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It is well known that the circumflex notation used by Russell andWhitehead to form complex function names
in Principia Mathematica played a role in inspiring Alonzo Church’s ‘Lambda Calculus’ for functional logic
developed in the 1920s and 1930s. Interestingly, earlier unpublished manuscripts written by Russell between
1903 and 1905—surely unknown to Church—contain a more extensive anticipation of the essential details of
the Lambda Calculus. Russell also anticipated Schönfinkel’s Combinatory Logic approach of treating multi-
argument functions as functions having other functions as value. Russell’s work in this regard seems to have
been largely inspired by Frege’s theory of functions and ‘value-ranges’. This system was discarded by Russell
due to his abandonment of propositional functions as genuine entities as part of a new tack for solving Rus-
sell’s paradox. In this article, I explore the genesis and demise of Russell’s early anticipation of the Lambda
Calculus.

1. Introduction

The Lambda Calculus, as we know it today, was initially developed by Alonzo
Church in the late 1920s and 1930s (see, e.g. Church 1932, 1940, 1941, Church and
Rosser 1936), although it built heavily on work done by others, perhaps most notably,
the early works on Combinatory Logic by Moses Schönfinkel (see, e.g. his 1924) and
Haskell Curry (see, e.g. his 1930). Church would have been the first to admit that his
work was also largely influenced by Frege and Russell. However, in this article, my
primary aim is not to examine Russell’s influence on Church; rather, I discuss some
early manuscripts of Russell’s (from 1903 to 1905), in which he, inspired by Frege, had
anticipated much more of the Lambda Calculus than Church himself probably ever
imagined. That Russell did such work is interesting on its own, but what is perhaps
more interesting is why it never surfaced during his lifetime. Russell undertook this
work during a period in which he was trying desperately to find a solution to Russell’s
paradox and related antinomies. However, his standards were high; he did not want a
formal dodge, he wanted a philosophically, even metaphysically, motivated
explanation for the avoidance of the contradictions. The work he did anticipating
the Lambda Calculus fitted well with some of his earlier philosophical views on the
nature of functions and propositions, but did not fit so well with the views he
developed after adopting the theory of descriptions in 1905. Therefore, Russell
scrapped this early work and it never saw the light of day. A close examination of
Russell’s anticipation of Lambda Calculus sheds light on the development of his
logical and metaphysical views, and may even prompt us to take another look at later
developments in these areas of thought.

2. Church, Principia Mathematica, and the Lambda Calculi

My main goal in this paper is to examine the early work of Russell’s that
anticipated the Lambda Calculus, not work that actually influenced its development.
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However, let us for the moment return to Church and the development of his work, to
serve as a basis for comparison. I shall also make brief note of those aspects of
Russell’s later work in Principia Mathematica that did actually influence Church’s
Lambda Calculus, again simply for purposes of contrast with the discussion of
Russell’s early manuscripts to follow.

There is not simply one formal system that goes by the name ‘Lambda Calculus’,
but a whole family of related systems. What they have in common are the notions of l-
abstracts and l-conversion.1 A l-abstract, according to Church’s original design, was
to be understood as a term standing for a function itself, rather than some unspecified
value of that function. Thus, as a convenient name of the mathematical function f
such that:

fðxÞ ¼ x2 þ 4xþ 4

we might use the l-abstract ‘lx(x2+4x+4)’. Within different subsystems, these
could be interpreted as names either of functions-in-intension, or of functions-in-ex-
tension (see, e.g. Church 1941, pp. 2 – 3). More contemporary work on the ‘pure the-
ory’ of the Lambda Calculus has moved away from this original intent, and has
treated systems in which one cannot, without distortion, interpret the l-abstracts as
standing for functions, or arguably, for anything else. However, for present purposes,
let us stick with this original interpretation.

A l-abstract contains a bound variable. l-conversion refers to the replacement of
this bound variable with the argument to the function, or vice-versa. Therefore, the
expressions:

lxðx2 þ 4xþ 4Þa

a2 þ 4aþ 4

can be regarded as ‘l-converts’. Within a formal system containing l-abstracts, rules
of inference that allow l-conversion, i.e. the replacement of a subexpression with one
of its l-converts, are usually included.

In the Lambda Calculus, multi-place functions are usually treated as functions
having functions as value. If the number 5 is taken as argument, the function
ly(lx (x+y)) yields as value (by conversion), the function, lx(x+ 5). This way, all
functions can be treated, formally, as having a single argument-place, greatly
simplifying the rules of the system. This approach is borrowed from Combinatory
Logic, and was first suggested (in print) by Schönfinkel (1924).

Church’s original work on the Lambda Calculus was part of an attempt to develop
a type-free higher-order logical system for the foundations of mathematics. However,
the untyped Lambda Calculus has proven itself to be a very shaky basis for any
consistent logical system (see, e.g. Kleene and Rosser 1935, Curry 1942). The typed
Lambda Calculus has done considerably better (see, e.g. Church 1940). Later on, the
Lambda Calculus proved its worth in recursion theory and the study of
computability, and even served as basis for certain types of programming languages.
Nevertheless, Church’s initial motivation for this work grew out of his interests in the
foundations of mathematics, and more specifically, out of his desire to make up for

1 The notion Church called ‘l-conversion’ has sometimes been renamed, or respecified, as ‘b-conversion’ by

contemporary logicians, mathematicians and computer scientists (see, e.g. Barendregt 1981, Hindley and Seldin 1986).

I use the term as Church originally did.
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certain shortcomings, as he saw them, of Whitehead and Russell’s Principia
Mathematica.

The exact relationship between Church’s innovations and Principia is somewhat
complicated. Church claims his first publication on the Lambda Calculus (Church
1932, n. 346) was the end-product of work undertaken as a NEH National Research
Fellow in 1928 – 1929, soon after finishing his dissertation under Oswald Veblen.
Principia, with its new second edition, was still very much on the minds of most able-
minded logicians. Church himself published a review of Books II and III of Principia
in 1928. Church is known to have spent much of 1928 and 1929 at the University of
Göttingen, where he interacted with Hilbert and Curry (see Grattan-Guinness 2000, p.
453, Curry 1980, p. 88). Principia was a often topic of conversation there too. In the
introduction to the new edition, and earlier in his 1919 Introduction to Mathematical
Philosophy (p. 151), Russell admitted that they had erred in not listing substitution or
replacement rules for free variables among the basic principles of the system, though
he still does not formulate such rules in explicit terms. Apparently, it was in
attempting to state substitution rules in simple terms that lead Curry to his early
Combinatory Logic and to study Schönfinkel in the mid-1920s (see, e.g. Scott 1980, p.
224, Grattan-Guinness 2000, n. 453; Curry 1980, pp. 85 – 6).2 Curry surely discussed
this work with Church, and the latter apparently wrote up his first formulation of the
Lambda Calculus near the time he was in Göttingen (see, e.g. Curry 1980, p. 88), no
doubt influenced by Curry’s still-developing work on combinators.3

The notation used by Church is said to have been derived, accidentally, from the
circumflex notation used by Whitehead and Russell in Principia Mathematica.
Therein they used the notation ‘2x̂xþ 4’ for the function f such that f(x)=2x+4 and
the notation ‘x̂xðx2 ¼ 4Þ’ for class abstracts. Church, who saw little need to distinguish
classes from functions taken extensionally, originally meant to use the notation
‘x̂xð. . . x . . .Þ’ instead of ‘lx(...x...)’ for his l-abstracts, but due to typesetting difficul-
ties, the notation was changed by one typesetter to ‘̂ xð. . . x . . .Þ’ and by another, final-
ly, to ‘lx(...x...)’ (see Barendregt 1991, p. 182). With the Lambda Calculus, Church
hoped to make up for difficulties in the programme defended by Principia Mathema-
tica, such as the overly complicated theory of types, and the lack of proper substitu-
tion rules. Indeed, the latter difficulty held Church’s interest as well as Curry’s. It was
Church, guided to a large extent by what he had learned in stating conversion and ab-
straction rules for the Lambda Calculus, who, following incomplete attempts by Hil-
bert and Ackermann (1928, p. 53) and others, first published properly stated rules for
replacement that would be adequate for a system as rich as Principia Mathematica,
although he apparently relied heavily on notes from a lecture by Gödel taken by
his students S. C. Kleene and J. B. Rosser (see Church 1935, Kleene and Rosser 1965).

