cells 

start out in nearly identical states, with the same generative model and the ability to 

differentiate; that is, transition towards any role in the eventual organ. As each individual cell 

starts minimizing free energy, the entire ensemble will converge towards its global free-

energy minimum. By virtue of their common generative model, this global minimum is 

approached when the ensemble closes in on the target shape and function of the organ. 

Each cell will gradually infer its own place and behave accordingly, while, crucially, helping 

other cells to infer their place in the process. Such self-assembly will also serve to maintain 

the configuration and, in the case of damage to the organ, restore it. 

In order to substantiate this account, Friston and colleagues (2015) conducted 

simulations of cell migration and differentiation in a relatively minimalistic sense. Each cell 

possessed a generative model, the parameters of which were determined “genetically” (they 

were inherited or pre-specified), which prescribed to each cell how to act (i.e., what signals 

to emit) given a particular place within the organ. Hence, cells exchanged signals with each 

other in order to infer their respective place and role in the ensemble. The upshot of this is 

that every cell has a probabilistic grasp on its location and emits signals accordingly, 

providing information for the other cells to improve their own inferences. That relation 

between the beliefs of a cell concerning its place and the signals it transmits to other cells 

could be an elegant metaphor for epigenetic processes. Figure 7 serves to illustrate the 

simulation results for a configuration of a relatively small number of cells. It shows both the 

differentiation process and the reorganization of the ensemble after two different large 

lesions. 
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We have illustrated how ensembles of free-energy-minimizing units (cells) that 

operate with the same generative model can self-organize into pre-determined structures 

(organs). This allows us to understand how an intricate functional structure like the brain can 

be produced by the (epi)genetic information transmitted at conception. This treatment has 

prepared us for a discussion of the brain, entire organisms, and their interactions. 

Interestingly, we will see a similar sort of dynamics emerge in the interaction between 

multiple organisms: a shared generative model allows for the emergence of communication 

and cultural dynamics. 

 

 

Figure 7. This figure shows both the differentiation of eight stem cells to form an “organ” (on the left) as well 

as the regenerative response of the configuration to two large lesions (on the right). In the top three panels on the 

right, the “head” (consisting of red cells) is severed and the remaining cells are doubled to maintain the same 

number. On the bottom, the same operation is performed on the “tail” (consisting of green cells). Both show that 

the pattern is successfully recovered. Figure taken from Friston et al. (2015; Figure 4). 
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4. Mesoscale: Organisms and Their Interactions 

4.1. The brain 

At this point, we arrive at the level of organization involving animals and the interactions 

between them. We would be remiss if we would not reserve a few words for the animal brain 

in particular. Its organization and functional dynamics could be understood in terms of the 

examples of free-energy minimization treated thus far. The brain exhibits a layered and 

modular structure, instantiated through morphogenesis (Section 3.3). We suggest this 

organization of the brain has been selected for throughout evolution (Section 5.1) because it 

enables the assembly and maintenance of hierarchical generative models (Badcock, Friston, 

& Ramstead; under review; Friston, 2010). In our environments, there is an abundance of 

hierarchical inference problems. For example, in the case of natural images, the integration 

of large numbers of features is required in order to identify objects under countless possible 

lighting conditions and rotations in space. In computational neuroscience, free-energy 

minimization has led to the development of models engaging in hierarchical predictive 

processing that successfully capture the functioning of the brain (Adams, Bauer, Pinotsis, & 

Friston, 2016). The brain is thus viewed as an active inference machine (Clark, 2015), 

specialized for complex inferences requiring hierarchical generative models. It would not be 

an overstatement to say that it is the most complex adaptive system known to mankind, as it 

continuously bridges the scale space from genes to single dendrites up to organismic and 

societal levels (Ramstead, Badcock, & Friston, 2018). Under the FEP, the brain essentially 

functions like its many lower levels of organization: it predicts sensory states from its internal 

model(s) of how those sensory states are caused (see the hallmark paper on the FEP by 

Friston, 2010). It minimizes the discrepancies between its expectations and actual sensory 

states by modifying its implicit beliefs (i.e., perception) or by acting on its environment (i.e., 

behavior). The inferential power of the hierarchical organization of the brain can be well 

illustrated by studying how it generates predictions about another hierarchical dynamical 

system: namely, another organism. We choose not to focus on how the brain instantiates 

bare forms of perception and action, but on how two bird brains are coupled through 

birdsong. This will serve as an informative example of hierarchical inferential dynamics 

enabled by free-energy minimization. 

