The Logic of Hyperlogic

Part A: Foundations

Alexander W. Kocurek Supplemental Document

This supplement to Part A of “The Logic of Hyperlogic” provides axiomatic
derivations of the theorems and derivable rules from Tables A3-A4 and
Table A7.1

All conventions adopted in Part A still apply. Some further conventions:
First, I assume newly introduced variables are chosen so as to not occur
anywhere in the relevant formulas. Second, once RE is derived, I generally
suppress mention of it. Finally, if I cite multiple axioms/rules on one
line, they are applied in the order they're written. (Common combinations
include Gen| + Idle; + Vac; and Geng + Red + Ref.)

Derivations in H

Tables S1-52 include the theorems and derivable rules from Tables A3-A4
as well as “auxiliary” theorems and rules that are useful for deriving them.
Note: the derivations in what follows are not presented in the order of the
theorems and rules as they appear in these tables (the order of their deriva-
tion is not the most natural way to organize them). It is most convenient to
derive the theorems and derivable rules from Table S2 before deriving those
in Table S1.

H, (theorems and derivable rules)
Theorems
Distg teclt (@ % ¢ *@ )
tecl(@(poy)—(@¢o@y))
Clintro %@, ¢ 4 @ *@, ¢
(@¢o@y) 1 @i(@ ¢ o@ )
Bool * ¢ - ¥ P
(¢ ®9) - (BOp)
(¢ =¥) 40P < ¥)

1A version of this document was included in the original submission sent to RSL. It was
requested that it not be included in the published version due to length considerations.




Rigid =01
“@rxkHO"@x
|tly = Olely
Rep lth 0@ ¢ < @y) 0@ * <@ i)
. 0@¢—@d) i@y —ey)r-o@(poy)—ald oy))
Derivable Rules
RK if(Pl,...,¢nF¢,th€n|:|¢1,...,|:|¢nFDI,D
U2C+ ifcl,p1,..., ¢ -y, thenpq,...,¢n - ¢
Gen, iflily,i,¢1,...,pn — ¢, then | i.p1,..., L i.py - |10

Table S1: Some useful theorems and derivable rules for - in H

H_ (theorems and derivable rules)
Theorems

S5 I- ¢ where ¢ is a substitution instance of an S5-theorem whose con-
nectives are replaced with their rigidly classical counterparts

Subsetg @ Kk, @« P - @, ¢

Intro_ @ x, x| - (1 =x)
Introg Llth, ¢ F@ ¢
DAg ltly, @ }i.¢ IF @, ¢[t/i] where ¢ is free for i in ¢
ltl;, @ ¢[/i] I @, | i.¢p where (s free for i in ¢
DA, Vi lj.¢ - |i.¢[i/j] where i is free for j in ¢
VE, Vi.¢ Hl- | j.¢[j/i] where j is free for i in ¢ and j is not free in | i.¢»
Distg thF@*x¢=%x@, ¢

lth Fe(oey)=(@de@ty)
Dist, Liik ¢ - *|i¢

li(p @) Hi-(li.p®|iy)
Dist; @ Mo -i-We ¢

@(p&Y) - (@ ¢ &@ )
VDista @x(@, ¢ ® ) I (@, ¢ ® @, V)
Introe ¢, ¢ I (¢ &)
Elimg, (d&Y)IFpand (P& Y) IF Y
Bool @clli-@*x¢o=@ %

@, cl I+ @l((P o Hb) = @L((P L4 4})
Rigid @xl-m@x

LMt

|ty - W efy




Derivable Rules

C2U+ ifP1,...,¢n -1, then@c @1, ..., @ Pn IF @1 Y
Ded O, G, QY it Pr,...,Pu - P DY

Nec if - ¢, then - B ¢

Gen,, if ¢1,...,¢n,i € L |- @ where i is not free in ¢1, ..., Py, or ¥, then
qbl/"'/(i)n ”_ @LIP

RE if 4 ¢', then 1 —I- ¢’ where 1)’ is the result of replacing some

occurrences of ¢ with ¢’ in ¢

Table S2: Some useful theorems and derivable rules for |- in H

Derivations for Table S2

C2U+:

$1,- Pu Y premise
cl,p1,...,Qon - C2U
@c1cl,@c1 P1, ..., @1 Pn @1 Geng
@l D1y, @ P @1 Ref.

