
      

 

 

 

 

 

 

Model Theory and Contingent Existence  
Boris Kment 

 

Timothy Williamson’s predictably impressive book Modal Logic as Metaphysics (MLM) 

contains an extended defense of a thesis he calls “necessitism”: it is necessary that 

everything exists necessarily. I will focus on just one of his many interesting and thought-

provoking arguments: his attempt to show that necessitists are in a better position than their 

“contingentist” opponents to explain the evident utility and success of model-theoretic 

semantics for modal first-order logic (MFOL). After a brief sketch of the necessitism 

dispute (section 1) and of Williamson’s arguments (section 2), I will offer a contingentist 

interpretation of the model-theoretic framework (section 3) that I take to provide effective 

replies to Williamson’s reasoning (section 4). 

 

1.   Necessitism and Contingentism  

Modal logic in the sense that interests Williamson is a branch of modal metaphysics that 

studies the “sufficiently general truths” about metaphysical modality (92). To characterize 

the relevant standard of generality, Williamson introduces the notion of metaphysical 

universality (92–93). To understand this concept, note that the non-logical constants of the 

language of MFOL (with identity) have no fixed meanings—it hasn’t been settled which 

properties are expressed by the predicates other than =, or which individuals are picked out 

by the individual constants. A formula A in the language of MFOL is metaphysically 

universal iff A’s universal closure (the sentence obtained from A by prefixing universal 

quantifiers to bind all free variables) is true on every way of settling the meanings to the 
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non-logical constants.1 For example, ┌◊Fx ∨ ◊~Fx┐ is metaphysically universal, since 
┌
∀x (◊Fx ∨ ◊~Fx)┐ is true no matter which property we take F to express. A system of 

MFOL is correct iff its theorems are just the metaphysically universal formulas of the 

language of MFOL (95). Necessitism can be stated in the language of MFOL by the 

formula □∀x □∃y x = y. Since this is a closed sentence containing no non-logical constants, 

it is metaphysically universal (and consequently a theorem of the correct MFOL) iff it is 

true. Necessitism can therefore be viewed as a thesis about which MFOL is correct. 

     One point of contention between necessitists and contingentists is the validity of the 

schemata known as the “Barcan Formula” and “Converse Barcan Formula” respectively. 

Their unnecessitated variants run as follows: 

BF  ◊∃x A → ∃x ◊A    

CBF ∃x ◊A → ◊∃x A 

Contingentists will almost invariably reject both schemata. Contrary to BF, they might hold 

that there could have been something that was Wittgenstein’s child even though there is 

(actually) nothing that could have been Wittgenstein’s child. And contrary to CBF, they 

will likely say that something could have failed to exist but that there couldn’t have been 

something that fails to exist. Necessitists will accept both schemata.  

 

2.   Model Theory    

The vocabulary of the language of MFOL consists of a countable infinity of i-place 

predicates F1
i, F2

i, … for every natural number i, a countable infinity of individual constants 

c1, c2, …, a countable infinity of individual variables x, y, …, quantifiers, sentence 

connectives, modal operators, the identity predicate, and parentheses. An (inhabited) model 

structure M for MFOL is a mathematical structure <WM, RM, w0
M, DM>. WM is informally 

understood as a set of “worlds” and RM as a dyadic relation of “relative possibility” or 

“accessibility” between members of WM. w0
M is a member of WM understood as “the actual 

world.” DM is the “domain function” that maps each world w to a set (understood as 

 
1 This isn’t quite Williamson’s official definition of metaphysical universality (92–93) but it’s equivalent to 
it. 
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containing the individuals that exist at w). We obtain a (pointed) model on a model structure 

by adding an “interpretation function” VM. VM assigns to every individual constant an object 

in ⋃u∈WM DM(u), and to every non-logical i-place predicate Fj
i a function mapping each 

world w to a subset of (DM(w))i (understood as the extension of Fj
i at w). (I will simplify by 

dropping the superscript “M” from now on, except when it is needed to avoid confusion.) 

Formulas are evaluated as true or false in a model M, at a world w, on an assignment a (of 

objects in ⋃u∈W D(u) to variables). It’s customary to write “M, w, a ⊧ A” for “A is true in 

M at w on a.” A formula A is true in a model M simpliciter (“M ⊧ A,” for short) iff, for 

every assignment a: M, w0, a ⊧ A. (If A is true in model M, I will say that M “validates” 

A.) A is valid on a model structure iff A is true in every model on that model structure. 

     A model is an abstract mathematical structure that needs to have no special connection 

to the modal realm—the worlds of a model and the individuals in their domains can be 

absolutely anything (apples and oranges, for example). To explain how model-theoretical 

reasoning can nevertheless establish metaphysical conclusions about modality, we need to 

give an account of the connection between model theory and the subject matter of modal 

discourse. On Williamson’s approach, model theory connects object-language formulas to 

a range of structures (the model structures) that include the part of reality (the “intended 

model structure”) that is the subject matter of modal discourse. (As Williamson notes (145, 

236–40), this idea needs some qualification to accommodate the cardinality constraints 

arising from the set-theoretic nature of models.) In the intended model structure 

<W, R, w0, D>, W is “the set of genuine worlds,” R the relation of “genuine relative 

possibility,” and w0 “the genuine actual world” (95). The intended model structure 

validates all and only the metaphysically universal formulas. MLM gives an account of 

which model structure is intended (139–47).   

     Williamson argues that contingentists cannot connect model theory to modal 

metaphysics by the same strategy, since on the definition of validity outlined above,  

(1) Any model structure (and any model) that validates all metaphysically universal 

formulas also validates BF. (134–5) 
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Since contingentists reject BF, they are forced to deny that any model structure validates 

just the metaphysically universal formulas, and consequently that there is an intended 

model structure.  