However, the influence of Principia upon Church’s Lambda Calculus seems
mainly limited to his motivations and overall vision; most likely, it had little influence
on the details. Certainly, not much of a case can be made for the suggestion that
Principia Mathematica contains something like a proto-Lambda Calculus in its use of
the circumflex notation. Some writers on Russell have claimed that the circumflex
notation was not intended as an official part of the symbolism of Principia
Mathematica, and that, rather, it was simply a device Whitehead and Russell used
in their informal discussion when they wished to discuss functions as such (see, e.g.

2 For the results of Curry’s efforts, see 1929.

3 For more on the relation between Combinatory Logic and the Lambda Calculus, see Hindley and Seldin 1986.
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Landini 1998, pp. 264 – 267).4 One never encounters circumflex ‘terms’ as parts of the
fundamental axioms, and no rules of ‘concretion’ or ‘conversion’ are listed in
Principia Mathematica to govern their use (as pointed out in Quine 1963, p. 249).
Indeed, the circumflex notation for functions used byWhitehead and Russell, as such,
is inadequate to the task of expansion towards a Lambda Calculus; alterations would
be necessary to avoid ambiguity (seeHatcher 1982, p. 109). Consider, for example, the
two-place function abstract ‘x̂x4ŷy’; if this were written with two arguments, it would
be unclear how the conversion should take place; for example is ‘ðx̂x4ŷyÞ(a, b)’ to be
converted to ‘a4 b’ or to ‘b4 a’? (I will later suggest that Russell may have been
aware, years earlier, of the limitations of this notation, which, given its perseverance
in Principia lends credence to the view that it was not part of the ‘official symbolism’.)
Certainly, Church did not simply extract the rules of the Lambda Calculus by reading
Principia; Curry, Schönfinkel and Hilbert surely provided more help when it came to
the essential details of what was new in his innovation. If we wished to understand the
actual historical development of the Lambda Calculus, a study of these figures would
figure more prominently.

Unfortunately, the writings of Russell’s that would have helped Church the most
had he had the opportunity to see them, written between 1903 and 1905, lay buried
among Russell’s unpublished manuscripts until quite recently. To understand
Russell’s early anticipation of the Lambda Calculus more fully, however, we must
take a step further back, to Frege.

3. Frege’s Wertverläufe
The system of Frege’s Grundgesetze der Arithmetik is usually taken as the first

higher-order predicate calculus. However, strictly speaking, Frege’s system is not a
predicate calculus at all, but a function calculus. Instead of ‘predicates’, Frege insists
on functions onto (reified) truth-values, the True and the False. Functions with one
argument-place that always yield truth-values as value he calls ‘concepts’; similar
functions with multiple argument-places he calls ‘relations’. For Frege, concepts,
relations and other functions are thought to be ‘incomplete’ or ‘unsaturated’ entities.
As such, he believes that a sign for a function should never occur without its argument
place. So, even in informal discussion, Frege always writes ‘f( )’ or ‘f(x)’ and never just
‘f’ to name a function. When a function receives its argument, the incompleteness or
unsaturatedness is removed, and the result, the value, is therefore not a function, but
an ‘object’ (possibly a truth-value, possibly a number, etc.)

For these reasons, it is arguable that Frege’s approach to logic is diametrically
opposed to that taken in the Lambda Calculus,5 in which functions are named by l-
abstracts that may appear with or without their arguments, and in which many
functions have other functions as value. But the situation is not quite so easy as that.
Besides the incompleteness-tracking notation for functions, Frege also included
notation for what he called ‘value-ranges’ (Wertverläufe) of functions. This notation
consists of a Greek vowel written with a smooth-breathing accent-mark preceding a
formula in which that Greek vowel sits in the argument-spot(s) of a function name. So

4 In this way, their use of the notation ‘2x̂xþ 4’ would be analogous to Frege’s use of notation such as ‘2x+4’,

which would not occur in any of the formal derivations in the Grundgesetze, only in his informal discussion. See

Frege 1893, §1.

5 For further discussion of this issue, see Potts 1973. I do not, however, agree with Potts on all points.
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if ‘H( )’ is the name of the function (concept) that takes all humans to the True, and all
non-humans to the False, ‘e’HðeÞ’ names the value-range of this function. But what is a
value-range? What seems to stick in most readers’ memories is that he equates the
value-range of a concept with its extension. Therefore, ‘e’HðeÞ’ is taken as a name of
the class of all humans. The axioms and principles Frege introduces to deal with va-
lue-ranges are therefore usually taken as an axiomatization of set or class theory, in-
deed, of naı̈ve, inconsistent set theory, yielding straightaway to Russell’s paradox of
sets that do not ‘contain’ themselves.

But this is an overly narrow interpretation of Frege’s value-ranges. Not only
concepts have value-ranges: all (first-level) functions do. One of Frege’s own examples
is e’ (e27 4) (Frege 1891, p. 143). There is no way to understand this as a class. When
Frege gives such mathematical examples, he seems to construe the value-range as the
complete argument-value pairing generated by the function, its graph, considered as
an abstract object. (Indeed, ‘graph’ is an alternative translation of ‘Wertverlauf’.)
Mathematical function f( ) and mathematical function g( ) are thought to have the
same value-range if and only if have the same value for every argument, that is, they
determine the same ‘graph’. Generalized to all functions, this becomes Frege’s ill-fated
Basic Law V. However, it should not be thought that Frege meant to suggest that two
different functions could determine the same value-range. Indeed, when f( ) and g( )
have the same value for every argument, Frege not only says that f( ) and g( ) have
the same value-range, but that f( ) and g( ) coincide, that they are the very same func-
tion (Frege 1892, p. 120 – 21). What then, is the real difference, between the value-range
and the function itself?—after all, they seem to have the same identity conditions.6

Frege himself claimed that that value-ranges of concepts ‘have their being in the con-
cept’ (Frege 1906, p. 183). Perhaps Frege really thought of value-ranges as nothing
more functions treated as logical subjects.

Stressing these aspects of Frege’s theory of value-ranges, Cocchiarella (1987,
Ch. 2) suggests that Frege’s logic could be treated as equivalent to a system with
nominalized functions, and presents a reconstruction of Frege’s logic using l-
abstracts as though they were equivalent to Frege’s value-range notation. In a 1942
dictionary of philosophy article on ‘abstraction’, Church (1942) himself identified
both Russell’s circumflex notation and Frege’s smooth-breathing notation as earlier
analogues of his ‘lx(...x...)’. If we regard Frege’s work on value-ranges as a sort of
proto-Lambda Calculus, we can find in his work certain anticipations of some of the
technical results of the Lambda Calculus. For example, a slight anticipation of the
Lambda Calculus’s approach to multi-place functions can be found in Frege’s
realization (Frege 1893, §36) that it is unnecessary to posit a different kind of entity to
serve as value-ranges of two-place functions as it is possible to simply make use of the
value-ranges of one-place functions that have value-ranges as value. For example, the
two-place function x+ z corresponds to the value-range a’ e’ (e+ a). Strictly speaking,
a’ e’ (e+ a) is the value-range of the function e’ðeþ xÞ, that is, the function whose value
for 5 as argument is e’ðeþ 5Þ, and whose value for 7 as argument is e’ðeþ 7Þ, etc. Using
higher-order quantification and a description operator, Frege defines an operator ‘C’,
which is often read simply as a membership sign akin to the usual ‘2’, but is in fact
defined such that, for any function f( ), whether a concept or otherwise,
xCe’ f ðeÞ ¼ f ðxÞ. Therefore, ð7Ca’ e’ ðeþ aÞÞ ¼ e’ ðeþ 7Þ, and hence:

6 After learning of Russell’s paradox, Frege suggested a revision to Basic Law V which did allow for differing functions

to have the same value-range. However, originally, he thought these to have the same identity conditions.
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ð5Cð7Ca’ e’ ðeþ aÞÞÞ ¼
ð5Ce’ ðeþ 7ÞÞ ¼
5þ 7 ¼
12

This is exactly parallel to the following result in the Lambda Calculus (by l-con-
version, etc.):

ðlylxðxþ yÞ7Þ5 ¼
lxðxþ 7Þ5 ¼
5þ 7 ¼
12

Moreover, as Frege (1893, §§ 34 – 35) himself also realized, the use of value-
ranges and the sign ‘C’ allows one to proxy the use of any second-level concepts (con-
cepts that are true or false of functions) with an equivalent first-level concept that is
true or false of value-ranges. Thus, Frege’s paradigm case of a second-level concept,
generality, represented by the universal quantifier, ‘ fðaÞ’, which takes function f( )
to the True just in case f( ) has the True as value for all arguments, could in a way be
‘reduced in level’ to a first-level function P( ), which has the True as value just in case
its argument is the value-range of a function yielding the True for all arguments.
(Frege himself does not define such a sign, but it is clearly possible in his system.)
In the Lambda Calculus, where there is no distinction between functions and ‘va-
lue-ranges’, and the l-abstracts themselves stand for functions, such a ‘reduction in
level’ is unnecessary; therein, the function P is taken as a primitive. The more usual
notation for quantification, ‘ Vx(...x...)’ is simply defined as ‘P(lx(...))’, and no vari-
able-binding operators besides ‘l’ are needed.

