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Introduction

While second-order logic has its share of proponents, and specialized
forms of type theory play a role in contemporary computer science
and linguistics, I think it is fair to say that there’s relatively little
contemporary interest in the sort of full-blown higher-order logic ex-
emplified by the simple and ramified theories of types, at least for its
own sake. One does not often see, for example, a new theory or devel-
opment using it as its base system. The reasons for this are no doubt
many. I think one major contributing factor, however, is a disconnect
between the logicians who first advocated such an approach to logic
and those who have been responsible for formulating it with modern
standards of rigor. Principia Mathematica (PM ), remains, it is fair
to say, the best known exemplar of a type-theoretic approach to logic,
but exactly what its type-theory is is far from agreed-upon. Whitehead
and Russell are accused of unclarity, sloppiness or even outright con-
fusion with regard to the syntax of their language, their system’s ax-
iomatic foundations, and even its philosophical justification. More re-
cent formulations of simple and ramified type-theories, such as those
in Alonzo Church’s work, although formally unambiguous and irre-
proachable, are seen as idiosyncratic and needlessly restrictive ways
of codifying the “iterative conception” of sets or classes, more of a
curiosity than a genuine rival to more flexible rival ways of codifying
the same conception, such as ZFC and related set theories. But this
is not surprising. The modern rigorous formulations have been done
in detachment from, if not complete ignorance of, the real—or Russel-
lian, at least—philosophical motivation of type theory, and are often
done in ways that obscure that motivation.
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It is not uncommon, for example, to find Church’s system of ram-
ified types (or r-types), or something very similar, offered in place of
an explanation of PM ’s syntax (see, e.g., Church 1976, Linsky 1999,
Urquhart 2003). Even if, contrary to what I shall argue, that sys-
tem were equivalent to what PM was meant to be, or would become
if properly reconstructed, to offer only that is unhelpful to would-be
readers of PM. The syntax of that system is flatly unrecognizable in
what one finds in PM itself. What is needed is an historically minded
intepretation of the actual PM, but one that does not sacrifice contem-
porary standards of rigor. Ideally, this would consist first in a formu-
lation of the syntax of PM, which, once the definitions, abbreviations
and conventions adopted by Whitehead and Russell (Peano’s dot nota-
tion, the “typical ambiguity” method of suppressing type-indices, and
so on) were accounted for, predicts precisely why and how the actual
numbered propositions of PM appear the way they do. This should be
presented alongside a philosophical explanation of the motivation for
the type hierarchy.

If successful, this project might show that even if Whitehead and
Russell did not think of the formulation of a logical system and its syn-
tax and semantics exactly the way contemporary logicians tend to,
their approach had its own rhyme and reason. Contemporary prac-
tices have been shaped to a large extent by the demands of logical
meta-theory. While I do not agree with those who argue that Rus-
sell’s views of logic are antithetical somehow to the very project of
logical meta-theory,1 it was not his own focus. One cannot get very
far in a metatheoretic proof without a full recursive definition of a
well-formed expression of the object language, for example. If one’s
aim is rather to use a given object language to state and demonstrate
mathematical theorems, it perhaps suffices to make the notation clear
enough that the mathematical content of those proofs is not obscured,
leaving enough flexibility for refinements to the syntax to be made on
the fly. Indeed, I suspect that Whitehead and Russell were deliber-
ately less than fully explicit about the details of their system in hopes
that the core of their mathematical proofs could be maintained even
through substitution of a different precise understanding of the type
system (cf. PM p. vii). Nevertheless, for the most part, it is still possi-
ble to determine what they had in mind.

This project, pursued in its entirety, is a large one. My aim here
is a relatively modest one of getting clear about the syntax PM uses
for expressions (variables and perhaps other terms) of higher-order:
so-called “propositional functions”. My particular emphasis is on the
use, or lack thereof, of the circumflex notation for function-
abstraction. I argue that in many ways the notation used in PM is a
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kind of intermediate between the approach to the syntax of a the-
ory of types found in Frege’s theory of functions of different levels,
involving “incomplete” expressions with different structured kinds
of incompleteness, and later, more familiar, devices for function ab-
straction, such as the λ-abstracts of the typed λ-calculus, where one
can form complete terms for functions of any type. The discussion
is one small part of trying to get a better handle on the philosoph-
ical justification, or perhaps inevitability, Russell thought there was
for type-theory, a discussion which has been helped immensely in re-
cent years by the availability of the surviving pre-PM manuscripts.
I shall take for granted the conclusion reached not only by myself
(Klement 2004, Klement 2010), but also by others (e.g., Landini 1998
and Stevens 2005), that these manuscripts show that even in 1910,
Russell did not understand the type-hierarchy of PM as a hierarchy
of entities of different logical kinds, whether those entities are to be
understood as sets or classes at various stages of the iterative hier-
archy or as abstract attributes-in-intension, “propositional functions”
understood as mind- and language-independent real things. Indeed,
my aim is largely to attempt to explain how this reading is compat-
ible with taking the syntax of PM to include a very limited role for
terms apparently standing “for” propositional functions, formed with
the circumflex.

In the appendices, I briefly sketch my reconstruction of the syn-
tax and semantics of the 1910 first edition of PM (—I here bracket
the question as to whether and to what extent the second edition is
different—) though there are aspects to my reconstruction that re-
quire more commentary and justification than what’s given here, par-
ticularly with regard to those aspects that go beyond the discussion
of the circumflex and notation for types.

It is worth beginning our discussion with brief recaps of the con-
trasting approaches.

Frege’s approach

On the Fregean approach, variables of different types (“levels”
in Frege’s vocabulary) are literally of different shapes. A term
for an object or an individual is a complete syntactic unit,
whether simple or complex. An expression for a first-level function
can be regarded as what is obtained from a complex term
for an object by removing (one or more occurrences of) a simpler
part which is itself a name for an object. In this way function ex-
pressions are gappy, incomplete, or as Frege says, “unsaturated”.
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A second-level function expression is obtained by removing a first-
level function expression from a complex term, and thus, while gappy,
is not gappy in precisely the same way that a first-level function ex-
pression is. Only another incomplete expression can complete it.
Compare the first-level function expression “F ( )” and the second-
level function expression “(∃x) . . . x . . . ”.2 The latter’s argument ex-
pression, unlike the former’s, must itself have a place to receive the
“x”. The two expressions mutually saturate. This difference is re-
flected even when variables are used in Frege’s notation. For a vari-
able for second-level concepts, Frege writes not (e.g.) “M”, but
“Mβ . . . β . . . ” (Frege 1964, §25). Thus the canonical notation for a
type-2 function taking as argument a variable type-1 function is:

(1) Mβ f (β)

If “f ( )” here is instantiated to some complexly defined instance, such
as “(F ( ) ∨ G ( ))”, the mutually saturating mark, “β” is placed inside
both gaps to create:

(2) Mβ(F (β) ∨ G (β))

If “Mβ . . . β . . . ” is itself instantiated to a complexly defined instance,
such as “(x)(. . . x . . . ⊃ . . . x . . . )”, the mutual saturation takes place
over the whole:

(3) (x)((F (x) ∨ G (x)) ⊃ (F (x) ∨ G (x)))

The expression (3) is of the form “Mβ f (β)”, but multiply so, since it
can also be seen as the result of giving f ( ) and Mβ . . . β . . . the values
((F ( ) ∨ G ( )) ⊃ (F ( ) ∨ G ( ))) and (x) . . . x . . . , or the values G ( ) and
(x)((F (x) ∨ . . . x . . . ) ⊃ (F (x) ∨ . . . x . . . )), respectively, instead, and so
on.