     Although contingentists cannot describe a specific a model structure as the subject 

matter of modal discourse, they can try to single out one or more model structures or 

models as particularly faithful representations of that subject matter. They can distinguish 

the components of a model structure that are called “worlds” (the members of W) from the 

genuine possible worlds that modal discourse is about—the “Possible Worlds” 

(capitalized), as I will call them. Possible Worlds are complex states of affairs or classes 

of propositions or something like that. By contrast, the worlds of a model structure are 

merely part of the apparatus used to represent the realm of Worlds. Williamson claims that 

such a purely representational connection between the models and modal reality would be 

“too indirect to make the model theory much more than a complicated digression.” (139) 

Moreover, he argues that it’s unclear what an adequate representational account would look 

like (137–8). By contingentist lights, a model structure faithfully represents the modal 

realm only if it invalidates BF, which requires that the domain of some world accessible 

from w0 contain alien entities (i.e., entities that are not in D(w0)). But what are these entities 

supposed to represent? They must likely be taken to stand for individuals distinct from 

those represented by the members of D(w0). But that seems impossible, since the entities 

in D(w0) presumably represent all (actual) individuals. Williamson concludes that 

contingentists have to take a more “instrumentalist” attitude towards model theory than 

necessitists. (195) While they “can use possible worlds model theory as a technical device 

for various purposes, they cannot use it to give the intended truth conditions of quantified 

modal sentences ….” (359) 

 
3.   A Contingentist Interpretation of Model Theory   

My goal is to present a contingentist construal of model theory for MFOL that circumvents 

these difficulties. However, for expository reasons it will be best to start with the simpler 

case of model theory for non-modal first-order logic (FOL). For simplicity, I will drop 

quotation marks and corner quotes when referring to object-language expressions, except 

when they’re needed to avoid confusion. 
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     We can think of an assignment of meanings to the non-logical constants of the language 

of FOL as a function that assigns a property to each predicate and an individual to each 

individual constant.2 A sufficiently powerful metalanguage would allow us to formulate, 

for any given meaning assignment, a sentence that completely describes this assignment 

and that also provides information about all non-semantic matters that are relevant (given 

the meanings assigned) to the truth-values of object-language sentences. I’ll call such a 

sentence a “specification.” With the help of a suitable semantic background theory we 

could, for every specification S and (closed) object-language sentence A, derive from S 

either that A is true or that A is not true. If these inferences could be formalized, then that 

would give us a precise criterion for metaphysical universality roughly along the following 

lines:  

(2) An object-language formula A is metaphysically universal iff the ascription of truth 

to A’s universal closure can be derived from every specification that provides 

correct information about all relevant non-semantic facts.  

We would be able to use this criterion to establish results about metaphysical universality. 

I will argue that model theory is simply a developed and revised version of this approach.   

     To develop a suitable criterion of metaphysical universality, it will be best to use a 

metalanguage whose vocabulary includes all the logical constants (sentence connectives, 

quantifiers, identity predicate), individual variables, and parentheses of the object 

language. In addition, the metalanguage has infinitely many individual variables that aren’t 

part of the object language and, for every natural number i, a countable infinity of i-place 

predicate variables 𝑋𝑋1𝑖𝑖 , 𝑋𝑋2𝑖𝑖 , …. It also needs to include the infinitary conjunction and 

disjunction operators, ∧ and ∨, that can (respectively) conjoin and disjoin up to κ different 

formulas, for a suitable infinite cardinal number κ. (I will write ∧C ϕ, or , to abbreviate 

 
2 Some philosophers identify properties with their Intensions (where the Intension of a property is the function 
that maps each Possible World to the set of individuals that instantiate the property at that World). 
Contingentists don’t have this option. By their lights, many properties don’t have Intensions. Consider 
redness. At some Possible Worlds this property is instantiated by objects that don’t actually exist. Since no 
function can have sets containing non-existing objects as values, there is no function that assigns to each 
Possible World the set of individuals that are red at that World. Fortunately, there are various alternative 
accounts of properties, and contingentists can adopt one of these alternatives or take the notion of a property 
as primitive.  
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the conjunction of all formulas of the form displayed by ϕ for which condition C is 

satisfied. For example, where V is a set of variables,  abbreviates the conjunction 

of all formulas ┌~u = v┐ such that u and v are distinct variables in V. If there are no formulas 

of the form displayed by ϕ for which condition C is satisfied, then ∧C ϕ will be taken to 

express a tautology. (A conjunction is true iff all of its conjuncts are. Hence, the 

conjunction of the members of the empty set of claims is automatically true.) Moreover, I 

will use expressions of the form ∧i ϕi to abbreviate the conjunction of all formulas ϕi where 

i is a natural number. ∨ will be used in the analogous ways, except that when there are no 

formulas of the form displayed by ϕ for which condition C is satisfied, then ∨C ϕ will be 

taken to express a contradiction. (A disjunction is true iff some of its disjuncts are. Hence, 

the disjunction of the members of the empty set of claims is false.) I’ll adopt the convention 

that formulas containing ∧ and ∨ are to be read so as to give these operators the smallest 

possible scope. For example, ∧C ϕ → P is to be read as (∧C ϕ) → P, not as ∧C (ϕ → P).) 

The metalanguage also needs to allow for strings of up to λ quantifiers binding different 

variables (where λ is a suitable infinite cardinal number). Where S is a set of no more than 

λ variables, ∃S (∀S) will abbreviate a string of existential (universal) quantifiers, one for 

each variable in S. (If S is the empty set, then a formula A that contains ∃S ϕ (∀S ϕ) is 

logically equivalent to the formula obtainable from A by uniformly replacing ∃S ϕ (∀S ϕ) 

with ϕ.) Furthermore, the metalanguage needs to have quote names for all non-logical 

constants and closed sentences of the object language, a truth predicate T, a dyadic first-

order predicate R interpreted to mean “refers to,” and a dyadic predicate E applicable to 

one individual and one predicate symbol and interpreted to mean “expresses.” (For any 

object-language individual constant ck and metalanguage individual variable xk, R“ck”xk is 

to be read as: “ck” refers to xk. And for any object-language predicate 𝐹𝐹𝑗𝑗𝑖𝑖 and any 

metalanguage predicate variable 𝑋𝑋𝑗𝑗𝑖𝑖 of the same adicity, E“𝐹𝐹𝑗𝑗𝑖𝑖”𝑋𝑋𝑗𝑗𝑖𝑖 is to be read as: “𝐹𝐹𝑗𝑗𝑖𝑖” 

expresses 𝑋𝑋𝑗𝑗𝑖𝑖.) Finally, I will assume that the metalanguage has a monadic first-order 
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existence predicate E! (definable in terms of ∃ and = and therefore redundant, but 

convenient for our purposes). 