So there are certain definite ways in which an anticipation of something at least
very much like a Lambda Calculus was present in Frege’s work. Church is known to
have studied Frege in quite some detail, and here, more so than Russell, there was
likely even some amount of historical influence on the details of Church’s work. There
are differences to be sure; Frege did continue to maintain a difference between
functions and value-ranges, the former understood as ‘unsaturated entities’, the latter
as objects,7 and when it came to functions themselves, Frege never did rid himself
wholly of multi-place functions. Interestingly, in a November 1904 letter to Russell,
Frege briefly did consider a notation for ‘function abstraction’, written with a rough-
breathing accent (rather than a smooth-breathing) over the initial Greek vowel, such
that ‘e‘ ðeþ 7Þ’ would stand for the function whose value-range is e’ ðeþ 7Þ. This rough-
breathing abstract could then be followed by an argument (e.g. in ‘e‘ ðeþ 7Þ5=12’),
but would not need to be. However, he rejects this approach as violating the distinc-
tion between function signs, which must represent the unsaturated nature of func-
tions, and proper names, which stand for objects (Frege 1980, pp. 161 – 62). Here it
seems Frege comes even closer to anticipating all of the essential details of the Lambda
Calculus; the proposal seems to differ only by arbitrary matters of notation. Frege’s
rejection of the approach tells us something about his philosophy: how seriously he
took the distinction between functions and objects, and the corresponding distinction

[a

7 Church himself labeled Frege’s understanding of functions as ‘unsaturated’ (ungesättigt) as ‘somewhat problematical’

(Church 1951, p. 101), and so it is not difficult to see why he moved in the direction he did. (See also 1951 p. 9.)
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between function names and proper names. Russell’s much more extended considera-
tion of a similar approach, and his own rejection thereof, similarly tells us quite a lot
about his changing views during the period from 1903 to 1905.

4. Russell’s initial response to Frege

As is well known, Russell first became interested in symbolic logic through the
work of Giuseppe Peano and his associates. His early logical works, for the most part,
followed the trends and conventions of that school of logicians: he used Peanist
notation, followed Peanist methods, and worked on Peanist problems. This was
especially true while Russell was composing the Principles of Mathematics from
1900 – 1902; Peano can certainly be seen as the single greatest influence on Russell
during this period. However, after finishing the body of Principles in mid-1902,
Frege’s works also began to have quite a lot of influence over him. Although he had
been aware of Frege’s work prior to this, it is only at this time that he had a chance to
study Frege’s work in detail. He was so impressed by the great overlap between their
views, that he felt the need to make certain last-minute changes in the body of the
Principles to accommodate Frege’s insights (for the details, see Grattan-Guinness
1996), as well as include a special appendix discussing Frege, primarily in order to
justify his position on the points at which they diverged. There are several points
worth mentioning in this context from this discussion.

First, Russell (1903, p. 503) rejected Frege’s ‘curious’ claim that truth-values are
to be taken as denoted by complete statements, and insisted on his own theory of
propositions as superior to Frege’s division between thoughts and truth-values.
Therefore, he also took pains to distinguish his notion of a propositional function from
the Fregean notion of a concept. Frege treats concepts as entirely on a par with other,
mathematical-style, functions that take an object as argument and yield any other
object as value; the function corresponding to the predicate ‘... is human’ is
philosophically no different than a function such as that which ‘the father of ...’ stands
for or the square-root function; it simply happens to have truth-values rather than
numbers or people as value. For Russell, however, propositional functions, whose
values are not truth-values, but propositions, are taken as more primitive than
mathematical-style functions. Indeed, he insisted that the latter must be seen as
derived from the former (1903, p. 508). Thus the truth of any statement of the form
‘y= f(x)’, such as ‘James Mill= the father of (John Stuart Mill)’ is claimed to be
derivative from a relational statement of the form ‘f(y, x)’ such as ‘James Mill
fathered John Stuart Mill’.

Russell also took issue with Frege’s account of the unsaturatedness of functions.
Frege speaks of functions as the denotations of incomplete expressions; as Russell
interprets this, metaphysically, functions are thereby depicted as what remains when
something is taken away from a propositional complex. However, Russell claims that
an entity cannot simply be taken away from a proposition without destroying the
unity of that proposition (1903, p. 509). On Russell’s own understanding of
(propositional) functions, they are not incomplete, nor do they contain a ‘gap’ or
‘empty space’; instead, a propositional function is a proposition-like unity that
contains a variable, rather than a definite term8 like Socrates or Humanity. For the
early Russell, a variable is not a letter or anything linguistic, but is in the same

8 Russell (1903, p. 43) uses ‘term’ in a non-linguistic way to signify any entity that can occur as part of a proposition.
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metaphysical category as what he calls a ‘denoting concept’, something which, when it
occurs in a proposition, makes the proposition not about it, but about one or more
entities to which it bears a special relation. When a variable occurs in a proposition-
like construction, it ‘ambiguously denotes’ its different values; and hence what one has
is not a constant proposition, but a propositional function.

For Russell of the Principles, for some proposition of the form fa, the derived
propositional function is not some incomplete or gappy f, or as Frege would write it
‘f( )’. It is, rather, an entity just like the proposition fa, except containing a (‘real’, as
opposed to an ‘apparent’) variable rather than a definite term a. Russell explicitly
denies the existence of incomplete entities such as Frege’s f( ), which elsewhere he calls
‘assertions’ (1903, pp. 83 – 4, 505). Indeed, he says, ‘the f in fx is not a separate and
distinguishable entity: it lives in the propositions of the form fx, and cannot survive
analysis’ (1903, p. 88). Russell is sometimes read here, wrongly, as denying the
existence of propositional functions as entities. Instead, he is claiming that the
structured remainder of the proposition over and above the entity to be varied, or,
what amounts to the same, the remainder of the propositional function without the
variable, cannot be seen as a single entity. If one attempts to ‘pull apart’ a complete
proposition such as Socrates is mortal; one cannot divide it into two entities: Socrates
and an ‘assertion’ made about Socrates: ( ) is mortal. The latter ‘cannot survive
analysis’. If one wants to understand what Socrates is mortal and Plato is mortal have
in common, one must consider them both as values of the propositional function x is
mortal, where the function has a variable in place of a definite term, rather than simply
an empty spot or gap to be saturated or completed. The inclusion of this variable
within the structured whole is necessary to maintain its unity (1903, p. 106).

For early Russell, because propositional functions differ from propositions only in
containing variables, the study of propositional functions cannot be separated from
the study of variables. As variables are simply a special sort of denoting concept,
Russell’s theory of propositional functions is deeply interwoven with his theory of
meaning and denotation. For this reason, the later topic figures more prominently in
his discussion of functions than one might otherwise expect.

In the appendix, Russell also expressed his disagreement with Frege’s related thesis
that functions and concepts cannot be denoted by proper names or phrases that can
operate as logical subject. According to Russell, anything that is can be made into a
logical subject, and to suggest otherwise for any entity A is to contradict oneself, for
the very statement of the position, ‘A cannot be the subject of a proposition’, involves
doing precisely what it claims impossible. If concepts are indeed entities at all, they
must also be able to serve as logical subjects.

Lastly, Russell criticizes many aspects of Frege’s theory of value-ranges, although
he does express some admiration for other aspects, particularly the use of double
value-ranges to capture the extensions of relations. Besides the obvious complaint that
Frege’s theory leads to contradiction, Russell’s primary complaint is that, although
Frege makes clear what the identity conditions for value-ranges are, he never precisely
explains what we are supposed to take them to be in and of themselves (1903, p. 511).
Value-ranges of concepts are not to be understood as collections or aggregates of the
objects falling under the concepts (as Russell himself understood classes); instead,
value-ranges of concepts are supposed to ‘have their being’ in the concepts. However,
as objects, they cannot simply be identified with the concepts as functions. What, then,
are they? This last complaint is indicative of Russell’s characteristically metaphysical
and philosophical approach to logic. It would not be enough for him to have a logical
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system that was free of contradiction and worked well formally; one needed a
philosophically robust understanding of its metaphysical presuppositions, and how
the various signs in that system related to objective structures in the world (i.e. for
him, propositions).

