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Abstract. According to the iterative conception of set, sets are formed in

stages. According to the purely iterative conception of set, sets are formed

by iterated application of a set-of operation. The cumulative hierarchy is a

mathematical realization of the iterative conception of set. A mathematical

realization of the purely iterative conception can be found in Peter Aczel’s

type-theoretic model of constructive set theory. Although Aczel’s work is of

obvious relevance to the philosophy of set theory, it is only rarely discussed in

the philosophical literature. Here Aczel’s model construction will be explained

in a way that presupposes no previous familiarity with the theories on which

it is based.

1. Introduction

According to the purely iterative conception of set, a set is anything formed by

iterated application of a set-of operation, starting from the empty set or Urelemente.

The adverb “purely” serves to distinguish this conception of set from the conception

according to which sets are formed in, or at, stages. This latter description is

a common gloss on the iterative conception of set (without the adverb), though

the conception it glosses might perhaps better be called the stage conception of

set. These are different conceptions of set, and it is useful to keep them apart

terminologically.

In the cumulative and similarly defined set-theoretical hierarchies we have a

mathematical realization of the stage conception of set. The aim of this article is to

draw the reader’s attention to, and explain, a mathematical realization of the purely

iterative conception, namely a model of set theory where sets are formed by iterated

application of a set-of operation. The model was constructed by Peter Aczel as part

of an interpretation of a set theory known as Constructive ZF, or CZF, inside Per

Martin-Löf’s constructive type theory (Aczel, 1978, 1982). To some readers, such an

interpretation might seem like a perfect case of explaining the obscure by the more

obscure. As I hope to demonstrate, the main idea behind Aczel’s model construction

can be explained without presupposing any prior familiarity with these, to the

reader perhaps obscure, formal systems. It is enough to be conversant with the

notion of function and to be open to a few novel bits of symbolism.

If the law of excluded middle is added to CZF, then classical ZF results. It follows

that if the law of excluded middle is added to constructive type theory, then Aczel’s

model interprets classical ZF. The model can likewise be made to interpret the set-

theoretical Axiom of Choice, namely if the so-called Extensional Axiom of Choice is

added to constructive type theory (Martin-Löf, 2006). As we shall see, also certain

large cardinal notions can be accounted for. Although the presentation below will

be constructivist in spirit, it should therefore also be of relevance to the classically

minded.
1
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Preliminary remarks on the two theories involved in Aczel’s interpretation are

given in Section 2. The contrast between the purely iterative and the stage concep-

tion of set will be further developed in Section 3. The rest of the article is dedicated

to Aczel’s model construction, starting in Section 4 with a general discussion of the

set-of operation.

In Aczel’s model, every set is formed by the application of a set-of operation to a

function enumerating sets “already formed” (this temporal language is metaphorical

and—as the formal definition of the model shows—disposable). The domains of

these functions are, in Aczel’s original definition, culled from constructive type

theory. It is, however, possible to carry out essentially the same construction using

only finite types as domains. The result, explained in Sections 5-6, is the universe of

hereditarily finite sets. From this construction it is a short conceptual step to Aczel’s

full model, which will be briefly described in Section 7. Expanding the domains

of the enumerating functions even further yields more encompassing models of set

theory. In Section 8, I shall attempt to give the reader a sense of how such an

expansion can be carried out while adhering to constructivist tenets.

Our presentation of Aczel’s model construction will be elementary, presupposing

no previous exposure to constructive type theory. Among the many philosophical

implications of the construction, our primary interest will be with those that con-

cern the iterative conception of set. Another philosophical implication, on which a

brief remark may be inserted here, concerns the relation between type theory and

set theory (for further discussion, see Klev, 2019a). In the light of Aczel’s result,

universes of sets appear as just some among the indefinitely many domains, or

types, of mathematical object that there are. Domains of sets might be especially

useful for certain metamathematical purposes, but they are not the only domains

of mathematical objects. A pluralist ontology underlies type theory. The natural

numbers, the integers, the rational numbers, the real numbers, the complex num-

bers, the Cartesian product of any of these with another, the space of functions

from one to another, etc., all constitute their own autonomous domain, not reduced

to elements in a universe of sets. By the same account, Aczel’s model construction

does not reduce the notion of set to the notion of type, in the way, say, the notions

of ordered pair and function are reduced to the notion of set in set theory. Rather,

it embeds sets into a richer mathematical ontology that also accommodates other

types of mathematical object.

2. Preliminaries

Both constructive type theory and constructive set theory grew out of attempts

to provide a foundation for constructive mathematics in the style of Bishop (1967).

They follow quite different methodologies, however. Constructive set theory is

meant to remain as close as possible to the formalism of classical axiomatic set

theory. The theory CZF, in particular, is written in the language of single-sorted

first-order predicate logic with identity and a constant, ∈, for the binary relation of

membership. Constructive type theory, by contrast, starts from scratch with its own

conception of mathematical ontology and mathematical language. It accepts the

Fregean function/argument analysis of logical grammar only to a limited extent,

namely in its account of propositions. The basic unit of expression is not the

proposition, but a larger structure called a judgement. The form of judgement



3

which we shall mainly be employing in this article is

a : τ

to be read as “a is an object of type τ”. A type is a sort, kind, or category of

object, hence a judgement of this form places a within its sort, kind or category. If

we assume that there is a type V of sets, then v : V says that v is a set. The set-

theoretical proposition u ∈ v, by contrast, expresses that the relation of membership

holds between the two sets u and v. (Since membership is defined only between

sets, the proposition u ∈ v presupposes the two judgements u : V and v : V .)