     To be able to describe every meaning assignment, we would need to enrich the 

metalanguage just described (henceforth called the ‘basic metalanguage’) to turn it into a 

language that is universal, in the sense that it has a predicate for every property and an 

individual constant for every individual. We could then define a specification as a 

consistent metalanguage sentence of the following form: 

S: ∧k R“ck”ok & ∧ij E“Fji”Pji & ∃D [∀y∨y = x & ∧ ~x = y & ∧k xk = ok & 
                       x∈D                    x,y∈D, x≠y                                      

∧ij (∧Pjiy1y2…yi & ∧~Pjiy1y2…yi)] 
            <y1,y2,…,yi>∈ Vij              <y1,y2,…,yi>∈Di–Vij 

The Fji are all the predicates and the ck are all the individual constants of the object 

language. Each Pji is an i-place metalanguage predicate and each ok a metalanguage 

individual constant. (The individual constants oj and ok might be identical even if j ≠ k, and 

the same holds for the predicates Pji and Pki.) D is a non-empty set of metalanguage 

individual variables that aren’t part of the object language, and each xk is a variable in D. 

(The variables xj and xk might be identical even if j ≠ k. Moreover, xj and xk are identical 

whenever the individual constants oj and ok are identical, and might be identical even if oj 

≠ ok.) Vij ⊆ Di for all i and j, and Vij = Vik whenever Pji = Pki.  

     To derive an assignment of truth-values to object-language sentences from a 

specification, we need a semantic background theory. A suitable theory must be based on 

an infinitary higher-order logic that allows open formulas to be theorems. The theory must 

also include the following non-logical axiom schema:  

(TFOL) T“A” ↔ ∃xk ∃Xj
i (∧k R“ck”xk & ∧ij E“𝐹𝐹𝑗𝑗𝑖𝑖”Xji & A[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck])  

A can be any (closed) object-language sentence. The Xji are the predicate variables of the 

metalanguage. Each xk is a metalanguage individual variable that isn’t part of the object 

language. If j ≠ k, then the variables xj  and xk are distinct (and of course the variables Xji 

and Xki are distinct as well). xk is the set of all the variables xk, and Xj
i is the set of all the 

variables Xji. A[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck] is the metalanguage formula obtained from the object-

language sentence A by replacing each individual constant ck with xk and each predicate Fji 

with Xji. Given (TFOL), a specification S determines the truth-value of every object-language 
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sentence A, in the sense that either ⊦ S → T“A” or ⊦ S → ~T“A” (where ⊦ symbolizes 

theoremhood in our semantic theory).  

     We can give a revised and more precise statement of our criterion for metaphysical 

universality, (2). Note that the non-semantic information provided by a specification is 

never wholly correct. For example, every specification entails that there are exactly µ 

individuals for some cardinal number µ, whereas there are in fact more than set-many (and 

hence more than µ) individuals. However, given the expressive limitations of the finitary 

first-order object language, this specific misinformation might not affect the distribution of 

truth-values over object-language sentences that is determined by S, provided S tells us that 

the number of individuals is infinite. Let’s call a specification S “accurate” iff S represents 

the non-semantic facts correctly in all ways that matter to the truth-values that the object-

language sentences have on the meaning assignment described by S. We can then amend 

(2) as follows: 

(2*) An object-language formula A is metaphysically universal iff the ascription of truth 

to A’s universal closure can be derived from every accurate specification.  

     If we modify this criterion for metaphysical universality slightly, then we don’t need a 

universal metalanguage but can make do with the basic metalanguage I initially described. 

Note that a specification provides much more information than is needed to determine the 

truth-values of all object-language sentences. Call two specifications S and S* 

“permutation variants” iff, for some permutation π of the individual constants of the 

universal metalanguage and some adicity-preserving permutation π* of its non-logical 

predicates, S* is obtainable from S by uniformly replacing every individual constant o with 

π(o) and every non-logical predicate P with π*(P). Permutation variants determine the 

same truth-values for all object-language sentences. Hence, for the purpose of determining 

which object-language formulas are metaphysically universal, there is no need to 

distinguish between specifications that are permutation variants. We can instead focus on 

what it is in common between their contents. Everything relevant that their contents have 
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in common can be stated in the basic metalanguage by what I’ll call the “Ramsey sentence” 

of the relevant specifications, which is of the following form:3  

MFOL: ∃D ∃Xj
i [∧k R“ck”xk & ∧ij E“Fji”Xji & ∧E!x & ∀y∨y = x & ∧ ~x = y &  

        x∈D                         x∈D                      x,y∈D, x≠y                      
                 

  ∧ij (∧Xjiy1y2…yi & ∧~Xjiy1y2…yi)], 
            <y1,y2,…,yi>∈Vij              <y1,y2,…,yi>∈Di–Vij 

where Xi
j and the Xji are subject to the same conditions as in the case of schema TFOL above, 

while D, the xk, the Fji, the ck, and the Vij are subject to the same conditions as in the case of 

schema S. The conjunct ∧x∈D E!x is logically redundant but it will be technically 

convenient to include it in the Ramsey sentence. I will call a Ramsey sentence “accurate” 

iff it represents the non-semantic facts correctly in all ways that matter to the truth-values 

of object-language sentences. For every Ramsey sentence M and (closed) object-language 

sentence A, either ⊦M → T“A” or ⊦M → ~T“A”. Let’s say that Ramsey sentence M 

“validates” an object-language formula A (M ⊪ A, for short) to express that ⊦M → T“∀A” 

holds, where ∀A is a placeholder for A’s universal closure. We can then state a new 

criterion for metaphysical universality: 

(MU) A formula is metaphysically universal iff it is validated by all accurate Ramsey 

sentences.  