4.2 Birdsong as a model of dialogue 

When two dynamical systems are coupled to each other, a form of synchronization 

usually occurs. This was first reported by (Huygens, 1673), who studied the synchronization 

of pendulums hanging from a beam, through which they influenced each other very slightly. 

Because both pendulums operate in the same way, even the minimal information 

transmitted by the beam is enough to completely synchronize them. In a similar way, 

coupled brains can, by virtue of their similar internal dynamics, achieve generalized 

synchrony. Such synchrony allows for these systems to predict one another with very high 

precision. In the case of identical internal models, identical synchronization is achieved 

(similar to the case of the pendulums). The more dissimilar the internal models of two 

organisms, the less synchronization will occur between their internal states and, 

consequently, the less accurate their predictions will be about each other’s actions. Without 

environmental constraints, coupled organisms will tend to move towards the free-energy 

https://paperpile.com/c/YeWYAH/QRKB/?prefix=Badcock%2C%20P.B.%2C%20Friston%2C%20K.J.%2C%20%26%20Ramstead%2C%20M.J.D.%20(under%20review)%3B%20
https://paperpile.com/c/YeWYAH/QRKB/?prefix=Badcock%2C%20P.B.%2C%20Friston%2C%20K.J.%2C%20%26%20Ramstead%2C%20M.J.D.%20(under%20review)%3B%20
https://paperpile.com/c/YeWYAH/jqoQ
https://paperpile.com/c/YeWYAH/jqoQ
https://paperpile.com/c/YeWYAH/ObOE
https://paperpile.com/c/YeWYAH/nHSk
https://paperpile.com/c/YeWYAH/1JYU
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minimum of identical synchronization. In other words, they end up forming a model of each 

other. Through such coupling, organisms can “program” each other towards a common 

internal model; namely, they end up speaking the same “language” (in an abstract sense). 

The way in which dynamical coupling gives rise to generalized synchrony in 

pendulums can thus be applied to the fine-tuning of hierarchical internal models that 

generate predictions. Such learning was addressed by Frith and Friston (2015), which is the 

focus of this section. The authors demonstrated how organisms can come to interpret each 

other’s actions simply by adjusting their internal models to minimize free energy. Importantly, 

free energy can be evaluated without these organisms ever knowing exactly what is 

happening beneath the Markov blanket of the other. It relates to the central problem of 

hermeneutics: how do we infer the intention behind an utterance, when we only have access 

to the utterance itself? In the following, we discuss simulations by Frith and Friston that are 

an abstract representation or metaphor of communication between organisms, based on the 

mathematical machinery of complex dynamic systems. Synthetic birdsong is used for this 

demonstration, but it is not meant to represent actual linguistic processes. The authors 

merely aimed to study dynamic coupling via complex action patterns, which are themselves 

without meaning or syntax. However, it is worth noting that other researchers have applied 

hierarchical-predictive processing to language (e.g., Hickok, 2013) and auditory processing 

(Arnal, Wyart, & Giraud, 2011). 

In order to simulate birdsong-like behavior, Friston and Frith (2015) constructed a 

hierarchical processing architecture, which is shown in Figure 8 (overlaid on analogous 

neuroanatomical structures of the bird brain). Free-energy minimization is achieved through 

recurrent connections between different levels of the hierarchy, each of which possesses its 

own generative model. Each level generates its own expectations about how sensory inputs 

are caused, which are passed downward as predictions. Each level (except the highest one) 

therefore receives (top-down) predictions to compare with its own expectations. The 

difference is the prediction error, which is passed back to the higher levels in a bottom-up 

fashion in order to improve future predictions. Experimental findings appear to support such 

an architecture. For example, it has been suggested that superficial pyramidal cells are 

involved in calculating prediction errors and passing them upwards and that deep pyramidal 

cells pass the expectations of each level to the one below in the form of predictions (Bastos 

et al., 2012). In this hierarchy, the predictions of the lowest level are essentially those 

generating motor commands and corollary discharge. 

 

https://paperpile.com/c/YeWYAH/EhEe/?prefix=e.g.%2C%20
https://paperpile.com/c/YeWYAH/tGKl
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Figure 8. This figure illustrates schematically the hierarchical predictive-processing architecture of the 

songbirds, overlaid on (possibly) analogous neuroanatomical structures of an actual bird brain. Red arrows 

indicate the flow of information about the prediction errors, transmitted by superficial pyramidal cells (red 

triangles). Black arrows indicate the flow of information about the expectations on each level, transmitted by deep 

pyramidal cells (black triangles). Area X transmits predictions to the higher vocal center, which generates drives 

the hypoglossal nucleus to generate a vocal response (via the syrinx) as well as the thalamus to generate the 

corollary discharge. Adapted from Friston and Frith (2015; Figure 1). 