In the axioms of CZF, the most conspicuous difference with classical ZF is a

weakening of Separation and Power Set. A set-theoretical formula is said to be

bounded if all of its quantifiers occur as ∀x ∈ y or ∃x ∈ y, given the usual contextual

definition of these formula fragments. The classical Separation axiom of ZF is

replaced in CZF by Bounded Separation, meaning that only bounded formulae

may be used in separating a subset out of a given set. This restriction, as well as

that on Power Set (which we shall not explain), is motivated by the requirement

of predicativity. For instance, a definition of a subset of the natural numbers that

quantifies over all sets is impredicative, since the set to be defined itself belongs

to that range. A bounded formula, by contrast, quantifies only over the elements

of sets “already defined”. Aczel (1978) proved that, in spite of this weakening of

the axioms, it is enough to add the law of excluded middle to CZF to obtain ZF.

For more background on CZF and other constructive set theories, the reader might

consult Crosilla (2020).

Although the notion of axiom makes sense within constructive type theory, this

theory is more naturally regarded as entirely rules-based. Of special importance

are the introduction and elimination rules associated with type-forming operators.

(The terminology stems from Gentzen.) Suppose that A is a type formed by means

of the type-forming operator Φ. The introduction rule for Φ prescribes how an

object of type A is formed out of its parts. For instance, if A is a type of the

form B × C, then the introduction rule for × prescribes that an object of type

A has the form 〈b, c〉, where b is of type B and c is of type C. The first step in

Aczel’s model construction is the provision of an introduction rule for a type V.

Under the finely grained notion of identity native to the type V, it is not a type of

sets, but rather a type of well-founded trees. As we shall see, we obtain a universe

of sets by equipping V with relations of set equality and membership, yielding

a structure (V, .=,∈). The definitions of these relations rely on the possibility

of defining functions and predicates by induction on V. Principles of proof and

definition by induction are incorporated as the elimination rules associated with

the type-forming operators. For instance, the elimination rule for the type N of

natural numbers is simultaneously a principle of proof by induction and a principle

of definition by induction (or recursion) on N, and ditto for the elimination rule for

the type V.

The reader might balk at our apparently cavalier way in this article of postulating

types and objects. There is method in this postulation, grounded in Martin-Löf’s

meaning explanations for his type theory (Martin-Löf, 1982, 1984, 1993). One is

free to postulate a type or type former provided one gives the introduction rule, or

rules, for it. An introduction rule, such as the rules (HF-intro) and (V-intro) below,
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is a stipulation, but it is subject to the requirement that it serves to define the type

or types in question. The introduction rules for a type or type former make up

the clauses in an inductive definition, and one can make precise the requirements

that must be met for such a definition to succeed (Dybjer, 1994, 2000), just as one

can make precise the requirements that must be met for an explicit definition to

succeed (in particular, any vicious form of circularity must be avoided). Taking this

method to lie at the basis of mathematics brings with it a number of consequences

for the philosophy of mathematics. It lies far outside the scope of this article to

discuss these consequences. The reader is merely asked to grant, if only for the sake

of argument, that the method is a rational one, and in particular, that it is not an

instance of anything-goes postulationism.

3. The stage conception of set

The phrase “iterative conception of set” suggests a conception of set according

to which sets are formed by iteration of some kind. The iteration in question is

naturally spelled out as iterated set formation, which in turn may be spelled out

as iterated application of a set-of operation. Gödel described such a conception of

set, contrasting it to a class conception of set, already in 1947:

This concept of set, however, according to which a set is something

obtainable from the integers (or some other well-defined objects) by

iterated application of the operation “set of”, and not something

obtained by dividing the totality of all existing things into two

categories, has never led to any antinomy whatsoever. (Gödel, 1947,

p. 519)

A set relative to a domain D of “well-defined objects” is anything that can be

obtained from D by iterated application of the set-of operation. Unlike the naive

class-conception of set, this conception has never led to any contradiction.

As usually presented in the literature, the iterative conception of set does not in-

volve a set-of operation. A set-of operation features prominently in the stimulating

presentation of Forster (2008), but it remains there an informal notion, likened to a

wand that turns a collection of objects into the set of them. Standard presentations

of the iterative conception of set rather follow Shoenfield (1967, 1977) and Boolos

(1971, 1989) and emphasize the stage-wise formation of sets:1 sets are formed in,

or at, stages. At the initial stage, there are no sets. Passing from any stage, α,

to the next, α + 1, every collection of sets available at stage α that includes at

least one set formed at stage α is made into a set. Thus, at stage one, following

the initial stage, the empty set, and only the empty set, is formed. At stage two,

the singleton of the empty set, {∅}, is formed. At stage three, the sets {{∅}} and

{∅, {∅}} are formed, and so on. Also limit stages—stages, different from the initial

stage, with no immediately preceding stage—are postulated. The sets available at

a limit stage are all the sets formed before that stage.