     We can formulate a syntactical criterion for deciding whether a formula A is validated 

by a Ramsey sentence M. Let M– be the open formula in the scope of the existential 

quantifiers ∃D ∃Xi
j at the beginning of M. (M– is of the same form as the formula enclosed 

in the square brackets in the Ramsey sentence schema MFOL above.) Moreover, let an 

“assignment” a be a function that maps each object-language individual variable to a 

metalanguage variable in D. Let’s write “M, a ⊪ A” as short for ⊦ M–

→ A[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck, a(v)/v)], where A[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck, a(v)/v)] is the formula obtained from 

 
3 Two permutation variants S and S* may have shared contents not captured by their Ramsey sentence. For 
example, both of them may say of two object-language predicates that they express the same property, 
whereas their Ramsey sentence M merely makes the weaker claim that these predicates express properties 
that are instantiated by the same objects. However, the shared content that is not captured by M is irrelevant 
to the distribution of truth-values over object-language sentences. 
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A[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck] by replacing the free occurrences of every object-language variable v with 

a(v). It is easy to see that the following holds:  

(3FOL) M⊪A     iff     M, a ⊪ A for every assignment a 

Moreover, we can recursively specify conditions under which M, a ⊪ A is true. Let V be a 

function that maps every object-language individual constant ck to the metalanguage 

variable xk, and each non-logical object-language predicate Fji to Vij. For any assignment a, 

let dena be a function that maps every object-language individual constant ck to xk and every 

object-language individual variable v to a(v). We can formulate the following recursive 

clauses (each of t1, t2, …, ti is either an individual constant or an individual variable of the 

object language, and Fji is any non-logical object-language predicate):  

(4FOL) M, a ⊪ t1 = t2 iff     dena(t1) = dena(t2) 

 M, a ⊪ 𝐹𝐹𝑗𝑗𝑖𝑖t1…ti iff     <dena(t1), …, dena(ti)> ∈ V(𝐹𝐹𝑗𝑗𝑖𝑖)   

M, a ⊪ ~A    iff     not M, a ⊪ A  

M, a ⊪ A & B    iff     both M, a ⊪ A and M, a ⊪ B 

M, a ⊪ ∀v A  iff     M, a[v/d] ⊪ A for every d ∈ D, 

where a[v/d] is the assignment that maps v to d and is otherwise like a. 

     We can single out a Ramsey sentence up to logical equivalence by specifying the set D 

and the function V. <D, V> can therefore be viewed as an abbreviation of the Ramsey 

sentence, or if you like, as a translation of the Ramsey sentence into a more efficient and 

perspicuous language Lnew. Every sentence M of Lnew is a pair <DM, VM>, where DM is a 

set of individual variables of Lnew and VM is a function mapping every object-language 

individual constant to a member of DM and every non-logical n-place object-language 

predicate to a subset of (DM)n. The representational contents of the sentences of Lnew can 

be explained by specifying a method for translating them into a conventional language of 

the same kind as the basic metalanguage described above. The translations will be 

sentences of the form displayed by schema MFOL. (The discussion above allows us to 

formulate such a translation scheme.) Lnew doesn’t need to use the same individual 

variables as the conventional language into which we are translating. It’s enough that there 

be a suitable mapping between the variables of the two languages. Moreover, there is no 
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need to describe a specific conventional metalanguage L once and for all and then explain 

the content of every sentence of Lnew by translating it into L. It’s sufficient to describe a 

way of translating each sentence of Lnew into a suitable conventional language, even if the 

translation scheme has us translate different sentences of Lnew into different conventional 

languages. That means that there is no need to restrict the cardinalities of DM and VM in a 

sentence M of Lnew to fit them to the limits of a specific conventional infinitary language. 

DM and VM can have any cardinalities. To specify Lnew uniquely, all that’s left to do is to 

say what the individual variables of the language are. The simplest option is to let the 

variables include every object whatsoever4: any entity can be a member of DM. Once these 

changes have been made, the result is the familiar model theory for FOL. 

     To develop a similar interpretation of model theory for MFOL, we first need to add 

some expressions to the metalanguage: quote names for object-language sentences 

containing □ or ◊; a suitably large infinity of variables u, v, w, … that range over Possible 

Worlds; a monadic first-order predicate Act expressing actualization (a contingent property 

possessed by different Possible Worlds at different Possible Worlds); and a “truth-at 

operator” < > that can combine with a World variable w and a formula P to form the 

formula w<P>, interpreted as “it is true at w that P” or “at w, P.”  

     The semantic theory couched in the metalanguage will again be based on an infinitary 

higher-order logic that allows open formulas to be theorems. While I won’t try to specify 

a suitable logic in full, I will outline some of its basic features. To begin with, the logic is 

free: where c is an individual constant and y an individual variable, ∀x A → A[c/x] and 

∀x A → A[y/x] (y free for x in A) are not theorems, although ∀x A → (E!c → A[c/x]) and 

∀x A → (E!y → A[y/x]) (y free for x in A) are theorems. Similarly, while ∀x E!x is a 

theorem, E!t (where t is an individual variable or constant) is not. Moreover, it’s a negative 

free logic, whose theorems include the instances of the schemata 𝑋𝑋𝑗𝑗𝑖𝑖t1t2…ti → E!tk and 

Pjit1t2…ti → E!tk (1 ≤ k ≤ i), where each of t1, t2, …, ti is an individual variable or constant, 

Xji is a predicate variable and Pji a predicate. ∀x x = x and E!t → t = t are theorems as well, 

but t = t is not. The logic is also “inclusive,” i.e. neutral on the question of whether there 

are any individuals—no formula that starts with an existential individual quantifier is a 

 
4 … except proper classes (if such there are), since they cannot be members of sets. 
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theorem. If A is any logical axiom, then so is ∀w w<A>. (I think this principle needs some 

restriction, but it’s a close enough approximation for present purposes.) There also need to 

be axiom schemata that guarantee that the set of claims that are true at a given Possible 

World is closed under applications of the right inference rules (e.g., 

∀w (w<A → B> → (w<A> → w<B>)) to ensure closure under modus ponens, and something 

like ∀w (∧A∈S w<A> → w<∧A∈S A>) (where S is a set of no more than κ formulas) to 

guarantee closure under infinitary conjunction introduction). Moreover, we need an axiom 

schema that (combined with the other axioms) ensures that the claims true at a World 

constitute a description of reality that is complete (subject to the expressive limitations of 

the language) and consistent—something along the lines of ∀w (w<~A> ↔ ~w<A>). Yet 

another axiom schema encapsulates the idea that an actualized World says the whole truth 

and nothing but the truth: ∀w (Act(w) → (w<A> ↔ A)).   

