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Abstract. By a numerical formula, we shall understand an equation, m = n,

between closed numerical terms, m and n. Assuming with Frege that numeri-

cal formulae, when true, are demonstrable, the main question to be considered

here is what form such a demonstration takes. On our way to answering the

question, we are led to more general questions regarding the proper formal-

ization of arithmetic. In particular, we shall deal with calculation, definition,

identity, and inference by induction.

1. Introduction

Frege opens the critical part of his Grundlagen der Arithmetik (Frege, 1884)

by discussing a very mundane form of mathematical theorem, a form of theorem

with which all of his readers could be assumed to be familiar: numerical equations,

such as 2 + 2 = 4 and 7 × 6 = 42. Following Kant, Frege calls such equations

“numerical formulae”, “Zahlformeln”, and he asks whether they are demonstrable:

“sind die Zahlformeln beweisbar?” He quickly reaches the conclusion that they

are indeed demonstrable. Precisely how the demonstration of a numerical formula

is meant to proceed is, however, not specified in the Grundlagen, nor (as far as

I know) in any other of Frege’s works. Leibniz had offered a demonstration of

the equation 2 + 2 = 4 relying on the principle of intersubstitutability of equals

for equals together with definitions of the individual numbers greater than zero in

terms of the successor function. Frege appears to be sympathetic to this method

of demonstration, but he notes that Leibniz’s purported demonstration contains a

gap. Frege thinks the gap is to be filled by means of the law of the associativity

of addition. The demonstration of other numerical formulae might rely on other

general laws. Indeed, Frege speaks repeatedly of the general laws—in the plural—

on which numerical formulae rest. He fails, however, to specify precisely which laws

these are.

Assuming with Frege that numerical formulae are demonstrable, I wish to re-

flect here on what the demonstration of a numerical formula looks like. Following

Frege’s example of studying demonstration with the help of its formalization, I shall

pursue the question of how to implement such demonstrations in formal systems

of arithmetic. We shall see that a satisfactory answer requires us to deal with the

notion of calculation, the theory of definition, and the logic of identity. The answer

I shall recommend calls for the supplementation of ordinary logical reasoning by the

notion of definitional identity. The theory of definitional identity takes care of both

calculation and (nominal) definition, and its presence in a formal system ensures

that the logic of the identity predicate is undisturbed by definitional equations,

which otherwise have to be regarded as introduction rules for this predicate.

The topic will be introduced by way of a discussion, in Section 2, of Frege’s

Grundlagen §§ 5–6. Disregarding quotation marks, the title of the present paper
1
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has been appropriated from this part of Frege’s book. I shall take it for granted that

the demonstration of a numerical formula essentially involves calculation. Calcula-

tion will be understood as definitional reduction, i.e., as the continued substitution

of definiens for definiendum, of defining term for defined term. A demonstration

by substitution may, as a consequence, be understood as a demonstration by calcu-

lation. This will be the conclusion of Section 3. Nominal definition is the topic of

Section 4. A nominal definition is a definition formulated as one or more equations.

In a first-order language, definitional identity is the smallest equivalence relation

on terms generated by definitional equations. In Section 5, we shall see that by

adding a theory of definitional identity to natural deduction, a very natural for-

malization of arithmetic results that includes a theory of both nominal definition

and calculation. This system can be regarded as a translation into predicate logic

of a fragment of Martin-Löf type theory, the topic of Section 6. In the concluding

Section 7 we shall see that there are—at least in the formal systems presented in

the preceding sections—two kinds of demonstration of numerical formulae: one pro-

ceeding exclusively by calculation, another involving as well a logical step, namely

an application of the law of identity, asserting the truth of the proposition a = a,

for an arbitrary individual a.

The methodology followed here is very much in the spirit of Göran Sundholm’s

work: from a combination of historical scholarship and insights from Martin-Löf

type theory systematical conclusions are drawn concerning the philosophy of logic

and mathematics. The anchoring of the topic in history provides both concreteness

and depth. Type theory provides precision. My topic is not one that Göran has

dealt with directly in any of his many writings on Frege, but it is closely related to a

topic that he has dealt with in considerable detail in recent years, namely the notion

of analyticity.1 Analyticity, for Frege, is an epistemological notion, pertaining to

the “epistemological nature”, “die erkenntnistheoretische Natur”, of a judgement.

Being concerned with the demonstrations of numerical formulae, we are in effect

concerned here with their epistemological nature. Numerical formulae will indeed

come out as analytic in Frege’s sense (Grundlagen § 3), since their demonstrations,

on both accounts offered in Section 7, will be seen to rest only on general logical

laws and definitions.

Following Göran’s advice (Sundholm, 2016, pp. 206–207), I will use “demonstra-

tion” where many authors would prefer “proof”. A demonstration is a chain of

inferences. Its role is to make a judgement evident, thereby providing it with the

status of a theorem. The word “demonstration” has a process/product ambiguity

(Sundholm, 2012, p. 947–949), which, however, will play no role in what follows.

The word “proof” will be used only in the sense of proof object, or truthmaker.

Frege’s logical ontology does not know proofs in this sense, but they are found in

Martin-Löf type theory. The principle of mathematical induction will be called

the principle of inference by induction. Over the natural numbers, an inference by

induction concludes that A(n) is true, for an arbitrary number n, from the pre-

misses that A(0) is true (base case) and that A(s(x)) is true whenever A(x) is true

(induction step).