A natural set-theoretic realization of this stage conception of set, as we might call

it, is the cumulative hierarchy of sets. Stages are identified with ordinals, and the

sets available at a stage themselves form a set, generated by means of the power-set

and the union operations. Writing Vα for the set of sets available at stage α, where

1Recent examples include Barton (2024, ch. 4), Incurvati (2020, ch. 2), Linnebo (2017, ch. 10).
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α is an ordinal, the cumulative hierarchy is defined by induction on the ordinals as

follows:

V0 = ∅ the empty set

Vα+1 = ℘(Vα) the power set of Vα
Vλ =

⋃
α<λ Vα the union over all the Vα’s for α < λ,

if λ is a limit ordinal

The set of sets formed at stage α+ 1 is Vα+1 − Vα, that is, the set of sets in Vα+1

that are not in Vα.

From the definition of the cumulative hierarchy it may appear that sets are

formed by iterated application of the power-set operation, taking unions at limit

stages. Each set Vα is, however, just a record of all the sets available at stage α, that

is, of all the sets formed at the stages up to and including stage α. In the definition

of the cumulative hierarchy, the power-set operation is not used for generating new

sets: it is an accumulator, not a generator. How the sets in Vα+1 − Vα are formed

in the first place, how they are generated from those in Vα, is not accounted for

by the definition of the cumulative hierarchy. This is so, mutatis mutandis, also in

similarly defined hierarchies. Gödel’s constructible hierarchy, for instance, is silent

on how the sets in Lα+1−Lα are formed. Although we can describe precisely what

these sets are, we cannot say, on the basis of the definition of the constructible

hierarchy, how the sets in Lα+1 − Lα are formed from those in Lα.

The sets in any Vα should thus not be thought as having been formed by the

iteration of the power-set and union operations. These operations generate the

sets Vα, but not, in general, every element of a Vα. Iteration as such, even, is not

essential for characterizing the sets Vα, as shown by Button (2021). He characterizes

the Vα’s in abstract set-theoretical terms that involve no reference to iteration.

More precisely, he offers a simple second-order theory in the language of set theory

whose models, up to isomorphism, are precisely the Vα’s.

Against this background, it seems to me useful to distinguish the stage concep-

tion of set described by Boolos, Shoenfield, and others from the purely iterative

conception of set described by Gödel in the quotation above. There might be a

common conception that unites them both. Under the purely iterative conception,

the transitive closure of a set is a well-founded tree. If stages are required merely

to be well-founded, hence if they may fail to be linearly ordered, then the tree that

is the transitive closure of a set, v, may be identified with the stage at which v is

formed. Each set, v, is formed at a unique stage, identified with the well-founded

tree that is the transitive closure of v. A suitably general stage conception, such as

Barton’s weak iterative conception (Barton, 2024, p. 26), may therefore be taken

to comprehend the purely iterative conception. To conceive of sets primarily as

something formed in stages is, however, quite different from conceiving of sets as

something formed by iteration of a set-of operation. A philosopher reflecting on the

foundations of set theory ought therefore to keep the two conceptions apart. A good

aid to that end are different mathematical realizations of the two conceptions, such

as the cumulative hierarchy and Aczel’s model, respectively. I will now proceed to

explain the latter, starting from some general reflections on the set-of operation.
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4. The set-of operation

The set-of operation takes certain objects and forms the set of them. Such an

operation is often appealed to in informal descriptions of the notion of set, as for

instance in the classical definitions (or “definitions”) of Cantor (1895) or Dedekind

(1888). The ubiquitous curly-braces notation is naturally understood as signifying

a set-of operation: {a, b, c, . . .} is the set of a, b, c, . . ., and {x | P (x)} is the set of x’s

such that P (x) is true. Yet a set-of operation is not a primitive notion of axiomatic

set theory, which in the codification of Zermelo (1908) takes for granted, besides

the notion of set itself, only the membership relation as a non-logical primitive.

Attempts to base a rigorous treatment of set theory on a set-of operation does

indeed face serious challenges. Being an operation, it must be determined what

the set-of operation operates on, what its admissible operands are. According to

naive set theory, the set-of operation applies to a propositional function P (x) over

some underlying domain D and forms the set {x | P (x)}. Since no restrictions are

placed on the function P (x), and sets are themselves regarded as objects belonging

to the domain D, this principle leads, in by now familiar ways, to contradiction

(though see Aczel, 1980). According to an alternative, combinatorial view, the

set-of operation applies to a list of objects a, b, c, . . . to form the set {a, b, c, . . .},
an object different from each of its members a, b, c, . . . This approach may avoid

inconsistency, but does not obviously deliver infinite sets, since the notion of a list

would appear to be finitary.2

Aczel, in his model construction, was able to overcome these difficulties by letting

the set-of operation apply to functions with codomain the universe of sets. Since

his aim was to give a type-theoretic interpretation of set theory, he could take type

theory for granted, meaning that he had access, independently of set theory, to the

notions of function and the domain and codomain of a function. (Recall that the

domain of a function is the type of its arguments, whereas the codomain is the type

of its values.) Let f be a function with domain A and codomain V , the universe

of sets. The function may be thought of as enumerating sets f(a) already formed.