This approach suggests a certain kind of philosophy for the lev-
els hierarchy itself. There is not necessarily one privileged decom-
position of an expression into function and argument. A function
expression is not necessarily one unified “piece” of notation; there
is no such thing as a “function term”, and hence, no such thing as
placing a term of the wrong sort where a term of another sort ought
to go. In a sense it is not even possible to violate the
grammatical restrictions between types. One just cannot place
“(∃x) . . . x . . . ” into its own argument spot: it simply won’t fit. A
Fregean function is not a “thing” in the same sense as an object.
While Frege does speak informally of incomplete expressions
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as referring to functions and concepts, as if there were such “things,”
only non-object things, out there to be referred to, he himself admits
that this way of talking is misleading and inexact (Frege 1892). On
one hand, type indices are not really necessary for Fregean notation:
the different structures of the variables speak for themselves. On the
other, however, since each type of variable has a different “shape”, it
is very difficult to describe the syntax of an infinitary hierarchy, even
in a schematic way, or state replacement rules for arbitrary types
uniformly. It is no coincidence then that this method is typically used
only for systems restricted to second or third-order systems, not a
full-blown infinite system of types.3

The λ-calculus approach

The approach taken with the λ-calculus is to make use of single letters
for variables of any type. In the typed λ-calculus (which is our focus
here), the variables are given type indices to provide restrictions on
how they may combine. Thus, using o for the type of individuals, (o)
for the type of (propositional) functions of individuals, and ((o)) for
functions of such functions, etc.,4 the analogue of Frege’s (1) could
be written simply:

(4) M ((o))(f (o))

Complex function expressions are represented using λ-abstracts, which,
rather than containing “gaps”, contain rather variables bound by a
λ-operator. The type of the abstract is determined by the bound vari-
able(s); in particular, a term of the form pλxτ .αq has type (τ ). The
analogue of Frege’s (2) appears:

(5) M ((o))(λyo .(F (o)(yo ) ∨ G (o)(yo )))

λ-abstracts may occur not only in argument-position, but in function-
position, so giving M ((o)) here the value λg(o). (xo )(g(o)(xo ) ⊃ g(o)(xo ))
directly yields:

(6) λg(o). (xo )(g(o)(xo ) ⊃ g(o)(xo ))(λyo .(F (o)(yo ) ∨ G (o)(yo )))

Here, the two values we have given “M ((o))” and “f (o)” from (4) are still
clearly recognizable, and make up discrete and unified pieces of the
symbolism. This is the way of writing that type-2 function taking that
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type-1 function as argument. If I wished instead to write the value of
λg(o). (xo )((F (o)(xo ) ∨ g(o)(xo )) ⊃ (F (o)(xo ) ∨ g(o)(xo ))) taking G (o)

as argument, I would write:

(7) λg(o). (xo )((F (o)(xo ) ∨ g(o)(xo )) ⊃ (F (o)(xo ) ∨ g(o)(xo )))(G (o))

To be sure, the λ-calculus contains expansion and contraction rules
making (6) and (7) logically equivalent. In particular, by applying
the λ-reduction5 rule to (6), the argument to λg(o). (xo )(g(o)(xo ) ⊃
g(o)(xo )) takes the place of its bound variable, and we get:
(8)
(xo )(λyo .(F (o)(yo ) ∨ G (o)(yo ))(xo ) ⊃ λyo .(F (o)(yo ) ∨ G (o)(yo ))(xo ))

Applying it again to the (now) internal λ-abstracts yields:

(9) (xo )((F (o)(xo ) ∨ G (o)(xo )) ⊃ (F (o)(xo ) ∨ G (o)(xo )))

And then, (7) can be obtained from (9) by one step of λ-expansion.
Obviously, (9) is more recognizably an analogue of Frege’s (3) than is
either (6) or (7). Nevertheless, despite their interderivability, the dif-
ference in syntactic form suggests that there may be some semantic
difference between them.

I doubt very much that Alonzo Church, who invented the notation
of the λ-calculus, would claim that it is necessarily wedded to any
semantic or philosophical conception of the nature of logical types.6

Indeed, as the resulting system can easily be made to be fully equiv-
alent and intertranslatable with Frege’s, it remains perfectly open
to an adherent of Frege’s philosophical understanding of the levels
divisions to adopt Church’s notation, claiming that its use of type
indices captures the unsaturated nature of functions, only in a dif-
ferent way. She could then fully exploit the greater ease of stat-
ing the syntactic formation and inferential replacement rules in a
uniform way.7 Nonetheless, I personally cannot help but feel that
there is something inappropriate or misleading about using this sort
of notation while pushing for a Fregean understanding of the moti-
vation for the type hierarchy. In particular, because (6) contains a
discrete term for λg(o). (xo )(g(o)(xo ) ⊃ g(o)(xo )), one gets the im-
pression that it is about this function in a way that (9) is not. And in-
sofar as this function is something some propositions can be “about”,
the function must be a thing of some sort. It has a name after all,
and while it is a violation of the type system to use this name in its
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own argument spot, this is not because it is somehow physically im-
possible to write:

λg(o). (xo )(g(o)(xo ) ⊃ g(o)(xo ))(λg(o). (xo )(g(o)(xo ) ⊃ g(o)(xo )))

I just have. The explanation for why the same things cannot be said
about this thing, as can be said about others, would have to be sought
elsewhere.

PM’s approach

4.1 The development of Russell’s views

Let us return to Russell’s views, working our way towards the treat-
ment in PM. To best understand them, I think one must appreciate
their development. In earlier work, Frege considered and rejected the
Fregean doctrine of functions understood as “incomplete” or “gappy
things” (e.g., Russell 1931, §482). In manuscripts from 1903–1905,
published only posthumously (in Urquhart 1994), he also anticipated
much of the notation and methods of the λ-calculus (irrelevant nota-
tional details notwithstanding), though eventually abandoned the ap-
proach. I have discussed his historical confrontation with both these
views elsewhere (Klement 2003, Klement 2005), so here I offer only a
very crude summary.

Russell’s principal objection to Frege’s view was its inability to ex-
plain the difference between, e.g., the functions corresponding to the
open sentences “x ≤ y” and “x ≤ x”—if both are thought of obtained
from removing the relata of the relation, it is natural to “think of”
both as ( ) ≤ ( ). Russell’s conclusion in 1903 was that

. . . in general it is impossible to define or isolate the con-
stant element in a propositional function, since what re-
mains, when a certain term, wherever it occurs, is left out
of a proposition, is in general no discoverable kind of en-
tity. Thus the term in question must be not simply omitted,
but replaced by a variable. (Russell 1931, §107)

Through most8 of the period prior to 1905, Russell seems to have
conceived of variables realistically, and of propositional functions as
proposition-like complexes containing variables.

This view is incompatible with thinking of propositional functions
as constituents of their values.9 The function that “x is wise” represents
contains a variable, whereas the proposition “Socrates is wise” rep-
resents does not. However, early Russell did believe that there was a
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proposition containing and about the function itself equivalent with
“Socrates is wise”. In a notation used in 1903, this equivalence would
have been written (e.g., Urquhart 1994, pp. 50ff.):

(10)
,
x(x is wise)|Socrates ≡ Socrates is wise

And in 1904, instead as (e.g., Urquhart 1994, pp. 128ff.):

(11) (x̂ is wise)
Socrates

x̂
≡ Socrates is wise

It was during this period that Russell came closest to anticipating the
λ-calculus approach. It is easy to regard the difference between the
two sides of (10) and (11) as roughly the same as the difference that
would exist in the λ-calculus between “λxo . Wise(o)(xo )(Socrateso )”
and “Wise(o)(Socrateso )”. This is of course a difference of precisely
the same sort as what exists between (6), (7) and (9), for which there
is no difference in Frege’s syntax.

