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Alexander W. Kocurek Forthcoming in Review of Symbolic Logic
Abstract. Hyperlogic is a hyperintensional system designed to regiment metalogical
claims (e.g., “Intuitionistic logic is correct” or “The law of excluded middle holds”)
into the object language, including within embedded environments such as attitude
reports and counterfactuals. This paper is the first of a two-part series exploring the
logic of hyperlogic. This part presents a minimal logic of hyperlogic and proves its
completeness. It consists of two interdefined axiomatic systems: one for classical
consequence (truth preservation under a classical interpretation of the connectives)
and one for “universal” consequence (truth preservation under any interpretation).
The sequel to this paper explores stronger logics that are sound and complete over
various restricted classes of models as well as languages with hyperintensional
operators.

A1 Introduction
Philosophers of logic debate about metalogical claims like the following:

(1) Classic logic is correct.
(2) The law of excluded middle holds.
(3) Some contradiction entails everything.

Such metalogical claims can also felicitously occur in embedded environ-
ments. One illustration involves claims such as (4)–(6), which describe what
holds according to certain logics.

(4) According to intuitionistic logic, the law of excluded middle doesn’t
hold.

(5) In strong Kleene logic, nothing is valid.
(6) Everything that is intuitionistically valid is classically valid.

Other illustrations of the embeddability of metalogical claims come from
attitude verbs, conditionals, and modals:

*I am grateful to Harold Hodes, James Walsh, and three anonymous referees for their
helpful feedback.
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(7) Inej believes intuitionistic logic is correct.
(8) If intuitionistic logic were correct, excluded middle would fail.
(9) It might be that there are true contradictions.

Although such metalogical claims are loaded with theoretical terms whose
nature is philosophically contentious, these are all perfectly intelligible
claims of English. Given this, it is natural to investigate the semantic analy-
sis of such claims. To do this, we need to answer two questions. First, how
do we regiment metalogical claims into the object language so that they can
be assigned a compositional semantic value? Second, how do we assign
compositional semantic values to such regimentations?

Recently, Kocurek (2021b) has developed a hyperintensional system that
offers answers to both questions called hyperlogic. To regiment metalog-
ical claims, hyperlogic utilizes a combination of several different devices:
a multigrade entailment operator ▷; propositional quantifiers @𝑝 and D𝑝

(Fine, 1970) to regiment laws of logic; and terms and operators borrowed
from hybrid logic (Areces and ten Cate, 2006; Braüner, 2017), such as nom-
inals (𝑙1 , 𝑙2 , 𝑙3 , . . . ) to regiment claims about which logic is correct, and
operators @ to regiment “according to” claims. To illustrate, here is how we
could regiment (1)–(6) in hyperlogic.1

(1) Classic logic is correct.

𝑐𝑙

(2) The law of excluded middle holds.

@𝑝p▷p𝑝 _ ¬ 𝑝qq

(3) Some contradiction entails everything.

D𝑝 @𝑞pp𝑝 ^ ¬ 𝑝q▷ 𝑞q

(4) According to intuitionistic logic, the law of excluded middle doesn’t
hold.

@𝑖𝑙 ¬@𝑝p▷p𝑝 _ ¬ 𝑝qq

1 As Kocurek (2021b, fn. 9) points out, there are multiple regimentations of (4) depending on
how we interpret the ‘not’ in ‘does not hold’ (classically or intuitionistically). Fortunately,
hyperlogic can regiment both readings (see Definition A2.5 for expressing classical negation
in the scope of “according to” operators).
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(5) In strong Kleene logic, nothing is valid.

@𝑘3 ¬ D𝑝p▷ 𝑝q

(6) Everything that is intuitionistically valid is classically valid.

@𝑝p@𝑖𝑙p▷ 𝑝q Ñ @𝑐𝑙p▷ 𝑝qq

To assign compositional semantic values to metalogical claims, hyper-
logic introduces a shiftable convention parameter—a “hyperconvention”—
into points of evaluation. This parameter determines the interpretation of
the logical connectives (as well as▷).2 The semantic value of a formula is a
set of world-hyperconvention pairs. While metalogical claims may express
a trivial possible worlds proposition relative to a hyperconvention, they can
have nontrivial semantic values that hyperintensional environments can
exploit.

My aim in this paper is not to defend hyperlogic as a semantic theory
for metalogical claims. Rather, my aim is to address the following question:
given that hyperlogic is designed to reason about other logics, what, if
anything, can we say about logical consequence within hyperlogic itself? In
other words, what is the logic of hyperlogic?

At first, one might suspect the logic of hyperlogic is entirely uninterest-
ing. How much could be valid in a framework with the expressive resources
to talk about other logics? As it turns out, however, this initial impression
is mistaken. To show this, I present a sound and complete proof system
for hyperlogic. It involves two separate axiomatic systems that are recur-
sively defined in terms of one another, each representing different kinds of
consequence: one represents ordinary classical consequence (truth preser-
vation relative to a classical interpretation of the connectives) while the other
represents “universal” consequence (truth preservation relative to any in-
terpretation of the connectives). This dual proof system contains rules for
moving back and forth between these axiomatic systems. The result is an
elegant, tractable, and nontrivial logic for hyperlogic.

2 One could interpret this parameter as determining the Kaplanian character of the connec-
tives (Kaplan, 1977). Alternatively, one could interpret it as the content of the connectives
determined by their character given a particular conversational context. Officially, hyper-
logic is neutral on what determines the interpretation of the connectives on a particular
occasion of use. In particular, it is compatible with contextualist, relativist, expressivist,
and even objectivist views about the connectives. What hyperlogic requires is simply the
ability of hyperintensional operators to shift the hyperconvention parameter. To keep things
simple, we will set aside issues around context-sensitivity so that we don’t have to add the
context parameter to the index.
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There are several reasons independent of the semantics of metalogical
claims to be interested in the logic of hyperlogic. For one, the main seman-
tic innovation of hyperlogic, viz., to add a shiftable convention parameter
for interpreting the logical connectives, is behind several “conventional-
ist” approaches to hyperintensionality in the literature, which model hy-
perintensional environments as convention-shifting operators (cf. Muskens
1991; Williamson 2009; Locke 2019; Kocurek and Jerzak 2021; Muñoz 2020).3
This contrasts with approaches that introduce incomplete and/or inconsis-
tent states (impossible worlds, truthmakers, situations, etc.) into standard
possible worlds frameworks.4 Even if one thinks these conventionalist ap-
proaches are ultimately mistaken, one might still wonder how many hyper-
intensional phenomena can be explained in terms of it. Hyperlogic presents
an encouraging answer for conventionalists about hyperintensionality.

In addition, hyperlogic provides a simple logic for “according to”. For
example, the following sounds fine to say:

(10) Pluto is not a planet, but according to the folk definition of ‘planet’,
Pluto is a planet.

The phrase “according to the folk definition of ‘planet’” seems to, in some
sense, shift the interpretation of ‘planet’ mid-sentence so that the second
‘Pluto is a planet’ is interpreted via the folk definition of ‘planet’ (Kocurek
et al., 2020, p. 8). If so, it’s natural to ask how this operator works and what
logical principles govern it. As we’ll see, hyperlogic offers a simple yet
attractive answer to these questions.