Aczel’s set-of operation lets us form {f(a) | a : A}, the set of f(a)’s as a ranges

over A.

What sets can be formed in this way depends of course on what domains are

available for the enumerating functions and what means are available for defining

functions on such domains. In constructive type theory, the domains available are

required to be inductively generated in some way, meaning, intuitively, that each

object of such a domain is systematically built up from its parts. Functions may

be defined either explicitly or by induction on the build-up of the objects of the

domain (think of definition by recursion on the natural numbers as a paradigmatic

example). All of this may seem restrictive, but it suffices for constructing a model

of CZF, and indeed also of proof-theoretically stronger set theories. The Axiom of

Infinity, in particular, will be validated in such a model, as we shall see in Section 7.

2Such was the conclusion of Vopěnka (1979, p. 17), who went on to develop a theory of sets
based on this finitist conception. Linnebo (2010, 2013) applies a combinatorial set-of operation
to pluralities rather than lists and is able on that basis to validate classical ZF set theory.
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5. The type HF

5.1. Finite type theory. In explaining Aczel’s model construction, I shall, for

pedagogical reasons, begin by restricting myself to finite sets. Only finite types will

be employed as domains of the enumerating functions. The resulting simpler model

construction requires hardly any type theory at all, yet it incorporates all the main

ideas of Aczel’s original construction.

The first step is the definition of a type HF, on which, in a second step, relations

of extensional equality and membership will be defined, giving rise to a structure

(HF, .=,∈) that is naturally regarded as the universe of hereditarily finite sets.

For the definition of HF we shall need one ground type of each finite cardinality.

To achieve this in a systematic way, we postulate an empty type, ⊥, and the

following rule of type formation: whenever A is a type, then so is S(A), the successor

type of A.3 The types we have available are therefore

⊥, S(⊥), S2(⊥), . . . , Sn(⊥), . . .

The type S(A) is stipulated to contain a copy of each object of A together with

one additional object, whence its cardinality is one greater than that of A. Since

there are zero objects of type ⊥, and the cardinality increases by one with each

application of S, there are precisely n objects of type Sn(⊥). We shall use the

suggestive notation n for Sn(⊥), and we shall write

0n, . . . n− 1n

for the n objects of type n.

These are the ground types. Besides the ground types, we shall also need function

types. More precisely, we shall need unary first-order functions, i.e., functions whose

domain and codomain are ground types. We stipulate that whenever A and B are

ground types, then (A)B is a type, namely the type of functions from A to B. A

judgement of the form

f : (A)B

therefore means that f is a function from A to B. The reader is referred to (Martin-

Löf, 1993, Lecture 4) for a detailed explanation of functions and function types.

Here it suffices to say that a function f from A to B can be applied to every object

of type A, and when applied to a of type A, it yields an object f(a) of type B.

Since the type n is given by a list of n distinct objects, we may define a function

f on n by specifying the value of f(a) for each a of type n. We call this definition

by cases. It is what definition by induction on the build-up of objects becomes over

a finite domain. A function f may also be defined in terms of already introduced

functions by means of a single equation, f(x) ≡ t[x]. This is called explicit defi-

nition. A degenerate case of definition by cases is the definition, for any ground

type B, of a function RB : (⊥)B. This is an “empty function” with domain ⊥ and

codomain B. The existence, for every type B, of the function RB follows from the

existence of an empty type, ⊥, and the permission to define functions by cases.

Let us take stock. We have the ground types n, and we have the function types

(A)B, where A and B are ground types. For any type B, we are allowed to define

3This method of generating the finite types is due to Martin-Löf; see (Nordström et al., 1990,
p. 93).
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a function f of type (n)B either explicitly or by cases. In particular, we have, for

every type B, an “empty function” RB : (⊥)B.

5.2. The type HF. These are all the ingredients required for the definition of a

new ground type, HF. For every finite type, n, and function, f , from n into HF,

we may form a new object, set(f), which under a set-theoretical reading is to be

understood as the set of objects enumerated by f . This is to be the principle

generating the objects of type HF. It may be compared to the principle saying that

if b is of type B and c is of type C, then we may form a new object 〈b, c〉 of type

B×C. Both principles are, in effect, inductive definitions, and indeed, fundamental

inductive definitions, in the terminology of Kleene (1952, § 53).

The task now is to formulate the principle generating the objects of type HF in

one or more rules. Following established type-theoretical terminology, any such rule

is called an introduction rule for HF. A first attempt is the following formulation,

where n is a parameter:
f : (n)HF
set(f) : HF

This is, however, not a single rule, but a rule scheme. There are infinitely many

rules here, one for each natural number, n. We can unify all of these rules into a

single rule by introducing the type F of finite types. A judgement of the form

A : F

is thus to mean that A is some n. (The type F is also an inductively generated type

of types—it is a universe in the terminology of Section 8.) Employing this form of

judgement, we reach the official formulation of the introduction rule defining the

type HF:

(HF-intro)
A : F f : (A)HF

set(A, f) : HF
Provided A is some n and f is a function from A into HF, then set(A, f) is an

object of type HF. The domain A of the function f is included as an argument to

the set-function mainly for the purposes of bookkeeping. We could leave it out and

write simply set(f), as we already did above and shall do at times below.