Russell’s reasons for rejecting this approach ultimately are compli-
cated, but one core difficulty is that he regarded there to be a way of
occurring in a proposition—as “logical subject” or as an “individual”—
that he regarded it as “self-contradictory” (Russell 1931, §§47–49,
cf. Frege 1980, p. 134) to deny the capacity of any entity to occur
within. If this is right, then Russell had no explanation for why it is
that a propositional function whose arguments are individuals cannot
take itself as argument, hence no solution to the propositional func-
tions version of Russell’s paradox. Eventually, this seems to have led
him to reject a realist ontology of propositional functions as extra-
linguistic entities altogether. And this in turn led him to think that
terms such as “x̂ is human”, which appear to name such entities,
must either be rejected altogether, or reinterpreted as “incomplete
symbols”, i.e., expressions that make meaningful contributions to the
complete propositions in which they appear without having their own
semantic values, or “things” that are their meanings. As he wrote
in a pre-PM manuscript, “A function must be an incomplete symbol.
This seems to follow from the fact that φ!(φ!ẑ) is nonsense” (Russell
1906, p. 498). From late 1905 to early 1907, he took the tack of es-
chewing such terms altogether. Rather than quantifying over propo-
sitional functions, he then quantified over propositions and made use
of a four-place relation, written “p/a; x!q”, meaning that q is just like
p except containing x wherever p contains a. Then any claim one
would wish to make about “x̂ is human” could be rephrased instead
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making use of claims involving this relation where the first two relata
are, e.g., the proposition Socrates is human, and Socrates, respec-
tively. However, other paradoxes regarding propositions as logical
subjects remained unsolved, and he then came to the conclusion that
propositions too must not be taken as language-independent entities.
This led him, in PM, to return partly, but not wholly, to making use
of function abstracts, though, on my interpretation, he now regarded
their use much differently.

4.2 PM’s propositional function nominalism

On the interpretation I favor, the higher-order variables and quan-
tifiers of PM are to be understood substitutionally, so that the truth-
conditions of formulæ containing them are defined recursively in terms
the formulæ obtained by replacing the variables with their substitution-
instances, which cannot, on pain of circularity, contain bound vari-
ables of the same order (whence PM ’s ramification). In taking this
general line of interpretation, I agree with other commentators such
as Gregory Landini (1998) and Graham Stevens (2005). In what fol-
lows, I shall take the correctness of this general line of interpretation
for granted.

One of the virtues of the reading is that it takes Russell at his word
when, post-PM, he wrote such things as the following. (I shall assign
letters as tags to quotations in order to refer back to them later.)

(A) . . . a propositional function in itself is nothing: it is
merely a schema. (Russell 1956c, p. 234)

(B) In the language of the second order, variables denote
symbols, not what is symbolized . . . (Russell 1940, p. 192)

(C) A propositional function is nothing but an expression.
It does not, by itself, represent anything. (Russell 1958,
p. 53; cf. pp. 62, 92)

A substitutional interpretation of higher-order quantifiers can explain
how it is that higher-order quantifiers—“apparent variables” for propo-
sitional functions, as Russell might say—can be understood, without
there being extra-linguistic “things” for them to range over. However,
this leaves one more puzzle. Whitehead and Russell continue to use
a notation pφx̂q, which they tell us, “means the function itself, as op-
posed to an ambiguous value of the function”(PM p. 127; cf. pp. 15,
40). This appears to be a term, but a term for what? How should the
circumflex be understood?

Landini (1998, pp. 265f.) has taken the heroic course of arguing that
the circumflex is not a term-forming operator of the official language
of PM. On this reading, the main use of circumflex constructions



PM‘s Circumflex, Syntax and Philosophy of Types 227

is within the informal discussion of the system in the metalanguage,
to speak of the system’s open sentences, as opposed to an arbitrary
sentence obtained by assigning values to the variables. On Landini’s
reading, the only terms of the object-language are variables. Ignoring
for the moment the distinct use of the circumflex in expressions of the
form px̂ φxq, used in the contextual definition of classes, one almost
never finds the circumflex used in a numbered proposition of PM.
Whitehead and Russell even remark on this:

(D) In fact we have found it convenient and possible—
except in the explanatory portions—to keep the explicit
use of symbols of the type “φx̂,” either as constants [e.g.
x̂ = a] or as real variables, almost entirely out of this work.
(PM p. 19)

What gives pause, of course, are the words “convenient” and “al-
most”, which seem to suggest that there are exceptions, or perhaps,
that while the syntax does allow such expressions, it is more conve-
nient to use distinct formulations when available. In practice, the
entire apparatus of propositional functions mainly serves as a step-
ping stone to introduce the contextually defined notation for classes
and relations-in-extensions in PM, and once these are in place, vari-
ables and other terms for propositional functions disappear from the
remainder of PM.

On my own interpretation, circumflexes of this sort do have a very
narrow role to play in the syntax of PM, though not nearly as much
as λ-abstracts have in the λ-calculus. To fully understand their use, I
think one needs to understand the way Russell speaks about “propo-
sitional functions.” At times, he means only open sentences. At times,
however, he seems to want to refer to the “would-be” things that open
sentences would stand for if only there were such things. Both uses
are evident in (A). It is a propositional function in the first sense that
is a “mere schema” or “an incomplete symbol”. It is a propositional
function in the latter sense that is a “nothing”, or “not a definite ob-
ject”, as in the following important quotation from PM itself:

(E) . . . a function is essentially an ambiguity, and that, if it
is to occur in a definite proposition, it must occur in such
a way that the ambiguity has disappeared, and a wholly
unambiguous statement has resulted. A few illustrations
will make this clear. Thus “(x).φx,” which we have already
considered, is a function of φx̂; as soon as φx̂ is assigned,
we have a definite proposition, wholly free from ambigu-
ity. But it is obvious that we cannot substitute for the func-
tion something which is not a function: “(x).φx” means
“φx in all cases,” and depends for its significance on the
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fact that there are “cases” of φx, i.e. upon the ambiguity which
is characteristic of a function. . . . Take e.g. “x is a man,” and
consider “φx̂ is a man.” Here there is nothing to eliminate the
ambiguity which constitutes φx̂; there is thus nothing definite
which is said to be a man. A function, in fact, is not a defi-
nite object, which could be or not be a man; it is a mere am-
biguity awaiting determination, and in order that it may oc-
cur significantly it must receive the necessary determination,
which obviously it does not receive if it is merely substituted for
something determinate in a proposition.* [Footnote: * Note that
statements concerning the significance of a phrase containing
“φẑ” concern the symbol “φẑ,” and therefore do not fall under
the rule that the elimination of the functional ambiguity is nec-
essary to significance. Significance is a property of signs. Cf.
pp. 40, 41.] (PM pp. 47–48)

I believe Russell makes it fairly clear that he does not regard an open
sentence—whether the variable is circumflected or not!—as being in-
dependently meaningful. The way in which such an expression con-
tributes to the meaning of the complete propositions in which it ap-
pears depends on the way in which the “ambiguity” is removed.

As is clear from the footnote, it is not necessary to “eliminate the
ambiguity” when the circumflex construction is used to mention the
open sentence rather than use it. In the footnote, he refers back to
pages 40–41, where it is claimed that “φx̂ is a function,” is an unam-
biguous statement, and that “the value for φẑ with the argument φẑ
is true,” is a meaningful, albeit false, proposition. I take it that these
uses of the circumflex are to be taken as mentions rather than uses.
However, they are not found in the technical portions of PM, only in
the informal discussion. Indeed, he there makes it clear that “φ(φẑ)”
is not to be interpreted this way.

What Russell has in mind by eliminating the ambiguity, when it
is necessary to do so, is exemplified by such things as binding the
variable in the open sentence with a quantifier. The ways in which
this can be done are quite limited, as he makes clear in a later work:

(F) We do not need to ask, or attempt to answer, the question:
“What is a propositional function?” A propositional function
standing all alone may be taken to be a mere schema, a mere
shell, an empty receptacle for meaning, not something already
significant. . . .