Finally, hyperlogic may provide insight into the problem of logical om-
niscience. Stalnaker (1976a,b, 1984) famously analyzed the content of an
agent’s mental state as a set of possible worlds, viz., those at which what the
agent (actually) believes is true. While this view has its merits, it infamously

3 The idea that some operators could, in principle, shift conventions is due to Einheuser (2006).
See Kocurek et al. 2020 for further defense of this claim. There is some resemblance between
these “conventionalist” approaches to hyperintensionality and two-dimensional semantics
(Stalnaker, 1978; Davies and Humberstone, 1980; Einheuser, 2006). One could replace the
convention parameter with a world-as-actual parameter that determines the interpretation of
the logical connectives and achieve much of the same effect. However, tying the convention
parameter to the world-as-actual parameter has some undesirable consequences; e.g., we
may want to shift these parameters separately. Furthermore, it’s unlikely that the world-as-
actual will always determine a unique convention. See Kocurek and Jerzak 2021, fn. 18 for
discussion.

4 See, e.g., Mares 1997; Nolan 1997; Fine 2012; Krakauer 2012; Brogaard and Salerno 2013; Jago
2014; Kment 2014; Weiss 2017; Berto et al. 2018; Berto and Jago 2019; Priest 2018; Leitgeb
2019; French et al. 2020; Sedlár 2021. For overview, see Berto and Nolan 2021; Kocurek 2021a.
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predicts that agents’ beliefs are closed under logical entailment. There is a
vast disagreement in the literature over how to address this problem.5 Hy-
perlogic potentially provides a novel and attractive solution by analyzing
mental content in terms of sets of world-hyperconvention pairs instead of
sets of worlds. This new picture can validate certain modest closure princi-
ples without requiring beliefs be closed under classical consequence. It can
thus avoid at least certain forms of logical omniscience while preserving the
main features that initially motivated the Stalnakerian picture.

This paper is the first in a two-part series on the logic of hyperlogic.
Part A focuses on a very general system for hyperlogic, which places no
restrictions on the class of models. The logic of this system is fairly weak,
and therefore constitutes a kind of minimal hyperlogic upon which stronger
hyperlogics can be based. Part B explores stronger logics of this sort, as well
as the logic of hyperlogic enriched further with hyperintensional operators.

Here is an outline of what is to come in this part. In §A2, I give a brief
overview of the syntax and semantics of hyperlogic. In §A3, I present, and
prove the completeness of, a proof system for the fragment of hyperlogic
without propositional quantifiers. In §A4, I extend these results to the
language of hyperlogic with propositional quantifiers. I conclude in §A5.

A2 Hyperlogic: Syntax and Semantics
We start by reviewing the syntax, semantics, and consequence relation(s)
of hyperlogic as presented in Kocurek 2021b. In §A2.1, we introduce the
language of hyperlogic. In §A2.2, we clarify the notion of a hyperconvention
and use it to state a semantics for hyperlogic. In §A2.3, we identify two
notions of consequence in hyperlogic and explain their relation.

A2.1 Syntax

The language of hyperlogic is an extension of the language of standard
propositional modal logic. We start with an infinite stock of propositional
variables Prop “ t𝑝1 , 𝑝2 , 𝑝3 , . . .u, the usual boolean connectives (¬, ^, _,
Ñ), and modal operators (◻,◇). To reduce on clutter, we define p𝜙 Ø𝜓q as
pp𝜙 Ñ𝜓q ^ p𝜓 Ñ 𝜙qq rather than treat Ø as a primitive connective. Nothing
in what follows would substantively change if we primitively introduced Ø

(or other sentential connectives) into our language.

5 For discussion, see Soames 1987, 2008; Berto 2010; Ripley 2012; Bjerring 2013; Jago 2015;
Bjerring and Schwarz 2017; Yalcin 2018; Bjerring and Skipper 2019; Hawke et al. 2019;
Skipper and Bjerring 2020; Elga and Rayo 2021.
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Definition A2.1 (Base Language ℒ0).

𝜙F 𝑝 | ¬𝜙 | p𝜙 ^ 𝜙q | p𝜙 _ 𝜙q | p𝜙 Ñ 𝜙q | ◻𝜙 | ◇𝜙.

The full language of hyperlogic extends ℒ0 in three ways. I will introduce
each extension separately so that fragments of the full language can be
studied independently.

First, hyperlogic adds an “entailment” operator▷, where p𝜙1 , . . . , 𝜙𝑛 ▷

𝜓q represents the claim that 𝜙1 , . . . , 𝜙𝑛 (in that order) entail𝜓. This operator
is left-multigrade, meaning it can take any finite number (possibly zero) of
arguments on the left. We could make ▷ right-multigrade as well (e.g.,
to represent multiple-conclusion logics) without substantively affecting the
results presented in what follows. But for notational ease, we assume a fixed
arity of 1 on the right.

Definition A2.2 (Entailment Language ℒE).

𝜙F 𝑝 | ¬𝜙 | p𝜙 ^ 𝜙q | p𝜙 _ 𝜙q | p𝜙 Ñ 𝜙q | ◻𝜙 | ◇𝜙 | p𝜙, . . . , 𝜙 ▷ 𝜙q.

Second, hyperlogic adds propositional quantifiers @𝑝 and D𝑝 that bind
into sentence position (Fine, 1970). When combined with the entailment
operator, we can regiment laws of logic as universal entailment claims.
For instance, we can regiment the law of double negation elimination as
@𝑝p¬¬ 𝑝 ▷ 𝑝q.

Definition A2.3 (Quantified Language ℒQ).

𝜙F 𝑝 | ¬𝜙 | p𝜙 ^ 𝜙q | p𝜙 _ 𝜙q | p𝜙 Ñ 𝜙q | ◻𝜙 | ◇𝜙 | @𝑝 𝜙 | D𝑝 𝜙.

Finally, hyperlogic adds operators similar to those found in hybrid
logic. Hybrid logic extends propositional modal logic with (i) state terms
𝜎1 , 𝜎2 , 𝜎3 , . . . (including state variables and state “nominals”, i.e., constants),
which double as terms denoting worlds and as atomic formulas that hold
at their denotation; (ii) for each state term 𝜎, an “according to” operator @𝜎,
which resets the world of evaluation to the world denoted by 𝜎; and (iii) for
each state variable 𝑠, a binding operator Ó 𝑠, which reassigns the denotation
of 𝑠 to the current world of evaluation (Areces and ten Cate, 2006; Braüner,
2017). Informally, we can read 𝑠 as “𝑠 is actual”, @𝑠 as “according to 𝑠,. . . ”,
and Ó 𝑠 as “where 𝑠 is the current world,. . . ”.
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Instead of hybrid operators for worlds, hyperlogic introduces hybrid
operators for interpretations of the base language, including the logical
connectives. Thus, it introduces an infinite stock of interpretation variables
IVar “ t𝑖1 , 𝑖2 , 𝑖3 , . . .u and interpretation nominals INom “ t𝑙1 , 𝑙2 , 𝑙3 , . . .u. We
single out a designated nominal 𝑐𝑙 to stand for a classical (S5) interpretation
of the connectives. An interpretation term is a member of ITerm B IVar Y

INom. We use 𝜄, 𝜅, λ, etc. as metavariables over interpretation terms.

Definition A2.4 (Hybrid Language ℒH).

𝜙F 𝑝 | 𝜄 | ¬𝜙 | p𝜙 ^ 𝜙q | p𝜙 _ 𝜙q | p𝜙 Ñ 𝜙q | ◻𝜙 | ◇𝜙 | @𝜄 𝜙 | Ó 𝑖.𝜙.

Informally, we can read 𝜄 as “𝜄 is correct”, @𝜄 as “according to 𝜄,. . . ”, and Ó 𝑖

as “where 𝑖 is the current interpretation,. . . ”.
The binder Ó allows us to define the following as abbreviations for the

connectives under their classical interpretation.