Subsetg:

K/@K(p ”_ (P
@x,@@oI-@ ¢
@K@ ¢I-@ ¢

Introg:

@.i,@ ¢ @ ¢
11.@1,0 IF@ ¢

L@ i@, ¢ @ ¢
Ll ¢ k@ ¢

Introg,:

@io,@Y+ (@¢ @)

Ehm@
Gen@
Red.

Subsetq

Gen|, Idle, Vac|
Elimg

def. of |tl;.

S5

@ P,@ Y I-@u(@ P @) C2U+, Red
O, Y I-1i.@(@ P A@i1) Gen,, Idle,

PP I-d&yY

def. of &.




Elimg,: similar to Introg.
DAg: Ijust prove the first direction, since the other is similar.

lth,LilF@ i Introg

lily, 0,01 @t Introg

ltly, ¢ iy, i, pl-i=1 Introg

el iy, 1, ¢ I o[e/i] Subld
[tly, 0, i I ¢[/i] Gen|, Vac,

ith, @ |i.¢ @ ¢[i/i] Geng, Red, Ref.

Ded: LetI' :={y1,...,vs}and let@; I = {@; y1,..., @ yn}.
Left-to-right:

Loy
@l,@¢I-F@y Geng
@l ,edr@ u2C
@@ I'I-@q(@ ¢ — @) C2U+
@l'l-@q(@ ¢ — @) Red
[-li@i(@ ¢ — @) Gen|, Idle;
F'¢poy def. of o.
Right-to-Left:
r'-¢>¢y premise
T li@q(@¢— @) def. of ©
@lrFeli@(@¢—@y) Geng
lil; ;@ IF@ @(@ ¢ — @) DAg
lil;, @i T IF @(@ ¢ — @i ) Red
il;, @ T+ @u(@ ¢ — @) u2C
il,,@T+ (@ ¢ — @) Cl, Elimg
lil;, @, @ ¢ @y C2U+, Red
IoI-vy Gen|, Idle;.
Nec:
- ¢ premise
- @; ¢ Geng



H@i u2C

FO@ ¢ Nec (for )
- @ O0@; ¢ C2U+
-li@;0@; ¢ Gen,

o8 _Jo) def. of W.

Geng: Assume first ¢ isn’t i.

G1,--, Pu, i ELIF@i Y premise
O1, .-, On, iy, @i L I-@; Y Introg,
@ P1,...,@ Py, lily, @i LI-F@i Geng, Red
li.@j¢1,...,li.@ ¢y, li.@itI-]i.@Y¢Y  Gen|
@ P1,..., @ Py, LI-Y Idle;, Vac,
@ P1,...,@ Pn I-@ Y Geng, Ref, Red
O, PnlF@ Y Gen|, Idle}, Vac;.

If ¢ is 7, then the proof is the following;:

Q1. , Pn,icil-@i 1 premise
@j¢1,...,@]‘¢n,’i‘1,@iill— @ Introg., Geng, Red
@j¢1,...,@j¢n,|i|1 - @; ¢ Ref
@jqb1,...,@]'qbn - Genl,Idlei,Vacl
@ P1,..., @ Py I- @i Y Geng, Red
P1,.., On @i Y Gen, Idle|, Vac,.
RE: By induction on the structure of ¢. The base cases are straight-

forward. The @- and |-cases follow from Geng and Gen;. For the
connectives, I'll just do the —-case. Observe that B ¢ |- ¢:

D@ ¢+~ @ ¢ S5
@ 0@ ¢ I-@; C2U+, Red
li.@ch@i(P H—(P Genl,ldlel
mo-¢ def. of W.

Now here’s the derivation of the —-case.

Y -y’ premise
-y =y Ded, Introg,



- Y=y Nec

- m(-y=-vY) Rep
F -y =-y T
=y HF Y Elimg,, Ded.