There are, in the last analysis, only two things that can be
done with a propositional function: one is to assert that it is
true in all cases, the other to assert that it is true in at least one
case, or in some cases . . . All the other uses of propositional
functions can be reduced to these two. (Russell 1919, pp. 157–
58; cf. Russell 1956c, p. 230, Moore forthcoming)
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The claim that there are only two things is, of course, an exaggeration.
Elsewhere he is a bit more generous, including also asserting a par-
ticular value of the propositional function (e.g., Russell 1950, p. 377,
Russell 1958, p. 62). But the more important part of what Russell
is saying here is that he thinks that all uses of propositional func-
tions are derived somehow from these. For example, the following
represent different assertions which use the propositional function “x
is wise”, and while none of them simply are universal or existential
quantification applied with this open sentence, it is easy to see the
dependence:

(x)(x is wise ⊃ a is wise)(12)

(∃x)(x is wise . x 6= a)(13)

((∃x) x is wise) . (∼ (x) x is wise)(14)

These are all cases in which the “ambiguity” has been removed, and
not coincidentally, there is no need to use a circumflex in any of them.
The propositions expressed by (12)–(14) are not about some entity
whose name is “x̂ is human”; and indeed, Russell’s explicit view is that
the above, if true, are not made true by any simple fact or complex,
but by numerous complexes, whose constituents include Wisdom, the
entity a, and various values of the variable (PM p. 46). To be sure,
when explaining quantification informally, he sometimes paraphrases,
e.g., “(∃x) x is wise” by something like “the propositional function ‘x
is wise’ is sometimes true” (e.g., Russell 1919, p. 159) as if it was
about the open sentence or some other “thing”, but I think this is
loose talk phrased for the benefit of an audience that, in general,
would have had almost no familiarity with modern quantificational
logic. The paraphrase gives the truth-conditions for the sentence, but
is not quite synonymous with it. Indeed, Russell explicitly says that we
“more correctly” speak of “functions of functions” than “statements
about functions” (Russell 1919, p. 186). The examples (12)–(14) rep-
resent values of second-order functions when “x is wise” is the argu-
ment, but are not about that function.

It is clear I think that Russell believes that the circumflex nota-
tion is not needed at all when the ambiguity involved in the use of a
propositional function is removed, as with (12)–(14) above, and that,
in 1910 at least, Russell would not regard there as being any need for
distinct forms in which that notation reappears such as, e.g.:

(x)((ẑ is wise)
x

ẑ
⊃ (ẑ is wise)

a

ẑ
)(15)
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(∃x)((ẑ is wise)
x

ẑ
. x 6= a)(16)

((∃x)((ẑ is wise)
x

ẑ
)) . (∼ (x)((ẑ is wise)

x

ẑ
))(17)

Notation such as this was regarded by him as appropriate only when
he thought there was such a “thing” denoted by “x̂ is wise”. This is
roughly to say that Russell would not have gone along with the prolif-
eration of different inter-convertible or equivalent notations found in
the λ-calculus. If propositional functions always must appear in such
a way that they “receive the necessary determination” to “eliminate
the ambiguity which constitutes” them, and doing so always takes a
form in which a circumflex construction is not needed, it is hard to see
why the circumflected expressions are needed at all in the notation of
PM.

4.3 The role of the circumflex

The answer to this riddle is that there is sometimes need for stating
general definitions, and asserting general truths, employing proposi-
tional functions, in which it is not specified precisely how that ambi-
guity is removed. Indeed, this is explained by Whitehead and Russell
themselves in the context immediately preceding (D):

(G) In the definition of “∼{(x).φx}” only the function con-
sidered, namely φẑ, is a real variable; thus so far as con-
cerns the rule in question, x need not appear on the left.
But when a real variable is a function, it is necessary to
indicate how the argument is to be supplied, and there-
fore there are objections to omitting an apparent variable
where (as in the case before us) this is the argument to
the function which is the real variable. This appears more
plainly if, instead of a general function, φx̂, we take some
particular function, say “x̂ = a,” and consider the defini-
tion of

∼{(x). x = a} .=. (∃x).∼(x = a) Df.

But if we had adopted a notation in which the ambiguous
value, “x = a,” containing the apparent variable x, did not
occur in the definiendum, we should have had to construct
a notation employing the function itself, namely “x̂ = a.”
This does not involve an apparent variable, but would be
clumsy in practice. (PM p. 19)
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To understand what is being said here, it is perhaps best to take ex-
amples. If one wanted, for example, to introduce a definition or ab-
breviation for the type-2 function applied to “x is wise” in (12), one
might write:

(18) (Qx)φx .=. (x)(φx ⊃ φa) Df.

Here the defined sign is used as a variable-binding operator and goes
along with a variable “x” which can occupy the argument position to
the letter “φ”, used to make the definition general. This is possible
here, because the definiens fills the argument positions of “φ” in sim-
ilar fashion. This is not always possible, especially if the definition
is of a more complicated sort. Here we may consider the contextual
definition of class-abstracts given in PM *20.01 (involving the other
use of the circumflex).

(*20.01) f (ẑ ψz) .=: (∃φ):φ!x .≡x . ψx : f (φ!ẑ) Df.

In the definiendum here, the argument-place to “ψ” is filled by the
variable z, which is effectively bound in that context. However, if
this definition were unpacked, and the definiendum replaced with
the definiens, the precise way in which the argument place of the
variable letter “φ!” is filled depends on the context f ( ) in which
the class abstract appears. If one were applying this definition in
the context, “a ε ẑ ψz”, then, given additionally the definition of ε
(*20.02), one would end up with “(∃φ):φ!x .≡x . ψx : φ!a”, but if
one were to apply it rather to “(y). y ε ẑ ψz”, the result would be
“(y) (∃φ):φ!x .≡x . ψx : φ!y”, and of course much more complicated
forms are possible too. The point is that when a particular context f ( )
is supplied, the ambiguity characteristic of the function should be re-
moved, but since the definition is so general that it is to be applicable
however this is done, it is stated in a way that requires the circumflex
term, so as not to presuppose some particular way of removing that
ambiguity.

By itself, the use of the circumflex as in *20.01 is consistent with
Landini’s position that the circumflex is not needed in the object lan-
guage of PM at all. This requires taking a certain sort of stance on the
use of the letter f there. On the surface this appears to be a higher-
type object-language variable, but it is also not fixed as to its order.
Similar uses of an order-unspecified variable are found, for example,
in the Axiom of Reducibility, which, in the monadic case, appears:

(*12.1) (∃f ):φx .≡x . f !x
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The purpose of the axiom is to assert that “[a]ny function of one argu-
ment . . . is equivalent to a predicative function of the same argument
or arguments.” The shriek “!” on the variable f in *12.1 indicates that
it is restricted to predicative order, but to serve the work for which it
is intended, φ would seem to be able to take values of any order con-
sistent with its having x as an argument. Of such order-unspecified
variables as φ in *12.1 and f in *20.01, Russell writes the following:

(H) We require, however, a means of symbolizing a func-
tion whose order is not assigned. We shall use “φx” or
“f (χ!ẑ)” etc. to express a function (φ or f ) whose order,
relative to its argument, is not given. Such a function can-
not be made into an apparent [i.e., bound] variable, unless
we suppose its order previously fixed. As the only purpose
of the notation is to avoid fixing the order, such a function
will not be used as an apparent variable; the only functions
which will be so used will be predicative functions . . . (PM
p. 165)

Something very similar occurs in the summary of PM Russell sent
to Carnap,10 where after listing the Axiom of Reducibility, Russell
states, “[a] predicative function can be an apparent variable; a gen-
eral function cannot”, contrasting the two kinds of variables the ax-
iom contains. The suggestion seems to be that the language con-
tains certain variables which can only be used unbound, to express
that a certain something holds of any value of that variable, where
those values are not restricted to an order. The necessity of the or-
der hierarchy prevents that sort of variable being used with quan-
tifiers, or to express something about all values (cf. Russell 1956b,
pp. 67ff.). This is a fairly difficult position to wrap one’s head around,
and indeed, even Wittgenstein chided Russell about this in a letter
in 1913 (Wittgenstein 1979, p. 122). Landini interprets these “gen-
eral variables” as best understood not as object-language variables
at all, but as schematic letters, so that, for any open sentence one
might substitute for φx, we have a distinct instance of *12.1, where
*12.1 should not be understood as a single axiom, but as an axiom
schema. While it is probably not the case that Russell himself had
a clear understanding of the difference between object-language un-
bindable variables and schematic letters of the metalanguage, Lan-
dini’s suggestion is a charitable one, consistent with the actual uses
of these variables in PM. In fact, the suggestion makes better sense of
some of Russell’s actual practice than his “official” explanation. (We
shall see an example later.) Indeed, most likely, I think Russell would
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have welcomed the re-description of his use of this variables had the
more contemporary vocabularly been available to him.