1See Sundholm (2011, 2013, 2023). Of other writings on Frege, mention may be made of (Sund-
holm, 1994)—which uses Martin-Löf type theory in a significant way—and the historical papers

(Sundholm, 2000, 2001). Frege was the main character of Göran’s exaugural lecture (Sundholm,
2019).
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2. Grundlagen §§ 5–6

The term “numerical formula”, “Zahlformel”, in the sense Frege uses it was in-

troduced by Kant to designate what he calls theorems of numerical relation (Sätze

der Zahlverhältnis) (Kant, 1787, A163/B204–A165/B206). They are singular, that

is, they concern particular numbers, hence their formulation does not involve vari-

ables, but only closed numerical terms. Kant appears to have had primarily the

relation of equality in mind. Following his example, we shall therefore say that a

numerical formula is a theorem in the form of an equation between closed numerical

terms. The equations 2 + 2 = 4 and 7 + 5 = 12 are numerical formulae, but the

equations x+ y = y + x and (x+ y) + z = x+ (y + z) are not.

Numerical formulae are immediately evident (unmittelbar gewiss) and indemon-

strable (indemonstrabilia), according to Kant (A164/B204). They are, moreover,

synthetic: they cannot be made evident by a mere analysis of the concepts in-

volved (B15–16). In being synthetic and immediately evident, numerical formulae

agree with axioms (A732/B760). Axioms are, however, required to be general

(A164/B205), whereas numerical formulae are singular. Numerical formulae are

therefore not axioms, whence Kant introduces a special name for them.

Citing passages found in Baumann (1868), Frege notes that also Hobbes, Locke,

and Newton held numerical formulae to be immediately evident and indemonstra-

ble. According to Locke (1690, IV.vii.10), “two and two are four” and “three times

two are six” are self-evident judgements, and knowledge of them does not depend

on knowledge of general principles such as that the whole is equal to its parts taken

together. Newton, in a passage Frege cites, says of numerical formulae that they

are manifest in themselves (per se manifestae), but only when they are not too

complex.

That numerical formulae can plausibly be claimed to be immediately evident

only when the terms involved are not too complex is Frege’s main argument against

their indemonstrability in general. Frege takes it for granted, and assumes that his

readers take it for granted, that more complex numerical formulae are indeed not

immediately evident (unmittelbar einleuchtend). The equation

135664 + 37863 = 173527

for instance, is not immediately evident. If less complex numerical formulae, by

contrast, are immediately evident, then one should be able to find a threshold that

divides numerical formulae into those that are and those that are not immediately

evident—but any such threshold must seem arbitrary. Hence, since complex nu-

merical formulae are not immediately evident, nor are the less complex ones, such

as 2 + 2 = 4 and 7 + 5 = 12. If, however, no numerical formula is immediately

evident, then every numerical formula must be demonstrable.

Frege thus agrees with Leibniz that numerical formulae are, in fact, demonstra-

ble. In the New Essays IV.vii.10 (Leibniz, 1765), corresponding to the above cited

passage from Locke, Leibniz supports this claim of demonstrability by offering a

demonstration of 2 + 2 = 4. Leibniz’s demonstration, which Frege quotes, rests on

the definition of 2 as 1 + 1, of 3 as 2 + 1, and of 4 as 3 + 1, as well as on the axiom
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that “if equals be substituted for equals, the equality remains”.2 The demonstra-

tion itself is presented as a sequence of equations, which, following Frege, we may

write as follows:

2 + 2 =
Def of 2

2 + 1 + 1 =
Def of 3

3 + 1 =
Def of 4

4

After the initial term, 2 + 2, each term is to be obtained from the foregoing by

substitution of a defining term for the corresponding defined term.

Leibniz employed the method of demonstration by substitution not only in this

arithmetical example, but also in his logic. The relation in question there, how-

ever, is identity rather than equality (e.g. Leibniz, 1686). Unlike Frege, Leibniz

did not identify the notions of identity and equality. Whereas identity, for Leibniz,

is defined as intersubstitutability salva veritate, equality is defined by him as in-

tersubstitutability salva magnitudine.3 Those things are equal, for Leibniz, whose

magnitude is the same. This is, in fact, a traditional view going back at least to

Aristotle (e.g. Metaphysics ∆.15). For Frege, by contrast, identity and equality are

one and the same notion, as he emphasized in many of his writings (e.g. Frege,

1892, p. 25, note).4 Frege’s identification of these notions explains his reference in

Grundlagen § 6 to Leibniz’s salva veritate account of identity as just an alternative

formulation of the axiom that substitution of equals for equals preserves equality

(cf. ibid. § 65). Leibniz’s distinguishing these notions explains why, in the text of

the New Essays that follows his demonstration of 2 + 2 = 4 (not quoted by Frege),

he remarks that identicals are equal to each other: since 2 is identical, by definition,

to 1 + 1, it is also equal to 1 + 1, hence, by the axiom, equality is preserved if the

one is substituted for the other.

Leibniz’s demonstration is incomplete, since it takes for granted the equation

2 + (1 + 1) = (2 + 1) + 1

Frege notes that this missing link is an instance both of the law of associativity and

of the law

x+ (y + 1) = (x+ y) + 1

first used by Grassmann (1861) in defining addition. Frege mentions Grassmann’s

equation only in order to criticize the suggestion that it defines addition (more on

this in Section 4 below). He thinks the gap in Leibniz’s demonstration is to be filled

by means of the law of associativity.