 

The simulations of Friston and Frith (2015) showed that two of these synthetic bird 

brains became coupled through their vocalizations during a turn-taking exercise, providing 

clear evidence of generalized synchrony. These dynamics occurred at the free-energy 

minimum of the two coupled systems. Importantly, a high degree of synchronization was 

achieved because both systems started out with a similar architecture (or neuroanatomy), by 

virtue of being birds. Both of these birds were simply predicting their own sensory states, 

using a hierarchical composition of hidden states. The final product emerged in their 

“dialogue”, so both of their hidden states had essentially come to represent their shared 

expectations. This meant the only thing the birds had to infer was which one of them was 

singing (i.e., agency). This inference enabled them to either attend or ignore the sensory 

consequences of their action; depending upon whether they were listening or singing. 

Perhaps a more interesting – and realistic – case is when two birds are in some ways 

dissimilar to each other, rendering their dyad asymmetric. One of the birds was given a mild 

handicap by reducing its responsiveness to top-down predictions, which also hampered the 

quality of its vocalizations. As shown in Figure 9, this adjustment allowed a type of 

scaffolding dynamics to emerge, in which the more proficient bird simplified its own 
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vocalizations in order to accommodate the shortcomings of the other bird. Through this 

process, they reached nearly identical synchronization, solving the hermeneutical problem in 

the process (so to speak). Interestingly, this kind of demonstration is analogous to 

scaffolding techniques used in teaching, in which the teacher optimizes learning by lowering 

his or her level of instruction close to, but slightly above, that of the student. For reference, 

Figure 9 also includes a simulation in which the birds are disconnected from each other, 

showing how heavily the richness of their vocalizations depended on the presence of 

another bird. When the birds were alone, they started learning from the silence around them 

to become silent themselves. It shows that, in some way, the teacher was actually learning 

from the student too. 

Although this coupled setup was rather ad hoc, it can be seen as a step towards 

understanding the development and evolution of social life. Through generalized synchrony, 

one could efficiently infer the sensations and action goals of others, a crucial aspect of 

higher cognitive functions. Important examples are vicarious learning (learning by watching 

others), empathy (inferring others’ feelings), and theory of mind (inferring others’ inferences). 

A form of generalized synchrony appears to underlie mirror neuron activity in animal brains – 

mirror neurons not only fire during certain actions or sensations, but also when observing a 

conspecific performing or experiencing similar actions or sensations (Friston, Mattout, & 

Kilner, 2011; Kilner, Friston, & Frith, 2007). This type of associative mirroring of neural 

responses appears to be similar to the generalized synchrony exemplified in the above 

birdsong simulations. It has been argued that mirror neurons are an associative byproduct of 

action-understanding and empathy (Hickock, 2009; Cook et al., 2017). In future work, 

studies that investigate the ways in which free-energy minimization leads to generalized 

synchrony between organisms might help explain observations of mirror neuron activity. 

In this section, we have discussed the sort of learning dynamics that emerge when 

two hierarchically structured, free-energy-minimizing (bird-like) organisms interact. Once 

again, circular relationships are involved, now in the context of communication and 

generalized synchrony, resulting in the emergence of shared expectations. In the following, 

we discuss how shared expectations and narratives shape human cultural dynamics. 

 

https://paperpile.com/c/YeWYAH/X40I+atyO
https://paperpile.com/c/YeWYAH/X40I+atyO
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Figure 9. This figure illustrates both the learning of two coupled birds (top panel) and the generalized 

synchrony reached after their exchanges (bottom two panels). The top panel shows the changes in both birds’ 

(posterior) beliefs about a parameter that controls the prosody (or richness) of their vocalizations over a number 

of exchanges (birds taking turns; either singing or listening). The proficient bird is shown in green, the less 

proficient one in green. 90%-confidence intervals over this parameter are indicated by the shaded areas. The 

bottom panel shows the degree of synchronization between the expectations of the birds about three 

hierarchical, dynamic states that drive the singing behavior (red, green, blue), both before (left) and after (right) 

their exchanges. Since the x-axis shows the expectations of the less proficient (first) bird and the y-axis those of 

the more proficient (second bird), synchronization is achieved on the line x=y. Figure taken from Friston and Frith 

(2015; Figure 8). 
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4.3 Cultural ensembles 

So far, we have seen – across various scales – how biological systems come to 

embody an implicit model of their environment through active inference. The emphasis on 

organism-environment coupling is inherent to the free-energy principle, which plays very well 

into another framework that has recently gained traction among researchers, ecological and 

embodied approaches to cognition (Bruineberg & Rietveld, 2014; Chemero, 2009; Gibson, 

1979; Kirchhoff, 2015; 2017). In this section, we discuss an example of recent efforts to 

connect these frameworks in the context of human cultural dynamics by (Maxwell J. D. 