If we regard the f ( ) in the definition *20.01 as a schematic letter,
it raises the possibility that the circumflex notation—used there be-
cause it is unclear how the ambiguity is removed—is only necessary
because the definition is stated schematically. It seems in fact that
most of the ways the f ( ) can be assigned result in the disappearance
of the circumflex, at least when all defined expressions are fully re-
solved. The definition *20.01 is often resolved in a context in which
the apparent class-term to be eliminated appears on the right side of
the membership sign ε, itself defined as follows:

(*20.02) x ε (φ!ẑ) .=. φ!x Df.

This is an odd definition in that the definiendum is syntactically more
complex than the definiens, and only the definiendum contains the cir-
cumflex notation. I surmise that this definition is written in the way it
is precisely to make it easier to apply the contextual definition *20.01
to contexts in which the circumflex notation otherwise would not ap-
pear. As we have seen, when both definitions are unpacked, “a ε ẑ ψz”
becomes “(∃φ):φ!x .≡x . ψx : φ!a”, where no circumflex is necessary
at all. Similarly, interpreting the contextual definition with narrow
scope, “(y)(y ε ẑ ψz)”, would become “(y) (∃φ):φ!x .≡x . ψx : φ!y”,
and “(∃y)(y ε ẑ ψz)” turns into “(∃y) (∃φ):φ!x .≡x . ψx : φ!y”. Given
that Russell believes that the only things that can be “done with” a
propositional function are to assert its truth for all or some values, or
assert some particular values, or something constructible somehow
from these, one might think that any possible context the schematic
variable “f ( )” could represent would be one in which no circum-
flex is necessary. To my knowledge, *20.01 and *20.02, their im-
mediate corollaries, their analogues for resolving the definition for
relations-in-extension into statements about dyadic functions (*21.01
and *21.02), and their immediate corollaries, are the only numbered
propositions in which what appear to be circumflex terms for propo-
sitional functions appear at all explicitly in PM. If the circumflex only
appears there because of their schematic nature, perhaps the circum-
flex notation is not needed in the object-language at all.

Unfortunately, this is not quite right, since in addition to such sche-
matic letters as “f ( )” from *20.01, PM does have object-language variables
for higher-type functions, and unlike Frege, Russell does not require
these variables to themselves work as variable-binding operators. Thus
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*20.01 must be applicable when pf (ẑ ψz)q takes such a form as “χ!(ẑ ψz)”,
where “χ” is a variable letter of the object language, and indeed
such contexts are necessary to interpret statements about classes of
classes. Unpacking the contextual definition *20.01 in the following:

(19) (∃χ)χ!(ẑ ψz)

yields:

(20) (∃χ)((∃φ):φ!x .≡x . ψx : χ!(φ!ẑ))

I take (20) to be an object-language formula of PM, completely free of
schematic letters, but here the circumflex is still necessary. I do not,
however, take a statement such as (20) to be a serious counterexam-
ple to Russell’s claims about “the only” things that can be done with
propositional functions, nor in any way to require us to posit some
“thing” that the term “φ!ẑ” stands for to understand its semantics.
This is because, on the reading given here, the higher-type variables
are given a substitutional semantics, so that the truth of (20) depends
recursively on the truth of such formulæ as “(∃φ):φ!x .≡x . ψx : φ!a”,
“(∃φ):φ!x .≡x . ψx : (y)φ!y”, and “(∃φ):φ!x .≡x . ψx : (∃y)φ!y”. It is
true just in case one (or more) of those are true. Being taken as an
argument to a higher-type function is not some wholly “additional”
thing that can be done with the functions that are the values of φ!ẑ
here, but just a way of making generalizations about those things we
have already acknowledged can be done.

In sum, while I do think the circumflex notation does have a role
to play in the object language of PM, this is only in situations in
which the circumflected term appears as an argument to a higher-
type propositional function variable. In such circumstances, more-
over, the higher-type function variable must be part of some quan-
tified statement whose truth or falsity depends upon statements in
which that particular circumflex term disappears. In particular, the
circumflected variable is replaced by either a particular value or a
variable bound by a universal or existential quantifier. In no case are
we required to assign some one “thing” as “the” semantic value of
the circumflex abstract. For this to hold good of the example (20) it
must be that none of the formulæ its truth depends upon are ones
in which “φ!x̂” occurs in argument position to another higher-type
variable. The formulæ it depends upon, I take it, are those that re-
sult from assigning “χ” a value that yields a closed sentence. Be-
cause “χ” is predicative, however, none of these instances can con-
tain quantifiers binding variables of the right type to take “φ!x̂” as
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argument (and instances using unbound variables of that type are not
closed sentences).

Moreover, I agree with Landini that contrary to the traditional
reading of ramified type theory, in the language of PM, aside from
the “general variables” discussed earlier (here interpreted schemat-
ically), all higher-type variables are predicative. We have already
seen in quotation (H) above that Russell claims that only predicative
variables would be used in PM as apparent (bound) variables (and
cf. Russell 1956b, p. 87). Just before this passage, it is claimed that
“non-predicative functions always result from such as are predicative
by means of generalization” and that “therefore, it is possible with-
out loss of generality, to use no apparent variables except such as
are predicative” (PM p. 165). In the introduction, he writes that “we
need not introduce as variables any functions except predicative func-
tions” (PM p. 54), a remark that confirms that at some level Russell
did not regard the order-unspecified “general variables” as real vari-
ables of the object language. With the Axiom of Reducibility assumed,
quantification just over predicative variables is, for extensional con-
texts, nearly as good as quantification unrestricted to order, and for
mathematical contexts, nothing else is needed. Still, it is perhaps ar-
guable that these remarks are not conclusive: to claim that no bound
non-predicative function variables will be used is not necessarily to
claim that they are somehow not even part of the language. Never-
theless, as Landini has explained (Landini 1998, chap. 10), the ex-
planation of the type system, and even conventions regarding certain
contextual definitions in PM, are simply inadequate if non-predicative
variables are included as well. This by itself seems to me to be an
indication that likely the language wasn’t intended to include them.
While these considerations may not be conclusive, and explorations of
a reconstructed system allowing such variables is welcome, it simpli-
fies matters greatly to restrict the language to predicative higher-type
variables.

4.4 Is the circumflex a complex term-forming op-
erator?

I have argued that the circumflex is only used when the function ab-
stract appears in argument position to a higher-type variable. Lan-
dini’s position seems to be that the circumflex is only used when one
function variable appears in subject position to another (higher-type)
function. He claims in footnote that “[t]his use is quite minor and is
easily omitted” (1998, p. 265). The thought, I take it, is that so long
as type indices were specifically listed, the portion “χ!(φ!ẑ)” of (20)
could be simplified to something such as “χ((o))(φ(o))”. This goes
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hand in hand with his claim that the only terms of PM are variables,
and that “comprehension” for propositional functions is effected not
through having complex circumflex terms represent valid substituends
of function variables, but rather through the Axiom of Reducibility it-
self. This, as we have seen, is to be understood schematically, and
posits a value among those quantified over by predicate function vari-
ables of a certain type one coextensive with any open formula, whether
or not that open formula is predicative. Landini points out that prob-
lems exist if the circumflex is understood as a term-forming operator
applicable to complex formulæ. On the present interpretation, one
significant problem is that if circumflection is allowed on formulæ
containing quantifiers, then even if all variables are of predicative
types, some circumflex terms would be non-predicative, but yet if cir-
cumflex terms are only used in argument position to higher-type vari-
ables, without higher-type variables with non-predicative arguments,
there could be no complete formulæ for them to appear within.