While Russell is largely critical of Frege in the Appendix to the Principles, it is
quite clear that his close study of Frege’s work during this period had a large
impact on him. Indeed, over the next few years, Russell’s manuscripts show a
distinctly Fregean influence in both doctrine and topic. Fregean themes, such as
the attempt to understand the nature of functions, and the distinction between
‘meaning’ and ‘denotation’, dominated Russell’s work during this period. Russell
was of course interested in these topics before reading Frege, but his encounter
with Frege seems to have newly plunged Russell into them. Of course, his primary
occupation during this period was an attempt to find a philosophically adequate
way of reconstructing his logical principles that solved the contradictions and
allowed the logicist programme to proceed. Naturally, Russell was interested in
the appendix Frege dedicated to Russell’s paradox and added to the second
volume of the Grundgesetze, published in late 1902. Despite that Frege’s proposed
fix is somewhat arbitrary and logically flawed, Russell’s reaction seems to have
been quite deferential; indeed, in a last-minute footnote added to the Principles,
Russell claims that it contains what is probably the correct solution to the
paradox (1903, p. 522). This remark appears rather striking, having been placed
at the end of an appendix containing harsh criticism of Frege’s very notion of a
function and a value-range. Russell soon discovered problems with Frege’s
proposal, but during this period he certainly took Frege’s views very seriously.

5. Function abstracts in Russell’s early work

This brings us to May 1903. Earlier we made note of a letter written by Frege
to Russell in which he considered and rejected a rough-breathing notation for
function abstraction. This letter was written in response to a letter Russell sent
Frege in May 1903. In that letter, Russell described a new approach to solving
some of the difficulties plaguing their shared logicist enterprise. Therein, Russell
suggested that they try to do away with classes altogether, and make do, instead,
simply with functions. Rather than, for example defining a cardinal-similarity
relation between two classes whose members stand in a 1 – 1 correspondence,
Russell suggested defining a cardinality relation for two (propositional) functions
that would hold of functions that held of the same number of things, and so on.
Doing away with classes at least solved Russell’s paradox in the classes-of-all-
classes-not-members-of-themselves form. The versions involving predicates and
propositional functions that do not apply to themselves remained, but at least there
was no need for separating individuals, classes, classes of classes, and so on, into
distinct logical types, as Russell had begrudgingly and unhappily suggested in
Appendix B of the Principles.

In his response, Frege points out that such an approach would need a way of
placing names of functions in subject position of relations, etc. and that to be able to
treat more complicated functions, it would need a notation for forming function
‘abstracts’, leading to the discussion of the rough-breathing notation. The need for an
abstraction operator, however, was not news to Russell. Had Frege read closer, he
would have noticed that Russell’s letter began:
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I received your letter [of 21 May 1903] this morning, and I am replying to it at
once, for I believe I have discovered that classes are entirely superfluous. Your des-
ignation e’fðeÞ can be used for f itself, and x Cðe’ ðfðeÞÞÞ for f(x). (Frege 1980, 158)

Notice here that the suggestion is not to do away with Frege’s notation for value-
ranges or classes, ‘e’fðeÞ’, but, instead, to use this notation for the functions themselves.
Russell’s suggestion was to replace class abstracts with function abstracts. This is
much clearer from Russell’s manuscripts starting the time near when this letter was
written (and long before he received Frege’s reply).

We noted earlier the great influence Peano and his school had on Russell,
especially early on. It is possible that Russell first encountered function abstracts in
Peano’s work. At one passage in the second edition of the Formulaire, Peano comes to
something like functional abstraction, seemingly understanding it, obscurely, as the
inverse of the application of function to argument. Employing the overbar notation
that was used generally in his logic for inversion, Peano writes: ‘we indicate by a�xx the
sign of the function f, such that fx= a. Thus one has ðfxÞ�xx ¼ f ’ Peano 1897, p. 277. In
a later work Peano has the notation ‘ux|x’ for functions, where the ‘|’ is again de-
scribed as a ‘the sign of inversion’ Peano 1900, p. 356. However, the notation was
not much used, and was never clearly distinguished from similar notation used for
the instruction to replace one variable or sign for another. (For more on this, see Grat-
tan-Guinness 2000, pp. 245, 255). There is no evidence that these passages had any ef-
fect on Russell’s thought.

It is much more likely, especially given the smooth-breathing notation he uses, the
philosophical questions he raises about functions (discussed below), and how eager he
was to share his ‘discovery’ with Frege, that the larger inspiration for Russell’s use of
function abstraction in May 1903 was Frege’s work on functions and value-ranges.
Russell outlined the basis for the new notation at the opening of a manuscript from
this period bearing the Frege-reminiscent title ‘Functions and objects’:

When any expression contains a constituent x, it is possible to conceive of x being
replaced by y or z or any other term, without any other change being made in the
expression. When this is done, something remains constant while the term in ques-
tion is changed. This something is to be called a function. The expression contain-
ing x is called the value of the function for the argument x; if we substitute y for x,
the result is the value of the function for the argument y. If f denotes the function,
f|xwill be used to denote the value of the function for argument x; and conversely,
if X denotes an expression containing x; x’ ðXÞ will be used to denote the function
involved. Thus x’ ðXÞjx will be another symbol for X; and if we denote by Y what X
becomes when y is substituted for x, x’ ðXÞjy will be another symbol for Y. Also
x’ ðfjxÞ will be another symbol for f; and thus x’ ðfjxÞgjx will be another symbol
for f|x. (Russell 1994, p. 50)

Unfortunately, here again, we see evidence of Russell’s characteristic sloppiness about
use and mention. However, overlooking this, with just a few changes of notation, a
similar passage could easily occur in the introductory passages to a text on the Lambda
Calculus. If we use X schematically for a formula containing variable ‘x’ and Y for the
same formula only containing ‘y’ where X contains ‘x’, then dlxðXÞe will stand for a
function, such that, by l-conversion, it will hold that dVy½lxðXÞy ¼ Y�e. Similarly,
if ‘f’ is a name of a function, ‘lx(fx)’ is another name for that function, etc. Russell’s
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use of the sign ‘|’ to stand for the application of a function to its argument appears
somewhat as a curiosity here, and was perhaps modified from Peano’s notation for
substitution. The smooth-breathing notation, of course, comes from Frege, but note
that Russell has substituted normal Roman letters for Frege’s Greek vowels.

As Russell continues, the parallel to Frege’s work on value-ranges runs deeper.
Probably building on Frege’s slight anticipation of Schönfinkel’s approach to multi-
place functions, Russell completes the thought:

It will be found unnecessary to regard functions of two or more variables as radi-
cally different from functions of one variable; we shall find it possible to treat all
such functions as functions whose values are themselves functions. (Russell 1994,
p. 51)

In a manuscript dated from the same period entitled ‘Primitive propositions for
functions’, Russell tries out new primitive propositions such as the following (1994,
pp. 53 – 55):

‘: x’ ðXÞ ¼ f:�:fjx ¼ X Pp:

‘: x’ ðfjxÞ ¼ f Pp:

And definitions such as the following:

e ¼ f’ fx’ ðfjxÞg Df:

xRy ¼ ðRjyÞjx Df:

From which one derives results such as:

‘ x e f ¼ fjx
This result allows functions to proxy for classes. Applying this approach to logical

operators, Russell notes that ‘p � q’ is really shorthand for ‘ð� jqÞjp’, and
‘p: � :q � p’ shorthand for ‘½� jfð� jpÞjqg�jp’.

Here we can see that Russell’s form of functional abstraction is significant steps
closer to later Lambda Calculi than Frege’s smooth-breathing notation. Multi-place
functions have been purged from the logic entirely. The abstracts stand for functions-
proper, and can be directly fed arguments. Unlike in Frege’s system, and like the
Lambda Calculus, the abstraction operation can bind function variables (as in
Russell’s definition of ‘e’). The use of the approach is foundational to the entire
system. One could simply remove value-ranges and the associated axioms from
Frege’s system and be left with a perfectly functioning, consistent, higher-order logic.
Here, what Russell is suggesting is not just an add-on that could be simply removed
while preserving the core. Unfortunately, even in this period, passages such as those
above are the closest Russell comes to stating explicit conversion, concretion or
replacement rules (which would have been much easier for this system than for
Principia Mathematica), so the development of the system was far from complete. Of
course, none of these works were intended for public reading, and it is possible that he
would have made up for such lacunae had he prepared something for publication,
though unlikely given his later omissions.