The view Frege has reached at the end of his discussion in Grundlagen §§ 5–6

is that numerical formulae are indeed demonstrable, but that the demonstration of

every such formula depends on one or more general arithmetical laws. This view

is manifest, not only in these sections, but also in summaries of foregoing sections

offered in Grundlagen §§ 9, 18. In both places, Frege notes that numbers are to be

2This translation is from Leibniz (1981). Baumann’s German rendering of the axiom (Baumann,
1869, p. 40), which Frege quotes—“Wenn man Gleiches an die Stelle setzt, bleibt die Gleichung

bestehen”—is closer to the French original: “Mettant des choses égales à la place, l’égalité de-
meure”.
3Both definitions can be found in many places in Leibniz’s logical writings. They are found
together at Leibniz (1999, p. 406).
4Frege’s view is dominant today, but its adoption took time: identity and equality are kept apart
by, for instance, Hilbert and Bernays (1934, p. 167).
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defined in the manner of Leibniz, namely in terms of the addition of one,5 but that

one needs general laws (allgemeine Sätze, allgemeine Gesetze) in order to derive

numerical formulae from these definitions. Here, as well as in § 6, Frege speaks of

laws in the plural. In spite of the plural, however, Frege only ever mentions just

one such general law, namely the law of associativity. It is clear that he thinks that

also other laws might be needed in demonstrations of numerical formulae, but he

fails to specify which.

We shall see that one can make do with no general laws at all, but only definitions,

provided that among definitions one also counts definitions by induction. The terms

flanking the identity sign in a numerical formula are what we shall call definitionally

identical. If we wish to lift a definitional identity to the level of predicate logic, laws

are needed, but only the very basic law of identity and a law that allows for the

replacement, within a demonstration, of a proposition by a definitionally identical

proposition.

3. Calculation

A numerical formula can be demonstrated by means of calculation. One can

demonstrate 2 + 2 = 4 by calculating 2 + 2 to see that the result is indeed 4. One

can demonstrate

135664 + 37863 = 78365 + 95162

by calculating both sides to see that one obtains the same result, viz. 173527. The

first procedure is a special case of the second, since 4 may be regarded as the result of

calculating 4 itself. In general, therefore, a numerical formula can be demonstrated

or refuted by calculating both sides: if the calculations have the same result, the

equation is demonstrated, if they have different results, the equation is refuted.

It is a psychological fact that we can carry out the calculation of sufficiently

simple numerical terms “mentally”, or “in the head”.6 That we can do so instantly

for especially simple terms, such as 2+2 or 7+5, may be what lies behind the view of

Hobbes, Locke, Kant, and others that numerical formulae are indemonstrable and

immediately evident. Observing that the calculation of more complex terms needs

in general to be carried out in more steps, and assuming that numerical formulae

are either all indemonstrable or all demonstrable, we are led, with Frege, to the

contrary view that numerical formulae are demonstrable. The demonstration, as

we have just seen, may be carried out by calculation.

Leibniz seems to have intended his demonstration of 2+2 = 4 to consist entirely

of substitutions of definitionally identical terms for each other. Each step of the

demonstration is to rest on the evident principle that such substitutions preserve

(definitional) identity. Leibniz succeeds only partially, since he leaves out the equa-

tion 2 + (1 + 1) = (2 + 1) + 1. Also this equation, however, can be justified by such

a substitution, provided we dissociate the general operation of addition from the

special operation of adding one, namely by identifying the latter operation with

the successor function, s. This dissociation was not made by Leibniz, and it would

not be made until the late 19th century by Frege (Grundlagen § 76) and Dedekind

5Frege still endorses this manner of defining numbers in print almost 20 years later (Frege, 1903b,
p. 320).
6In English and the Romance languages one speaks of mental calculation, in the Germanic lan-

guages of calculation-in-the-head (Kopfrechnung, hoofdrekenen, hoderegning), and in Eastern
Slavic languages of oral calculation (устный счёт, уснi обчислення).
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(1888, § 6). By dissociating these two operations, however, we can turn Leibniz’s

demonstration into one consisting entirely of substitutions of definitionally identical

terms.

We redefine 4 as s(3), 3 as s(2), and 2 as s(1), and we define 1 as s(0). We

moreover stipulate that addition is defined by the following two equations:

x+ 0 = x

x+ s(y) = s(x+ y)

This definition is to be understood so that any instance of either of these equations

is a definitional equation with definiendum to the left and definiens to the right.

We now demonstrate 2 + 2 = 4 as follows:

(Λ)

2 + 2 =
Def of 2

2 + s(1)

=
Def of +

s(2 + 1)

=
Def of 1

s(2 + s(0))

=
Def of +

s(s(2 + 0))

=
Def of +

s(s(2))

=
Def of 3

s(3)

=
Def of 4

4

The equation 2 + 2 = 4 has thus been demonstrated, as Leibniz intended, by a

sequence of substitutions of definitionally identical terms for each other. It should

be clear from this example that any numerical formula, m = n, whose terms m and

n are built up from numbers in decimal notation and addition, +, can be demon-

strated in the same way. Indeed, any numerical formula can be so demonstrated

that involves only so-called primitive recursive functionals, i.e., functions, possibly

higher-order, definable in Gödel’s theory T (Gödel, 1958). (A justification of this

latter claim will be given in the following section.)

Is the enhanced Leibnizian demonstration (Λ) different from a demonstration by

calculation? To my mind, there is no essential difference between demonstration

by substitution and demonstration by calculation. A demonstration by calculation

proceeds by calculating the two terms flanking the equality sign and observing

that both calculations have the same result. A natural way of understanding the

calculation of a numerical term, however, is as the spelling out of definitions. The

calculation of a numerical term may be understood as the continuous replacement

of definiendum by the corresponding definiens, a process I shall call definitional

reduction. Aristotle appeals to definitional reduction at various places in the Topics,

and it was essential to Leibniz’s logic. Its affinity with calculation is suggested

already by Leibniz’s terminology, since he speaks of a definiens as the value (valor)

of any term it defines.7 The affinity was made explicit and spelled out in more detail

much later by Curry and Feys (1958), who also introduced the term “definitional

reduction” for this process. Although the lambda calculus is not often presented as

a theory of definitional reduction, many of its rules may be regarded as belonging

to such a theory (cf. Klev, 2019a, §§ 10–12). The beta rule, in particular, viz.,

λx.t(u) → t[u/x], may be so regarded, since it is in effect the definition of the

λ-operator.