     The semantic theory will rely on an analysis of the modal operators in terms of truth at 

a Possible World. The analysis can be stated by specifying a method of translating every 

object-language formula A into a formula A* of another language L*. The vocabulary of 

L* includes World variables and the truth-at operator, but not □ or ◊. Otherwise, its 

vocabulary is the same as that of the object language. In particular, it includes the same 

uninterpreted predicates and individual constants. The translation is intended to preserve 

the truth-conditions of sentences and the satisfaction conditions of open formulas under 

every meaning assignment. A recursive specification of the translation is given below (“*” 

always takes the smallest possible scope): 

(5) (i) A* = A if A is atomic (iv) (∀x A)* = ∀x A* 

(ii) (~A)* = ~A*  (v) (□A)* = ∀w w<A*> 

(iii) (A & B)* = A* & B*   

To obtain our semantic theory, we add the instances of the following non-logical axiom 

schema to the logical axioms (A is an object-language sentence):  

(TMFOL) T “A”   ↔   ∃xk ∃Xi
j [∧k R“ck”xk  &  ∧ij E “𝐹𝐹𝑗𝑗𝑖𝑖”𝑋𝑋𝑗𝑗𝑖𝑖  &  A*[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck]] 

xk, Xi
j , the xk, the Xji, the ck, and the Fji are subject to the same conditions as in the case of 

(TFOL).  
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     A Ramsey sentence for MFOL states information about Possible Worlds, in addition to 

the information about semantic and non-semantic matters that are also described by the 

Ramsey sentences for FOL. We can define a Ramsey sentence for MFOL as a consistent 

metalanguage sentence of the following form:  

MMFOL: ∃Ow0 ∃Xi
j [∧k R“ck”xk & ∧ij E“𝐹𝐹𝑗𝑗𝑖𝑖”𝑋𝑋𝑗𝑗𝑖𝑖 & ∃w0 (Act(w0) &   

 <∃D1
w0/[∧ E!x & ∀y∨y = x & ∧ ~x = y & ∧ij (∧Xj

iy1y2…yi & ∧~Xj
iy1y2…yi)   

                    x∈D1
w0∪D2

w0                  x∈D1
w0∪D2

w0              x,y∈D1
w0∪Ow0                   <y1,y2,…,yi>∈Vijw0          <y1,y2,…,yi>∈(D1

w0∪D2
w0)

i–Vijw0                              
                                   x≠y                                         

      & ∃Rw0/(∀w∨w = u & ∧ u<Su>)]>)] 
                                 u∈Rw0                 u∈Rw0          

For each i and j, Xji is an i-place metalanguage predicate variable. Xji and Xk
i are distinct if 

j ≠ k. Ow0 is a non-empty set of metalanguage individual variables that aren’t part of the 

object language. xk ∈ Ow0 for all k. The variables xj and xk might be identical even if j ≠ k. 

D2w0 is a subset of Ow0. D1w0 is a (possibly empty) set of individual variables that aren’t part 

of the object language and which aren’t in Ow0. For all i and j, Vijw0 ⊆ (D1w0/∪ D2w0)i. Rw0 is a 

(possibly empty) set of World variables. Moreover, for all u ∈ Rw0, Su is a formula of the 

following form: 

(6)  ∃D1
u [∧ E!x & ∀y∨y = x & ∧ ~x = y & ∧ij (∧ 𝑋𝑋𝑗𝑗𝑖𝑖y1y2…yi & ∧ ~𝑋𝑋𝑗𝑗𝑖𝑖y1y2…yi)   

          x∈D1
u∪D2

u                            x∈D1
u∪D2

u                                  x,y∈ D1
u∪Ou                       <y1,y2,…,yi>∈Viju             <y1,y2,…,yi>∈(D1

u∪D2
u)i–Viju              

                                                         x≠y                                
 

      & ∃Ru/(∀w∨w = v & ∧ v<Sv>)],  
                                v∈Ru                  v∈Ru          

where (i) Ou is the set of individual variables that are bound by existential quantifiers 

scoping over Su in M; (ii) D1u is a (possibly empty) set of individual variables that aren’t 

part of the object language and which aren’t in Ou; (iii) D2u is a subset of Ou; (iv) 

Viju/⊆ (D1u ∪ D2u)i for all i, j; (v) Ru is a (possibly empty) set of World variables; (vi) for each 

v ∈ Ru, Sv is another formula of the form (6) that meets conditions (i)–(vi). Thus, Ou, D1u, 

D2u, Viju, Ru, and Sv in (6) satisfy the same constraints as Ow0, D1w0, D2w0, Vijw0, Rw0, and Su in 

MMFOL. (The only difference is that in order for a sentence of the form MMFOL to be logically 

consistent (and hence in order for it to count as a Ramsey sentence for MFOL), D2w0 must 

be identical with Ow0, whereas D2u needn’t be identical with Ou and may even be empty.) 

We can define the notion of an accurate Ramsey sentences and the expression “M ⊪ A” 
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(“M validates A”) in the same way as before, and use (MU) as a criterion of metaphysical 

universality for MFOL. 

     (The proper-constituent relation is non-well-founded on the constituent formulas of an 

accurate Ramsey sentence M for MFOL: M contains a formula that contains another 

formula that contains another formula, and so on to infinity. In most formal languages 

formulahood is defined recursively in a way that precludes such non-well-foundedness, so 

our metalanguage would have to be somewhat unusual in that regard. To avoid this, one 

could reformulate the account below by replacing Ramsey sentences with “Ramsey 

sequences”: infinite sequences of well-founded sentences, each more complex and 

logically stronger than the preceding one, that together say the same as a single non-well-

founded Ramsey sentence. (This change would necessitate other adjustments in the 

formulations below, but it would be fairly straightforward to implement the needed 

revisions.) However, for simplicity I’ll state the account in terms of non-well-founded 

Ramsey sentences.)  

     We can develop a syntactic criterion for deciding whether M ⊪ A holds for an arbitrary 

Ramsey sentence M for MFOL. I will let M– be the open formula in the scope of the 

existential quantifiers ∃Ow0 ∃Xi
j  at the beginning of M. Moreover, I will use underlined 

letters like u, v and w for occurrences of World variables (while continuing to use the same 

letters without underlining for World variables). Let’s say that an occurrence w of World 

variable w in a Ramsey sentence M superscripts formula S iff w is the first symbol of an 

occurrence of w<S> in M. Let W be the set of occurrences of World variables in M that 

superscript formulas. For every u ∈ W, I’ll write “Su” for the formula superscripted by u. 