Over the next two years, nearly all of Russell’s logical manuscripts contain
function abstracts used as terms. However, the notation he used changed
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continuously over the period, in a way that almost seems calculated to frustrate
the modern interpreter. As we have seen, Russell originally used the smooth-
breathing borrowed from Frege notation for functions, and aimed to do without
classes altogether. In a letter to Russell from Whitehead in late April 1904,
Whitehead made use of the circumflex notation such as ‘f‘x̂x’ that appears later in
Principia for functions, adding, ‘note the circumflex over the x̂x marks that the vari-
able x on the right hand side is only apparent’. Whitehead also replaced Russell’s
use of the vertical bar ‘|’ for the application of a function to an argument with a
raised inverted comma. Uncomfortable with Russell’s abandonment of classes, in
a letter written a month later, Whitehead also suggested a way of reintroducing
classes by means of a relation sign ‘Kl’ such that ‘u Kl f‘x̂x’ would mean that u
is the class defined by propositional function f‘x̂x. By means of this notation, one
could define a class abstract written ‘x’f‘x̂x’ for those functions for which there is a
u such that u Kl f‘x̂x.

Russell tended to follow Whitehead’s lead in matters of notation, and during this
period he begins to use the smooth-breathing notation again for classes rather than
functions. For a while, he adopts the circumflex notation for function abstracts, and
indeed sees it as in some ways ‘more philosophically correct’ (see, e.g. Russell 1994,
p. 272). As we saw, in the Principles, Russell had suggested that a function should be
understood as a proposition-like complex containing a variable rather than definite
term at one or more places. While he sometimes doubted this original understanding
of a function during this period, he often returned to it. Notation such as the
smooth-breathing notation suggests that there is something in addition to the
variable, the greater-than relation, and two making up the function written
‘x’ ðx > 2Þ’. Rather, the function is just the meaning of ‘x4 2’. By itself ‘x4 2’ denotes
the various values of the function; however, if we want a name of the function itself,
we simply place the circumflex over the variable to suggest we wish to speak of the
meaning, not the various complexes the meaning ‘ambiguously denotes’. As Russell
puts it at one point:

The circumflex has the same sort of effect as inverted commas have. E.g., we say
Any man is a biped;

‘‘Any man’’ is a denoting concept.
The difference between p � q:�:q and p̂p � q̂q:�:q̂q corresponds to the difference be-
tween any man and ‘‘any man’’. (Russell 1994, p. 129)

Circumflexion is thus one way to speak of meanings rather than denotations. Like the
inverted commas, which cannot be understood as a function that maps the denotation
onto the meaning, we do not have here some function that operates on a value of a
function and yields the function itself (as Peano’s inversion notation would seem to
have it). The sign for the function should not bemore complex than the sign for one of
its various values.

However, towards the end of 1904, Russell begins using a different notation for
functions, more like the smooth-breathing notation, except with an initial variable
written with a circumflex followed by an expression containing that variable (i.e. the
very notation Church, before typesetting problems, had intended). Its first occurrence
appears on a page in his working notes entitled ‘Notation for functions’, and he begins
(Russell 1994, p. 240, see also 265 – 72):
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ẑzðf‘zÞ always instead of f‘ẑz

The reason for the new notation is not discussed, but it may be that Russell had
some awareness of the ambiguities generated with the simpler circumflex notation.
For a short period, Russell used this notation for function abstraction, alongside
smooth-breathing notation for classes. As this new circumflex notation is the same
as the notation used later on for classes in Principia Mathematica, and given that
he initially used the smooth-breathing notation for functions, a present-day reader
of Russell’s manuscripts must take great care to avoid confusion.

6. Russell’s changing views on the nature of functions

That Russell’s notation changed during this period is of relatively minor interest.
What is of more interest is the evolution of his views on the subject matter for which
the notation was designed. True to form, Russell was not simply interested in putting
forth a formal system or new style of notation; for him, a logical system or style of
notation would be regarded as adequate only to the extent that it reflected the true
nature of the entities in question. His consideration of these logical apparati comes
always alongside discussion of functions, their nature, and how they occur (or fail to
occur) within complexes such as propositions.

For Russell, there were two questions that continued to come to the surface
concerning the nature of functions. They were not at all new for him; indeed, he had
addressed them already in the Principles, but he again and again found occasions for
reconsidering them. The first had to with the relative fundamentality of complexes and
functions. The view of the Principles, we have seen, is that functions are themselves
those complexes containing variables. Since the same complexes could exist save
containing a normal term instead of a variable, there would be no way of explaining or
defining complexes in terms of functions. Here, the notion of a complex is more
fundamental than that of a function. In reading Frege, he had encountered the claim
that functions should be understood as unsaturated (ungesättigt) or incomplete, and
that the unity of complex ‘judgeable contents’ is to be explained by the cohering of
functions with their arguments.9 Despite the criticisms of Frege’s views leveled in
Appendix A of the Principles and elsewhere, Russell for while was attracted to the
possibility of understanding the application of functions to arguments as ‘the logical
genesis of all complexes’ (see, e.g., 1994, p. 50). He goes on:

Thus functions, except in the case of the function whose value for the argument x
is x itself, which we may call the identical function, are simpler than their values:
their values are complexes formed of themselves together with a term. The logi-
cally correct course, therefore, would be to begin with the function f, and proceed
to its value f|x, not to start with X and proceed to x’(X) (1994, p. 51).

9 Here I am using Frege’s early terminology of the Begriffsschrift (1879). After the sense/reference distinction is in place,

Frege still speaks as though the unity of complexes is derived from the unsaturated or incomplete nature of functions,

but exactly how this is consistent with the remainder of his views is actually rather unclear. As Frege himself points

out later in his career, at the level of reference, the value of a function is not composed of the function and argument

(Frege 1979, p. 255). And at the level of sense, it is not clear that the incomplete or unsaturated entities can properly be

construed as functions, as I have discussed elsewhere (Klement 2002b, pp. 65 – 76). So in what sense can a function be

said to cohere with, be completed by, or form a whole with, its value? Church may well have been right in calling

Frege’s doctrine of the incompleteness of functions ‘problematical’.
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On this view, the functions, on their own, do not contain variables or anything else
‘in’ their argument spots; they instead, bind together with their arguments to form
complexes. At first blush, this view seems absurd with regard to certain functions,
such as the square root function; the value of this function for four as argument is two;
yet surely, two is not a complex formed from four and this function. In this case,
Russell would appeal to his theory of denoting: when the function and argument come
together, they form what he called a denoting complex; and when this complex appears
in a proposition, the proposition is not about it, but about some entity to which it is
related—in this case, the number two. Russell calls functions resulting in denoting
complexes ‘denoting functions’ and distinguishes them from propositional or
‘undenoting’ functions (Russell 1994, pp. 331 – 2, 374).

However, despite the possibility of providing some explanation for the
metaphysics of propositions and complex meanings, Russell was dissatisfied with it
philosophically. The abstraction notation itself, he thought, suggested that functions
ought to be derived from complexes, not vice-versa. As he put the point when
discussing the same dilemma later on:

Is the function derived from the complex, or the complex from the function?
The notation x̂x(f‘x) suggests the former.
...
... if the function is not derived from the complex, it ought to be possible to speak
of it otherwise than as x̂x(f‘x); yet this not possible with particular functions. Sup-
pose, e.g., we wish to speak of the function x̂xðx � xÞ. In language, we may call this
function ‘self-implication’. But this name indicates substantially the same process
as is indicated by x̂xðx � xÞ. The function is the manner in which, whatever x may
be, the constituents of x � x are combined. And we cannot describe a way of com-
bining constituents except by presupposing constituents. (Russell 1994, p. 265)

The attempt to take complexes as derived from functions fails to make sense of
certain functions. Let ‘p’ represent some constant proposition. The formula ‘p � p’,
given what was said above, is shorthand for ‘ð� jpÞjp’. If complexes are formed from
functions, this complex seems to be generated from the following procedure: the func-
tion� binds together with the proposition p to form the complex � jp; this complex is
itself a function, and can bind together again with p to form the complex ð� jpÞjp, i.e.,
p � p. Yet, it would seem that p � p is not just a value of the function � jp, but also
the function x̂xðx � xÞ. But there is no way to regard this later function as a constituent
of ð� jpÞjp. For at least certain functions, Russell suggests, we must begin already with
a complex in mind, and arrive at the function by analysis of the complex, that is to
regard parts of the complex as replaceable by other constituents, resulting in a similar
complex differing from the original only in certain specified ways.

