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1 Introduction
Recently, Yudkowsky and Soares (2018) and Levinstein and Soares (2020) have developed a
novel decision theory, Functional Decision Theory (FDT). They claim FDT outperforms both
Evidential Decision Theory (EDT) and Causal Decision Theory (CDT). Yet FDT faces several
challenges. First, it yields some very counterintuitive results (Schwarz 2018; MacAskill 2019).
Second, it requires a theory of counterpossibles, for which even Yudkowsky and Soares (2018)
and Levinstein and Soares (2020) admit we lack a “full” or “satisfactory” account.

Here, I focus on the latter problem of counterpossibles. My aim is to establish two claims.
First, the problem of counterpossibles does not even arise without a fairly strong assumption—
one that rarely applies to human agents, but may apply to artificial agents. And second, even
given this assumption, the problem is solvable, though how best to solve it remains an open
question.

2 Background
To begin, recall a familiar problem from decision theory (Nozick 1969):

Newcomb. Before you are two boxes: one transparent and one opaque. You see $1K
in the transparent box, but you can’t see inside the opaque box. You’re can take
either both boxes or just the opaque box. A reliable predictor put $1M in the opaque
box if they predicted you’d take just the opaque box; otherwise, they put $0 in it.

What should you do in Newcomb? There are two standard answers. According to Evidential
Decision Theory (EDT), you should do whatever provides the best evidence that good outcomes
will obtain if you do it (Jeffrey 1965; Price 1991; Ahmed 2014b). For EDTers, this means the
expected utility of an act a is calculated using the agent’s credence function conditionalized on
their choosing a. More precisely, let’s say a decision situation is a tuple ∆ “ xΩ, P, O, V y,
where xΩ, P y is a probability measure representing the agent’s credal state, O is a set of options
available to the agent, and V is their utility function for various act-state pairs. According to
EDT, the expected utility of an option a in ∆ is given as follows:

EDTp∆, aq “
ÿ

sPΩ
P ps | aqV pa, sq

EDT recommends one-boxing: if you take one box, it’s very likely the predictor put $1M in it
and you’re a millionaire, whereas if you take both boxes, it’s very likely the predictor put $0 in
it and you can’t even pay your rent. So you should take just the opaque box.

According to Causal Decision Theory (CDT), you should do whatever would most likely
bring about good outcomes were you to do it (Gibbard and Harper 1978; Lewis 1981; Joyce
1999).1 For CDTers, this means the expected utility of an act a is calculated using the agent’s

1Some use “counterfactual” in place of “causal”; see Hedden 2023; Gallow 2024 (cf. Collins 1996).
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credence function imaged on their choosing a. Imaging can be interpreted in a number of ways
(Lewis 1981; Gärdenfors 1982; Joyce 1999; Hitchcock 2016; Joyce and Gibbard 2016). The exact
interpretation we adopt will not matter below, so for ease of exposition and simplicity, we’ll
interpret imaging in terms of counterfactuals (Gibbard and Harper 1978):2

CDTp∆, aq “
ÿ

sPΩ
P ps || aqV pa, sq, where (for simplicity) P ps || aq B P pa� sq

CDT recommends two-boxing: nothing you do now can change what’s in the opaque box, and
so no matter what, if you were to take both boxes, you’d have $1K more than if you were to
take just the opaque box. So you should take both boxes.

Various counterexamples have been proposed to each decision theory. Against EDT, consider
the following case (Egan 2007):

Smoking Lesion. Smoking doesn’t cause cancer. Instead, there’s a brain lesion some
people are born with that both causes cancer and causes people to smoke. Smokers
are not more likely to develop cancer than non-smokers with the same lesion-status.

What should you do in Smoking Lesion? Intuitively, you should smoke: after all, smoking will
have no impact on whether you have the lesion, so you might as well get the pleasure of smoking.
This is what CDT recommends. By contrast, EDT says you should not smoke: smoking is
evidence you have the lesion, and thus evidence that you will develop cancer.

Against CDT, consider the following case (Gibbard and Harper 1978):

Death in Damascus. You are in Damascus when Death knocks on your door. Death
says, “I’m coming for you tomorrow”. You know Death works from a book, written in
advance, that lists the time and place of each person’s death. You have two options:
stay in Damascus or flee to Aleppo. If you stay in Damascus, you will have a peaceful
evening. If you flee to Aleppo, you’ll be up all night and exhausted.