Definition A2.5 (Rigidly Classical Connectives). Where 𝑖 is not in
𝜙 or 𝜓:

„ 𝜙 B Ó 𝑖.@𝑐𝑙 ¬@𝑖 𝜙 p𝜙 & 𝜓q B Ó 𝑖.@𝑐𝑙p@𝑖 𝜙 ^ @𝑖 𝜓q

∎𝜙 B Ó 𝑖.@𝑐𝑙 ◻@𝑖 𝜙 p𝜙 ` 𝜓q B Ó 𝑖.@𝑐𝑙p@𝑖 𝜙 _ @𝑖 𝜓q

◆𝜙 B Ó 𝑖.@𝑐𝑙◇@𝑖 𝜙 p𝜙 Ą 𝜓q B Ó 𝑖.@𝑐𝑙p@𝑖 𝜙 Ñ @𝑖 𝜓q

K B p𝑝 & „ 𝑝q p𝜙 ” 𝜓q B pp𝜙 Ą 𝜓q & p𝜓 Ą 𝜙qq.

These “connectives” are interpreted classically even at nonclassical inter-
pretations and even within the scope of “according to” operators. We will
make extensive use of these rigidly classical connectives throughout, as it is
in large part thanks to them that hyperlogic has a nontrivial logic.

These three extensions can be freely combined: ℒQE is the quantified
entailment language, ℒQH is the quantified hybrid language, and ℒHE is the
hybrid entailment language. For convenience, we define the full language
of hyperlogic as ℋ B ℒQHE.

Definition A2.6 (Substitution). We adopt the usual notions of “free”
and “bound” variables (where 𝑖 is bound by Ó 𝑖 and 𝑝 is bound by
@𝑝 and D𝑝). We say 𝜄2 is free for 𝜄1 in 𝜙 if no free occurrence of 𝜄1 in
𝜙 is in the scope of Ó 𝜄2. In that case, we write 𝜙r𝜄2{𝜄1s for the result
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of replacing every free occurrence of 𝜄1 in 𝜙 with 𝜄2. Similarly, 𝜓 is
free for 𝑝 in 𝜙 if no free occurrence of 𝑝 in 𝜙 is in the scope of @𝑞

or D𝑞 where 𝑞 occurs free in 𝜓, or a binder Ó 𝑖 where 𝑖 occurs free in
𝜓. If 𝜓 is free for 𝑝 in 𝜙, we write 𝜙r𝜓{𝑝s for the result of replacing
every free occurrence of 𝑝 in 𝜙 with 𝜓. Simultaneous substitution
𝜙r𝜓1{𝑝1 , . . . ,𝜓𝑛{𝑝𝑛s is defined likewise.

A2.2 Semantics

The main semantic innovation behind hyperlogic is to relativize truth to
a “hyperconvention”, i.e., a maximally specific interpretation of the base
language. More precisely, a hyperconvention specifies a space of (coarse-
grained) possible worlds propositions, assigns each propositional variable
to a possible worlds proposition in the space, and assigns each connective
in ℒ0 (or ℒE) to an operation on propositions, i.e., a function from some
proposition(s) to a proposition.6

Definition A2.7 (Hyperconvention). Let 𝑊 ‰ H and 𝜋 Ď ℘𝑊 . A
𝜋-hyperconvention for ℒ0 (over 𝑊) is a function 𝑐 with domain
t¬,◻,◇,^,_,Ñu Y Prop such that:

(i) 𝑐p𝑝q P 𝜋 for all 𝑝 P Prop
(ii) 𝑐p△q : 𝜋𝑛 Ñ 𝜋 for each 𝑛-ary operator△ P t¬,◻,◇,^,_,Ñu.

A𝜋-hyperconvention for ℒE (over𝑊) adds▷ to the domain, where:

(iii) 𝑐p▷q : 𝜋ă𝜔 ˆ 𝜋 Ñ 𝜋.

We call 𝜋 the proposition space for 𝑐. We write 𝜋𝑐 for the 𝜋 that
𝑐 is defined over and △𝑐 (with infix notation) for 𝑐p△q. A hyper-
convention for ℒ (over 𝑊) is a 𝜋-hyperconvention for ℒ over 𝑊 for
some 𝜋 Ď ℘𝑊 . We let ℍpℒq

𝑊
be the set of all hyperconventions for

ℒ over 𝑊 . Throughout, I use “hyperconvention” to mean “hyper-
convention for ℒE” if the language under discussion contains▷, and
“hyperconvention for ℒ0” otherwise.

6 Note that, in Definition A2.7, 𝜋𝑐 is unique; e.g., it’s the unique domain of 𝑐p¬q, which is a
total function.
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At the outset, we place no constraints on which operations can be assigned
to a connective by a hyperconvention. The task of exploring how things
change when we impose such constraints is taken up in Part B.

Just as a proposition is typically modeled as a set of worlds, a “conven-
tion” is modeled as a set of hyperconventions.

Definition A2.8 (Convention). An convention is a nonempty set of
hyperconventions. We let ℂpℒq

𝑊
be the set of conventions (for ℒ) over

𝑊 .

We can think of a logic as a special type of convention that only concerns
the interpretation of the connectives (and ▷, if present). Here, we need not
take a stand on what features of entailment are essential to logic: the hyper-
convention semantics can accommodate a range of views on this matter.

To define our models, we need to introduce the notions of an index and
an index proposition. In the hyperconvention semantics, truth is evaluated
relative to an index, i.e., a world-hyperconvention pair.

Definition A2.9 (Index). Given a set 𝐻 of hyperconventions over 𝑊 ,
an index over 𝐻 is a pair x𝑤, 𝑐y where 𝑤 P 𝑊 and 𝑐 P 𝐻. We let
𝕀
𝐻

“ 𝑊 ˆ 𝐻 be the set of indices over 𝐻.

As a formal semantics, hyperlogic is neutral on how to understand what
an index represents. Kocurek (2021b, p. 13682) interprets indices as worlds
“under descriptions”. On this picture, logic is not a feature of the world but
a feature of our representation of it (cf. Kocurek and Jerzak 2021). We could,
however, instead hold that logic is genuinely part of the world. In that case,
an index x𝑤, 𝑐y represents a (perhaps logically impossible) world, where the
𝑤 component determines all the nonsemantic facts while 𝑐 determines the
semantic facts.

Given this notion of an index, there are now three relevant notions of
“proposition” to consider. First, there’s the standard, coarse-grained notion
of a proposition as a set of worlds, which is what hyperconventions assign to
propositional variables, and operations on which they assign to connectives.
Call this the intension of a formula relative to a hyperconvention. Second,
there’s a fine-grained notion of a proposition as a set of indices, which is
the compositional semantic value of a formula. (Thus, semantic values are
more fine-grained than intensions.) Finally, there is an intermediate notion
of a “visible” index proposition, i.e., a function from hyperconventions to
intensions in their proposition space. More precisely:
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Definition A2.10 (Index Proposition). Given a set of hyperconven-
tions 𝐻 over 𝑊 , an index proposition over 𝐻 is a set of indices
𝐴 Ď 𝕀

𝐻
. Where 𝐴 Ď 𝕀

𝐻
, let 𝐴p𝑐q B t𝑤 P 𝑊 | x𝑤, 𝑐y P 𝐴u. An index

proposition 𝐴 is visible if 𝐴p𝑐q P 𝜋𝑐 for all 𝑐 P 𝐻. We let ℙ𝐻 be the set
of visible index propositions over 𝐻. We use 𝑋,𝑌, 𝑍, . . . for worlds
propositions and 𝑃, 𝑄, 𝑅, . . . for visible index propositions.

Since a propositional variable’s intension relative to a hyperconvention is
always a world proposition from that hyperconvention’s proposition space
(i.e., 𝑐p𝑝q P 𝜋𝑐), the (fine-grained) semantic value of a propositional variable
is always a visible index proposition. Propositional quantifiers, therefore,
range over over visible index propositions (see Kocurek 2021b, p. 13677).