On this way of looking at a function, a function corresponds to ‘mode of
combining’ entities to form a whole; but itself is not a constituent of the whole that is
formed. On this understanding, x̂xðx � xÞ gives us a recipe for combining entities to
form propositions such as p � p. However, it is not a constituent of the propositions
so formed. (It could be regarded as part of the meaning of ‘x̂xðx � xÞjp’, but it is not a
part of what this denotes, viz., p � p.) He writes:

The mode of combination of the constituents of a complex is not itself one of the
constituents of the complex. For if it were, it would be combined with the other
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constituents to form the form the complex; hence we should need to specify the
mode of combination of the constituents with their mode of combination, thus
what we supposed to be the mode of combination of the constituents would be
only a mode of combination of some of the constituents. In short, in a complex,
the combination is a combination of all the constituents, and cannot therefore
be itself one of the constituents. (Russell 1994, p. 98)

This, Russell hopes, will help provide some direction for aiming to solve the
contradictions involving classes and functions. If x̂xðx � xÞ is not a detachable compo-
nent of p � p, then one could similarly argue that the ‘function’
x̂xfðfÞ :x ¼ f: �� f‘xg involved in Russell’s paradox is not a separable component
of a proposition such as ðfÞ : a ¼ f: �� f‘a, and perhaps not an entity at all. In-
deed, Russell spent a great deal of effort trying to delimit a certain class of complexes
from which one could not abstract a function. However, within this approach, he
never quite found an adequate way of delimiting such a class.

The other question that resurfaced again and again had to do with statements
of the form ‘y= f(x)’ such as ‘James Mill= the father of (John Stuart Mill)’. As
we saw, in the Principles, Russell thought these to be derivative from relational
statements of the form ‘f(x, y)’ or ‘James Mill fathered John Stuart Mill’. In the
years to follow, Russell was somewhat undecided about this issue as well. After
all, in this period, he could not pretend that functions with complete propositions
as value were somehow fundamental. On his new view of the nature of multi-
place functions, the form f(x, y) had been replaced with the form (f|x)|y; the
function f here has other functions as value, not propositions. Earlier, in
discussing Russell’s consideration of the possibility that functions may provide the
basis for explaining complexes, we noted that Russell does countenance functions
whose values may in no way contain their arguments, and explained such
functions in terms of the functions yielding denoting complexes. The function
involved in the example given earlier, which we might now write in Russell’s
abstraction notation as x’ (the father of x), could be understood as an example of
such a ‘denoting function’. While he was not, at least at first, adverse to allowing such
functions, per his usual practice, he attempted to reduce them to as few as possible.
Eventually he came to the conclusion that they could all be reduced to two forms, both
of which he understood as functions that themselves take propositional functions as ar-
gument.

The first was written as the inverted iota, L, and it was understood as a function
mapping the propositional function it takes as argument onto the sole argument to
that propositional function that yields a true proposition if there is such an argument,
and a chosen object, otherwise.10 Using this device, in a certain sense, Russell main-
tained the core of his earlier view that propositional functions were to be taken as fun-
damental in that he would analyse ‘y=the father of x’ by beginning with the relation
R, a function whose value for every argument x is a propositional function that itself
yields a true proposition only for fathers of x as argument. He would then analyse
‘the father of x’ as ‘L‘(R‘x)’. The other denoting function Russell at times took as pri-

10 Russell borrowed the inverted iota from Peano, who used it for a function mapping a singleton class onto its single

member, although Russell’s understanding of it here also owes a lot to Frege’s sign ‘\’ from Grundgesetze §11, which

stands for a function that has as value, if its argument is the value-range of a concept true of only one object, the sole

object that falls under the concept, and a chosen object otherwise.
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mitive was the function that maps a propositional function onto the class of entities
satisfying that function. However, as we have seen, at times, Russell thought classes
could be done away with entirely, and at other times, he considered the function to
be in fact definable in a similar way to the father case using the inverted iota and
Whitehead’s relation Kl discussed above. However, Russell was never quite happy
with the function L, and it bothered him to have only a single function that worked
so differently than the others he had on the table. I have discussed his dislike of this
use of the symbol L elsewhere (Klement 2002a). Of course, he finally managed to purge
his logic completely of denoting functions in 1905 when he came across the theory of
‘incomplete symbols’ of ‘On Denoting’ and the possibility of defining away both de-
scriptive phrases and class-terms in context.

7. Abandonment of the approach

Russell’s proto-Lambda Calculus never saw the light of day during his
lifetime. The interesting question is why. We have just seen that Russell was not
entirely satisfied with its treatment of what he called ‘denoting functions’.
However, in his treatment of propositional functions, the question remains as to
why Russell did not continue to make use of an abstraction operator and treat
multi-place functions as functions onto other functions. It is now well known that
soon after developing the theory of descriptions in 1905, Russell began work on
his so-called ‘substitutional theory’ in which neither classes, nor relations-in-
extension, nor even propositional functions are taken as genuine entities, but are
instead proxyed by means of an intensional logic of propositions and the notion
of ‘substitution’ of entities within a proposition (see, e.g. Russell 1905, 1906,
1973). In many ways, the substitutional theory is almost diametrically opposed in
metaphysical outlook to Russell’s function-heavy theories of 1903 and 1904. One
makes functions central; the other banishes them altogether. However, the
development in Russell’s mind from the one theory to the other is actually rather
more direct and natural than one might suspect. Let us examine, then, how it
happened.

We saw in the last section that although Russell took seriously the supposition
that the application of a function to an argument might be the basis for the unity
of propositions and denoting complexes, he eventually returned to the conclusion
that the reverse was true: at least many functions could only be gotten at by
analysis of complexes, and that functions, even propositional functions, are not
constituents of their values. On Russell’s view, this view was consistent with,
suggested by, and perhaps even demanded by, the abstraction notation, x̂x(. . . x . . .).
Here one begins with a complex containing one (or more) variable as a constituent;
that variable is then highlighted so that one does not consider any particular value
of the variable, nor what the complex comes when the variable takes on a value,
but the function itself. If complexes are prior to functions, then it is not the application
of function to argument that generates complexes. Rather, it is through one or more
entities, and specifically, one or more entities we would now call ‘universals’, occur-
ring in a proposition ‘as concept’ (i.e. predicatively) rather than ‘as term’ (i.e. as logi-
cal subject) as he had put in the Principles (Russell 1903, pp. 44 – 46). However, one or
more entities coming together with certain properties or relations to form a proposi-
tion is not now to be understood as the application of function to argument, on pain
of circularity.
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Russell then realized that there was something strange about the notation he had
been using for functions. Here the difficulty is with the part of the symbol for an
abstract that appears after the circumflected variable; that is the ‘. . . x . . .’. part of
‘x̂x(. . .x . . .)’. This should be the name of the complex from which the function is de-
rived. It itself should not be understood as ‘put together’ from a function and its argu-
ment. However, in stating the general rules for the notation, Russell had hitherto
often used abstracts such as ‘x̂x(f‘x)’, but notice that the interior formula ‘f‘x’ itself
represents the application of a function to an argument. (Indeed, it would seem, the
function f would seem to be the very function the abstract is supposed to name.) Rus-
sell explained the oddity of the situation as follows:

The notation ẑz(f‘z), thought admirable when f‘z is replaced by some particular
complex, is open to grave objection when used to denote a general variable func-
tion. For it suggests that the function is derived from f‘z, whereas f‘z already in-
volves f, which is the function. (Russell 1994, p. 269)

Russell began to feel that the very notation ‘f‘x’ was in some sense problematic. If
the ‘f’ in ‘f‘x’ already stands for the function, then it already contains the variable as
such. A value of this function comes from replacing the variable with one of its values. In
a period in which he vacillated between using Whitehead’s simpler circumflex notation
and the revised notation noted above, Russell commented on the difficulties as follows:

According to what seems the best view, f‘x is short for ðf‘x̂xÞ xx̂x, and is not identical
in meaning with the straightforward complex containing x that f’x stands for.

But this involves a new difficulty: we ought to write f simply, instead of f‘x̂x, or else
f‘x̂x would have to be replaced by ðf‘x̂xÞ x̂xx̂x, or f will be meaningless. Thus in fact,
when f appears in the function-position, as in f‘x, it must stand for the function
itself, i.e. for the complex with x̂x in place of x. Thus, e.g., suppose f‘x=x. x= x,
then f ¼ ðx̂x ¼ x̂xÞ, i.e. x̂xðx ¼ xÞ. Thus f‘x̂x is wrong. We have f‘x ¼ f x

x̂x. (Russell
1994, p. 256)

This is a difficult passage, one which Russell surely would have made clearer if he
had intended it to be read by anyone except himself.