The rule (HF-intro) makes precise the metaphor of a lasso collecting sets together

and a wand forming the set of those sets (Forster, 2008, p. 98). Any function

f : (A)HF is a lasso comprehending a collection of sets, namely all the f(a)’s as a

ranges over A. Letting the wand work its magic, we obtain set(A, f), a novel set.

It is not enough merely to lasso the sets f(a) together: an additional step is needed

that turns this “preset” (in Forster’s happy terminology) into a set.4

5.3. Populating HF. It may not be immediately clear how the generation of ob-

jects of type HF gets off the ground, given that “HF” occurs in the premiss of

(HF-intro). In order to apply this rule, we need a function from some n into HF,

but, it would seem, we cannot define a function by cases on n unless we already

have some objects of type HF to use as values. If n is greater than zero, this is cer-

tainly so, but if n is zero, that is, n is the type ⊥, then no objects of HF need to be

4Forster imagines having also a second wand that turns a preset into the complement of the corre-
sponding set: in addition to set(A, f), we have coset(A, f) with precisely the same introduction

rule. The intuition that these sets are complements of each other needs to be captured by the
definitions of extensional equality and elementhood.
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known, since there is the “empty function” RHF : (⊥)HF. The following inference

therefore accords with the rule (HF-intro):

⊥ : F RHF : (⊥)HF
set(⊥, RHF) : HF

Since RHF enumerates no objects of HF, we may regard set(⊥, RHF) as the empty

set and make the following definition:

∅ ≡ set(⊥, RHF)

This way of introducing the empty set is quite similar to the way of the stage con-

ception of set. We have obtained the empty set from the empty function, whereas

in the stage conception, it is obtained, at stage one, from the empty collection. No

sets are available at the initial stage, so only the empty collection can be used in

set formation. (We are assuming here that all sets are pure.)

If this account of the empty set seems circular in its reliance on the existence of

an empty domain, ⊥, constructive type theory allows for an alternative approach:

stipulate a second introduction rule,

(HF-intro2) ∅ : HF

The empty set is thereby introduced explicitly as a base element of the inductively

generated type HF, just as 0 is the base element of the inductively generated type

N of natural numbers. Proceeding in this way, the empty type, ⊥, could be left

out of F . The empty type is, however, a necessary component of Aczel’s model (it

is used in the validation of Bounded Separation), hence we have included it also

in F . Once the type ⊥ is available, there is, as we have just seen, no need for an

additional introduction rule stipulating the existence of the empty set.

Having introduced ∅ into HF, we can go on to introduce further objects. For

instance, if f : (1)HF is defined by f(01) ≡ ∅, then set(1, f) is the singleton {∅},
and if g : (2)HF is defined by the two equations

g(02) ≡ ∅
g(12) ≡ {∅}

then set(2, g) is the set {∅, {∅}}. More generally, given already constructed objects,

a1, . . . , an, of type HF, we can define a function h : (n)HF enumerating these and

thence form set(n, h), which is the set {a1, . . . , an}.
Urelemente may be included as well. They will have to come from some type, A,

which we include into HF by copying: an object a of type A will be copied as the

Urelement ur(a). In addition to (HF-intro) we thus have the following introduction

rule for HF:

(HF-introur)
a : A

ur(a) : HF
Urelemente defined in this way may be in the range of an enumerating function f ,

hence, intuitively, be members of set(f)—“intuitively”, since we have yet to define

membership.

6. Turning HF into a universe of sets

6.1. Strict identity. The type HF, just as any other type, being a type of objects,

must come equipped with a notion of identity. We cannot speak of objects without
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assuming some notion of identity, as Quine (1958) famously remarked. Type theory

adds the thesis that what it means for objects of one type to be identical may not

be the same as what it means for objects of another type to be identical: different

types may be associated with different criteria of identity. For a type τ , and objects

a, a′ of type τ , let us write

a = a′ : τ

to mean that a and a′ are identical according to the criterion of identity for τ . Fol-

lowing Sundholm (1999), let us call criterial identity the notion of identity captured

by the criterion of identity for a type.

In constructive type theory, criterial identity is strict. It is sometimes called

intensional, or definitional, identity, though what that means more precisely need

not be discussed here (see Klev, 2019b, 2022). Let us merely note that the following

equivalence holds:

set(A, f) = set(B, g) : HF iff A = B : HF and f = g : (A)HF

From this it follows that criterial identity on HF is not the notion of extensional

equality that we expect to hold in a universe of sets. To see this, consider, for

instance, the following two constant functions:

k1 : (1)HF k2 : (2)HF
k1(x) ≡ ∅ k2(x) ≡ ∅

Since k1 and k2 have different domains, they are different functions. The set of

objects enumerated by k1 is, however, the same as the set of objects enumerated

by k2, namely {∅}. For another example, consider the two functions i, j of type

(2)HF defined as follows:

i(02) ≡ ∅ j(02) ≡ set(k1)

i(12) ≡ set(k1) j(12) ≡ ∅

These are different functions, but they have the same range, indeed the set of

objects enumerated by both is {∅, {∅}}.
Under the set-theoretical interpretation that we are aiming at, each function f

into HF may be regarded as a way of collecting objects in HF. Different ways of

collecting may yield what is, intuitively, the same set. Among the f(a)’s there might

be repetitions, and the f(a)’s come in a certain order, but neither repetition nor

order matters to set identity. A further complication is illustrated by the functions

F and G of type (2)HF defined as follows:

F (02) ≡ ∅ G(02) ≡ ∅
F (12) ≡ set(k1) G(12) ≡ set(k2)

The values of F (12) and G(12) are not identical as objects of HF, but they are

extensionally equal—they are both the set {∅}. Extensional equality must be de-

fined such that repetition and order are neutralized and such that, when comparing

set(A, f) and set(B, g) for extensional equality, one must be allowed to compare

the f(a)’s with the g(b)’s for extensional equality.