Ramstead, Veissière, & Kirmayer, 2016) 

A synthesis between the free-energy principle and the ecological approach allows 

these approaches to benefit from each other’s insights and research. From the conceptual 

toolbox of ecological cognition, we introduce the notion of affordances. Affordances are 

possibilities for engagement through action and perception that are enabled by the 

relationship between the environment and the abilities of the organism in question. Under 

the FEP, an organism acts on its environment in order to bring about its preferred (expected) 

sensory outcomes (Bruineberg, 2018). In this way, free-energy minimization specifies the 

most likely trajectories of organisms in their landscape of affordances. 

Ramstead, Veissière, and Kirmayer (2016) made the distinction between natural and 

cultural affordances. Affordances of the first kind are derived directly from the environment 

(e.g., walking) and only require minimal social learning; while those of the second kind are 

derived from the shared expectations inherent to the (sub)culture in question (e.g., 

language) and require more extensive social scaffolding to be acquired and used effectively. 

The previous section illustrated how shared expectations can emerge from interactions 

between two organisms. In the case of culture, we generalize this notion to a population of 

interacting organisms united by one common set of shared expectations, which in turn 

shape the various possibilities for interaction: namely, cultural affordances. Of course, the 

distinction is not absolute; natural and conventional affordances are more like the opposite 

ends of a spectrum of affordances. For example, in many cases, conventional rules simply 

act to constrain natural affordances (e.g., driving on the wrong side of the road). 

Researchers developing the concept of affordances emphasize that agents use 

sensory information for affordances, without requiring explicit representations of the 

affordances themselves (van Dijk et al., 2015). This minimalistic view sits well with active 

inference, given that statistical terms are seen to be implicit (as we noted earlier). Expressed 

otherwise, internal models are implicitly instantiated by the dynamics themselves. For 

example, in the hierarchical architecture introduced in Section 4.1-2, free-energy 

minimization occurs locally on each level of the hierarchy, based only on the neural signals 

incoming from adjacent levels. None of these levels necessarily requires “meta-cognitive” 

contextual information about the hierarchical internal model. 

So how do humans become so proficient in leveraging this field of (implicit) cultural 

affordances? Under a hierarchical predictive-processing architecture, any level can 

modulate expectations at the level immediately below it, thereby modulating which types of 

input that lower layer is sensitive to. Such prior expectations can implement a gating 

mechanism, which has been proposed to explain attention. In principle, cultural affordances 

https://paperpile.com/c/YeWYAH/9xNW+pSLz+leTm+Bfzb
https://paperpile.com/c/YeWYAH/9xNW+pSLz+leTm+Bfzb
https://paperpile.com/c/YeWYAH/hc2k
https://paperpile.com/c/YeWYAH/hc2k
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could then be learned by fine-tuning these priors to induce selective attention, which 

constrains the field of all possible affordances. Effectively, this can be arrived at by 

extending the modelling strategy for morphogenesis of Section 3.3, by equipping all cultural 

agents with the same cultural priors. Such culture-specific fine-tuning of internal models can 

occur through the type of generalized synchrony discussed in Section 4.2. Shared 

expectations that emerge from collective free-energy minimization induce “regimes of shared 

attention” that guide and constrain social practices, which in turn shape those expectations 

(Ramstead et al., 2016). 

Under this view, social norms can be cast as shared “solutions” arrived at, and 

learned through, the collective free-energy minimization of people within a particular culture 

(Colombo, 2014). The shared aspect of social norms reflects a certain degree of 

synchronization between people within a given (sub)culture, allowing them to produce more 

accurate inferences about each other’s internal states. For example, it is much easier to 

predict the actions of, and empathize with, somebody from your own (sub)culture than 

somebody from an alien one. This emergent view of social norms and practices corresponds 

well with social constructivism, a well-established framework in sociology which emphasizes 

that human development is socially embedded and human narratives are constructed 

through interaction with others (Berger & Luckmann, 1966). We suggest that the free-energy 

principle can undergird social constructivism by explaining how shared cultural narratives 

can emerge from, and are learned through, human interactions. 