I interpret it as follows. If a function is to be understood as a complex containing a
variable, written ‘f‘x̂x’, then a certain value of that function for some argument x,
hitherto written f‘x, is best understood as that which the complex becomes when
the argument is substituted for the variable, and thus is best represented as ðf‘x̂xÞ xx̂x.
But if the application of a function to an argument is best understood by means of this
sort of substitution of argument for variable, that is, if we should regard the notation
‘f’x’ as shorthand for ‘ðf‘x̂xÞ xx̂x ’, then that very notation should not form a part of the
notation for the complexes from which we form the function names, for fear of gen-
erating an infinite regress. Because ‘ðf‘x̂xÞ xx̂x ’ contains the very sort of notation it is sup-
posed to explicate on the left side where the function abstract appears—recall that
f ‘x̂x’ is a notation variant of ‘x̂xðf‘xÞ’ —one would need to replace the ‘f‘x̂x’ that ap-
pears in ‘ðf‘x̂xÞ xx̂x’ with ‘ðf‘x̂xÞ x̂xx̂x ’, resulting in ‘ððf‘x̂xÞ x̂xx̂xÞ xx̂x ’. This, of course, gets us pre-
cisely nowhere.

At the end, then, Russell suggests a different way of looking at things. The
function itself, rather than being written in abstract form ‘f‘x̂x’ or ‘x̂xðf‘xÞ’, should be
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written simply as ‘f’. Its notation should not presuppose application of function to
argument. This is precisely what we should expect given the metaphysical picture:
the function itself is a complex containing a variable, but the complex is not formed
from composing the function and the variable, so that notation is inappropriate in
forming a name of the function. The function itself then should just be represented
in a simpler way, one that does not presuppose application of functions to arguments.
Here Russell simply uses ‘f’, although for a more specific example it would be appro-
priate to use a different sign such as x̂x ¼ x̂x ’, which contains no occurrences of apply-
ing functions to arguments. (Identity here is understood as the relation, occurring as
concept, and giving this complex its unity, not as a two-place function.) It is then just
presupposed that the complex this stands for contains some variable. When we wish to
proceed to one of the values of this function, abbreviated ‘f‘x’ we write ‘f x

x̂x’.
At this point Russell appears to be poised rather precariously between the

notation he had been using involving functional abstracts and the later substitutional
notation. Still, there is nothing in the above to rule out using abstracts completely. As
Russell himself had put it, there does not seem to be anything wrong with the
abstraction notation when one is treating some particular complex, as with ‘x̂xðx ¼ xÞ’.
The difficulty only seems to come in with a formula such as ‘x̂xðf‘xÞ’, in which the func-
tion itself already seems presupposed by the internal ‘f’. However this does not in it-
self seem to be an insurmountable obstacle to the notation. However, in Russell’s eyes
it seemed to be a slightly larger problem, as he thought something like ‘x̂xðf‘xÞ’ would
be necessary in stating basic principles for the notation. To state a principle dealing
with conversion, Russell’s inclination would be to write in a form such as:

‘ x̂xðf‘xÞy ¼ f‘y

But this of course involves the questionable sort of notation. To the modern read-
er, one cannot help but feel that Russell here would be greatly helped by the contem-
porary distinction between object-language function variables and schematic letters
or metalinguistic variables. The above would be better stated in schematic form.What
we want on the left half of the equation is any particular formula involving ‘x’ (stand-
ing for any complex containing a variable), and on the right, we want the same for-
mula save having ‘y’ instead of ‘x’. Yet without the concept of a schematic letter,
Russell was forced to view the above ‘f’ as a genuine functional variable, and began
to doubt the very basis of the notation.

As these sorts of difficulties cropped up again and again for Russell during this
period, we find him trying various sorts of approaches. At points we see him trying to
make up for the above deficiency by using notations along the lines of ‘x̂xðXÞ’ or ‘x̂xðpÞ’,
where he was forced to read the ‘X’ and ‘p’ as object-language variables ranging over
complexes. More and more we see him trying out various substitution-style notations.
Earlier we saw the notation f x

x̂x. for the value of function f for argument x. Here the f
itself is supposed to represent the whole proposition-like complex containing the vari-
able x̂x. Realizing that the use of the letter ‘f’ seems to be most appropriate when fol-
lowing the traditional style of notation that would put this instead as ‘f(x)’ or
suchlike, Russell begins to start using notations such as the following:

The indefinable p x
Var has the following meaning: If p is a mode of combination con-

taining the variable-as-such ‘x̂x’, then p x
Var is to mean the result of substituting x for

x̂x, i.e., the value of p for the case of x; otherwise p x
Var is to mean (s). s. (Russell 1994,

p. 275)
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Because the function, or more precisely, the ‘mode of combination’ is now
understood as a propositional complex containing the variable, it is appropriate to use
a propositional variable for it. Elsewhere, Russell uses a similar notation save with a
‘C’ instead of a ‘p’ to stand for the complex in which the substitution is to be effected
(seeRussell 1994, pp. 361 – 66). Russell has not abandoned completely his notation for
abstracts, as the ‘x̂x’’ in the quotation above indicates. Indeed, if we were to deal with
some particular instance of this notation, the ‘p’ might be replaced by some particular
proposition-like complex in which the ‘variable-as-such’ appears, e.g., ‘x̂x ¼ x̂x’. (It is
rather striking that in all this philosophical rumination about substitution of entities
at the ontological level, Russell apparently still did not see the need to formally state
rules of replacement or substitution for variables at the linguistic or notational level.
This only serves to further indicate Russell’s greater concern for metaphysics than for
language.)

This approach, which Russell began in late 1904 and worked on through early
1905, was relatively short-lived, as it was wedded to certain aspects of his earlier
theory of denoting which he abandoned upon discovery of the theory of descriptions.
The above explication of ‘p x

Var’ presupposes that, in use, p will usually be a complex
containing ‘the variable-as-such, ‘x̂x’ ’.11 Variables are therefore still taken as entities
on par with denoting concepts. Second, even when the function we are treating in this
way is a straightforward propositional function rather than a denoting function, the
notation requires a meaning/denotation separation. In this notation, if ‘a’ is some con-
stant, then ‘ðx̂x ¼ aÞ a

x̂x’ will stand for the same proposition as ‘ðx̂x ¼ x̂xÞ a
x̂x’, but these two

expressions nevertheless seem to differ in meaning.
After abandoning the meaning/denoting distinction and the theory of denoting

concepts/denoting complexes, these aspects of the approach obviously needed to be
changed as well. After ‘On Denoting’, Russell does not seem quite sure what to make
of the metaphysical nature of variables nor how (or even if!) they occur in
propositions, but he surely no longer regards them as operating like denoting
concepts.12 Certainly, then he cannot understand a ‘function’ or ‘mode of
combination’ as a proposition-like complex containing one or more variables, where
the variables are understood as before. However, Russell realized it was possible to do
all the work of functions by beginning with determinate propositions and expanding
the notion of substitution to allow substitution for constant elements, not just
‘variables’. That is, rather than the form: p x

Var, where, for the substitution to take ef-
fect in the normal way, p must be supposed to be a complex containing the ‘variable-
as-such’ like x̂x ¼ x̂x, Russell focused instead on a more general form p x

y where p could
be any proposition, and y could be any entity occurring within it.13 Rather than begin-
ning with the complex x̂x ¼ x̂x, containing this mysterious thing, the ‘variable-as-such’,

11 Russell had, as early as 1903, considered a broader notion of substitution in complexes written p x
y which stood for the

result of substituting entity x for y in p; where ymight be a particular entity in complex p; that is if p were the proposi-

tion that Socrates is bald, if we substitute Plato for Socrates, then we arrive at Plato is bald. However, problems were

encountered when the complexes in which the substitution were to be effected were denoting complexes, since it was

unclear whether the substitution should be effected in themeaning of these complexes or their denotations. Either way

had its problems (see, e.g. Russell 1994, pp. 308 – 9). The approach discussed here is more narrow; it deals only with

complexes containing the variable, and substitutions for the variable. Here it is obviously the meanings in which the

substitutions are taking place, as indicated by Russell’s suggestion that the combination contain the ‘variable-as-such,

x̂x —recall that the circumflex is used to speak about the meaning as opposed to denotation.