Before moving on to the definition of extensional equality, let us consider the

type HF as it is, equipped with strict identity. The objects of HF are not sets,

but they may usefully be regarded as trees. Seen as growing downwards, set(A, f)
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is the tree whose immediate subtrees are all the f(a)’s as a ranges over A. For

instance, the functions RHF, k1, and k2 give rise to the following trees:

set(RHF) set(k1) set(k2)

The tree set(k2) has two immediate subtrees, k2(02) and k2(12), both of which are

equal to the tree set(RHF), consisting of a single node. The functions F and G give

rise to the following trees:

set(F ) set(G)

The tree set(G) has two immediate subtrees: G(02), which is a single node, and

G(12), which is the tree set(k2).

6.2. Extensional equality. The Axiom of Extensionality may be glossed as saying

that sets u and v are the same if, and only if, they have the same members. What

does it mean for u and v to have the same members? A careful answer, taking

into account that sets may be given to us in different ways, is the following: each

member x of u is the same as some member y of v, and each member y of v is the

same as some member x of u. If x and y are themselves sets, then what it means

for them to be identical is again determined by the Axiom of Extensionality. We

continue checking for identity until we reach either the empty set or Urelemente.

Although we have not yet defined the membership relation, a variant of the

algorithm just described is available that proceeds along the relation of immediate

predecession.5 The immediate predecessors of set(A, f) are all the f(a)’s as a

ranges over A. In the intuitive curly-braces notation, the immediate predecessors

of {f(a) | a : A} are all the f(a)’s as a ranges over A. Any such f(a), being an

object of type HF, may be assumed to be of the form set(A′, f ′), where A′ is of

type F and f ′ is a function of type (A′)HF. Any of its immediate predecessors

may, in turn, be assumed to have the form set(A′′, f ′′), where A′′ is of type F
and f ′′ is a function of type (A′′)HF. Consider the recursive procedure, starting

with set(A, f), of continuously choosing an immediate predecessor. However the

procedure is executed, we obtain a sequence of objects of the form set(B, g) that

form a branch in the tree set(A, f). It is clear from how the type HF has been

explained, namely as inductively generated by the rule (HF-intro), that this branch

5In the type V, to be defined below, comparing objects for extensional equality is no longer an
algorithm in the usual sense of a finite procedure. Firstly, objects in V may be infinitary. Secondly,
it is in general not decidable whether a given object of V is extensionally equal to the empty set,
defined as set(RV): owing to how V is defined, such a decision procedure would yield a decision
procedure for classical first-order logic.
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will be finite, since the procedure of choosing immediate predecessors will eventually

reach ∅.6

Let us write u ≺ v to mean that u is an immediate predecessor of v. As we

have just seen, this is a well-founded relation, hence we may define predicates

and relations by induction over it. Extensional equality, written
.
=, is defined by

induction on the relation of immediate predecession as follows:

u
.
= v iff for each x ≺ u there is y ≺ v such that x

.
= y, and

for each y ≺ v there is x ≺ u such that x
.
= y.

In prose: u and v are extensionally equal if, and only if, each immediate predecessor

of u can be matched with an extensionally equal immediate predecessor of v, and

vice versa. Assuming that x
.
= y has been defined for all immediate predecessors x

of u and y of v, the proposition u
.
= v is thus also defined. (Technically, this is a

double induction, since we are appealing to the immediate predecessors of both u

and v.)

This definition turns out to provide precisely what we want. Repetition and order

are neutralized. Moreover, owing to the inductive nature of the definition, we are

allowed, when comparing u with v for extensional equality, to assume that x
.
= y has

been defined for all immediate predecessors x of u and y of v. Recalling the various

functions defined above, the reader can verify that the following propositions are

all true:

set(k1)
.
= set(k2)

set(i)
.
= set(j)

set(F )
.
= set(G)

It can also be seen that extensional equality, thus defined, is an equivalence relation

on HF. In particular, ∅ .= ∅ is true because ∅ has no immediate predecessors.

The definition of extensional equality is perhaps the most subtle part of Aczel’s

model construction. Our formulation above captures the main idea of Aczel’s defi-

nition, but it is not quite his formulation of it. Aczel had to phrase the definition

in the language of constructive type theory, and he had to do so in a way that the

axioms of CZF (Bounded Separation, in particular) can be validated. In Aczel’s

formulation, the induction proceeds, not along the defined relation of immediate

predecession, but rather along the build-up of objects. As already noted above, a

principle of definition by induction on the build-up of the objects of a type is part

and parcel of constructive type theory, given by the elimination rule for the type

in question.