7Many places of Leibniz’s logical works could be cited; see, e.g., Leibniz (1686, p. 746).
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The practice of calculation assumes the idea of an endpoint of calculation. A task

of calculation may be understood as a task of rewriting a number into a form that

has been agreed upon to serve as such an endpoint. In school arithmetic, natural

numbers in decimal notation are the endpoints usually agreed upon, implicitly or

explicitly. If calculation is explained as definitional reduction, and the decimal

notation is defined by means of a unary notation, say in terms of 0 and s, then

the endpoints become numbers in this unary notation, that is, numerals. A pair

of calculations in this sense of the numbers 2 + 2 and 4, respectively, may thus be

portrayed as in the following diagram. To save space, I write s2(m) to indicate

double application of the function s to m, and likewise for s3(m) and s4(m).

2 + 2→ 2 + s(1)→ s(2 + 1)→ s(2 + s(0))→ s2(2 + 0)→ s2(2)→ s3(1)→ s4(0)

4→ s(3)→ s2(2)→ s3(1)→ s4(0)

Both calculations have the same endpoint, that is to say, they yield the same result,

hence we have a demonstration of 2 + 2 = 4.

The diagram may thus be glossed as a demonstration of 2 + 2 = 4 in accordance

with our characterization of demonstration by calculation: both calculations yield

the same result. We can, however, also gloss the diagram in a slightly different

way. Within each line of the diagram, each number (except the initial one) is

obtained from its left-hand neighbour by substitution of equals for equals. Such

substitution preserves identity, hence all numbers in a single line are identical to

each other. Since the number s4(0) occurs in both lines, all the numbers occurring

in the diagram are identical to each other. In particular, 2 + 2 is identical to

4. What we have now described is essentially the Leibnizian demonstration (Λ),

with the small difference that Leibniz uses the number s2(2) to connect the two

calculations.

4. Nominal definitions

The calculation of 2 + 2 relies on the definitions of 2, of 1, and of addition.

These are instances of explicit definition and definition by induction, respectively,

which in turn are forms of what we shall call nominal definition, following the

terminology of Pascal (1657) and Arnauld and Nicole (1662, I.12–13). According

to them, a nominal definition (définition de nom, definitio nominis) is an arbitrary

convention that lays down the meaning of a term by identifying it with the meaning

of another term.

Let t and u be numerical terms containing, besides variables and the constants

0 and s, only constants that have already been defined. Let δ be a symbol not yet

in use.

Assume that the (free) variables of t are among those in the list x of mutually

distinct variables. An explicit definition takes the form

(1) δ(x) = t

The special case is included where the list x is empty and δ is an individual constant.

Assume that the (free) variables of t are among x and that the (free) variables

of u are among those in the list x, y, z. A definition by induction takes the form

(2)
δ(x, 0) = t

δ(x, s(y)) = u[δ(x, y)/z]
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The formula u[δ(x, y)/z] is the result of substituting δ(x, y) for z in u. The special

case is included where the list x is empty.8

We call (2) a scheme of definition by induction rather than of recursive definition,

since a definition of this form need not be recursive in the sense that δ(x, y) occurs

in u. A good example of a definition by induction that is not recursive is the

definition of the predecessor function:

pd(0) = 0

pd(s(y)) = y

The functions definable by means of schemes (1) and (2) are precisely the prim-

itive recursive functions (see Kleene, 1952, § 54). This result suggests a close

connection with calculability. Indeed, any closed numerical term built up from 0,

s, and nominally defined constants can be calculated by means of definitional re-

duction. That is, by continued definitional reduction from such a term we shall

eventually reach a numeral that, moreover, is uniquely determined by the term we

started out with. This Canonicity Theorem, as we may call it, holds as well if we

allow variables and constants to be of higher types, in which case the functions so

definable are the primitive recursive functionals.9 This theorem justifies our claim

above that numerical equations involving only primitive recursive functionals can

be demonstrated by means of substitution, as Leibniz demonstrated 2 + 2 = 4.

The Canonicity Theorem also provides a metamathematical justification of def-

inition by induction. Let us call the numeral reached by the calculation of a closed

numerical term its value. The Canonicity Theorem assures us that, if an n-ary

function δ is defined by induction, and m is a sequence of n closed numerical terms,

then the value of δ(m) exists and is unique. Such assurance with regards to addition

is precisely what Frege asked for in Grundlagen § 6 when objecting to Grassmann’s

suggested definition of addition by means of the equation x+ (y+ 1) = (x+ y) + 1:

we need a demonstration that, for every pair of numbers k, l, there is a unique

number k+ l satisfying the equation. In a more general form, the requirement asks

for a demonstration that definition by induction is a safe form of definition: that a

function so defined yields a uniquely determined value for each list of arguments.

Frege later offered such a demonstration in terms of his notion of the ancestral of

a relation (see Heck, 2012, ch. 7). Dedekind’s more well-known demonstration em-

ploys finite approximations to the function to be defined (Dedekind, 1888, nr. 126).

Neither of these demonstrations invoke the notion of calculation, or evaluation, in

the way the Canonicity Theorem does.

The first of Frege’s basic principles of definition in Grundgesetze I § 33 (1893)

is the requirement of eliminability, which, in a rough formulation, says that every

defined term must be eliminable by means of its definition. Symbols defined by in-

duction do not satisfy the requirement of eliminability so formulated. For instance,

from the term 0 + x, the addition symbol, +, is not eliminable, since neither of the

two definitional equations for addition can be used to reduce this term.