. S5: Let a € £9 be an S5-theorem. What we need to show is that |- a ™,
where ()" is defined recursively as follows:

+

pr=p
(ko) =li@i %@ a” (e, xa™)
(@0p)" =li.@u(@a"o@p’) (e, (a” ®ph)).

Our desired conclusion then follows from Lemma A3.2.2 The strategy
will be as follows. Let gq1,...,q, be the free propositional variables
in o, and let o' = a[@; q1/91,..., @i Gu/qn]). By S5 (for ), - a’. So
by C2U+ and Geny, I | i.@.; @'. We will show that a™ - | i.@. «'.
We'll do this in two steps. First, define (-)* recursively as follows:

pr=@ip
(% a)* =@ * @ a*
(@0 B)* =@u(@ a* o@;B*).

Below, we'll prove (1) a* —H~ a'. From this, |i.@. a* - |i.@.a’
follows by C2U+ and Gen,. So we'll also prove (2) at HI- | i.@q a*.
Thus, a® I~ | i. @ &/, as desired.

To establish (1), we proceed by induction. The base case is trivial
since p* = @; p = p’. I'll illustrate the inductive steps with the —-case.
Suppose a* —Hi- a’. Then ~a* 4 —a’ = (- a)’. Soitsuffices to show
that = a* 4+ (—ma)* = @y ~@; a*. By Red, a* 4 @; a* given how
a* is defined. So —~ a* - = @; a*. But now:

@ a* 4~ ~@; a” Bool
"= lj.@i @@ a* def. of ~
—H-lj. @1~ @i a* Red
—- @@ a* Vac;.

2 Note that while Lemma A3.2 does not hold in QH, we do still have the following: if -g ¢
and ¢ € L is free for p in ¢, then I-gu ¢[1/p]. In other words, so long as |- ¢ is derivable
in H, then I ¢[¢/p] is derivable in QH even if ) € £LRM. This ensures that the derivation of
S5 (for ) in H carries over to QH as well.



Hence, " a* - (—a)*.
To establish (2), we again proceed by induction. For the base case,
by Red and Idle:

li.@qp*=li@@p-- li.@p-+p,ie,pt.

Again, I'll just illustrate the inductive steps with the —-case. Suppose
li.@qa* 4 a®™. By Red, @ a* - a* HF @y a* given how a*
is defined. Now, (—ma)* = @ ~@;a* and (—a)t = |i.@ ~@;a™.
Thus:

li-@cl(ﬂ a)* - |i. @~ @; at Red
- li. @~ @ o @ a* HI- @ o
A i@ @ @ a Red
- li.@g—~@ili.@a* DAg, Gen,
- li.@i~@at IH
- (ma)*t def. of (—a)™.

Intro_: Observe first that @, «, |x|; I+ |t];:

@K,@ll-@i Subsetg
@x,|i.@ilFli@i Gen|, Vac,
@K@ li@cilF@li@1 Geng, Red
@K@ li.@illF@|i.@1i Subsetg
@ K, x| )y def. of |x|; and |l;.

Thus:

@K ,@cli@ i@ li.@i  Subsetg

@K@ i@l @@t DAg (since @, «, [y I+ cly)
@LK/@Kl«i-@Kin_ @KL Red
@K@ li.@cil(1=x) Introg,.
DA :
il F@ilj.o =@ oli/]] DAg, Ded
i,lily -1j.¢=a¢li/f] Ded, Introg, Elimg
Viilj.¢o - li.¢li/f] Ded, Gen;.

VE|: Immediate by DA | and Vac;.
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Distg: Here’s the %-case for illustration:

thF@*xp=@ @%@ ¢

It F@ *x =@ @ ¢

thiF@ *xp=@, %@ @ ¢
liiihFli@*xp=|i@*@ @ ¢

) IF@ *p=%k@ ¢

Dist|: Here’s the *-case for illustration:

likp - lilj@i*@¢
- i@ @ ¢
A li @%@ |i.d
- * | i.¢

Rigid (@, « |- B @, x):

@x-m@x
@Qxl-e@m@«x
@Kl@li@ e @x
@KIF@ili@ 0@«
@xl-@;0@ x
@rxlFesle@ @«
@xrxllie,0@ @«
@xi-m@x

Rigid (¢ I+ W 1):

@' -0@;t

@ill-F@0@;t
LFli.@qO@;t
LM

Rigid (|¢]; I- M ¢]y):

@i-m@i
@li@ilF@|im@i
@li@i+-meli@:i

[ely - Wy

DAg

Red

Red

Elimg, Ded, Gen, Introg
Vac|, def. of .

def. of %

DA,

DAg

VE|, def. of .