Su is of the form (6). I will further write “Su–” for the formula in the scope of the existential 

quantifiers at the beginning of Su. (Su– is of the same form as the formula in the square 

brackets in schema (6).) Let w0 be the World variable to which the actualization predicate 

Act is applied in M. One occurrence of w0 in M (set in boldface in MMFOL) is attached to an 

occurrence of the truth-at operator that scopes over all other occurrences of that operator 

in M. Let’s call that occurrence of w0 “w0.” Let D(w) be the function assigning to every w 

∈ W the set of variables D1w ∪ D2w. Moreover, let an assignment a be a function mapping 

each object-language individual variable to some variable in ⋃w∈W/D(w). Note that the 

following biconditionals hold:  
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(7) M⊪A iffdef ⊦ M → T “∀A” 
  iff ⊦ M → ∃xk ∃Xi

j [∧k R“ck”xk &∧ij E“Fj
i”Xj

i & (∀A)*[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk /ck]]  by (TMFOL) 
  iff ⊦ M– → (∀A)*[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk/ck]                  
  iff ⊦ Sw0

– → (∀A)*[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk/ck]   
  iff ⊦ Sw0

– → (∀(A*))[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk/ck]      by (5)(iv) 
  iff ⊦ Sw0

– → A*[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk/ck, a(v)/v] for all a such that:  
         a(v) ∈ D(w0) for every variable v occurring free in A  

Now suppose we introduce an additional way of using ⊪: 

(8) M, w, a ⊪ A     iffDef.    ⊦ Sw– → A*[Xji/Fji, xk /ck, a(v)/v] 

We can then state the upshot of (7) as follows:  

(3MFOL) M ⊪ A    iff    M, w0, a ⊪A for all a such that: a(v) ∈ D(w0) for every variable  

     v occurring free in A 

     We can also formulate a syntactical criterion for deciding whether M, w, a ⊪ A holds.     

For any w/∈ W, let w<> be the occurrence of the truth-at operator in M to which w is 

attached. Moreover, let’s say that an occurrence <>1 of the truth-at operator in M scopes 

directly over another occurrence <>2 iff (i) <>1 scopes over <>2, and (ii) <>1 doesn’t scope 

over any occurrences of the truth-at operator that scope over <>2. Let R be a dyadic relation 

between elements of W such that: Rww* iff w<> scopes directly over w*<>. (Note that if 

Rww*, then w* is an occurrence of some variable in Rw.) Let V be a function that assigns 

to every object-language individual constant ck the variable xk, and to each non-logical 

object-language predicate 𝐹𝐹𝑗𝑗𝑖𝑖 a function mapping every w/∈ W to Vijw. The free variables 

in A*[𝑋𝑋𝑗𝑗𝑖𝑖/𝐹𝐹𝑗𝑗𝑖𝑖, xk/ck, a(v)/v] also occur free in Sw– if the following condition is satisfied: 

(9) a(v) ∈ D(w) ∪ Ow for every variable v occurring free in A. 

We can formulate recursive clauses that hold in all cases where (9) is true (each of 

t1, t2, …, ti is either an individual constant or an individual variable, Fji is any non-logical 

object-language predicate, and dena is defined as before): 

(4MFOL) If (9) holds, then  

   (i) M, w, a ⊪ t1 = t2 iff     dena(t1) = dena(t2) and dena(t1), dena(t2) ∈ D(w) 

   (ii) M, w, a ⊪ 𝐹𝐹𝑗𝑗𝑖𝑖t1t2…ti  iff  <dena(t1), dena(t2), …, dena(ti)> ∈ V(𝐹𝐹𝑗𝑗𝑖𝑖)(w) 
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        (iii) M, w, a ⊪ ~A   iff  not M, w, a ⊪ A 

        (iv) M, w, a ⊪ A & B   iff  both M, w, a ⊪ A and M, w, a ⊪ B 

        (v) M, w, a ⊪ ∀v A   iff  M, w, a[v/d] ⊪ A  for all d ∈ D(w)   

        (vi) M, w, a ⊪ □ A   iff M, w*, a ⊪ A  for every w* such that  

      Rww*. 

The following can be shown by induction on the complexity of A:  

(10)  If (9) is true, then the extensions of R, D, V, and a, together with (4MFOL), determine 

whether M, w, a ⊪ A holds. 

     We can simplify the account by two further moves. Firstly, we can remove the need to 

qualify (4MFOL)(i)–(vi) with condition (9) by changing the definition of “M, w, a ⊪ A”. 

Instead of defining “M, w, a ⊪ A” as in (8), we use the recursive clauses (4MFOL)(i)–(vi) as 

our definition, so that (4MFOL)(i)–(vi) is true whether or not condition (9) is satisfied. 

(“M ⊪ A” remains defined as “⊦ M → T“∀A””.) (4MFOL) remains true, even after this 

change has been made. Therefore, given (10), we can conclude that whenever (9) holds, 

M, w, a ⊪ A is true on the new definition iff it is true on the old definition. It follows that, 

if a(v) ∈ D(w0) for every variable v occurring free in A (so that a, w0, and A satisfy condition 

(9)), then M, w0, a ⊪ A is true on the new definition iff it is true on the old definition. So, 

(3MFOL) is still true on the new definition, and we can use (3MFOL) and (MU) as before to 

reason about metaphysical universality. Secondly, we can reformulate our test for 

metaphysical universality in terms of individual and World variables rather than 

occurrences thereof. That requires a slight change in the definition of “Ramsey sentence 

for MFOL.” Note that nothing in our current definition rules out the possibility that 

different occurrences of a single World variable in a Ramsey sentence M superscript 

different formulas. For example, a Ramsey sentence M may contain the formula w<S>, 

where S in turn contains the formula ∃w … w<S*>  and S ≠ S*. The new definition of 

“Ramsey sentence” will continue to allow for cases where different formulas S and S* are 

superscripted by occurrences of the same World variable, but it imposes the following 

restriction on the ways in which S and S* can differ from each other in such cases:  

(11) For all w, w*/∈ W, if w and w* are occurrences of the same World variable, then  
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(i)  D(w) = D1w/∪ D2w = D1w*/∪ D2w* = D(w*) 

(ii)  Vijw/ = Vijw* for all i, j 

(iii)  Rw/ = Rw*  

(Note that (11) doesn’t impose the condition that Ow/= Ow*—the existential quantifiers 

scoping over Sw might bind different variables than those scoping over Sw*. Accordingly, 