Finally, the shared aspect of cultural affordances suggests that human social 

capacities emerged not “just” because of more advanced hierarchical internal models, 

because one’s grip on cultural affordances is learned only through interaction with other 

humans within that culture. The converse would therefore seem more likely: our processing 

hierarchy has been optimized through evolution in order to keep up with the growing 

demands of the early social practices of our primate ancestors. This is a prime example of 

evolution through both natural selection and niche construction, which we discuss in the 

following section. 
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5. Macroscale: Species as Families of Model-

Niche Pairings  

5.1 Evolution as Bayesian model selection 

We are now prepared to address one of the three central topics of this volume - the 

evolution of species, which provides the context in which the smaller temporal scales of 

adaptive self-organization are embedded. We assume familiarity with evolutionary theory, so 

we do not completely hash out the basic concepts of evolution, but rather explore how these 

concepts can be understood as free-energy minimization at the species level. In particular, 

we discuss evolution as a form of Bayesian model selection. 

In our treatment thus far, we have assumed biological systems to be ergodic. 

Ergodicity implies that a system only resides in a limited number of states over time, which 

makes probabilistic inferences (and hence active inference) possible. Of course, real 

biological systems are only locally ergodic. Throughout the development of an organism, 

various states are pruned away and new ones are unlocked, sometimes quite radically (e.g., 

a caterpillar becoming a butterfly). Eventually, death involves a divergence of possible 

configurations - a complete breakdown of ergodicity (from the perspective of the phenotype). 

The complex adaptive systems, we refer to as organisms, do not maintain their structure and 

function forever: indeed, in a changing environment, the emergent Markov blanket of Section 

3.1 would eventually be destroyed. In the beginning of evolutionary history, this (perhaps 

inevitable) disintegration has been overcome through the emergence of the ability to 

reproduce. Reproduction is an adaptive capacity that allows genetic, epigenetic, and non-

genetic information to be transmitted to descendants along with small variations, 

constraining the self-organizing dynamics that specify the form and function of their internal 

models for active inference. Through inheritance and the subsequent experiences of 

organisms, every new generation introduces variations of the internal models of their parent 

population. Inherited aspects of these internal models can be realized in various ways, which 

we discuss now. 

In Section 3.3, we saw how the large-scale shape and function of organs can be fine-

tuned through the initial internal models of stem cells. Such processes can bring about the 

hierarchical organization of the animal brain, which in turn allows for hierarchical internal 

models, as discussed in Section 4.1-2. Besides the overall hierarchical structure of internal 

models, another type of heritable modulating mechanism could be instantiated through 

adaptive priors (within a given brain organization) that predispose the organism to learning 

certain types of structures (Friston, Thornton, & Clark, 2012; Ramstead et al., 2017). For 

example, humans appear to have an innate disposition for the acquisition of language. 

Another very important form of evolutionary preparedness is the inborn affective value of 

various types of stimuli. In the context of free-energy minimization, an innate tendency to 

approach or avoid certain situations could be implemented implicitly through prior 

preferences over sensory inputs. Internal models can be adapted to tweak the expected free 

energy under various sensations, without (strong) reliance on learning through experience. 

For example, we all respond with disgust to the smell of rotten eggs without ever having 

experienced hydrogen sulfide poisoning. On a more positive note, we all tend to enjoy the 

https://paperpile.com/c/YeWYAH/Xgk5+SVXj
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taste of sweet and fat-rich food (a tendency skillfully exploited by modern fast-food chains). 

There are also examples of complex stimuli that are known to have an innate affective value. 

For example, all mammals appear to be predisposed towards developing a fear of snakes 

(Badcock, Ploeger, & Allen, 2016). Captive-born lemurs and macaques learn to fear snakes 

faster than other types of equally rich stimuli (Weiss, Brandl, & Frynta, 2015). This finding 

has led some to suggest that snake-like reptiles used to be a large threat to the survival of 

mammals in an early stage of evolutionary history. Under the free-energy principle, innate 

preferences over inputs are not limited to the lowest (sensory) level of the predictive-

processing hierarchy. Preferences over inputs can also apply to the incoming (sensory-

driven) signals on higher levels, which could explain the innate affective value of highly 

complex stimuli like snakes. Again, on a more positive note, the same mechanism can also 

explain the positive experience of “cuteness” invoked by the bodily proportions of babies 

(and, probably an evolutionarily “accidental” corollary, puppies and kittens). Indeed, the 

important role of adaptive priors in active inference has even been leveraged to explain 

highly complex human phenomena, such as our capacity for depression (Badcock et al, 

2017). 