What should you do in Death in Damascus? Intuitively, you should stay put: no matter where
you go, Death will likely follow, so you might as well enjoy your final night in peace. This is
what EDT recommends. By contrast, CDT does not give a stable recommendation: the more
likely you are to stay in Damascus, the higher the expected utility of fleeing and vice versa.

Whether EDT or CDT can overcome these problems, or whether these predictions are even
problematic to begin with, is debated (Eells 1984; Egan 2007; Arntzenius 2008; Joyce 2012;
Ahmed 2014a). But Yudkowsky and Soares (2018) and Levinstein and Soares (2020) take cases
like the above to show there is something wrong with both EDT and CDT and that we should
seek an alternative decision theory that will yield the “right” results. While I myself disagree
(as a CDTer), for the sake of discussion, I will grant these intuitive judgments and assume they
present at least a prima facie problems for EDT and CDT.

3 Functional Decision Theory
Functional Decision Theory (FDT) starts with the idea that agents employ certain decision
algorithms when making decisions. Little is said about what this means, but roughly, we can
think of these algorithms as decision rules that encode deliberative dispositions: agents are
disposed to make decisions in line with what their decision algorithm recommends. Formally, we
can represent decision algorithms as mathematical functions taking a decision situation and an

2Yudkowsky and Soares (2018) and Levinstein and Soares (2020) both instead use causal models to define
imaging. This would amount to adding a causal graph to the definition of a decision situation. As these details
won’t matter below, I’ll stick with the simple formulation in terms of counterfactuals.
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option as inputs and outputting an expected value for that option in that situation.3 Both EDT
and CDT can be seen as examples of decision algorithms in this sense.

According to FDT, agents should consider not just what would happen if they were to choose
differently, but also what would happen if their decision algorithm were to output different
choices. Informally, you should do whatever would most likely bring about good outcomes were
your decision algorithm to output it. Formally, FDT is like CDT in that it calculates expected
utility using imaging. But FDT images on a different proposition. Whereas CDT images the
agent’s credence function on the proposition that the agent chooses a certain action, FDT images
on the proposition that the agent’s decision algorithm δ maximizes its output on that action.

FDTp∆, aq “
ÿ

sPΩ
P ps || argmaxxδp∆, xq “ aqV pa, sq

In a slogan: be the kind of agent it would be best to be. Or, less catchily: employ the decision
algorithm that would most likely yield good outcomes.

To see how FDT differs from rivals, consider what it recommends in each of the three decision
situations above. In Newcomb, FDT agrees with EDT that you should one-box. For if your
decision algorithm were to output one-boxing, the predictor would very likely predict this, in
which case, there would be $1M in the opaque box. Yet if your decision algorithm were to output
two-boxing, the predictor would very likely predict this, in which case, there would be $0 in the
opaque box. So it would be better if your decision algorithm outputted one-boxing.

Likewise, in Death in Damascus, FDT recommends staying in Damascus. For if your decision
algorithm were to output staying, Death’s book would have you down as staying. And if your
decision algorithm were to output fleeing, Death’s book would have you down as fleeing. So it
would be better if your decision algorithm saved you the trouble and outputted staying.

The reason FDT differs from CDT is that the output of one’s decision algorithm is causally
(or explanatorily) upstream from the decision itself. In effect, the output of the agent’s algorithm
is a “common cause” of both the agent’s decision and the predictor’s prediction, who, we might
suppose, has some reliable indicator of how their decision algorithm behaves.

By contrast, in Smoking Lesion, FDT agrees with CDT that you should smoke. One’s
decision algorithm does not cause/explain the presence of the relevant brain lesion from birth.
Thus, regardless of what your decision algorithm were to recommend, the chance that you would
have the lesion remains the same, and so, you might as well smoke.

Advocates of FDT defend these verdicts: you should one-box in Newcomb, smoke in Smoking
Lesion, and stay in Damascus in Death in Damascus. Again, while there is substantial debate
over this point, for the sake of discussion, I’m granting advocates these verdicts are indeed the
correct ones. Still, FDT faces two main problems.