We are now ready to define our models and semantics more explicitly.
A model in this semantics specifies (i) a set of states (or “worlds”), (ii) a
set of conventions for interpretation terms to denote, (iii) a set of (visible)
propositions for quantifiers to range over, and (iv) a valuation function.

Definition A2.11 (Hyperframes and Hypermodels). A hyperframe
is a triple of the form ℱ “ x𝑊, 𝐷ℂ , 𝐷ℙy, where:
• 𝑊 ‰ H is a state space
• 𝐷ℂ Ď ℂ

𝑊
is a convention domain; we define 𝐷ℍ B

Ť

𝐷ℂ to be
the hyperconvention domain (in other words, 𝐷ℍ is the set of
hyperconventions that appear somewhere in 𝐷ℂ)

• 𝐷ℙ Ď ℙ𝐷ℍ
is a proposition domain such that:

(i) for all 𝑝 P Prop, 𝑃𝑝 P 𝐷ℙ, where 𝑃𝑝p𝑐q “ 𝑐p𝑝q for all 𝑐 P 𝐷ℍ

(ii) for all 𝑐 P 𝐷ℍ and all 𝑋 P 𝜋𝑐 , there is a 𝑃 P 𝐷ℙ such that
𝑃p𝑐q “ 𝑋.

A valuation for ℱ is a mapping 𝑉 such that:

• 𝑉p𝑝q P 𝐷ℙ for each 𝑝 P Prop
• 𝑉p𝑙q P 𝐷ℂ for each 𝑙 P INom
• 𝑉p𝑖q P 𝐷ℂ Y tt𝑐u | 𝑐 P 𝐷ℍu for each 𝑖 P IVar.

A hypermodel based on ℱ is a tuple ℳ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉y where 𝑉

is a valuation for ℱ .

Following Kocurek (2021b), we only impose two minimal constraints
on proposition domains at the outset (Part B will explore others). These
minimal constraints effectively rule out distinct yet indiscernible hypercon-
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ventions (i.e., they ensure the soundness of PII in Table A6 in §A4.1). It
would be interesting to see how the logic of hyperlogic changes if we drop
those constraints. But I have yet to find a completeness proof that does
without them, so I leave that task aside.7

Definition A2.12 (Semantics). Where 𝑥 is a (propositional or inter-
pretation) variable and 𝑣 is a possible value for that variable, let
𝑉𝑥
𝑣 be the valuation like 𝑉 except that 𝑉𝑥

𝑣 p𝑥q “ 𝑣, and let ℳ𝑥
𝑣 be

x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉
𝑥
𝑣 y. Then:

ℳ , 𝑤, 𝑐 , 𝑝 ô 𝑤 P 𝑉p𝑝qp𝑐q ri.e., x𝑤, 𝑐y P 𝑉p𝑝qs

ℳ , 𝑤, 𝑐 , 𝜄 ô 𝑐 P 𝑉p𝜄q

ℳ , 𝑤, 𝑐 , △p𝜙1 , . . . , 𝜙𝑛q ô 𝑤 P 𝑐p△qpv𝜙1w
ℳ ,𝑐 , . . . , v𝜙𝑛w

ℳ ,𝑐
q

ℳ , 𝑤, 𝑐 , @𝑝 𝜙 ô for all 𝑃 P 𝐷ℙ: ℳ𝑝

𝑃
, 𝑤, 𝑐 , 𝜙

ℳ , 𝑤, 𝑐 , D𝑝 𝜙 ô for some 𝑃 P 𝐷ℙ: ℳ𝑝

𝑃
, 𝑤, 𝑐 , 𝜙

ℳ , 𝑤, 𝑐 , @𝜄 𝜙 ô for all 𝑐1 P 𝑉p𝜄q: ℳ , 𝑤, 𝑐1 , 𝜙

ℳ , 𝑤, 𝑐 , Ó 𝑖.𝜙 ô ℳ 𝑖
t𝑐u

, 𝑤, 𝑐 , 𝜙,

where△ P t¬,^,_,Ñ,◻,◇,▷u and v𝜙w
ℳ ,𝑐

“ t𝑣 P 𝑊 | ℳ , 𝑣, 𝑐 , 𝜙 u.
If Γ is a set of formulas, we write ℳ , 𝑤, 𝑐 , Γ to mean that ℳ , 𝑤, 𝑐 ,

𝛾 for all 𝛾 P Γ. When ℳ is clear from context, we drop mention of it.

Note, the righthand side of the semantic clause for△ should be read as
requiring that 𝑐p△qpv𝜙1w

ℳ ,𝑐 , . . . , v𝜙𝑛w
ℳ ,𝑐

q is defined, i.e., each v𝜙𝑖w
ℳ ,𝑐 is

in the proposition space of 𝑐. If v𝜙𝑖w
ℳ ,𝑐

R 𝜋𝑐 for some 𝜙𝑖 , then ℳ , 𝑤, 𝑐 .

△p𝜙1 , . . . , 𝜙𝑛q regardless of𝑤. In other words, if 𝑐p△qpv𝜙1w
ℳ ,𝑐 , . . . , v𝜙𝑛w

ℳ ,𝑐
q

is undefined, then v△p𝜙1 , . . . , 𝜙𝑛qw
ℳ ,𝑐

“ H (but still defined).
Also, following Kocurek (2021b), we interpret iterated @-operators as

redundant. Thus, @𝜄1 @𝜄2 𝜙 is equivalent to @𝜄2 𝜙. This is how such operators
standardly work in hybrid logic and it simplifies the semantics and logic
greatly. This equivalence could be questioned, though, and it would be
worth investigating a more general semantics where it doesn’t hold. Doing
so is beyond the scope of this paper, however.

7 Such constraints are necessary to validate certain plausible quantificational inferences. For
example, if we dropped constraint (ii), the inference from 𝑝 _ ¬ 𝑝 to D𝑞p𝑝 _ 𝑞q would fail
(even classically).
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A2 Hyperlogic: Syntax and Semantics

Which logics can be represented as a hyperconvention on this semantics?
Kocurek (2021b) proves a result that provides an answer to this question.8
Say a logic L over ℒ0 is a set of pairs of the form xx𝜙1 , . . . , 𝜙𝑛y ,𝜓y where
𝜙1 , . . . , 𝜙𝑛 ,𝜓 P ℒ0 (we allow the first element to be the empty tuple xy).
Intuitively, if xx𝜙1 , . . . , 𝜙𝑛y ,𝜓y P L, then 𝜙1 , . . . , 𝜙𝑛 , in that order, entail 𝜓
in L. Say a logic L is representable by a hyperconvention 𝑐 over 𝑊 if for
any hyperframe ℱ “ x𝑊, 𝐷ℂ , 𝐷ℙy where 𝑐 P 𝐷ℍ, there is a hypermodel
ℳ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉y based on ℱ such that:

vp𝜙1 , . . . , 𝜙𝑛q▷ 𝜓w
ℳ ,𝑐

“ t𝑤 P 𝑊 | xx𝜙1 , . . . , 𝜙𝑛y ,𝜓y P 𝐿u .

Proposition A2.13 (Representation). Any logic is representable by a
hyperconvention over 𝑊 given |𝑊 | ě ℵ0.