Now that we have specified the ways in which evolutionary preparedness can 

be realized through internal models, we can consider the selection process itself. 

Natural selection is underwritten by differentials in adaptive fitness. Whatever traits 

are most suited to ensuring the survival and procreation of individual are most likely 

to be transmitted (genetically and epigenetically). Consequently, these traits will 

occur more frequently in subsequent generations. Constrained by the transmission of 

(epi)genetic information to the next generation, natural selection acts primarily on 

individuals (i.e., individual fitness); although it can also occur through an individual’s 

contribution to the survival and reproductive success of others, especially close 

relatives (i.e., kin selection and inclusive fitness; Dawkins, 1976; Hamilton, 1964; 

Maynard Smith, 1964; Orgel & Crick, 1980). Notably, the evolutionary success of a 

species depends strongly on the amount of (epi)genetic variation present in the 

populations that constitute the species (evolutionary resilience; e.g., Sgrò, Lowe, & 

Hoffmann, 2011). Such variation increases the likelihood of the presence of 

individuals with high fitness under new, challenging circumstances. Every individual 

represents an attempt to transmit its (epi)genetic makeup, such that natural selection 

effectively produces a stochastic gradient ascent on the expected fitness of the 

population (as employed in machine learning by, e.g., Yi et al., 2009).  

The FEP provides a framework to predict adaptive fitness from first principles, while 

also taking into account organism-environment interactions. In effect, maximizing the 

adaptive fitness of a population is likely achieved by minimizing its collective free energy, 

which tracks the goodness of fit (or complementarity) between the states of a species, and 

the states of its niche. Accordingly, individuals that are well suited for survival are those that 

minimize free energy efficiently. Generation by generation, the adaptivity of individual 

organisms can be evaluated by the negative time-average of free energy (i.e., a lower bound 

on entropy). Since free energy itself is evaluated using the internal model of a specimen, a 

comparison only has predictive value for adaptation if the family of internal models and the 

niche under consideration are similar. The strictly local utility of this comparison illustrates 
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the incremental nature of evolution.2 For example, using free energy as a metric, one could 

score the complementarity between, say, a bacterium and its niche, and a human being and 

its niche. In short, free energy could provide a universal proxy for adaptive fitness that could 

be applied to both viruses and vegans. At the same time, free-energy minimization is 

achieved through gradient descent, which means in this context that it is quintessentially 

species – or model – specific. 

As noted in the introduction, minimizing free energy is formally equivalent to 

maximizing Bayesian model evidence; that is, the likelihood of the internal model being true 

or apt, given the organism’s environment. Therefore, we are now in a position to interpret 

processes of adaptation as collecting Bayesian model evidence and, by extension, to cast 

natural selection as a form of Bayesian model selection (see also Campbell, 2016). On this 

view, creatures are naturally selected according to how well their internal generative models 

fit with the environment. Of course, this picture becomes more complicated in the case of 

organisms that interact with each other to increase total fitness (i.e., decrease collective free 

energy). These multiple organisms are not only “fitting” their shared environment but also 

each other, generating shared expectations in the process (as seen in Section 4.2). By virtue 

of the inherited directives for their internal models (i.e., adaptive priors), which have been 

shaped by natural selection, organisms minimize their free energy locally over their own 

(relatively short) lives in ways that also help their descendants (e.g., parents nurturing their 

children) and close relatives (i.e., kin selection). Local (organismic) free-energy-minimizing 

dynamics are structured in such a way that they collectively move towards a (population-

level) free-energy minimum. This type of relationship between local and global dynamics is 

analogous to the predictive-processing hierarchy in the brain, as described in Sections 4.1-2. 

Every layer in the hierarchy minimizes its own free energy (locally), in such a way that it also 

helps the hierarchy as a whole move towards its free-energy minimum (globally). 

Thus far, our discussion of evolution has yet to explore how organisms shape their 

own environment, which can also become part of the inheritance they leave behind for their 

descendants. Such niche construction – and implicit legacy – is the focus of the final section. 