8For interesting historical remarks on definition by induction (as well as other topics pertinent to

the present paper), see von Plato (2016, 2017).
9The Canonicity Theorem is a corollary of the strong normalization and confluence of definitional
reduction. Strong normalization can be proved by use of a so-called computability predicate, first

introduced by Tait (1967). Confluence then follows from weak confluence by Newman’s Lemma
(Huet, 1980, Lemma 2.4), and weak confluence is established by an easy case analysis.
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This failure of eliminability might seem to pose a problem for definition by

induction. Frege (ibid.) introduces the requirement of eliminability by saying that

“every name correctly formed from defined names must have a reference” and makes

it precise by saying that every such name must be shown to be equal in reference

(gleichbedeutend) with a name—unique up to the shape of the bound variables—

constructed entirely from primitive vocabulary. Indeed, it is not clear how we can

regard a term involving defined vocabulary as meaningful other than through an

anchoring in primitive vocabulary. Failure of eliminability seems to entail that a

term lacks such anchoring.

The problem is solved by a general account of the meaningfulness of terms. The

account has similarities with the Gödel–Tait definition of a computability predi-

cate, with Prawitz’s definition of proof-theoretical validity, and with Martin-Löf’s

meaning explanations, but it is in fact implicit already in the Grundgesetze.10

A closed term is meaningful if it definitionally reduces to a term constructed

entirely from primitive vocabulary. Definitional reduction preserves reference (how-

ever the notion of reference is explained), hence a closed term that reduces to a

primitive term is equal in reference to it. The term 2+2, for instance, is meaningful

because it reduces to, hence is equal in reference to, s4(0).

Following Frege’s explanation of the meaningfulness of functional expressions in

Grundgesetze I § 29, we say that an open term is meaningful if every closed term

that results from substituting meaningful terms for its free variables is meaningful.

That 0+x is meaningful, for instance, is stipulated to mean that 0+m is meaningful,

whenever m is closed and meaningful.

Once open terms are understood in this way, it is enough to insist on eliminability

only for closed terms: if every closed term is meaningful in the way stipulated, then

also every open term will be meaningful. In a language with higher types, it is,

for similar reasons, enough to insist on eliminability for closed terms of ground

type. Definition by induction does preserve this form of eliminability. Indeed,

the Canonicity Theorem assures us that, from a closed numerical term of ground

type, all defined constants—including such as are defined by induction—can be

eliminated. Also Frege, in his first basic principle of definition, seems to restrict

eliminability to this case: he speaks only of closed terms, or proper names, and

these are all of ground type in his ideography.

The requirement of conservativeness is not among Frege’s principles of definition

in Grundgesetze I § 33, but it seems clear that he adhered to it.11 Already in his

first methodological discussion of definitions, in Begriffsschrift § 24, he says that

nothing follows from a nominal definition “that could not be inferred also without

it”. In a Nachlass piece from about 35 years later he makes a similar claim (Frege,

1983, p. 225). In a letter to Hilbert,12 he offers a sarcastic verse that clearly shows

what he thinks of non-conservative definitions:

10The Frege connection has been noted by Martin-Löf (2021) and Pistone (2018).
11Non-conservative definitions are often called creative definitions, after the German
“schöpferische Definition”. Frege uses this term (1893, pp. vi, xiii; 1903a, § 143), but he seems

then to have in mind a definition by which one purports to create an object, or to make an object

have a certain property. An example mentioned by Husserl (1891, p. 269) is Schröder’s definition
of ∅ as a domain satisfying ∅ ⊂ A, for any domain A (Schröder, 1890, p. 188).
12Letter dated 27.12.1899 (Frege, 1976, p. 62). Frege later includes the verse in his published
reflections on Hilbert’s geometry (Frege, 1903b, p. 321).
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Was man nicht recht beweisen kann,

Das sieht man als Erklärung an.

That is, without the rhyme: what you cannot quite demonstrate, you may regard

as a definition.

That a definition by induction may fail to be conservative was noted by Hilbert

and Bernays (1934, pp. 299-303). A suitably chosen subsystem T of Peano arith-

metic has finite models but is such that, by adding to it the definition of the

predecessor function, pd, one can derive a formula in the language of T that is true

only in infinite models. The definition of pd is therefore not conservative over T .

More generally, and perhaps better, we can say that scheme (2) is not conservative

over T : by adding scheme (2) to T we can derive a theorem, formulated in the

vocabulary of T , that is not derivable in T .

In a Nachlass piece, Frege (1983, p. 225) remarks that if a definition allows one

to give a demonstration that cannot be given without it, then the definition hides

something that has to be either demonstrated as a theorem or laid down as an

axiom. Scheme (2) may indeed be said to hide, among other things, the condition

that s(m) = 0 is false for all m, since otherwise a function defined according to

the scheme will not, in general, be well-defined. In this way, scheme (2) differs

from scheme (1), which comes with no such presuppositions. The dilemma noted

by Frege gives rise to two conflicting approaches to definition by induction. The

first approach, taken by Frege and Dedekind, is to allow a scheme of definition by

induction to be added to a theory only if every function defined by means of it can

be shown to be extensionally equal to a function that the theory already deems to

exist. The other approach, taken for instance in Martin-Löf type theory, is to regard

a scheme of definition by induction as a primitive principle whose justification rests,

ultimately, on our understanding of the underlying inductively generated domain.