Since Urelemente have no predecessors, applying the definition of extensional

equality above yields ur(a)
.
= ur(a′) for every a and a′ in A. To avoid this outcome,

we must add a base case to the definition that takes care of Urelemente. All that

is needed for this is an equivalence relation, ρ, on the type A from which the

Urelemente are taken. The base case then has the following form:

ur(a)
.
= ur(a′) iff ρ(a, a′)

6That any inductively defined domain D has a well-founded structure, and in particular, that
functions may be defined by induction on D, is a fundamental assumption of constructive type

theory. See, for instance, how the rules of N-elimination and W-elimination are justified by Martin-
Löf (1984, pp. 71–72, 81–82).
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The relation ρ may be, but need not be, the relation of identity on A.

The type HF is turned into a universe of sets by equipping it with extensional

equality, yielding the domain (HF, .=). Objects in this domain are not individu-

ated according to the strict criterial identity on HF, but rather according to the

coarser relation of extensional equality. Extensional equality is, of course, just one

of indefinitely many equivalence relations definable on HF. Gylterud (2020) defined

an equivalence relation, ∼, that behaves similarly to extensional equality except it

does not neutralize repetitions of the f(a)’s. The domain (HF,∼) is therefore the

domain of hereditarily finite multisets, i.e., sets in which one and the same element

(itself a multiset) may have more than one occurrence.

Mathematics is full of similar examples, where a domain is, as it were, trans-

formed by equipping it with a novel equivalence relation that is to serve as identity.

We are taught to operate with rational numbers given in the form of fractions, and

we learn that m
n and k·m

k·n , whenever k and n are non-zero, are the same rational

number—the same rational number, but not the same pair of integers, although a

fraction, on the face of it, is just a pair of integers, (m,n), where n is non-zero.

The domain of rational numbers is obtained by equipping the domain of such pairs

with a novel relation of equality to serve as identity. The domain of real numbers,

likewise, may be obtained by equipping the domain of Cauchy sequences of fractions

with the relation of co-convergence to serve as identity.

6.3. Membership. It remains to define the membership relation. That u is a

member of v means that u is extensionally equal to an immediate predecessor of v:

u ∈ v iff there is x ≺ v such that u
.
= x

It is then straightforward to verify the following implications:

u ∈ v & v
.
= w =⇒ u ∈ w

u ∈ v & u
.
= w =⇒ w ∈ v

Equality and membership thus interact as one would expect. This completes the

definition of the structure (HF, .=,∈).

7. Expanding to V

The type V and the structure (V, .=,∈) that Aczel showed to be a model of

CZF are defined precisely as HF and (HF, .=,∈) have been defined with the sole

difference that more types are allowed as domains for the enumerating functions. In

particular, there is an infinite type, N, of natural numbers, and the types available

are closed under type-forming operators more powerful than the successor operator,

S, used in the definition of the finite types F . Just as F , the type U , used in the

definition of V, is inductively generated. Explaining in detail every step of this

inductive definition is beyond the scope of this article—for that, the reader should

consult an introduction to constructive type theory, such as Martin-Löf (1984) or

Nordström et al. (1990). We shall make do with the following informal description.

The type U contains, firstly, the following types:

⊥ empty type

1 unit type (type of cardinality one)

N type of natural numbers



14 ANSTEN KLEV

Secondly, it is closed under the following type-forming operations:

A+B disjoint union

Π(A,C) generalized Cartesian product

Σ(A,C) generalized disjoint union

In this list, A and B are types, and C is a function from A into U . For example, by

induction on the natural numbers, N, we can for any type B in U , define a function

C such that

C(n) ≡
n times︷ ︸︸ ︷

B +B + · · ·+B,

the n-fold disjoint union of the type B with itself.

Every type in U is a ground type. As before, we also postulate the function type

(A)B whenever A and B are ground types. A function of type (A)B may be defined

either explicitly or by induction. Each type in U is inductively generated, hence it

makes sense to define functions on such a type, A, by induction on the build-up of

the objects of type A. On the type N of natural numbers this is just the method

of recursive definition.

The type V is defined by the following rule:

(V-intro)
A : U f : (A)V

set(A, f) : V
An object of type V may be regarded as a labelled tree. Labels on the nodes are

needed in order to ensure that the trees are individuated according to the strict

notion of identity on V. (It can, for instance, be seen that, in V, one must distinguish

different single-noded trees, since there are different empty types in U , such as ⊥
and ⊥ + ⊥.) Just as we can see from the definition of HF that an object of type

HF is a well-founded tree, meaning that no branch is infinite, so we can see from

the definition of V that the trees in V are also well-founded. Unlike the trees in

HF, however, a tree in V may be infinite, since a node may have infinitely many

immediate subtrees (infinitely many children, in a widespread anthropomorphic

terminology). An example will given below.

Extensional equality,
.
=, and membership, ∈, on V are defined precisely as they

were defined on HF, and our discussion above of HF and (HF, .=,∈) applies, mutatis

mutandis, to V and (V, .=,∈). The additional structure in U , however, makes

possible the validation of all of CZF. This validation makes use of all the various

type-forming operations available in U . It moreover makes use of the so-called

propositions-as-types principle, according to which the notions of proposition and

inductively generated type are identified.7 Going into the details of that validation

lies outside the scope of this article. We shall, however, see that the Axiom of

Infinity is validated in (V, .=,∈).