12 For discussion of Russell’s new theory of the variable after ‘On Denoting’, see Landini 1998, Ch. 3. However, Landini

and I disagree about the ontological status of variables prior to 1905 (in informal discussion).
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we begin with a perfectly respectable proposition like b=b; to get to another propo-
sition in which a different entity is put together with this same ‘mode of combination’
we consider the substitution ðb ¼ bÞ ab. Through a similar process, we can get any ar-
bitrary proposition of this form, i.e., any proposition we previously would have de-
scribed as a value of the same propositional function.

What, however, of the other way in which this approach seems at odds with the
new theory of denoting? That would seem to remain. Consider the two substitutions:
‘ðp � qÞ pq’, and ‘ðq � qÞ pq ’. These two expressions stand for the same proposition,
although they seem to differ in meaning somehow. Invoking the resources of his
new theory of descriptions, Russell was able to avoid this difficulty as well. Rather
than taking the results of such substitutions, and expressions of the form ‘p x

y’ as pri-
mitive; Russell chose instead of begin with a complex relation, written ‘p x

y !q’, which
means that q results from the substitution of x for y in p. Simpler constructions of
the form ‘p x

y’ are then treated as ‘incomplete symbols’ of the form, ‘ðLqÞðp x
y !qÞ’ which

would need to be treated in context using the mechanics of the theory of descriptions
(see Russell 1905, p. 7, Russell 1973, p. 169). The apparent differences in meaning be-
tween expressions with the same apparent denotation are explained away in the same
way as with ‘the author of Waverly’ and ‘the author of Ivanhoe’.

The basic idea of this new approach eschewing functions altogether was first
described, as one of a number of alternative approaches, in Russell’s paper ‘On some
difficulties in the theory of transfinite numbers and order types’, probably written in
late October and early November of 1905 and published the following year by the
London Mathematical Society. By December, this new ‘substitutional theory’, as it
has come to be called, was more fully developed as a logical system (see, e.g. Russell
1905). Russell continued to work on the substitutional theory, in various guises, for
the next two years. It is in many ways a natural outgrowth of his struggles to come to
terms with the nature of functions in 1903 – 1905.

The change must indeed have been a welcome one, because the mature theory
of substitution, unlike that from late 1904 and early 1905, provided a ready-made
solution to the paradox, because it has done away with functions as entities
altogether. In the late pre-‘On Denoting’ theory, although one arrived at the
values of functions through the notion of substitution, the functions themselves
were understood as specific kinds of complexes, and although those complexes
were not understood as constituents of their values in the typical cases; they could
still be constituents of some complexes and constitute arguments to other
functions or even to themselves. We take p as the ‘mode of combination’
q̂qð� q q

VarÞ, and ask whether the proposition that results when we substitute p for the
variable it contains, viz., p p

Var is true, we arrive at the same familiar contradiction. On
the new approach, however, there is no way to construct a constant proposition with
the same features. There are no functions; only constant propositions and the new
four-place relation. The work of functions is proxyed by what Russell calls a ‘matrix’;
a pair consisting of a proposition and an entity to-be-substituted-for in that proposi-
tion, but matrices are not themselves entities, but ‘logical fictions’, and are not them-
selves values of the variables of the logical system, and Russell’s contradiction is
avoided (see, e.g. Russell 1973, pp. 170 – 73).

13 This broader notion of substitution was not an entirely new idea, as discussed in note 11. The worries about denoting

complexes ceased to be a problem after ‘On Denoting’, so it was natural to return to this approach at this time. After

‘On Denoting’, propositions were the only type of complex he needed to allow.
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Of course, once Russell had started down a path in which functions were to be
treated as non-entities, function abstracts disappeared from his logical notation, and
the work he did anticipating the Lambda Calculus was abandoned. If, like Russell, we
want our logical notation to reflect the structure of that which we’re using it to
represent, then it is inappropriate to use some sort of abstraction notation—whether
that notation uses smooth-breathings, circumflexes or lambdas—to form names of
functions unless functions are genuine entities. To Russell’s mind, the notation,
‘x̂xð. . . x . . .Þ’ or ‘. . . x̂x . . .’. suggests a complex containing a variable-entity; after aban-
doning such entities in his metaphysics, he similarly abandoned the notation. After
December 1905, Russell’s logical manuscripts no longer contain function abstracts
as a part of what would seem to be the ‘official symbolism’.

This is not to say that something of Russell’s anticipation of Lambda Calculus-
esque functional abstraction did not survive into Russell’s substitutional theory (and
beyond). Earlier we discussed, for example the Lambda Calculus approach of treating
multi-place functions as functions onto other functions. Of course, in the
substitutional theory, there are no functions at all, so certainly this view cannot be
quite preserved. However, in the substitutional theory, multi-place functions are
proxyed through the notion of taking the result of one substitution and performing
another substitution within the result (for details, see Landini 1998, pp. 132 – 5),
which, I suppose, is as close as one could come to a substitutional-analogue of the
Lambda Calculus approach. Of course, the substitutional theory itself did not see the
light of day until after Russell’s death, so with the exception of the remnants of such
an approach that appear with the circumflexion notation in Principia, Church and
others more or less had to explore the notion of functional abstraction without
tutelage from Russell.

8. Conclusion

To sum up: in 1903, after he had done a close study of Frege’s logic and inspired by
Frege’s Wertverläufe notation, Russell hit upon a sort of logical system of functional
abstraction operating very much like modern Lambda Calculi. However, in Russell’s
mind, this style of logical calculus and the notation it invoked went hand in hand with
a certain understanding of the metaphysical structure of propositions and related
complexes. However, he was never able to fully work out all the problems as he saw it
with this metaphysical theory—not the least of which the persistence of the
contradiction involving propositional functions not true of themselves—and in late
1905 he abandoned both the logical notation and metaphysical theory in favour of
one that eschewed functions altogether.

Russell’s persistent occupation with metaphysics stands out in strong juxtaposi-
tion from the work of almost all technical logicians to follow. Not only is virtually all
of the recent work on the Lambda Calculus done completely independently of
metaphysical inquiry, much of it does not even attempt to maintain the original
intended interpretation of the abstracts as standing for functions in any straightfor-
ward sense. Even Church, the originator of the Lambda Calculus as we know it, who
was no stranger to philosophy, did not fret overly much about the underlying
metaphysics. Although, like Russell before him, he hoped to develop the system into a
type-free foundations for arithmetic, when he realized that the type-free Lambda
Calculus was formally flawed, rather that questioning the entire style of notation, he
opted instead for adding a theory of types to dodge the formal difficulties in his
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foundational work (as in Church 1940), and also worked on the type-free Lambda
Calculus as a system for treating functions independently from a system of logic (as in
Church 1941). The early Russell, himself usually credited as the originator of type-
theory, would have seen no value in a system invoking a system of types independently
of a metaphysical theory explaining why the system of types was necessary and
philosophically well-grounded. According to his own early metaphysical outlook,
‘whatever is, is one’, and there must therefore be a type that subsumes all entities (see,
e.g. Russell 1994, p. 51). Some functions must allow any entity, including themselves,
as argument (1994, p. 52), in violation of the sort of type-strictures imposed by
Church. One cannot imagine Church having much patience for this sort of argument.
However, that Russell refused to accept any theory until he found a theory that was
consistent with his metaphysical scruples, is, I think, a testament to his philosophical
integrity.14

Of course, Russell’s metaphysical views are not inviolate. Indeed, many of the
arguments that lead him to abandon function abstraction seem somewhat
idiosyncratic and could certainly be called into question. Yet there is certainly
something to be said for being wary of too easily positing functions as entities. I do not
think it is pure coincidence that the most common forms of logic and set theory in use
these days do not take functions as central or fundamental. For example, in most
contemporary set theories, functions are reduced to sets of Wiener-Kuratowski
ordered pairs. Indeed, contemporary Church-style Lambda Calculi seem almost
unique in taking functions as more primitive than sets, classes and predicates, etc. I do
not mean to suggest that no coherent metaphysical picture could be told to underwrite
this approach. But it might indeed be quite difficult. When Church does wax
philosophical, he seems more attracted to a Fregean metaphysics and semantic theory
than to Russellian doctrines. This may provide some help, but perhaps not as much as
one might think. Church himself has called Frege’s theory of the incompleteness of
functions ‘somewhat problematical’ (1951, p. 101), but it is this feature of functions
that Frege himself used to justify his ‘levels’-distinction and block the functions
version Russell’s paradox (Frege 1980, pp. 132 – 3). Does Church have any
justification for his types of functions, apart from providing a formal dodge to the
paradoxes? If not, as philosophically minded logicians, how seriously should we take
his Lambda Calculus?
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