Sw and Sw* needn’t be the same formula.) (11) reduces the range of sentences that count as 

Ramsey sentences. However, for every sentence M excluded by (11), some logically 

equivalent sentence (obtainable from M by relettering World variables in the right way) 

still counts as a Ramsey sentence by the new definition. Our modification in the definition 

of “Ramsey sentence” consequently makes no difference to which object-language 

formulas enjoy the distinction of being validated by all accurate Ramsey sentences, and 

therefore doesn’t affect our criterion for metaphysical universality. As can be proven by 

induction on the complexity of A, if we use (4MFOL)(i)–(vi) as our definition of M, w, a ⊪ A 

and adopt (11), then the following holds: for all w, w*/∈ W, if w and w* are occurrences of 

the same World variable, then for all a and A: M, w, a ⊪A iff M, w*, a ⊪A. Let W be the 

set of World variables w such that W contains some occurrence of w. For any w ∈ W, we 

can define “M, w, a ⊪ A” as short for “M, w, a ⊪ A for every occurrence w of w that is a 

member of W.” And we can recursively state the conditions under which M, w, a ⊪ A 

holds. Let D be the function that assigns to every w ∈ W the set S such that: S = D(w) for 

every occurrence w of w in W. Let R be the dyadic relation on W such that: Rww* iff w* ∈ Rw 

for every occurrence w of w in W. Finally, let V be a function that maps (i) each object-

language individual constant ck to the metalanguage individual variable xk, and (ii) each 

object-language predicate Fji to a function that maps each w ∈ W to the set S such that: 

S = V(𝐹𝐹𝑗𝑗𝑖𝑖)(w) for every occurrence w of w in W. By removing the underlining from all 

symbols in (4MFOL)(i)–(vi), we obtain a recursive specification of the conditions under 

which M, w, a ⊪ A holds. Furthermore, by removing the underlining from all symbols in 

(3MFOL), we obtain a principle that states a new necessary and sufficient condition for a 

Ramsey sentence to validate a formula. We can combine this principle with (MU) to obtain 

a new criterion for metaphysical universality. 
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     We can single out any Ramsey sentence M up to logical equivalence by specifying the 

quintuple <W, R, w0, D, V>. The quintuple can therefore be viewed as a translation of the 

Ramsey sentence in a more efficient and perspicuous language, Lnew*. All sentences of 

Lnew* are quintuples of this kind, constructed from the individual and World variables of 

Lnew* and the non-logical constants of the object language. Finally, we can lift all 

cardinality restrictions on the members of <W, R, w0, D, V> and allow all entities to serve 

as individual and World variables of Lnew*, in a move analogous to the one we made for 

the language Lnew that we used in the discussion of FOL. The outcome is a variant of model 

theory (with domain constraint) for MFOL. 

     The resulting version of model theory differs somewhat from the one that underlies 

Williamson’s discussion. For example, it requires that all worlds in a model stand in the 

ancestral relation of accessibility to the actual world. Moreover, the interpretation function 

V of a model can only assign entities in D(w0) to the individual constants. (If there were a 

model that didn’t meet this condition, then that model would represent, if anything, that 

some individual constant refers to an object that doesn’t exist. That sounds like a 

contradiction, and in any case there is no meaning assignment that is described by such a 

model.) Finally, A’s validity in a model requires A’s truth at the actual world not on all 

assignments whatsoever, but merely on those that assign elements of D(w0) to the free 

variables in A. This weaker condition seems independently motivated if validity in all 

accurate models is to be our criterion for metaphysical universality, since the metaphysical 

universality of a formula amounts to the actual truth of its universal closure on all meaning 

assignments.  

     On my account, a model doesn’t determine the meanings of the non-logical constants. 

In his discussion of Stalnaker’s account (192), Williamson suggests that it is a significant 

weakness of an interpretation of model theory if it has that consequence. However, it’s not 

clear to me that that is true. Model-theoretic semantics for modal logic isn’t studying any 

specific meaning assignment but certain generalizations about all meaning assignments, 

namely truths of the form ∀A is true on all meaning assignments. If two meaning 

assignments yield the same distribution of truth-values (given the relevant non-semantic 

facts), then the ways in which they differ are irrelevant, in which case it can only be 

advantageous to abstract away from these differences. What would be the benefit of using 
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models that represent inessential information? (Also, it seems clear that the models of FOL 

don’t specify the meanings of all non-logical constants—the information they provide 

about the extensions of predicates don’t determine which properties these predicates 

express. Why should matters be different for MFOL?) 

 

4.   Replies to Williamson’s objections  

Williamson’s argument from (1) was intended to show that contingentists cannot connect 

model theory to the subject matter of modal discourse by appealing to an intended model 

structure. Since I have endorsed a different strategy for explaining the importance of model 

theory, my own account is not directly in the firing line of Williamson’s argument. 

Nevertheless, I am committed to the claim that some models (the accurate ones) validate 

just those formulas that are metaphysically universal by contingentist lights. Therefore, if 

(1) were true, then that would refute my approach. However, as Williamson notes (136), 

the argument for (1) is blocked if the model-theoretic framework is modified in the way 

outlined in the penultimate paragraph of the last section. Williamson describes these 

modifications as unmotivated, but the discussion of the previous section seems to provide 

good motivation for it.  

     The interpretation of model theory I sketched also resolves the puzzle about what is 

represented by the alien entities of a model (the entities that are in the domains of worlds 

other than w0 but not in the domain of w0). The objects in the domain of a world are not 

names but variables, and hence don’t stand for any particular individuals. We can therefore 

steer clear of the unpalatable idea that an alien entity represents a specific non-actual 

individual. Instead, an alien entity is an individual variable that is bound by an existential 

quantifier within the scope of a truth-at operator. Consider model M1 represented below as 

an example (an arrow from one world to another represents that the latter is accessible from 

the former). 