On both HF and V one can define a function that in standard set-theoretical

notation may be written as follows:

s(x) ≡ “x ∪ {x}”

7Gambino and Aczel (2006) construct a type-theoretic model of CZF that does not rely on the
propositions-as-types principle. They instead add a system of predicate logic to an underlying
dependent type theory.
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This is a function, not only on HF and V, but also on the relational structures

(HF, .=) and (V, .=), since it respects extensional equality:

x
.
= y =⇒ s(x)

.
= s(y)

It is, moreover, an injective but non-surjective function on these structures:

s(x)
.
= s(y) =⇒ x

.
= y

¬(s(x)
.
= ∅)

It follows that (HF, .=) and (V, .=) are Dedekind infinite: on both domains an

injective, but non-surjective, function may be defined.

In the structure (V, .=,∈), something more holds: it contains an infinite set.

Define a function N : (N)V by induction as follows:

N(0) ≡ ∅
N(n′) ≡ s(N(n))

≡ N(n) ∪ {N(n)}

The sets enumerated by N are ∅, {∅}, {∅, {∅}}, etc., in other words, the Von

Neumann ordinals. Since N is of type U , we may use (V-intro) to tie all of these

ordinals together into a single set, set(N), which we shall call ω,

ω : V

This is an infinite set, witnessing that the Axiom of Infinity is true in the structure

(V, .=,∈).

Although ω, being an infinite set of sets, in a sense encompasses infinitely many

applications of the set-operation, the proof of the judgement ω : V is finite. We do

not need to prove all of the infinitely many judgements

∅ : V, {∅} : V, {∅, {∅}} : V, . . .

before we can pass on to assert ω : V. In order to apply the rule (V-intro), it is

enough to have available the function N . The domain of this function is infinite,

but its definition is finite, namely it is defined by recursion on N.

8. Expanding further

The presence of the type N in the type of types U allows the formation of an

infinite set in V. A question that naturally arises is whether an even more expansive

type V+ may be defined after the pattern of HF and V that accommodates higher

infinities, in particular infinities that in classical set theory would go under the title

of large cardinals. A positive answer to the question is forthcoming if we replace U
in the definition of V by a more expansive type of types.

In type-theoretical terminology, a type of types is called a universe. The notion

was introduced by Martin-Löf (1975) after an earlier version of his type theory

that had an axiom to the effect that there is a type of all types was shown to

be inconsistent. Although a universe is a type of types, it is not the type of all

types. Rather, a universe is a type inductively generated from certain base types

by means of certain type-forming operations. The type U , for instance, has as base

types ⊥, 1, and N, and it is generated by the operators of disjoint union, generalized

Cartesian product and generalized disjoint union. A universe is meant to capture

the definition of types up to a certain stage: the universe reflects the definition of
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types so far. It is therefore stipulated that a universe U is never itself an object

of type U . A universe U may, however, belong to another, more encompassing,

universe U ′. Already Martin-Löf considered an infinite sequence, U0, U1, U2, . . ., of

universes, forming a cumulative hierarchy of types with each universe Un contained

in the next Un+1.

Martin-Löf described this sequence of universes in the metalanguage of type

theory. As a way of internalizing this sequence in the language of type theory

itself, Palmgren (1998) introduced a novel type-former called a universe operator,

u, which when applied to a universe produces the next universe, in the sense that

Un+1 is the next universe after Un. A universe that is closed under the universe

operator u Palmgren called a superuniverse. Being a type-theoretical operator, u is

associated with certain rules that determine its behaviour. A suitable generalization

of these rules yields rules for a superuniverse operator, su, which when applied to a

universe produces the next superuniverse. A supersuperuniverse is a universe that

is closed under the superuniverse operator.

The method used to construct the definition of su from that of u may now be

iterated to yield a sequence u0,u1,u2, . . . of ever more general universe operators.

It thus makes sense to speak of “the next universe-operator”, just as the sequence

of universes U0, U1, U2, . . . gave rise to the idea of the next universe. And just

as the universe operator internalizes the passage from Un to Un+1, one might ask

whether also the passage from un to un+1 may be internalized in the language of

constructive type theory.

Rathjen et al. (1998) gave rules for a series of operators that together achieve this

and introduced a universeM closed under the operators in question. The universe

operators inM are introduced through a bootstrap process, where every new such

operator introduced allows the definition of further ones. More specifically, suppose

A is a type inM and f is a function from A into universe operators. For instance,

A might be N, and f might be a function enumerating the universe operators

u0,u1,u2, . . . mentioned above. A new universe operator, univ(f), is introduced

and stipulated to have the property that a universe formed by means of it is closed

under all the universe operators f(a), as a ranges over A.8 The universe M is

closed under all universe operators univ(f) definable in this way.

Let V+ be the type obtained by replacing the U in (V-intro) with M, and let

(V+,
.
=,∈) be the set-theoretical structure obtained by equipping V+ with exten-

sional equality and membership. Rathjen et al. (1998) showed that this structure

is a model, not only of CZF, but also of an axiom that classically entails the exis-

tence of inaccessible cardinals of all transfinite orders (all the so-called πν-numbers

defined by Mahlo 1911).
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