5.2 Niche construction 

Niche construction is the process by which organisms modify their environment through their 

normal bioregulatory activity (Odling-Smee, Laland, & Feldman 2003). It encompasses all 

modifications, from the induction of a layer of moist air around homeothermic organisms, to 

the construction of complex environments like cities by human beings. Like perception and 

action, niche construction is ubiquitous in living systems. Indeed, it is a direct corollary of 

active inference – organisms attune the statistical structure of their environment to their 

probabilistic expectations by acting in a way that is guided by those expectations. We have 

seen that perception enables the organism to infer sensory causes; action places an upper 

bound on surprise by generating expected changes in the sensorium. The variational free-

                                                 
2  From a technical point of view, the extensive nature of free energy means that the sum of 

the free energy of the parts is equal to the free energy of the sum; so what is ‘good’ locally is 
good globally. This extensive characteristic implies that minimizing free energy over time is 
analogous to the Hamiltonian Principle of Least Action – because Action is the integral of 
energy over time. 
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energy approach to niche construction exploits the symmetry in the Markov blanket 

formalism; namely, between internal and external states mediated by the blanket states (i.e., 

the fact that action engenders modifications of the local environment, which embeds sensory 

causes). In this section, we explore the role of such ecological modifications with regard to 

evolution. 

By virtue of ergodicity, an organism may be defined as the most likely set of 

physiological and behavioral states for any given set of environmental states. The coupling 

between these states then constitutes the entire organism-environment state space. As 

stated in Section 5.1, adaptivity is a feature of an organism-environment system, not just of 

organisms themselves (e.g., gills are adaptive for water-bound organisms; lungs for those 

dwelling on land). Negative variational free energy can be seen as a measure of adaptivity 

(as in Section 5.1); either for individual organisms and their niche, or for larger ensembles 

like groups and species and their environment. It tracks the extent to which the statistical 

organization of an organism’s physiological and behavioral states transcribe the statistical 

organization of the states of its environment.    

Among those states, some pertain to the internal organization of the organism. 

These are fast, fluctuating states, like synaptic connections and neuromodulatory gating 

patterns. Some other states pertain to the external, visible organization of the organism (i.e., 

phenotypic states). These are more slowly fluctuating quantities, like behavioral patterns and 

morphological features (i.e., phenotypic traits). States of the environment themselves can be 

interpreted as part of those slowly fluctuating states. The level of adaptivity among slowly 

and rapidly fluctuating states depends on the interplay between variational optimization 

processes spanning different spatiotemporal scales, ranging from natural selection 

(Bayesian model selection), through to development and learning (active inference).     

At this point, the notion of action and environmental modifications become important. 

Because action fulfills sensory expectations (e.g., adaptive priors concerning viable states, 

like body temperature), it can change, implicitly, the statistics of the niche so as to make 

them consistent with the sensory expectations of an organism. In other words, niche 

construction fits sensory causes to sensory expectations, and reciprocally, fits sensory 

expectations to sensory causes. Under active inference, niche construction is crucial in 

allowing for optimization across the scales of the spatiotemporal hierarchy: the more slowly 

changing parameters embodied by or encoded in the physical features are optimized 

through niche construction, and in return act as a kind of developmental driver by channeling 

adaptive behavior and phenotypic accommodation (Bruineberg, 2018; Constant et al., 

2018).  In a sense, the robustness of living systems is inherited from the regularity and 

stability of their more slowly changing eco-niche. 

Adaptation is often conceived of as a one way process, by which natural selection 

shapes organisms under the pressures of their environmental conditions: a view sometimes 

called ‘externalism’ in the context of natural selection (Godfrey-Smith 1996). As we 

considered in Section 5.1, those pressures pose challenges, the resolution of which rests on 

the retention of organisms that are best suited to gain differential fitness. Under the FEP, this 

corresponds to the selection of (constraints to) internal models that are most suited to 

minimize free energy. 
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The niche construction perspective involves a complementary view of adaptation, in 

which internal factors, like the states of organisms, also play an evolutionarily significant role 

in their adaptation. Organisms generate feedback interactions with their environment, which 

can steer their own evolutionary trajectories, not to mention those of other species (J. 

Odling-Smee et al., 2003). These can generate new challenges, requiring the deployment of 

novel traits and behaviors in order to resolve them. 

Recursive processes in niche construction impact two different, yet overlapping 

spatiotemporal scales: development and natural selection (Stotz 2017). At the level of 

development, niche construction modifies the environmental inputs to an organism’s 

development, along with those to its offspring (e.g., through parental care). Such 

modifications often involve making the environment congruent with the expectations of the 

organism(Constant et al., 2018). At the level of evolution, niche construction functions as a 

strategy to modify the selection pressures afforded by the environment, thereby impacting 

the adaptive fitness of future generations. For instance, as a natural consequence of dam 

building, beaver kits inherit ecological resources like dam remains that, in turn, support the 

typical life cycle of beavers (Naiman, Johnston, & Kelley 1988). 