This means that so long as the state space of a hypermodel is sufficiently
large, one can represent any finitary logic over that state space. This includes
many of the familiar logics in the literature (intuitionistic logic, Kleene’s
logic, paraconsistent logics, quantum logic, etc.).9

A2.3 Consequence

There are two notions of consequence we can define in the hyperconven-
tion semantics. First, there is a classical notion of consequence, i.e., truth-
preservation relative to a classical interpretation of the connectives. Second,
there is a “universal” notion of consequence, i.e., consequence no matter
how we interpret the connectives.10

8 Proposition A2.13 is a modest strengthening of Kocurek’s result, which only states
that vp𝜙1 , . . . , 𝜙𝑛q▷ 𝜓w

ℳ ,𝑐
“ 𝑊 iff xx𝜙1 , . . . , 𝜙𝑛 ,𝜓yy P 𝐿 but doesn’t say that

vp𝜙1 , . . . , 𝜙𝑛q▷ 𝜓w
ℳ ,𝑐

“ H if xx𝜙1 , . . . , 𝜙𝑛 ,𝜓yy R 𝐿. The proof of Proposition A2.13 is
an easy generalization of the proof of the weaker result (see Kocurek 2022).

9 As an anonymous referee points out, this result excludes logics where the premises have
more structure than an ordered tuple (Belnap, 1982; Read, 1988; Slaney, 1990; Restall, 2000;
Logan, 2022) and logics characterized in terms of “hypersequents”, i.e., sequences of sequents
(Avron, 1996; Restall, 2006; Poggiolesi, 2008). It is an open question whether, and to what
extent, these logics could be included in the present framework by suitably generalizing the
syntax.

10 In principle, we could similarly define other nonclassical notions of consequence by in-
troducing more designated nominals (𝑖𝑙 for intuitionistic logic, 𝑘3 for strong Kleene logic,
etc.). In that case, we could define rigidly nonclassical connectives using these designated
nominals (e.g., ¬𝑖𝑙 𝜙 B Ó 𝑘.@𝑖𝑙 ¬@𝑘 𝜙 where 𝑘 isn’t in 𝜙). One complication, however,
is that many nonclassical logics violate structural laws (e.g., monotonicity, commutativity,

12



A2 Hyperlogic: Syntax and Semantics

To define these notions more precisely, we need to define the notion of a
“classical” interpretation of the connectives.11

Definition A2.14 (Classical Hyperconvention). Given a hyperframe
ℱ “ x𝑊, 𝐷ℂ , 𝐷ℙy, a hyperconvention 𝑐 P ℍ

𝑊
is classical for ℱ if:

(i) v𝜙w
ℳ ,𝑐

P 𝜋𝑐 for every 𝜙 P ℋ and every ℳ based on ℱ
(ii) for all 𝑋,𝑌 P 𝜋𝑐 :

¬𝑐 𝑋 “ 𝑋 𝑋 _𝑐 𝑌 “ 𝑋 Y 𝑌 ◻𝑐 𝑋 “ t𝑤 P 𝑊 | 𝑋 “ 𝑊 u

𝑋 ^𝑐 𝑌 “ 𝑋 X 𝑌 𝑋 Ñ𝑐 𝑌 “ 𝑋 Y 𝑌 ◇𝑐 𝑋 “ t𝑤 P 𝑊 | 𝑋 ‰ Hu

(iii) for all 𝑋1 , . . . , 𝑋𝑛 , 𝑌 P 𝜋𝑐 :

p𝑋1 , . . . , 𝑋𝑛 ▷𝑐 𝑌q B t𝑤 P 𝑊 | 𝑋1 X ¨ ¨ ¨ X 𝑋𝑛 Ď 𝑌 u .

A convention is classical for ℱ if all of its member are. A (hy-
per)convention is classical for ℳ if it’s classical for the hyperframe
ℳ is based on. Finally, ℳ is classical if 𝑉p𝑐𝑙q is classical for ℳ.

Note that classical hyperconventions interpret ◻ and◇ as universal S5
modals. I suspect that the proofs in §A3–§A4 can survive if only require
◻ and ◇ obey a normal modal logic, assuming we make corresponding
adjustments to the axioms (see fn. 16 for one possible strategy). But I won’t
take up this question here, as the proofs are already complex enough even
assuming ◻ and◇ are universal modals.

etc.). So in defining nonclassical notions of consequence, one must take care not to define
them as mere truth-preservation over hyperconventions in the denotation of the designated
nominals. Moreover, there are subtle issues implementing hybrid logic in a nonclassical
setting. For example, Braüner and de Paiva (2006) observe that there are multiple ways to
develop intuitionistic hybrid logic. Standefer (2020) makes a similar observation about rele-
vant logic. In fact, Standefer observes that the “naïve” way of adding an “actually” operator
(a close relative of hybrid operators) to Routley-Meyer semantics for relevant logic results
in violations of relevance; e.g., it would validate 𝑞 Ñ @p𝑝 Ñ 𝑝q, which “flagrantly violates
relevance intuitions” (p. 254). A similar observation would apply here: the “naïve” way of
developing relevant (Routley-Meyer) hyperlogic would validate 𝑞 Ñ @𝑐𝑙p𝑝 Ñ 𝑝q. So revising
the semantics of the hybrid operators to accommodate one’s preferred nonclassical logic
may require some work. (E.g., following Standefer, we might try introducing accessibility
relations for @𝑐𝑙 to avoid these violations of relevance.)

11 Note, Definition A2.14 differs from Kocurek’s definition in the addition of clause (i). We
need clause (i) to ensure classical hyperconventions satisfy substitution instances of clas-
sical theorems: e.g., if v@𝑙 𝑝w

𝑐
R 𝜋𝑐 , then v@𝑙 𝑝w

𝑐
_𝑐 ¬𝑐 v@𝑙 𝑝w

𝑐 is undefined and so
v@𝑙 𝑝 _ ¬@𝑙 𝑝w

𝑐
“ H. With that said, clause (i) does not mean the proposition space is

the full powerset ℘𝑊 (i.e., 𝜋𝑐 could be a proper boolean subalgebra of ℘𝑊).
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A2 Hyperlogic: Syntax and Semantics

It is straightforward to verify the following:

Proposition A2.15 (Classical Connectives). If ℳ is classical, then:

ℳ , 𝑤, 𝑐 , „ 𝜙 ô ℳ , 𝑤, 𝑐 . 𝜙

ℳ , 𝑤, 𝑐 , 𝜙 & 𝜓 ô ℳ , 𝑤, 𝑐 , 𝜙 and ℳ , 𝑤, 𝑐 , 𝜓

ℳ , 𝑤, 𝑐 , 𝜙 ` 𝜓 ô ℳ , 𝑤, 𝑐 , 𝜙 or ℳ , 𝑤, 𝑐 , 𝜓

ℳ , 𝑤, 𝑐 , 𝜙 Ą 𝜓 ô ℳ , 𝑤, 𝑐 , 𝜙 only if ℳ , 𝑤, 𝑐 , 𝜓

ℳ , 𝑤, 𝑐 , ∎𝜙 ô for all 𝑤1 P 𝑊 : ℳ , 𝑤1 , 𝑐 , 𝜙

ℳ , 𝑤, 𝑐 , ◆𝜙 ô for some 𝑤1 P 𝑊 : ℳ , 𝑤1 , 𝑐 , 𝜙.

Henceforth, I will only consider classical hypermodels: when I say ‘hyper-
model’, I always mean ‘classical hypermodel’.

Definition A2.16 (Consequence). Where Γ Ď ℋ and 𝜙 P ℋ :
• Γ classically entails 𝜙, written Γ ( 𝜙, if for any (classical) hy-

permodel ℳ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉y, any 𝑤 P 𝑊 , and any 𝑐 P 𝑉p𝑐𝑙q:

ℳ , 𝑤, 𝑐 , Γ ñ ℳ , 𝑤, 𝑐 , 𝜙.

• Γ universally entails 𝜙, written Γ

)𝜙, if for any (classical)
hypermodel ℳ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉y, any 𝑤 P 𝑊 , and any 𝑐 P 𝐷ℍ:

ℳ , 𝑤, 𝑐 , Γ ñ ℳ , 𝑤, 𝑐 , 𝜙.