My own view is the intermediate one that circumflection is allowed
when applied to a variable occurring within a quantifier-free open
expression, but that these expressions only occur within a complete
well-formed expression in argument position to a higher-type vari-
able. It should be recalled that the strategy of the austere quantifica-
tion theory of *9 of PM is, strictly speaking, only to allow quantifiers at
the beginning of a formula, exploiting the possibility of writing any ex-
pression in which quantifiers appear subordinate to a truth-functional
connective in an equivalent form with the quantifiers in what these
days we would call prenex normal form. The definitional conventions
of *9.01–*9.08 of PM allow us to interpret quantifiers when directly
subordinate to a negation sign or disjunction sign, but they provide
no interpretation of something of the form “χ!((ψ)ψ!(x̂))”. But I do
think Russell would allow for circumflection to be used as forming the
expression for a complex argument to a higher-type function variable
when no quantifiers are used internally, e.g., something such as:

(21) (χ)(χ!(ψ!x̂ ∨ φ!x̂) ⊃ χ!(ψ!x̂ ∨ φ!x̂))

I take it Landini would not acknowledge even such uses. The evidence
for Russell’s acceptance of them is, admittedly, not entirely conclu-
sive, but Russell does in informal discussion speak of, e.g., “φx̂ ∨
ψx̂” (*9.61) and “∼ f x̂ ∨ χ(x̂, ŷ)” (*10.221). Moreover, Russell’s ac-
knowledgement in 1919 that PM had erred in not stating replacement
rules for the variables (Russell 1919, p. 151n) suggests to some
extent that Reducibility alone is not entirely responsible
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for functional “comprehension” in PM. If such complex function ab-
stracts or function “terms” (using that phrase loosely) are allowed
only before quantifiers are added, there need be no worries about
non-predicative abstracts.

However, this difference between myself and Landini is partly in-
dicative of a wider difference involving whether or not PM was com-
mitted to the presence in the language of non-logical constants and
how this relates to the semantics of individual variables and pred-
icative second-order variables. While we agree upon reading most
higher-order quantification in PM substitutionally, Landini advocates
a realist interpretation of the first-order variables, and even pred-
icative lowest-type function variables, to serve as the basis for the
recursive theory of truth in which the truth or falsity of higher-order
variables is to be defined (Landini 1998, p. 238). On my own view, all
forms of quantification in PM are to be understood substitutionally.
Even though no non-logical vocabulary is actually employed within
the strictly logical and mathematical content of the book, the seman-
tics BR has in mind presupposes a base language—indeed, a logically
ideal language—in which every individual has a proper name, and ev-
ery simple universal (quality or relation) is represented by a simple
predicate. This comes out, for example, in Introduction to Mathe-
matical Philosophy where Russell claims that non-logical words are
needed “for giving values to the variables” (Russell 1919, p. 201) in
mathematics and pure logic even though the non-logical words are
not actually used in these fields.11

Although I think that ultimately, the truth of falsity of any state-
ment of the language of PM that includes the circumflex depends
recursively on those that do not, this dependence proceeds in stages,
and to make sense of the semantics of a “purely logical” proposition
such as:

(22) (φ) (∃χ)χ!(φ!x̂)

one must understand it as true just in case all such propositions as:

(23) (∃χ)χ!(x̂ is green ∨ x̂ is blue)

and similar instances, are true. To be sure, (23) in turn ultimately de-
pends for its truth on circumflex-free formulæ such as “(a is green ∨ a
is blue) ⊃ (b is green ∨ b is blue)”, and so on, but one still must acknowl-
edge the well-formedness of (23) in order to understand the seman-
tics of (22). Landini, who would not understand the semantics of the
quantifier (φ) at the start of (22) in quite this way, needs make no such
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acknowledgement. A full explanation for my deviance from Landini
on this point must be left for another occasion.

4.5 Comparison with the other approaches

So to return to the discussion of the ways in which Russell’s approach
falls in between Frege’s approach and the approach embracing ex-
plicit function abstracts, as in the λ-calculus, the following conclu-
sions seem apt. Russell’s approach is similar to the latter in that
it does make use of function abstracts, and rejects the notion of a
function as something “incomplete” or “gappy”. Russell’s “χ!(φ!x̂)”
segments cleanly into function expression and argument expression;
the “x̂” goes with the φ, unlike Frege’s Mβf (β), where both β’s are
to be considered as belonging with the M, not with the f. However,
unlike in the λ-calculus, the circumflex “terms” are allowed only in ar-
gument position to a higher-type variable. For this reason, Russell’s
notation does not have the multiplicity of equivalent forms as exem-
plified by (6), (7) and (9) in the λ-calculus. It is a well known result
in typed λ-calculi that every well-formed expression is equivalent to
one in so-called “normal form”, i.e., one in which λ-abstracts appear
only in argument position (Hindley and Seldin 1986, pp. 323ff.) or not
at all; with the examples just given, this is (9). In some ways, it is as
if Russell’s notation only included the λ-calculi’s normal forms; when
a higher-type variable in function position (not just argument posi-
tion) is given a particular value, the necessary conversion to reach
this reduced form is applied at the same time. A further subtle dif-
ference is that Russell’s notation does not use the circumflex notation
when a specific higher-type function takes a propositional function as
argument, as with universal or existential quantification; one writes
“(x)φx”, not “(x)φx̂”, whereas in Church’s notation, “(xo )φ(o)(xo )”
abbreviates “Π((o))(λxo .φ(o)(xo ))”.

This suggests a somewhat different attitude in how it is natural
to understand the syntax of circumflex “terms” for Russell;
these terms are not to be understood as terms for something,
and different types of circumflex terms are not to be understood as
referring to distinct logical categories of entities. As Russell put it
in quotation (E), a propositional function is “not a definite object,”
but “a mere ambiguity awaiting determination,” and indeed,
the circumflex is only necessary when it is not known how
that ambiguity is removed, because different ways of removing it—
represented with a schematic letter or variable—are allowed
in the context. The different types making up the type theory corre-
spond to how different ways of removing ambiguities pair
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up with ambiguities to be removed. The quantifier “(x)” can be ap-
plied to the open sentence “x is human” because it makes the result-
ing sentence’s truth depend recursively on the substitutions of actual
designating terms for the “x” in the sentence, terms which do stand
for a thing that may or may not be human. The quantifier “(φ)” cannot
be used to remove its ambiguity, since the substitution instances for
its variable are themselves things whose ambiguity needs to be re-
moved by the context into which they are placed; if they are placed in
a context which a independent semantically meaningful term is nec-
essary, nothing meaningful results.