The first major problem is there are cases where FDT yields highly counterintuitive verdicts.
Consider Transparent Newcomb, which is exactly like Newcomb except both boxes are transparent:
you can see clearly that one box contains $1M while the other contains $1K. Intuitively, in this
case, you should take both boxes—otherwise, you’re leaving money on the table! Indeed, in
this case, both EDT and CDT recommend two-boxing, as your action is both evidentially and
causally independent of the contents of the box.

By contrast, FDT still recommends one-boxing in Transparent Newcomb. Even though you
can clearly see $1M inside, FDT says that doesn’t matter: what matters is what would likely
be inside were your decision algorithm to output such-and-such. If your decision algorithm
were to output two-boxing, the predictor would very likely have predicted this and put $0 in
that box. If your decision algorithm were to output one-box, the predictor would very likely
have predicted this and put $1M in that box. So it would be better if your decision algorithm
outputted one-boxing. Thus, according to FDT, you should one-box.

3For certain purposes, we may want a more fine-grained notion of algorithm on which multiple algorithms may
produce the same input-output pairs. I’ll set this complication aside.
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Whether examples like this ultimately undermine FDT is a matter of debate. Yudkowsky
and Soares (2018) argue that one-boxing in Transparent Newcomb is the correct result. By
contrast, Schwarz (2018) and MacAskill (2019) both present variants of Transparent Newcomb
that make the counterintuitiveness more pressing. For lack of space, I set aside concerns about
whether FDT makes the intuitively correct verdicts in these cases for another time.

The second major problem for FDT, which is the one I take up here, is its reliance on
counterpossibles. FDT’s calculation of expected utility requires imaging on a mathematically
impossible proposition, viz., that a certain mathematical function δ, given certain inputs,
yields different outputs than it actually yields. Yet, by Yudkowsky and Soares’s (2018) and
Levinstein and Soares’s (2020) own admissions, we do not have a “full” or “satisfactory” theory
of counterpossibles. Yudkowsky and Soares (2018) describe it as “the main drawback of FDT
relative to CDT”. Similarly, Levinstein and Soares (2020) admit that “for FDT to be successful,
a more worked out theory [of counterpossibles] is necessary”. Critics likewise see this as a major
issue for the view (Schwarz 2018; MacAskill 2019).

The problem rests on two premises: (1) FDT requires agents to evaluate the probability
of counterpossibles; and (2) we have no “full” or “satisfactory” account of counterpossibles. I
will challenge each premise and, in so doing, argue the problem is at least solvable, though it
remains to be seen which of the solutions on the table are most appealing.

4 Are counterpossibles necessary for FDT?
Why think FDT requires counterpossibles? The idea is this. Let δ be the function representing
the agent’s decision algorithm. Whether δ maximizes its value on an input a i.e., whether
argmaxxδp∆, xq “ a, is a mathematical fact. Mathematical facts are not contingent. So the
claim ‘argmaxxδp∆, xq “ a’, if false, is mathematically impossible.

Note, however, when we say “Let δ be the function. . . ”, we’re treating ‘δ’ as a rigid designator,
denoting a fixed mathematical function that represents the algorithm that the agent actually
employs. This is how Yudkowsky and Soares (2018) and Levinstein and Soares (2020) formulate
FDT. But if we instead treat ‘δ’ as a non-rigid designator, so that, for each world w where the
agent exists, ‘δ’ denotes the function representing the agent’s algorithm at w, ‘argmaxxδpxq “ a’
becomes a contingent statement since agents may employ different algorithms at different worlds.
In other words, if ‘the agent’s decision algorithm’ is interpreted de dicto (rather than de re) in
the relevant counterfactual, it isn’t a counterpossible.

Arguably, the de dicto interpretation is enough to make the predictions its advocates want it
to make (cf. Schwarz 2018): it still predicts you should one-box in Newcomb, smoke in Smoking
Lesion, and stay home in Death in Damascus. Moreover, the de re interpretation does not seem
relevant for most agents in most contexts. Most agents do not have introspective access to their
own decision-making process (if only!): they are uncertain regarding which decision algorithm
they do employ or would employ. Reasoning about what would happen if (per impossibile) a
certain function f had yielded different outputs is only relevant if the agent is certain that f
represents their decision-making process. If an agent doesn’t know which function represents
their decision algorithm, this uncertainty will need to be reflected in how they calculate expected
utility, which is what the de dicto (but not the de re) interpretation does.