Classical/universal validity, equivalence, etc. are defined likewise.

Kocurek (2021b, Theorem 8) proves the following:

Proposition A2.17 (Embedding Consequence). Let Γ Ď ℋ and 𝜙 P

ℋ . Where 𝑙 is an interpretation nominal, let @𝑙 Γ “ t@𝑙 𝛾 | 𝛾 P Γu.
(a) Assume 𝑙 (distinct from 𝑐𝑙) does not occur anywhere in Γ or in

𝜙. Then Γ

)𝜙 iff @𝑙 Γ ( @𝑙 𝜙.
(b) Γ ( 𝜙 iff 𝑐𝑙, Γ

)𝜙.

Proposition A2.17 essentially gives us a method of moving back and forth
between classical and universal consequence. This will be the key to devel-
oping our proof system of hyperlogic in the next section.
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A3 Completeness for the Quantifier-Free Fragments

A3 Completeness for the Quantifier-Free Fragments
We now present some soundness and completeness results for the quantifier-
free languages ℒH and ℒHE. In §A3.1, we present an axiomatization for
consequence in ℒH. In §A3.2, we prove this system is sound and complete.
In §A3.3, we extend the axiomatization to ℒHE.

A3.1 Proof Systems for Classical and Universal Reasoning

The axiomatizations for classical and universal consequence in ℒH involves
a kind of double recursion: they are not defined as separate systems with
their own axioms and rules but rather interdefined with rules for moving
between the two (cf. Curry 1952; Indrzejczak 1997, 1998; Humberstone 2016,
§7.5).

When reasoning within hyperlogic, it is often useful to switch back and
forth between classical reasoning and universal reasoning, as these notions
of consequence obey different rules. Consider the rule of necessitation:

If 𝜙 is provable, then ◻𝜙 is provable.

This rule is classically sound since classical hyperconventions interpret ◻
as a normal modal operator. But the rule is not universally sound: while
@𝑐𝑙p𝑝_¬ 𝑝q is universally valid,◻@𝑐𝑙p𝑝_¬ 𝑝q is not since a hyperconvention
could interpret◻ abnormally. By contrast, consider the corresponding rule
for @:

If 𝜙 is provable, then @𝜄 𝜙 is provable.

This rule is not classically sound: while 𝑝 _ ¬ 𝑝 is classically valid, @𝜄p𝑝 _

¬ 𝑝q is not since 𝜄 may denote a nonclassical convention. Yet the rule is
universally sound: if 𝜙 holds on any hyperconvention, then 𝜙 holds at
every hyperconvention in the convention denoted by 𝜄, i.e., @𝜄 𝜙 holds.

For this reason, we will introduce two interdefined proof systems: $ (for
classical provability) and , (for universal provability). We call the collection
of these two proof systems H, the minimal hyperlogic in ℒH.12 Before giving
the axioms and rules (Tables A1–A2), let me explain some of the notation
used to state them.

First, because the deduction theorem is classically sound (𝜙1 , . . . , 𝜙𝑛 ( 𝜓
iff ( p𝜙1 ^¨ ¨ ¨^𝜙𝑛qÑ𝜓), we can simply define 𝜙1 , . . . , 𝜙𝑛 $ 𝜓 as shorthand

12 Technically, we should subscript $ and , to the proof system H to distinguish it from later
proof systems. But we drop this subscript throughout for readability.
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A3 Completeness for the Quantifier-Free Fragments

for $ p𝜙1^¨ ¨ ¨^𝜙𝑛qÑ𝜓. However, the deduction theorem is not universally
sound: 𝜙1 , . . . , 𝜙𝑛

)𝜓 does not imply )

p𝜙1 ^ ¨ ¨ ¨ ^ 𝜙𝑛q Ñ 𝜓 since nothing
of that form is universally valid. So the “axioms” for , have formulas on
the left.13

Second, we introduce the following abbreviations (where 𝑖 isn’t 𝜄):

|𝜄|1 B @𝜄 Ó 𝑖.@𝜄 𝑖 𝜄 “ 𝜅 B @𝜄 𝜅 & @𝜅 𝜄

𝜄 P 𝜅 B |𝜄|1 & @𝜄 𝜅 𝜙 “ 𝜓 B ∎p𝜙 ” 𝜓q.

The truth conditions of these abbreviations reduce to the following:14

𝑤, 𝑐 , |𝜄|1 ô |𝑉p𝜄q| “ 1
𝑤, 𝑐 , 𝜄 P 𝜅 ô for some 𝑐1 : 𝑉p𝜄q “ t𝑐1u where 𝑐1 P 𝑉p𝜅q

𝑤, 𝑐 , 𝜄 “ 𝜅 ô 𝑉p𝜄q “ 𝑉p𝜅q

𝑤, 𝑐 , 𝜙 “ 𝜓 ô v𝜙w
𝑐

“ v𝜓w
𝑐 .

We’ll use ‰ to abbreviate „p¨ ¨ ¨ “ ¨ ¨ ¨ q (e.g., 𝜄 ‰ 𝜅 abbreviates „p𝜄 “ 𝜅q).
Some further notational conventions: We write %$ and -, for co-

provability. Where 𝜙1 , . . . , 𝜙𝑛 are formulas, we write p𝜙 for p𝜙1 & ¨ ¨ ¨ & 𝜙𝑛q.
We use ☆ as a metavariable over unary connectives (t¬,◻,◇u), ◯ over bi-
nary connectives (t^,_,Ñu), and △ over connectives of any arity. (This
will generally be clear from context.) The rigidly classical counterparts of
☆, ◯, and △ are designated as ☀, ‚, and ▲ respectively. (For example, if
☆ “ ¬, then ☀ “ „; if ◯ “ ^, then ‚ “ &; etc.)

Tables A1–A2 contain the basic axioms and rules for each proof system.
A proof is just a list of statements of the form 𝜙1 , . . . , 𝜙𝑛 $ 𝜓 or 𝜙1 , . . . , 𝜙𝑛 ,

𝜓, each line of which is either an axiom or follows from previous lines via
a rule. By induction on the length of proofs, both proof systems satisfy the
following substitution principles.

Lemma A3.1 (Term Substitution). If $ 𝜙 and 𝜄1 is free for 𝜄 in 𝜙,
where 𝜄 is any interpretation term besides 𝑐𝑙, then $ 𝜙r𝜄1{𝜄s. Similarly
for ,.

13 A related deduction theorem is universally sound: 𝜙1 , . . . , 𝜙𝑛

)𝜓 iff )

p𝜙1 & ¨ ¨ ¨ & 𝜙𝑛q Ą

𝜓. For technical reasons, however, it is easier to state the axioms without appeal to this
“universal deduction theorem”. This universal deduction theorem is derivable in H, so
nothing is lost in this choice.