These different sorts of ambiguities and ambiguity-removing po-
tentials are shown to some extent by the differing structural complex-
ities of the variables of different types in Russell’s notation. While an
individual variable “x” is syntactically simple, Russell makes it clear
that the full variable is not simply “f” or “χ”, but “f !x̂” for a pred-
icative variable the next type up, or “χ!(φ̂!x̂)” for two types up (e.g.,
PM pp. 51, 65). Again, this makes Russell’s notation somewhat more
like Frege’s, where, as noted earlier, explicit type-indices are not re-
quired since the differing structure of the variables may speak for
themselves, and unlike the λ-calculus, where type indices are crucial.
However, differences between Frege’s notation and Russell’s make
the latter not fully unambiguous without type indices. This can be
seen, for example, with such an expression as the following:

(24) θ!(χ!(x̂,ψ!(ŷ, ẑ)))

Even ignoring the practice of typical ambiguity that in some contexts
might allow “x”, “y” and “z” to be other than variables for individuals,
and insisting that they be taken as such, and taking “ψ” as a variable
for a two-place function whose arguments are both individuals, this
notation does not make clear what types “θ” and “χ” must be taken
as having. On one reading, “χ” would be read as a variable for a
function having as its arguments one individual, and one function of
two individuals, and then “θ” could be understood as a function taking
a function of individuals as argument. Then the whole expression’s
primary form equivalent in the λ-calculus might be:

(25) θ((o))(λxo .χ(o,(o,o))(xo ,λyo , zo .ψ(o,o)(yo , zo )))

If “χ” is read instead as a variable for functions taking one individual and
one function of individuals as argument, “θ” is instead taken as taking
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for its argument a relation between individuals. It might, for example,
be read as the analogue of this:

(26) θ((o,o))(λxo , yo .χ(o,(o))(xo ,λzo .ψ(o,o)(yo , zo )))

If something more like (26) is meant, the addition of type indices to
Russell’s (24) can be used to rule out reading it as akin to (25):

(27) θ((o,o))!(χ(o,(o))!(x̂o ,ψ(o,o)!(ŷo , ẑo )))

Nevertheless, even this does not suffice to eliminate all ambiguities.
It instead might be read as the analogue of:

(28) θ((o,o))(λxo , zo .χ(o,(o))(xo ,λyo .ψ(o,o)(yo , zo )))

Given the paucity of contexts in which Russell felt this kind of notation
actually needed to be used in PM, and that he never used multiple
circumflexes explicitly in the same formula, it is likely that he ignored
such complications.

Nevertheless, those wishing to state PM as a formal system up to
modern standards of rigor cannot ignore such problems. My recon-
struction of the syntax of PM therefore, uses both type indices and
preceding λ’s as variable-binding operators, but such expressions can
occur as parts of well-formed formulæ only when in argument posi-
tion to a higher-type variable. Conventions could be adopted for sup-
pressing type indices and for substituting the circumflex notation in
circumstances in which no ambiguity threatens, thereby preserving
the explicitly written formulæ of PM as matching the syntactic rules
given here.

Appendices

A. Syntax of PM

In this appendix, I sketch briefly and without further lengthy justifica-
tion a reconstruction of the syntax of PM as I interpret it. At times I
deviate slightly from the letter of PM for the sake of exactness, but I
acknowledge when this is the case. In the present context, I list only
the syntax of the more austere quantification apparatus in *9 of PM.

As alluded to in section 4.4, I believe PM presupposes a base language,
including a list of proper names, one for each individual, along with
simple predicates; these go together to form atomic propositions. This
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vocabulary of course is never used in the purely logical and mathemat-
ical content of the book, and hence is not listed in any detail. When
examples are given, they are simply written out in English in sen-
tences such as “this is red” and “Socrates is human” (PM pp. 39, 50).
To systematize things somewhat, however, I stipulate that non-logical
constants should take the form of single boldface letters. Predicates
are written at the end of the sentence, which I do only to discour-
age the common misconception that Russell in any way thinks of the
subject/predicate relationship as a form of the function/argument re-
lationship, which I have argued against elsewhere (Klement 2004).
This notation is also inspired by Russell’s own occasional depiction
of the basic form of subject/predicate sentences as “xP”, which he
does even in works in which the notation “‘f (x)” is used elsewhere for
propositional functions (e.g., Russell 1973, pp. 295, 305). I also as-
sume here that there are denumerably many such constants, though
I think Russell’s actual intention is that there should be exactly as
many constants as there are things, period. I call the letters usable
as predicates “universal constants”, since Russell understands them
as standing for universals. At the time of the first edition of PM, Rus-
sell still regarded a word for the universal which one given predicate
stands for as also capable of occurring in subject position to another
predicate or even to itself; that is a view Russell had endorsed in The
Principles of Mathematica, and did not abandon until having been in-
fluenced by Wittgenstein.12 Thus, in my notation an atomic formula
has such a form as:

〈a, b〉r

meaning, “a bears r to b”, or even:

〈r, b〉r

i.e., “r bears itself to b”. Hence, we can offer the following definitions:

A particular constant is a bold-faced letter a, . . . , e, written
optionally with one or more primes (to ensure an infinite
supply), e.g., a′, b′′, etc.
A universal constant is a bold-faced letter f, . . . , z, with a
superscript n where n ≥ 1, written optionally with one or
more primes.
A constant is either a particular constant, or a universal
constant.

On my interpretation, all simple constants, both those for particulars
and those for universals, represent individuals, which goes along with
Russell’s definition of an individual as something “destitute of com-
plexity” (1956b, p. 76) or which “exists on its own account” (PM p. 162).
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Variables, however, can have other types, and for reasons explained
above, type-symbols are used in my reconstruction.

A type symbol is defined recursively as follows: (i) o is a type sym-
bol; (ii) if τ1, . . . , τn are type symbols, then so is (τ1, . . . , τn ). Nothing
else is a type-symbol.

The order of a type symbol τ is the greatest integer reached while
parsing τ , adding one for each left parenthesis, subtracting one for
each right parenthesis.

A variable letter is a (non-bold, italicized) letter a, . . . , o, q, r, t , . . . ,
z, A , G , H , K , . . . , Z ,φ,ψ,χ, or θ,13 written optionally with one or more
primes ′ (to insure an infinite supply), and a superscripted type-symbol.
(E.g., a ′o , f (o), θ′′(o, (o)), etc.)

However, it is made clear in PM that a variable for a higher-
type is best not treated as a single letter, but as something as struc-
turally complex as its values (Landini’s simplifications notwithstand-
ing). Thus, a pure type (o) variable should appear as “φ!(x̂)”, and one
of type ((o)) as “χ!(φ̂!(x̂))”. The definition that I think would have been
offered by Whitehead and Russell for a pure variable might read thus:

A pure variable of type τ is defined recursively as follows:

1. A variable letter with type-symbol o is a pure variable of type o.
2. If µ

τ1
1 !(ν1.1, . . . , ν1.n1

), . . . ,µτmm !(νm.1, . . . , νm.nm ) are each pure

variables of types τ1, . . . , τm , respectively, where µ
τi
i (where 1 ≤

i ≤ m) is the variable letter with which each begins, and κ(τ1,...,τm )

is a variable letter with the indicated type-superscript, then
κ(τ1,...,τm )!(µ̂

τ1
1 !(ν1.1, . . . , ν1.n1

), . . . , µ̂τmm !(νm.1, . . . , νm.nm )) is a
pure variable of type (τ1, . . . , τm ).

3. Nothing else is a pure variable.

Moving to the use of λ-operators instead, however, this could be changed
to the following:

A pure variable of type τ is defined recursively as follows:

1. A variable letter with type-symbol o is a pure variable of type o.
2. If µ

τ1
1 , . . . ,µτmm are each pure variables of the types given by

their superscripts, and κ(τ1,...,τm ) is a variable letter with super-
script (τ1, . . . , τm ), then λµ

τ1
1 , . . . ,µτmm .κ(τ1,...,τm )(µ

τ1
1 , . . . ,µτmm ) is

a pure variable of type (τ1, . . . , τm ).
3. Nothing else is a pure variable.

An individual variable is a pure variable of type o.
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Strictly speaking these last two definitions are not needed for the
definitions below, but are conceptually interesting.

In the approach of *9, quantifiers always appear at the very begin-
ning of a formula, and they are applied to what Russell calls a “matrix”
(PM p. 163). Vacuous variable binding is not allowed, so a matrix al-
ways contains free variables. I use the phrase “matrix-formula” as
a generic term for a quantifier-free expression that may or may not
contain free variables. We define this notion alongside the notion of a
complex expression of a given type (a circumflex or λ-term) as follows:

A matrix-formula and expression of type τ are defined together, re-
cursively, as follows:

1. A constant is an expression of type o.
2. A pure variable of type τ is an expression of type τ .14

3. If ρn is a universal constant with superscript n, and η1, . . . , ηn
are each either constants or individual variables, then
〈η1, . . . , ηn〉ρn is a matrix-formula.