Rigid (for ), Bool
C2U+, Red

def. of B

Red

Vac, Red

Red

Gen, Vac

def. of W.

Rigid (for +-)
C2U+, Red
Gen|, Idle|
def. of W.

Rigid (above)
Gen|, Geng
Dist |, Distg
def. of |¢];.



Dist,, (with W): Right-to-left:

L@ G I Elimg
m,E@¢I-WP Nec, S5
L, R@ ¢ - Rigid (¢ I+ MW ¢)
@@ ¢-e@ o Geng, Ref
@lie 0@ ¢ @ mo  defof m
@li@O0@¢I-@mMp Red
@e0@¢ e o Vac|
@ 0@ ¢ -@MmMd  Red
@ 0@ @ ¢ -@mMp Red
lieql@e@¢I-@ Mo Geny, Vac,
e ¢+-@ Mo def. of B

Left-to-right: By Introg,, Rigid (@; ¢ - B@; ¢ and |i|; |- B |i|;), and S5,
®(ict)l-1€t Hence:

icL@a,mo-@mo

ie l,@[.¢ [+ .@z¢

®(ici),@mo-M@ ¢

Subsetg, Elimg,
Distg (since i € ¢ |- |i];)
®(ici)l-iet

@QEo-mMicio@¢p) S5
QMO -FM(ic D@ Q) S5
o MpicLI-@ ¢ S5
*Q W) I-@ ¢ Geng,
HéeQ N I-EB@ ¢ Nec, S5
@moI-m@ ¢ S5.
Distg (with &): Left-to-right:
P&YI-P Elimg
@ (¢ &) I-@ Geng
@(p&Y)IF@y similarly
@(P&Y)F@ ¢ &@ Introg,.

Right-to-left:

L,@L(P/@LHZ} ”—(P&Il}
@o&@vI-@ (&)

9

Elimg, Introg,
Geng, Ref, Red, Elimg,.



VDistg (with &): Left-to-right:

@@ o&yY)I-F@ ¢ Geng, Red
@ P&y Ik Elimg
@@ P &Y) IF@cy Geng
@@ d&Y)IF@ ¢ &@cp  Introg.
Right-to-left:
@, VI-@¢&y Introg

@[ ¢ & @7( ¢ ”_ @K(@L (P & l//) Gel’l@, Red, Ehm&

VDistg (with +): First, observe that ~ @, ¢ -I- @ ~ @, ¢:

~@¢-lierm@@ ¢ def. of ~
- @ ~ @, ¢ Red, Vac;
I @@~ @ ¢ Red
- @« li. @1~ @ ¢ Vac|, Geng
d-@cli.@;~@ @ ¢  Red, Gen|, Geng
H- @ ~ @, ¢ def. of ~.

With this, we can derive VDistg. Left-to-right:

@o+yY,~@ oIy
@K(@ld)—i_l;b)/@?('\’@[q) I+ @Kl,b

S5
Geng

@K(@qu—i_lp)“_'\’@KN@Lgb—i_@K#} S5

@(@¢+Y)F@d+@y
Right-to-left:

@oI-@ ¢+

@@ ¢ I-@(@ ¢+ 1)

@ ¢ @@ ¢+v)
ViF@ ¢+

@Y I-F@c(@ ¢+ 1)

@ ¢+@ P I-ac@ ¢ +1)

10

~@ ¢ HF @ ~@, ¢, 5.

Geng
Red
S5
Geng
S5.