5. Formalizing calculation

Demonstrations by calculation cannot be formalized in formal systems of arith-

metic as usually presented, since, as usually presented, such systems do not con-

tain a mechanism for introducing new terms by definition. In order to formal-

ize the above demonstration of 2 + 2 = 4, for instance, we need the equation

4 = s(3), which contains terms that are not part of the language of Peano arith-

metic. From the recursion equations for addition and Leibniz’s Law, one can derive

s2(0)+s2(0) = s4(0), but the passage from 2+2 = 4 to this equation already involves

a number of steps of calculation. A formalization of a demonstration by calculation

of s2(0) + s2(0) = s4(0) is therefore not yet a formalization of a demonstration by

calculation of 2 + 2 = 4.

If calculation is understood as definitional reduction, then the formalization of

calculation must somehow be based on a formalization of nominal definition. Since

the introduction of new terms by nominal definition is an important part of math-

ematical method, one could argue that it is anyhow desirable for a formalization of

arithmetic to account for that practice.

To that end, one might stipulate that a nominal definition may at any point

be added as a novel axiom to the theory. Adding an explicit definition means

adding a single equation as an axiom, and adding a definition by induction means

adding two equations. This proposal has the advantage of not introducing any
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new metatheoretical concepts: definitions are just axiomatic equations. It does,

however, complicate the explanation of the meaning of the identity predicate.

Shunning second-order quantification, we have few choices when attempting to

explain the identity predicate but to rely on the rules that govern its use. If in

arithmetic we are allowed at will to add equations as axioms, however, we shall

not have a single set of rules that there governs the use of the identity predicate,

since every new axiomatic equation will be a new such rule. The identity predicate

will therefore be left with an unstable meaning, one that changes each time a new

nominal definition is added. A similar problem in fact affects first-order Peano

arithmetic as standardly formulated. Among the axioms of first-order Peano arith-

metic are the four equations making up the nominal definitions of addition and

multiplication:

x+ 0 = x

x+ s(y) = s(x+ y)

x× 0 = 0

x× s(y) = x× y + x

Being axiomatic equations, these have to be regarded as introduction rules for the

identity predicate in arithmetic. Hence, even if we restrict the meaning-determining

rules to the introduction rules, we are forced to say that the meaning of the identity

predicate in arithmetic differs from its meaning elsewhere, since it there has different

introduction rules from what it has elsewhere. Identity then fails to be a topic-

neutral notion.

Some other way of dealing with nominal definitions is needed if we want the rules

governing the identity predicate to provide it with a stable, topic-neutral meaning.

The right approach, to my mind, is to formalize nominal definition and calculation

as belonging to a compartment that is in some way separate from the compartment

in which proofs are constructed. Rules governing the identity predicate belong to

the latter compartment. Nominal definition and calculation are not to be formalized

in terms of this predicate, but in terms of a special relation of definitional identity,

which we shall write as “≡”.13

The theory of definitional identity, which is also a theory of calculation, is an

equational theory whose axioms are definitional equations. More precisely, in ad-

dition to the usual rules of equational logic, the rules governing the symbol “≡”

include the axiom scheme

(D) definiendum ≡ definiens

In a language with higher types, function extensionality may be assumed: if f(x) ≡
g(x), then f ≡ g.14

Such a theory may be added to a system of natural deduction by means of a rule

of formula conversion:
A[t]!

t ≡ u
A[u]!

The notation A[t]! is used to indicate that t occurs in A and to mark out one

such occurrence. The formula A[u]! results from A[t]! by replacing its marked

occurrence of t by u. Suppose we have a derivation of A[t]! and, in the theory of

13The use of the triple stroke for definitional identity has a long history going back at least to
Neurath (1910) and Moore (1910).
14A formalization of the theory of definitional identity along these lines, but excluding extension-

ality, was first given by Martin-Löf (1975). Reasons for including extensionality can be found in
(Klev, 2019a).
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definitional identity, a derivation of the equation t ≡ u. Formula conversion allows

us then to rewrite A[t]! as A[u]!. Since the conclusion here is a mere rewriting, or

reformulation, of the premiss, a dashed line is written between them.15

We shall assume the following natural-deduction rules for the identity predicate,

proposed by Martin-Löf (1971, p. 190):

(=I) a = a
a = b A[x, x]

(=E)
A[a, b]

In the elimination rule, (=E), the minor premiss A[x, x] is a formula obtained from

some A[y, z] by substituting x for both y and z. An application of (=E) binds

the variable x in the derivation of A[x, x]. The introduction rule, (=I), says that

identity is a reflexive relation, and the elimination rule, (=E), says that identity

is the smallest reflexive relation. By letting A be B[y/x] ⊃ B[z/x], one sees that

(=E) entails Leibniz’s Law, a rule that is often taken to be the elimination rule for

the identity predicate.

The identity predicate, =, and the symbol of definitional identity, ≡, thus have

quite different characterizations: the first in terms of the introduction rule (=I),

the second in terms of the purely combinatorial rules of equational logic. The

difference is borne out by a metamathematical result which shows that m = n may

be derivable although m and n fail to be definitionally identical. The equation

x + y = y + x, for instance, is a theorem of Peano arithmetic, but the two terms

x+ y and y + x are not definitionally identical.

By making use of definitional identity we can formalize arithmetic in a way that

(i) takes account of calculation, (ii) takes account of nominal definition, and (iii)

preserves the topic-neutrality of the identity predicate. The rules of definitional

identity together with formula conversion make it possible to derive all the first-

order Peano axioms besides induction.

The axioms x+0 = x, x+s(y) = s(x+y), x×0 = 0, and x×s(y) = x×y+x follow

by formula conversion from the corresponding equations written as definitions, using

“≡” instead of “=”. The Peano axiom stating the injectivity of the successor

function—sometimes known as Peano’s third axiom16—can be derived by use of

the predecessor function:

s(x) = s(y)1 pd(z) = pd(z)
(=E)

pd(s(x)) = pd(s(y))
pd(s(x)) ≡ x, pd(s(y)) ≡ y

x = y
(⊃I), 1

s(x) = s(y) ⊃ x = y

The double dashed line is here used to indicate two consecutive applications of

formula conversion.