More precisely, let δ̂ be a non-rigid term denoting, at each world w, the decision algorithm
the agent uses at w. Let δ be a rigid term denoting the decision algorithm the agent actually
uses. The de re interpretation of FDT for a decision situation ∆ seems to assume the following:4

Counterfactual Robustness:
P pδ̂ “ δ || argmaxxδ̂p∆, xq “ aq “ P pδ̂ “ δ || argmaxxδp∆, xq “ aq “ 1

4This violates the Strangeness of Impossibility Condition from Nolan 1997; see Kocurek 2021a for discussion.
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The de dicto and de re interpretations collapse given Counterfactual Robustness together with
modest assumptions.5 But in most contexts, human agents do not obey this principle.

This severely limits the force of the problem of counterpossibles, but it does not eliminate it.
For one, there may be limited circumstances where Counterfactual Robustness is correct even
for rational human agents. Perhaps a human agent learns what their decision algorithm is after
years of therapy or after a series of invasive brain scans. Or perhaps a decision theorist becomes
so convinced of the arguments for a certain decision theory that they become certain they would
employ that theory regardless of its outputs. Moreover, the initial motivation for developing FDT
was to develop a decision theory for artificial agents, who may have access to their own source
code (Soares and Fallenstein 2015). For such agents, Counterfactual Robustness may be more a
reasonable assumption. Indeed, advocates of FDT often talk not about what an agent’s decision
algorithm recommends, but what FDT itself recommends, suggesting they have in mind agents
who know their decision algorithm is FDT. So, Counterfactual Robustness may be appropriate
in special applications. In that case, advocates of FDT have to tackle counterpossibles head on.

5 Are counterpossibles problematic?

Even if we formulate FDT so as to require counterpossibles, this isn’t necessarily problematic.
There are many accounts of counterpossibles in the literature (see Kocurek 2021a for overview),
including: similarity accounts that extend the classic ordering semantics with impossible worlds
(Nolan 1997; Krakauer 2012; Brogaard and Salerno 2013; Kment 2014; Berto et al. 2018); ground-
ing accounts that extend the causal modeling framework with noncontingent nodes (Schaffer
2016; Wilson 2018; Baron, Colyvan, and Ripley 2020; Khoo 2022); and counterconventional ac-
counts that simulate counterpossible reasoning without direct appeal to “worldly” impossibilities
(Kocurek and Jerzak 2021; Kocurek 2019, 2021b). Still, there are two related problems that
might lead one to think none of these accounts is satisfactory for current purposes.

First, for the expected utility calculation to work in FDT, the probability function imaged
on argmaxxδp∆, xq “ a must still be a probability function. But Schwarz (2018) raises the
worry that imaging on the impossible could lead to violations of the Kolmogorov axioms. For
example, these axioms entail that P pA ^ Bq ď P pAq. So if P pA ^ ␣A || A ^ ␣Aq “ 1, then
P pA ||A^␣Aq “ P p␣A ||A^␣Aq “ 1. But this violates another implication of the Kolmogorov
axioms: P p␣Aq “ 1 ´ P pAq. More generally, the Kolmogorov axioms assume the logical
connectives ␣, ^, and so on are interpreted classically: ␣A is true at w iff A is not true at w,
A^B is true at w iff A and B are both true at w, and so on. Yet at logically impossible worlds,
these assumptions can fail: there can be worlds where both ␣A and A are true (or both false),
worlds where A^B is true and yet A and/or B are false, and so on.

Second, as Yudkowsky and Soares (2018) note, while there are methods for discovering
causal structure (Pearl 2000), we have no such thing for counterpossible dependencies. How
is an agent to assign rational credences to counterpossibles? Arguably, there is no universal
similarity ordering, grounding graph, etc. that works in every case and we should instead focus
on developing ones tailored to specific applications. We may even have artificial agents learn,
via standard machine learning techniques, which ordering, graphs, etc. are most effective at
maximizing utility in a range of typical scenarios. Still, it would be more satisfactory to have a
story regarding how agents should assess the probability of a counterpossible.