14 For |𝜄|1, note that 𝑉p𝜄q is nonempty by Definition A2.8. Thus, ℳ , 𝑤, 𝑐 , @𝜄 Ó 𝑖.@𝜄 𝑖 iff for all
𝑐1 , 𝑐2 P 𝑉p𝜄q, ℳ 𝑖

t𝑐1u
, 𝑤, 𝑐2 , 𝑖 (i.e., 𝑐2 P t𝑐1u), which holds iff |𝑉p𝜄q| “ 1.
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H$

Axioms
S5 $ 𝜙 where 𝜙 is a substitution instance of an S5-theorem
Cl $ 𝑐𝑙

Bool $ „ 𝜙 Ø ¬𝜙

$ p𝜙 & 𝜓q Ø p𝜙 ^ 𝜓q

$ ∎𝜙 Ø◻𝜙

Rigid $ @𝜄 𝜅 Ñ◻@𝜄 𝜅

Rules
MP if $ 𝜙 and $ 𝜙 Ñ 𝜓, then $ 𝜓

Nec if $ 𝜙, then $ ◻𝜙

U2C if 𝜙1 , . . . , 𝜙𝑛 , 𝜓, then 𝜙1 , . . . , 𝜙𝑛 $ 𝜓

Table A1: Axioms and rules for classical provability in ℒH

H,

Axioms
Elim@ 𝜄,@𝜄 𝜙 , 𝜙

Ref , @𝜄 𝜄

Red @𝜅 @𝜄 𝜙 -, @𝜄 𝜙

SubId p𝜄 “ 𝜅q, 𝜙 , 𝜙1 where 𝜙1 is the result of replacing any number of
occurrences of 𝜄 that 𝜅 is free for in 𝜙 with 𝜅

IdleÓ Ó 𝑖.@𝑖 𝜙 -, 𝜙 where 𝑖 is not free in 𝜙

VacÓ Ó 𝑖.𝜙 -, 𝜙 where 𝑖 is not free in 𝜙

Rep 𝜙 “ 𝜓 , ☆𝜙 “ ☆𝜓 where ☆ P t¬,◻,◇u

𝜙1 “ 𝜓1 , 𝜙2 “ 𝜓2 , p𝜙1 ◯ 𝜙2q “ p𝜓1 ◯ 𝜓2q where ◯ P t^,_,Ñu

Rules
Struct all the standard structural rules (reflexivity, monotonicity, transitivity,

commutativity, etc.) apply to ,

C2U if 𝜙1 , . . . , 𝜙𝑛 $ 𝜓, then 𝑐𝑙, 𝜙1 , . . . , 𝜙𝑛 , 𝜓

Gen@ if 𝜙1 , . . . , 𝜙𝑛 , 𝜓, then @𝜄 𝜙1 , . . . ,@𝜄 𝜙𝑛 , @𝜄 𝜓

GenÓ if |𝑖|1 , 𝑖 , 𝜙1 , . . . , 𝜙𝑛 , 𝜓, then Ó 𝑖.𝜙1 , . . . , Ó 𝑖.𝜙𝑛 , Ó 𝑖.𝜓

Table A2: Axioms and rules for universal provability in ℒH
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Lemma A3.2 (Uniform Substitution). If $ 𝜙 and 𝜓 is free for 𝑝 in 𝜙,
then $ 𝜙r𝜓{𝑝s. Similarly for ,.

Tables A3–A4 contain some useful theorems and derivable rules. Their
derivations are left as exercises for the reader.15 Throughout, I suppress
mention of axioms corresponding to classical propositional reasoning (Struct,
MP, Ded) and of RE, which is implicitly used frequently. I likewise suppress
mention of S5 unless the application involves specifically modal reasoning.16
Also, by the U2C rule, all of the axioms for , can be imported into $, so I
use the same labels for both versions.

H$ (theorems and derivable rules)
Theorems
Dist@ 𝜄 P 𝑐𝑙 $ p@𝜄☆𝜙 Ø☆@𝜄 𝜙q

𝜄 P 𝑐𝑙 $ p@𝜄p𝜙 ◯ 𝜓q Ø p@𝜄 𝜙 ◯@𝜄 𝜓qq

Bool ☀𝜙 %$ ☆𝜙

p𝜙 ‚ 𝜓q %$ p𝜙 ◯ 𝜓q

p𝜙 “ 𝜓q %$ ◻p𝜙 Ø 𝜓q

Rigid 𝜄 $ ◻ 𝜄

¬@𝜄 𝜅 $ ◻¬@𝜄 𝜅

|𝜄|1 $ ◻ |𝜄|1
Rep |𝜄|1 ,◻p@𝜄 𝜙 Ø @𝜄 𝜓q $ ◻p@𝜄☆𝜙 Ø @𝜄☆𝜓q

|𝜄|1 ,◻p@𝜄 𝜙 Ø @𝜄 𝜙1q,◻p@𝜄 𝜓 Ø @𝜄 𝜓1q $ ◻p@𝜄p𝜙 ◯𝜓q Ø @𝜄p𝜙1
◯𝜓1qq

Derivable Rules
RK if 𝜙1 , . . . , 𝜙𝑛 $ 𝜓, then ◻𝜙1 , . . . ,◻𝜙𝑛 $ ◻𝜓

Gen$

Ó
if |𝑖|1 , 𝑖 , 𝜙1 , . . . , 𝜙𝑛 $ 𝜓, then Ó 𝑖.𝜙1 , . . . , Ó 𝑖.𝜙𝑛 $ Ó 𝑖.𝜓

Table A3: Some useful theorems and derivable rules for $ in H

15 Solutions can be found here: https://philpapers.org/archive/KOCSTQ.pdf.
16 Many appeals to the S5 axiom apply to any normal modal logic. Other appeals to S5 could

be dispensed with if we introduced a primitive “ operator into the language, rather than
defining it in terms of ∎ and ”. Indeed, we could define ∎ in terms of “ as follows:
∎𝜙 B p𝜙 “ p𝜙 ` „ 𝜙qq. This suggests that we could weaken Definition A2.14 so that
classical conventions only need to interpret ◻ and◇ as normal modalities if we extend the
language with a primitve “ and add the appropriate axioms governing “ (e.g., to ensure∎
validates the T axiom, we would need 𝜙 “ 𝜓 , 𝜙 ” 𝜓). We would also need to revise some
of the axioms, e.g., Bool. Verifying these changes would result in a sound and complete
proof system is left for future research.
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H, (theorems and derivable rules)
Theorems
S5 , 𝜙 where 𝜙 is a substitution instance of an S5-theorem whose con-

nectives are replaced with their rigidly classical counterparts
Intro@ 𝜄, |𝜄|1 , 𝜙 , @𝜄 𝜙

DA@ |𝜄|1 ,@𝜄 Ó 𝑖.𝜙 , @𝜄 𝜙r𝜄{𝑖s where 𝜄 is free for 𝑖 in 𝜙

|𝜄|1 ,@𝜄 𝜙r𝜄{𝑖s , @𝜄 Ó 𝑖.𝜙 where 𝜄 is free for 𝑖 in 𝜙

VEÓ Ó 𝑖.𝜙 -, Ó 𝑗.𝜙r𝑗{𝑖s where 𝑗 is free for 𝑖 in 𝜙 and 𝑗 is not free in Ó 𝑖.𝜙

Dist@ |𝜄|1 , @𝜄☀𝜙 ”☀@𝜄 𝜙

|𝜄|1 , @𝜄p𝜙 ‚ 𝜓q ” p@𝜄 𝜙 ‚ @𝜄 𝜓q

Dist`

@ @𝜄∎𝜙 -, ∎@𝜄 𝜙

@𝜄p𝜙 & 𝜓q -, p@𝜄 𝜙 & @𝜄 𝜓q

VDist@ @𝜅p@𝜄 𝜙 ‚ 𝜓q -, p@𝜄 𝜙 ‚ @𝜅 𝜓q

Intro& 𝜙,𝜓 , p𝜙 & 𝜓q

Elim& p𝜙 & 𝜓q , 𝜙 and p𝜙 & 𝜓q , 𝜓

Bool @𝜄 𝑐𝑙 , @𝜄☆𝜙 ” @𝜄☀𝜙

@𝜄 𝑐𝑙 , @𝜄p𝜙 ◯ 𝜓q ” @𝜄p𝜙 ‚ 𝜓q

Derivable Rules
Ded 𝜙1 , . . . , 𝜙𝑛 , 𝜙 , 𝜓 iff 𝜙1 , . . . , 𝜙𝑛 , 𝜙 Ą 𝜓

Nec if , 𝜙, then , ∎𝜙

RE if 𝜙 -, 𝜙1, then 𝜓 -, 𝜓1 where 𝜓1 is the result of replacing some
occurrences of 𝜙 with 𝜙1 in 𝜓

Table A4: Some useful theorems and derivable rules for , in H

A3.2 Soundness and Completeness

We now set out to prove that H is sound and complete in ℒH—that is,
$ is sound and complete for classical consequence in ℒH and , is sound
and complete for universal consequence in ℒH. The proof of soundness is
straightforward, though it requires two lemmas (established by induction
on formulas), which we’ll appeal to later.