M1                             w1: D(w1) = {x2}   M2 w1: D(w1) = {x2} 

w0: D(w0) = {x1}          w2: D(w2) = {x1, x2}   w0: D(w0) = {x1}         w2: D(w2) = {x1, x3}   

The translation of M1 into a conventional metalanguage is a sentence of the following form:  
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(12) ∃x1 ∃Xi
j [∧k R“ck”x1 & ∧ij E“𝐹𝐹𝑗𝑗𝑖𝑖”Xj

i & ∃w0 (Act(w0) & w0<E!x1 & ∀y y=x1 & … &  

     ∃w1 ∃w2 (… & w1<∃x2 [… & ~x1=x2 & …]> & w2<∃x2 [E!x1 & …]>)>)]                

This sentence tells us among other things that there actually exists exactly one individual 

x1, such that there exists a Possible World w1, such that an individual x2 distinct from x1 

exists at w1. That is a perfectly coherent interpretation of the model.  

     (In a conventional formal language, the fact that different variables in a sentence are 

occurrences of the same type variable is sometimes representationally significant and 

sometimes not. The first and second variables in ∃x Fx & ∃x Gx are occurrences of the 

same type variable as the third and fourth variable but that fact is representationally inert—

∃x Fx & ∃y Gy doesn’t have that feature and yet it says the same as ∃x Fx & ∃x Gx. The 

three variables in ∃x (Fx & Gx) are occurrences of the same type variable and that’s 

representationally significant—∃x (Fx & Gy) doesn’t say the same as ∃x (Fx & Gx). It’s 

worth noting that a similar distinction arises between two types of cases where the domains 

of different worlds in a model share an element e. This feature of the model is 

representationally significant iff 

(13) Some world whose domain includes e stands in the ancestral relation of 

accessibility to some other world whose domain includes e.  

In M1, D(w1) and D(w2) have x2 as a common element, but in this case (13) is not satisfied. 

Consequently, the overlap between D(w1) and D(w2) is representationally insignificant. If 

we replace x2 with x3 in D(w2) and in the extensions of all predicates at w2, the resulting 

model M2 (depicted above) has the same content as M1. (To see this, note that we can 

uniformly substitute x3 for x2 in the scope of the truth-at operator superscripted with w2 in 

(12) without changing the content of the sentence. The resulting sentence is the translation 

into a conventional metalanguage of M2.) In M1, D(w0) and D(w2) have x1 as a common 

element, and in this case (13) is satisfied. Consequently, the overlap between D(w0) and 

D(w2) in M1 is representationally significant. If we replace x1 with x3 in D(w2) and in the 

predicate extensions at w2 in M1, the resulting model M3 (depicted below) has a different 

content from M1. 
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M3                               w1: D(w1) = {x2}  

w0: D(w0) = {x1}          w2: D(w2) = {x3, x2}   

For example, M1 entails the claim that there actually exists an individual x1 and a Possible 

World w2 such that x1 exists at w2. M3 entails the negation of that claim.) 

     Contingentists who endorse the account sketched above are in a good position to explain 

the significance of model theory. Model theory is important in part because it clarifies the 

truth-conditions of modal claims. For any object-language sentence A, model theory yields 

a necessary and sufficient condition C for a model to validate A. For A to be true, modal 

reality must be correctly describable by some model satisfying C . Of course, the models 

use the notions of a Possible World and of truth at a World to describe the modal realm, 

and the contingentist needs to explain these notions if they want to use model theory to 

illuminate the truth-conditions of sentences containing modal operators. But necessitists 

who endorse Williamson’s interpretation of model theory are in exactly the same position: 

to explain the truth-conditions of sentences containing modal operators, they need to 

explain which model structure is intended, which requires them to explain what Possible 

Worlds are and what it is for a claim to be true at a Possible World. (Williamson takes on 

this task in MLM: sct. 3.7.) There is no obvious difference between contingentists and 

necessitists in their ability to extract from the model theory an account of the truth-

conditions of modal claims.  

     Model theory does more than shed light on the truth-conditions of sentences containing 

modal operators, however. It affords a method of zooming in on the information about 

meanings and modal reality that is essential to questions about metaphysical universality, 

and a formal metalanguage in which that information can be perspicuously represented by 

a canonical description (a model). Moreover, it provides the formal principles (4MFOL) and 

(3MFOL), which license inferences between certain claims about Possible Worlds (the 

models) and claims about the truth-values of object-language sentences. Moreover, it gives 

us (MU) as a criterion for metaphysical universality. Now, (MU) by itself doesn’t settle all 

questions about metaphysical universality. Even given (MU), which formulas are 

metaphysically universal still depends on which models are accurate, which in turn depends 

on the answers to some difficult questions about modal reality. However, in many cases 
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model theory enables us to work out the logical relationships between different claims 

about which formulas are metaphysically universal. With the help of (MU), (3MFOL) and 

(4MFOL), we can draw inferences from a claim about which formulas are metaphysically 

universal to a conclusion that tells us something about the conditions under which a model 

is accurate (and hence about what the space of Possible Worlds is like). From this 

conclusion together with (4MFOL), (3MFOL) and (MU), we can in turn derive further claims 

about which formulas are metaphysically universal. Thanks to (MU), (3MFOL), and (4MFOL), 

claims about Possible Worlds mediate inferences between different claims about which 

formulas are metaphysically universal. 

     Models are never completely correct representations of the non-semantic facts, since 

they misrepresent some cardinality facts. Contingentists could try to get around this result, 

either by modifying the model-theoretic machinery (cp. MLM: 236–40) or by giving a 

refined account of what is represented by a model that filters out the incorrect information. 

But there is no obvious need to do so. We often tolerate idealization, mere approximation, 

and other insignificant misrepresentation by models, maps and verbal descriptions, as long 

as the false information makes little or no difference for the purposes at hand. In any case, 

as mentioned above, necessitists trying to specify an intended model structure face similar 

complications arising from the cardinality constraints inherent in the model-theoretic 

apparatus. 

     In the most familiar sense of the term, you take an “instrumentalist” attitude to a theory 

if you regard it as a helpful device for predicting certain data but don’t take it to be a correct 

description of facts that underlie and explain these data. The interpretation of model theory 

I sketched is not instrumentalist in this sense. It takes accurate models to represent certain 

facts about Possible Worlds that are distinct from, and explain, the facts about metaphysical 

universality that can be predicted by using model theory. It makes no difference to this 

point that the account regards accurate models as misrepresenting the facts in some 

irrelevant ways. What matters is that it explains the utility of the models as deriving entirely 

from their correct representation of certain features of reality that underlie the facts 

predicted. 
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