5Here are the modest assumptions: First, P p¨ ||Aq is a probability function (see section 5). Second, P pA ||Aq “ 1
(success). Third, P pA || Bq “ P pB || Aq “ 1 implies P pC || Aq “ P pC || Bq (replacement of counterfactually
equivalent antecedents). Finally, perhaps redundantly, P pa “ b || Aq “ 1 implies P pϕpaq || Aq “ P pϕpbq || Aq

(substitution of counterfactual identicals; this may or may not follow from the first assumption, depending on how
its formulated). I don’t claim these assumptions hold universally (e.g., if the antecedents express the failures of
these very rules), but they seem plausible in this context.
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To solve the first problem, we need to clarify how we’re interpreting logical operators used in
probability statements. Suppose we want to characterize the credences of an intuitionistic logician.
When we write ‘P p␣Aq’, what does ‘␣’ refer to? According to an object-level interpretation, ‘␣’
refers to an operation the agent uses in their own thought, e.g., intuitionistic negation. According
to a meta-level interpretation, ‘␣’ refers to an operation the theorist uses in the metalanguage,
viz., classical negation. The problem arises from conflating these two interpretations. When
we, as theorists, state the Kolmogorov axioms, we adopt a meta-level interpretation, where the
connectives are interpreted as the theorist interprets them in their (meta)language. By contrast,
when discussing logically deviant or logically uncertain agents, we often want to represent
their credal state from their perspective, in their language, and thus adopt an object-level
interpretation, where the connectives stand for the representations agents themselves use.

One way to avoid this confusion is to introduce a different set of symbols for operators with
different interpretations. For example, we may use ´, X, Y, and so on, for classically rigid
connectives, which are always interpreted according to the (classical) metalanguage even under
the scope of a counterpossible supposition. We may then reserve ␣, ^, _, and so on for the
operations that the agent themselves use, which they may interpret nonclassically. This allows
us to simultaneously state the Kolmogorov axioms in the metalanguage while representing the
language the agent uses “from within”. For example, for intuitionistic agents, P pAY´Aq “ 1
even if P pA _ ␣Aq ‰ 1. And P p´Aq “ 1 ´ P pAq even if P p␣Aq ‰ 1 ´ P pAq.6 Thus, even if
an agent images on a classically impossible proposition, the result can still be a probability
function. For example, P ˚p¨q B P p¨ ||A^␣Aq can still satisfy the Kolmogorov axioms stated in
the classical metalanguage (e.g., while P ˚pA^␣Aq “ 1, still P ˚pAX´Aq “ 0).

This resolution to the first problem helps resolve the second. When representing agents
entertaining counterpossible suppositions, it seems most appropriate to use the object-level
operators that they use to represent those impossibilities. In that case, we can understand their
counterpossible suppositional reasoning as a kind of shift in the interpretation of the terms they
use to state those suppositions. This is effectively the expressivist approach to counterlogicals
adopted by Kocurek and Jerzak (2021) and Kocurek (2021b). Indeed, Kocurek and Jerzak (2021)
show that this approach can represent the same hyperintensional phenomena as the standard
impossible worlds approach: both approaches generate the same hyperintensional logic over the
propositional counterfactual language (though they diverge in more powerful languages; see
Kocurek 2021b). By allowing re-interpretation of the object-language terms, it is thus possible
to simulate all counterpossible reasoning without appealing to impossible worlds.

At the same time, interpretation-shifting illuminates why certain counterpossibles are true
and also how we may be able to know which counterpossible dependencies hold: our ability to
know counterpossibles stems from our general ability to consider and reason about alternative
interpretations. This approach therefore offers a general method for establishing counterpossible
dependencies via the manipulation of interpretations. How is an agent to determine whether
a counterpossible holds? By exploring alternative interpretation-world pairings that make the
antecedent true and evaluating whether the consequent is true at those pairs.

Of course, this is not a complete theory of counterpossibles. The space of possible interpreta-
tions is vast. Yet agents only select a small set of reasonable alternative interpretations when
engaged in counterpossible reasoning. What counts as a “reasonable” alternative interpretation
pair will be a context-sensitive matter: not anything goes. So, in a sense, the problem of
counterpossible lingers. But this approach at least offers a method via which we can start to
address some of the thorny questions surrounding context-resolution that would help settle how
to uncover counterpossible dependencies in a more objective manner.7

6It is possible to mix meta-level and object-level connectives in a rigorous and formally consistent manner, as
in hyperlogic (Kocurek 2019, 2021, 2024a, 2024b).

7Thanks to Alan Hájek, Ethan Jerzak, Rachel Rudolph, and the audience members at the Dartmouth Summer
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