4. If µ(τ1,...,τn ) is a variable letter with the indicated superscript,
and ντ1 , . . . , ντn are expressions of the given types, then
µ(τ1,...,τn )!(ντ1 , . . . , ντn ) is a matrix-formula.

5. If α is a matrix-formula containing distinct free (uncircumflected)
variable letters µ

τ1
1 , . . . ,µτnn with the indicated superscripts, and

α′ differs from α in placing circumflexes over every occurrence
of each of µ

τ1
1 , . . . ,µτnn in α, then α′ is an expression of type

(τ1, . . . , τn ).
(In the reconstructed syntax, this reads instead: if α is a matrix-
formula containing distinct free variable letters µ

τ1
1 , . . . ,µτnn with

the indicated superscripts, then λµ
τ1
1 , . . . ,µτnn .α is an expression

of type (τ1, . . . , τn ).)
6. If α and β are matrix-formulæ then (α ∨ β) is a matrix-formula.
7. If α is a matrix-formula, then ∼α is a matrix-formula.
8. Nothing else is either a matrix-formula or an expression of type

τ .

A matrix is a matrix-formula containing one or more free (uncircum-
flected)15 variable-letters.

The order of a matrix is the number one greater than the largest
of the orders of the type-symbols of the (uncircumflected)16 variable
letters it contains.

An elementary proposition is a matrix-formula that does not con-
tain any variable-letters.
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An atomic proposition is an elementary proposition not containing
“∼” or “∨” (i.e., one of the form 〈η1, . . . , ηn〉ρn ).

A formula is defined recursively as follows:
1. A matrix-formula is a formula. (All uncircumflected variable let-

ters it contains, if any, are free.)
2. If α is a formula containing variable letter µ free, then (µ)α is a

formula. (Its free variable letters are those of α minus µ.)
3. If α is a formula containing variable letter µ free, then (∃µ)α is

a formula. (Its free variable letters are those of α minus µ.)
4. Nothing else is a formula.

A closed formula or proposition is a formula without free variables.
The order of a proposition is 0, if it is an elementary proposition,

or else it is the order of the matrix that occurs after all its quantifiers.

B. Semantics of PM

I here offer a preliminary outline of what I take the intended seman-
tics of PM to be based on the introduction to PM ’s brief discussion
of a hierarchy of truth and falsity for formulæ of different orders. It
is intended as a rough sketch only, and in particular, significant elab-
orations would be necessary to do full justice to the expanded quan-
tificational language adopted in *10. Due to an unfortunate mismatch
in Russell’s own description, “first truth” was used for elementary
propositions, “second truth” for first-order quantified propositions,
“third third” for second-order quantified propositions (PM p. 42). To
avoid confusion, I shift the ordinals on senses of truth so they match
the ordinals for the orders.

The meaning of each constant is given by fiat.
• The meaning of a universal constant with superscript n is some

n-place relation between individuals. (Russell still at this time
believed that relations-in-intension, etc., are themselves individ-
uals.17)

• The meaning of a particular constant is some particular.

Atomic truth: An atomic proposition 〈η1, . . . , ηn〉ρn (where η1, . . . , ηn
are universal or particular constants and ρn is a universal constant)
has atomic truth if and only if the individuals meant by η1, . . . , ηn
stand in the relation meant by ρn .

Elementary truth or 0th truth is defined recursively as follows:
1. An atomic proposition has elementary truth just in case it has

atomic truth.
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2. ∼α has elementary truth just in case α does not have elemen-
tary truth.

3. (α ∨ β) has elementary truth just in case either (or both) of α
and β have elementary truth.

Truth conditions for quantified propositions can only be rigorously
stated when the reconstructed syntax with λ-operators is used. In the
metalanguage, I use the notation “Reduce[λξ.α|β]” for the λ-calculus
expression in normal form reached by applying λ-contraction to
λξ.α(β) as many times as is required to reach normal form. Notice
that while λξ.α(β) may not even be a well-formed formula of PM ’s
reconstructed syntax, Reduce[λξ.α|β] will be (presuming λξ.α and β
are themselves expressions of the appropriate types).

(n + 1)st truth is defined in terms of nth truth, with an additional
level of recursion for the number of quantifiers the formula contains
counting right to left beginning with the first one using a variable
letter with order n. We shall annotate this as (n + 1)th/k for order
(n + 1)th truth for a proposition of order n + 1 with at most k such
quantifiers. (A formula is said to have (n +1)th truth simpliciter just in
case it has (n +1)th/k truth, where k is the number of such quantifiers
it contains.)

1. α has (n + 1)th/0 truth just in case it has nth truth.
2. (ξτ )α, where ξτ has type symbol τ (of at most order n), has

(n + 1)th/(k + 1) truth just in case for every closed expression β
of type τ , Reduce[λξ.α|β] has (n + 1)th/k truth.

3. (∃ξτ )α, where ξτ has type symbol τ (of at most order n), has (n+
1)th/(k + 1) truth just in case for at least one closed expression
β of type τ , Reduce[λξ.α|β] has (n + 1)th/k truth.

Logical truth characterizes those propositions that would have the
kind of truth appropriate for their order regardless of which atomic
propositions are or true and which false (and possibly, regardless of
the make-up of the list of constants).

Notes

1See e.g., van Heijenoort 1967 and Goldfarb 1979; for responses, see Landini 1998,
and Proops 2007.

2Here, and throughout, I substitute Russellian notation (also used by Church) for
quantification and truth functional operators for Frege’s to facilitate comparison. One
should not forget the other differences, however, such as Frege’s use of a function
calculus rather than a predicate calculus.
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3The closest I know of of an attempt to state rigorously a full-blown higher-order
logic using such a notation is found in Bostock 1974, although it does not fully live up
to modern standards of precision.

4I am intentionally modifying the type notation of Church’s work (Church 1940),
again to facilitate comparison.

5This is often called β-reduction. It seemed better in this context to make do with
more intuitive, if less precise, vocabulary.

6For what it’s worth, Church called Frege’s doctrine of the incompleteness of func-
tions “problematical” (Church 1951b, p. 101), and he explored both intensional log-
ics in which (6), (7) and (9) would be regarded as intensional synonyms and those in
which they wouldn’t (Alternatives (1) and (0), respectively, in Church 1951a).

7Indeed, there are historical links between Church’s initial work on the λ-calculus
and the early attempts at exactly stating the replacement rule for higher-order logic;
see Klement 2003.

8His views changed often during this period; I am generalizing for the sake of
concision. He did consider other views, particularly in 1903.

9It is also incompatible with a view that equates propositional functions with sim-
ple concepts, predicates or universals, as is still too often assumed in discussions of
Russell.

10Thanks to Bernard Linsky, who is preparing these notes for publication, for bring-
ing the passage to my attention and providing the precise wording.

11For further discussion, see Klement 2010 and Klement 2012.
12This is explicit at (Russell 1956c, p. 205), and also in an unpublished letter to

Moore dated 2 Oct. 1922. For discussion see Klement 2004.
13I here omit the letters which are given constant meanings; cf. PM p. 5. In my

exposition, Greek letters not on this list are used in the metalanguage for quantifying
over object-language expressions, as with the use of “τ” for arbitrary type symbols in
the preceding definition.

14Apart from individual variables, this step is actually redundant with the other
rules, but is worth stating on its own for clarity.

15The qualification is not technically necessary, since a matrix-formula cannot con-
tain circumflected variable letters without containing uncircumflected variables as
well. Indeed, it must contain an uncircumflected variable letter of a higher order
than any circumflected variable it contains.

16Again, the qualification is not necessary. See note 15.
17I have argued in favor of this elsewhere (Klement 2004).
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