15The rule of formula conversion was introduced under that name by Martin-Löf (1998, p. 155).
A similar rule was called ‘replacement’ by  Lukasiewicz (1929, pp. 33, 40). An ancient ancestor

of formula conversion is the so-called “topos from definition”, first formulated by Aristotle in

Rhetoric II.23 and given a polished formulation more than 1500 years later by Peter of Spain
(Copenhaver et al., 2014, ch. 5 §§ 5–9).
16See the enumeration of Peano’s axioms in (Peano, 1891, 1898) and (Hilbert and Bernays, 1934,
p. 218).
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For Peano’s fourth axiom, 0 6= s(x), we must extend the scheme of definition by

induction so as to allow the following definition:

F (0) ≡ 0 = 0

F (s(y)) ≡ ⊥
We thus assume that definitional identity makes sense, not only between numerical

terms, but also between propositions (or their formalistic counterparts, formulae).

This assumption is in line with mathematical practice, where nominal definitions

are made in all types. Using this F , we may derive Peano’s fourth axiom as follows:

0 = 0

0 = s(x)1
F (z)2

(⊃I), 2
F (z) ⊃ F (z)

(=E)
F (0) ⊃ F (s(x))

F (0) ≡ 0 = 0, F (s(x)) ≡ ⊥
0 = 0 ⊃ ⊥

⊥
(⊃I), 1

0 = s(x) ⊃ ⊥
The only Peano axiom that has not been seen thus to follow from definitions

is the induction scheme. Martin-Löf (1971, p. 190) showed that the same general

procedures which render (=E) the elimination rule for a predicate with introduction

rule (=I) renders the induction scheme in rule form the elimination rule for a

predicate N with the following two introduction rules:

N(0)
N(m)

N(s(m))

Since we are only considering numerical terms, the predicate N is, for us, universal

and so, in a sense, invisible. The following rule, (Ind), is the elimination rule for

this invisible predicate:

A[0]

A[x]

|
A[s(x)]

(Ind)
A[n]

An application of (Ind) discharges the assumption A[x] and binds the variable x in

the derivation of A[s(x)]. The term n may be any numerical term. An application

of (Ind) forms a detour in a derivation if n is definitionally identical either to 0 or

to a term of the form s(m). Such detours may be eliminated by means of suitably

formulated reductions.17

Our search for a way of formalizing calculation and nominal definition in arith-

metic has thus led us to a formalization of Peano arithmetic in which induction is

the only axiom, treated as an elimination rule, and all the other Peano axioms are

theorems.

17A derivation of the form

D
A[0]

A[x]

D′

A[s(x)]

A[n]

reduces, if n ≡ 0, to the derivation
D

A[0]
0 ≡ n

A[n]
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Frege would of course not have accepted leaving induction as a primitive rule.

This would be a principle of reasoning peculiar to arithmetic, and the need to

appeal to it in the demonstration of some arithmetical theorem—such as in the

demonstration of the commutative law for addition—would render arithmetic syn-

thetic in Frege’s sense (Grundlagen § 3), rather than analytic, as required by his

logicism. Frege is therefore keen to note (ibid. § 80) that the principle of induction

can be reduced to “general logical laws” by means of his notion of the ancestral. It

will be profitable to postpone discussion of the status of induction as a primitive

rule until after we have introduced type theory.

6. Type theory

The formalization of arithmetic sketched in the previous section is an adaptation

to natural deduction of the formalization of arithmetic in Martin-Löf type theory.

Calculation and definition, on the one hand, and construction of proof, on the other,

are there taken care of by means of two different forms of judgement: a = b : C

and a : C , where the predicate C is either type or a type α.18 A demonstration

with a conclusion of the form a = b : C may be understood as a demonstration in

the theory of definitional identity, and therefore as a calculation. A demonstration

with a conclusion of the form a : C may be understood as a construction of the

object a of category C . When C is a proposition, then a may be understood as

a proof, or truthmaker, of C , and the demonstration of a : C as a construction of

such a proof.

Formula conversion is a translation into predicate logic of the following rule of

type equality:
a : α α = β : type

a : β
If α and β are propositions, A and B, the rule says, in effect, that if a is a proof of

A, and A is definitionally identical to B, then a is a proof of B as well.

Definition by induction is handled in type theory by means of a higher-order

function often known as a recursor, R. For every function f definable by means of

the schemes (1) and (2) of nominal definition, an extensionally identical function

can be explicitly defined by means of R.19 The definition of R is itself a definition

by induction, hence one does not pretend to have done away with such definitions.

Indeed, as already indicated, it is one of the basic postulates of Martin-Löf type

theory that definition by induction makes good sense on inductively generated

domains.

and, if n ≡ s(m), to the derivation

D
A[0]

A[x]

D′

A[s(x)]

A[m]

D′[m/x]

A[s(m)]
s(m) ≡ n

A[n]

18In this presentation we shall not consider hypothetical judgements, which give rise to many

further predicates C .
19Here extensional identity of functions f, g : A → B means that the proposition (∀x :
A)Id(B, f(x), g(x)) is true. This is a weaker condition than f(x) ≡ g(x). The notation Id is
explained below.
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There is no scheme of explicit definition in type theory as usually formulated,

but such a scheme may be added (Martin-Löf, 1993, pp. 68–74). One must then

be careful to add a typing clause to the definitional equation. For instance, the

definition of 1 as s(0) must include the judgement 1 : N stating explicitly that 1 is

a natural number.