We can thus see how niche construction leads to the inheritance of environmentally 

transmitted information (as opposed to information transmitted through reproduction) that, 

throughout ontogeny, helps the organism minimize its uncertainty about the states of its 

environment that are likely to provide a fitness advantage (e.g., palm nut residues that guide 

the learning of food exploitation techniques in capuchin monkeys; Fragaszy, 2011; Fragaszy 

et al., 2017). Such information is known as algorithmic information, which is an important 

source of non-genetic inheritance (Odling-Smee et al., 2013). In the context of free-energy 

minimization, algorithmic information enables the organism to maximize mutual information 

between the model it has genetically inherited (i.e., its adaptive priors), and the causal states 

of the environment that it has inherited ecologically. Indeed, in virtue of the symmetrical 

statistical dependencies across the Markov blanket of any phenotype (or ensemble of 

phenotypes), one can also regard the environment as entailing a generative model of the 

phenotypes (or ensemble) to which it plays host. Again, we see a circular causality that can 

be operationalised by noting that the free energy of a creature is complemented with a 

(conjugate) free energy of its environment; where the active states of the creature become 

the sensory states of the environment (and vice versa). If the free energy of either forms a 

proxy for adaptive fitness, we have a formal measure of “fitness” that can be applied to both 

phenotype and econiche. From an evolutionary perspective, this means that the 

environment will appear to be subject to selective pressure. In summary, the FEP therefore 

undergirds niche construction theory by providing: (i) a principled measure of fitness that is 

optimized across spatiotemporal scales; and (ii) a computational framework to reflect on 

ecological inheritance. 
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Figure X. Adaptation under the FEP. This schematic – inspired by Odling-Smee & Laland (2000) – illustrates the 

evolutionary processes covered thus far in this chapter (colored arrows). These conspire in real time t to secure 

the adaptation of future generation at time t+1.  Ecological inheritance via selective niche construction (SNC, top-

down, red full arrow) is interpreted as the transmission of environmental components that support variational 

updates (learning) in development (e.g., phenotypic accommodation). The FEP interprets genetic inheritance as 

Bayesian model selection (BMS, top-down, green full arrow), which leads to the inheritance of model components, 

selected on the basis of their ability to maximize adaptive value (negative surprise). Inherited priors are those 

predictable from the organism’s ancestors’ ability to cope with the environment, in the sense of attaining free-

energy minima (or the neighboring of a limited repertoire of physiological and behavioral states). Niche construction 

over development (DNC, lateral, bidirectional red dotted arrow) is described in terms of model optimization via 

active inference, and entails ecological inheritance. Note that niche construction in development causes the 

symmetry between the organisms and the niche they inhabit, hence the bidirectional arrow. 

Conclusion 

In this chapter, we have demonstrated how the FEP can be applied to understand adaptive, 

biological self-organization across spatiotemporal scales. Free-energy minimization implies 

active inference, which in turn allows biological systems to actively maintain their structure 

and function. We have discussed how Markov blankets, the basic unit of free-energy 

minimization and requirement for active inference, can emerge by themselves from a 

primordial soup. Across the manifold scales considered herein, similar processes of adaptive 

self-organization recurred in various ways – just as Bayesian model selection gives rise to 

sequence-specificity in a single dendrite (Section 3.2), it also shapes entire neural networks 

(neural Darwinism), and can be used to understand natural selection (Section 5.1). Shared 

internal models allow for the organization of many cells into entire organs (Section 3.3), but 

they also allow for the emergence and continuation of dialogue (Section 4.2) and culture 

(Section 4.3). Local optimization at separate levels of the hierarchical brain also enables 

system-wide free-energy minimization (Sections 4.1-2), while individual free-energy-

minimizing organisms contribute to the adaptive fitness of an entire species (Section 5.1). 

Just as organisms can carve out expectations in each other’s internal models through 

interactions (Section 4.2), they can construct niches in their environment that sculpts the 

models of their descendants (Section 5.2). All of these interconnected examples serve to 

illustrate how the FEP has the potential to provide a unifying framework for the multi-scale 

complexity of life. Our intention is not to replace existing theoretical frameworks, but rather, 

to provide an underlying, quantifiable description from first principles that can be used to 
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integrate and coordinate such frameworks. For example, along the way, we have discussed 

embodied cognition, social constructivism, evolutionary theory, and niche construction. A 

unifying theoretical description can provide support for these various frameworks and allow 

them to benefit from the mathematical machinery of the FEP. 
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