. VDistg (with 2):3 Left-to-right:

@y (@L (P - I]D); @ @, (P IF @ l,b Gen@
@K (@[ ¢ o I,b) [+ @L ¢ D @K ED Red, Ded
Right-to-left:
@ ~@ (P I+ @K(@L ¢ - llb) Gen@
~@dlF@(@oPoyY) @~@d--~@ ¢
@ I,D I+ @K(@L (p - llb) Gen@
@oo@y-e(@¢p>oy) S5

. Bool (with =, A, and 0O): Ijust do the —-case to illustrate.

P~ Bool (for |-)
c,="¢pIF~0¢ C2U
@.cl,@, ¢ @~ap Geng
@cl,a~¢-@ ¢ similarly
@cli-@ o=@ ~¢ Ded, Introg..

. Bool (with v, —, and <&): I just do the <{-case to illustrate. First,
by S5 (for I), ® ¢ I ~M~¢. Second, by Nec, S5, and Rigid,
@, cl - @ ~ ¢ =@, ~ ¢ (and similarly for & and W). Thus:

H_@LOQDE@[N.N(P Gen@,Ded
@clr-reo®p=@ 079 Bool (with ~ and W), Rep
@, cl @, L g QD =@, & (P 85, C2U, Gen@.
Derivations for Table S1
. RK: standard.
. U2C+:
cl,p1,...,on - premise
c,p1,...,on U u2C

(P1/~~/¢n|—1,b ClL

8 This instance of VDistg isn't strictly needed for the proofs in Part A. Also, note that VDistg
does not hold with the converse of o: we don't have @« (¢ > @, ¢) HI- @« ¢ > @, ¢. (This
shouldn’t be surprising since @y acts like a universal quantifier.)

11



Geniz

lily, 1, Pn = premise
cllily, P1,. .., On - ¢ C2U
liccl, i1, ..., i.pn - iy Gen, (for I-)
cl,lipr, ..., i.pu - |1y Vac
Viipr, ..., lipy - iy U2C+.

Bool (with v, —, &, and =): Ijust do the <-case to illustrate.

ilily,@cl,@<¢ @ ®¢  Bool (for ), Ded

c, Op - e Gen, Idle|
SN o) Elimg, Ded, U2C+
L ZONSROX0) similarly.

Distg: I'll just do the O-case to illustrate. First observe:

HFB¢—0O¢ Bool
cli-mp=0¢ C2U, Ded, Introg
@cl-remo=@0¢ Elimg, Ded, Geng, Introg,
@cl-rol¢—@0¢ U2C, Bool.

Next observe:

lth Frem=m@ ¢ Distg for |-
i, @ mp—0O@ ¢  U2C, Bool.

Combining these together, we get our desired conclusion.
ClIntro: Ijust illustrate with —.

@ ¢ - ~@ ¢ Bool
—~ li.@cl_'@,‘@L(f) def. of ~
A= li@i~@ ¢ Red
@i~ @ ¢ Vac; .

Rigid: by Rigid (for I-) and Bool (and S5).
Rep: Ijust illustrate with —.

12



Ho=y)-B(~Pp=—1) Rep (for IF)
li.@u0@ilj. @@ ¢ @) li@0@lj.e:(@ @ ) def. of mand =
k kli, @ li@i0@ilj.@i(@ ¢ @) @li@0@lj @@ ¢ @ ~y) IntrogandElimg
k, k|, @ @ O@@(@ ¢ < @) IF @ @ 0@ @ (@~ ¢ < @) DAg
lkl;, @1 0@ (@ P — @) - @y O@c (@~ P — @ 1) Geng, Ref, Red
k|, @1 0@ (@ ¢ - @ Y) - @ O@ (@~ @ 1) U2C
kl;, 0@k ¢ < @) -O@ ¢ < @~ y) ClIntro.

Derivations in QH (Tables S3-54)

Tables S3-S4 contain the theorems and rules from Table A7 along with
auxiliary theorems and rules. We start by deriving Geny and RKy from
Table S3. Then we derive the theorems and rules in Table S4, followed by
the remaining ones in Table S3.