The derivations of Peano’s third and fourth axiom given above were adapted

from corresponding derivations in type theory (see Nordström et al., 1990, pp. 66,

86). The domain of the function F used in the demonstration of Peano’s fourth

axiom is a so-called universe, a type of individuals whose elements are codes of

other types of individuals. It was shown by Smith (1988) that the appeal to a

universe in this demonstration is necessary.

The principle of inference by induction in rule form is the elimination rule for

the type N of natural numbers. In Martin-Löf type theory, an elimination rule is,

in the first instance, a licence to define functions by induction. That an elimination

rule is also a principle of inference by induction follows under the Curry–Howard

correspondence. The status of the principle of proof by induction over the natural

numbers as synthetic or analytic ought therefore, by analogy, to be just the same as

that of the elimination rule for any of the logical operators and quantifiers. If one

is prepared to regard the former as synthetic, one should therefore be prepared also

to regard the latter as synthetic. Frege, for one, would certainly not be prepared

to call the elimination rules for the logical operators and quantifiers synthetic.

The identity predicate of predicate logic corresponds in type theory to a ternary

proposition-forming operator Id: applied to a type of individuals A and objects a, b

of type A, it yields a proposition Id(A, a, b). The introduction and elimination rules

for Id generalize (=I) and (=E) to the type-theoretical language. The introduction

rule is as follows:
a : A

(Id-I)
refl(a) : Id(A, a, a)

This rule generalizes (=I) in the sense that it makes explicit the domain, A, to which

the self-identified object a belongs. It also introduces the proof, or truthmaker,

refl(a), of the proposition Id(A, a, a). The elimination rule for Id generalizes (=E),

but to formulate it, we would have to go into more details of the syntax of type

theory than we shall do here (see Klev, 2019b, 2022).

7. Are numerical formulae demonstrable?

In both Martin-Löf type theory and natural deduction extended with definitional

identity, the notion of a numerical formula as defined in the opening of this paper

may be understood in two ways. In type theory, a numerical formula may be

understood either as a judgement of the form m = n : N or as a judgement

that a proposition of the form Id(N,m, n) is inhabited, i.e., as a judgement p :

Id(N,m, n). In natural deduction extended with definitional identity, a numerical

formula may be understood either as a formula of definitional identity, m ≡ n,

or as an ordinary predicate-logical formula, m = n. Corresponding to these two

ways of understanding what a numerical formula is are two ways of understanding

what a demonstration of a numerical formula is: it is either a demonstration in the

theory of definitional identity or one also making use of the identity introduction

rule and—unless the terms flanking the identity sign are syntactically identical—of
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a conversion rule. A demonstration of the former kind is the more fundamental of

the two, since any use of conversion has to appeal to such a demonstration.

A demonstration of a definitional identity is a demonstration by calculation in

the sense of Section 3 above. It is of a kind with the demonstration of 2 + 2 = 4

offered by Leibniz. Frege claimed that this demonstration, or the demonstration of

numerical formulae quite generally, depends on certain general laws, of which he

mentions only the associativity of addition. We have seen, to the contrary, that

no arithmetical laws are needed for such demonstrations apart from the licence to

define functions on the natural numbers by induction. The demonstration itself

proceeds in effect by the substitution of definitionally identical numbers for each

other and has therefore a purely combinatorial character. Such a demonstration

renders the numerical formula analytic, not only in Frege’s sense (Grundlagen § 3),

but also in the more traditional sense that the demonstration is a piece of concept

analysis, or more precisely, definitional unfolding.

In § 87 of the Grundlagen Frege claims that a consequence of the success of his

logicist programme would be that calculation becomes deductive reasoning: “Rech-

nen wäre Schlussfolgern”. I do not know of any illustrations of this idea in Frege’s

writings, but the explication of calculation offered here, namely as definitional re-

duction formalized in a theory of definitional identity may perhaps be one. The

reasoning carried out in such a theory is, however, not quite logical reasoning, since

no laws governing logical constants are involved. On the other hand, neither is

it extra-logical reasoning in the sense of reasoning relying on laws pertaining to

specific domains of discourse. Perhaps one might call it pre-logical reasoning, since

it has such a basic character and can itself be appealed to in logical reasoning.

The demonstration of a judgement of the form p : Id(N,m, n) may be assumed

to have the following form:

(∆)

D
n : N

(Id-I)
refl(n) : Id(N, n, n)

D′

Id(N, n, n) = Id(N,m, n) : prop

refl(n) : Id(N,m, n)

The left-hand demonstration, D, establishes n : N. It shows the formation of the

natural number n. The right-hand demonstration, D′, is a demonstration by calcu-

lation, showing that Id(N, n, n) and Id(N,m, n) are definitionally identical propo-

sitions. Both of these demonstrations are, in a natural sense, pre-logical, involving

only the formation of a natural number and some calculation. The demonstration

∆, by contrast, is logical, by virtue of the application of (Id-I), the law of identity.

A demonstration of a numerical formula of this second kind does, therefore, rest on

logic. The only logical law that must be appealed to in general, however, is the law

of identity. The associativity of addition or other similarly advanced arithmetical

laws are not needed.
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Martin-Löf, P. (1975). About models for intuitionistic type theories and the notion of definitional

equality. In Kanger, S., editor, Proceedings of the Third Scandinavian Logic Symposium, pages

81–109. North-Holland, Amsterdam.



18 ANSTEN KLEV
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Schröder, E. (1890). Vorlesungen über die Algebra der Logik, volume 1. Teubner, Leipzig.

Smith, J. M. (1988). The independence of Peano’s fourth axiom from Martin-Löf’s type theory
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