QH, (theorems and derivable rules)

Theorems

Dualy —“Vpo dA-3Ip—¢

VDists Ap(¢p A ) = (¢ A Ip ) where p does not occur free in ¢
Derivable Rules

Geny if - ¢, then - Vp ¢

RKy i 1, ..., dn 1, then¥p d1,...,Vp du - Vp 1

Table S3: Some useful theorems and derivable rules for - in QH

OH,_ (theorems and derivable rules)

Theorems

Ky Vp(¢2¢),Vp I-Vpy

Intros ¢[q/p] - 3p ¢ where g is free for p in ¢

Vacs Ip ¢ I- ¢ where p does not occur free in ¢

VDists p(¢p & P) HI- ¢ & Ip Y where p does not occur free in ¢

VEy Vp ¢ I Yq ¢[g/p] where g is free for p in ¢ and g does not occur
freein Vp ¢

NecEx E¢ - BE)
~E¢ I m~E¢

13



BF ¢ ®dppI-dp &
BFJ@r |l|1 /@Lglqu I HP @l(;Z)
BF, Vidpol-3plig

Derivable Rules
ifp1,...,¢n -, thenVppr,...,Yp Py IFVp

RKy

Table S4: Some useful theorems and derivable rules for |+ in QH

Geny (for |-):
¢

- @c1 ¢ C2U+

FVp@a¢  Geny (for )

@1 Vp ¢ BFg

-@qVpp  U2C

- Vp ¢ Cl, Elimg.

RKYy (for I-): by Geny (for ) and Ky.
CBF@

VpoI-¢
@@VpoI-@e@ ¢
@@VporH@ @ ¢

V@ @Vpo-Vp@ @ ¢
@@VporHVp@ @ ¢
@@Vpoh@Vp@ ¢
@@ VpdI-@Vp@,

@Vpol-Vp@ ¢

Kv (fOI‘ H—)Z

@i(poY),@¢-@y

@i (oY), @ ¢+ @y
Vp@i(p>y), Vp@id - Vp@iyp
@ Vp(p oY), @Vpo @ Vpy
@ Vp(p oY), @Vpo-@ Vpy

Vp(@=¢),Vpo I-Vpy
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Elimv
Geng

U2C

RKy (for )
Vacy, U2C
BFq

U2C+, Red
Gen|, Idle,.

Ded, Geng

u2C

RKYy (for )
CBFg, BFg, U2C
C2U+, Red
Gen|, Idle;.




RKYy (for I-): by Ded, Geny, and Ky (for IF).
RE: we extend the proof to quantifiers.

¢ -1
-¢=1 Ded, Introg
-Vpop=Vpi RKy
Vp o Hi-Vp ¢ Ded, Elimg,.

For 3, use RKy and Dualy.
Intros and Vacs: use Dualy.
VDists: standard.

VEvi

Vp ¢ I ¢lg/p] Elimy
Vgvp ¢ IEVglq/p]  RKy
Vp$IEVq¢lq/p]  Vacy.

NecEx: it suffices to establish the first form, since the second follows

using Nec and S5.
B(p=¢)I-IpmMp=9) Intros
Bp=¢)-rM3pM(p=09) Nec, S5
-(PEQb) +m3pm(p =) S5
Jpm(p=¢)I-FipmIpM(p=¢) RKy, Dualy
JpE(p=¢) -MIpW(p =) Vacs.
BF ¢ : standard.

+.
BF:

lt,@3po-~@ ~3p o Distg
lth,@3po-~@ Vp~¢o Dualy
lt,@3Ipd -~Vp@ ~¢  BFg

lt,@3ppI-Ip~@ ~¢ Dualy
lt,@3pdI-Ip@ ¢ Distg.

BF,: similar to BF.

Dualy: First, observe - Vp(~~—¢ > ¢) by Bool and Geny (for ).
Since Vp(~ ¢ D @) I Vp ~ = ¢ D Vp ¢ by Ky, it follows by U2C that

Vp~—¢ = Vp ¢. Similarly, Vp ¢ = Vp ~ —~ ¢. Thus:
~Vp~=¢p —4-3Ip~~—-¢  Dualy
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~Vp~=¢p —-3Ipo RE, U2C
Vp~2¢p —H-dp o Bool
Vpp HA-dp o Vp ¢ - Vp ~— 0.

VDists: standard.
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