Lemma A3.3 (Unused Variables). For any ℱ “ x𝑊, 𝐷ℂ , 𝐷ℙy, any
𝑤 P 𝑊 , any 𝑐 P 𝐷ℍ, and any ℳ and ℳ1 based on ℱ , if 𝑉 and 𝑉 1

agree on all free variables in 𝜙 (including propositional variables),
then ℳ , 𝑤, 𝑐 , 𝜙 iff ℳ1 , 𝑤, 𝑐 , 𝜙.
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Lemma A3.4 (Partial Substitution). For any ℳ “ x𝑊, 𝐷ℂ , 𝐷ℙ , 𝑉y, if
𝑉p𝜄1q “ 𝑉p𝜄2q and 𝜄2 is free for 𝜄1 in 𝜙, then v𝜙w

ℳ
“ v𝜙1w

ℳ , where
𝜙1 is the result of replacing some occurrences of 𝜄1 with 𝜄2 in 𝜙.

We write Γ $ 𝜙 to mean “𝛾1 , . . . , 𝛾𝑛 $ 𝜙 is a theorem of H for some
𝛾1 , . . . , 𝛾𝑛 P Γ”. Similarly for Γ , 𝜙.

Theorem A3.5 (Soundness in ℒH). For all Γ Ď ℒH and 𝜙 P ℒH:
(a) If Γ $ 𝜙, then Γ ( 𝜙.
(b) If Γ , 𝜙, then Γ

)𝜙.

We start by proving completeness for classical consequence via a canoni-
cal model construction. We then pair this completeness result with Proposi-
tion A2.17 to bootstrap our way to completeness for universal consequence.

Throughout, let Prop` “ t𝑝`

1 , 𝑝`

2 , 𝑝`

3 , . . .u be some new propositional
variables, let INom` “ t𝑙`1 , 𝑙`2 , 𝑙`3 , . . .u be some new interpretation nominals,
and let ℒH` be the expansion of ℒH with these new terms. In proofs, I will
use  (“contradiction”) to signal the end of a reductio argument. Also, by
“consistent”, I mean classically consistent, i.e., Γ & K (where K B p𝑝 & „ 𝑝q

(Definition A2.5)).

Definition A3.6 (Lindenbaum Set). A set Γ Ď ℒH` is Lindenbaum
if it is a maximal consistent set satisfying the following constraints:
(i) Γ` is nominalized: there is an 𝑙Γ P INom` such that 𝑙Γ , |𝑙Γ|1 P Γ`

(ii) Γ` witnesses ¬@s: if ¬@𝜄 𝜙 P Γ`, then there is an 𝑙𝜄 P INom`

such that p𝑙𝜄 P 𝜄q P Γ` and ¬@𝑙𝜄 𝜙 P Γ`

(iii) Γ` differentiates terms: if p𝜄 ‰ 𝜅q P Γ` where |𝜄|1 , |𝜅|1 P Γ`,
then there is a 𝑝` P Prop` such that p@𝜄 𝑝

` ‰ @𝜅 𝑝
`q P Γ`.

Lemma A3.7 (Lindenbaum). If Γ Ď ℒH is consistent, then there is a
Lindenbaum set Γ` Ď ℒH` where Γ Ď Γ`.

Proof : Set 𝑙Γ “ 𝑙`1 . Enumerate the ℒH`-formulas as 𝜙1 , 𝜙2 , 𝜙3 , . . . .
We define a sequence of sets Γ1 , Γ2 , Γ3 , . . . . First, Γ1 “ Γ Y t𝑙Γ , |𝑙Γ|1u.
Next, Γ1

𝑘
“ Γ𝑘 Y t𝜙𝑘u if Γ𝑘 , 𝜙𝑘 & K; otherwise, Γ1

𝑘
“ Γ𝑘 . Lastly, let’s

say 𝑙` or 𝑝` is “unused” if it is the first member of INom` or Prop`
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that has yet to appear in the construction. Then:

Γ𝑘`1 “

$

’

’

’

’

&

’

’

’

’

%

Γ1
𝑘

Y t𝑙` P 𝜄,¬@𝑙` 𝜓u if 𝜙𝑘 P Γ1
𝑘

and 𝜙𝑘 “ ¬@𝜄 𝜓 where
𝑙` is unused

Γ1
𝑘

Y t@𝜄 𝑝
` ‰ @𝜅 𝑝

`u if 𝜙𝑘 P Γ1
𝑘

and 𝜙𝑘 “ p𝜄 ‰ 𝜅q ^ |𝜄|1 ^

|𝜅|1 where 𝑝` is unused
Γ1
𝑘

otherwise.

Let Γ` “
Ť

𝑘ě1 Γ𝑘 . The proof that Γ` is maximal is standard. The
fact that Γ` satisfies (i)–(iii) follows from the construction of Γ`. We
just need to show Γ` is consistent. It suffices to show that each Γ𝑘 is
consistent. By “𝑖 is fresh”, I mean it occurs nowhere in the relevant
formulas.
Base case. Suppose Γ1 is inconsistent. Thus, by Elim&, 𝑙Γ , |𝑙Γ|1 $ ¬

p𝛾
for some 𝛾1 , . . . , 𝛾𝑛 P Γ1. By Lemma A3.1, where 𝑖 is fresh,
𝑖 , |𝑖|1 $ ¬

p𝛾. By GenÓ, $ Ó 𝑖.¬ p𝛾. By VacÓ, $ ¬
p𝛾,  .

Inductive step. Suppose Γ𝑘 is consistent. By construction, Γ1
𝑘

is con-
sistent. Suppose for reductio Γ𝑘`1 is inconsistent. That means
Γ𝑘`1 ‰ Γ1

𝑘
, which means 𝜙𝑘 P Γ𝑘`1 where either 𝜙𝑘 “ ¬@𝜄 𝜓

or 𝜙𝑘 “ p𝜄 ‰ 𝜅q ^ |𝜄|1 ^ |𝜅|1. Assume throughout that the
contradiction is derivable from 𝛾1 , . . . , 𝛾𝑛 P Γ𝑘 .

Suppose 𝜙𝑘 “ ¬@𝜄 𝜓. Let 𝑙` be the witness introduced into
Γ𝑘`1. Observe that @𝜄 |𝑙`|1 %$ |𝑙`|1 by Red (recall: |𝑙`|1 B

@𝑙` Ó 𝑖.@𝑙` 𝑖). Thus, where 𝑖 is fresh:

p𝛾, 𝑙Γ , |𝑙Γ|1 ,¬@𝜄 𝜓, 𝑙` P 𝜄 $ @𝑙` 𝜓

p𝛾, 𝑙Γ , |𝑙Γ|1 ,¬@𝜄 𝜓, 𝑖 P 𝜄 $ @𝑖 𝜓 Lemma A3.1
p𝛾, 𝑙Γ , |𝑙Γ|1 ,¬@𝜄 𝜓, |𝑖|1 ,@𝑖 𝜄 $ @𝑖 𝜓 C2U, Intro&

@𝑙Γ p𝛾,@𝑙Γ 𝑐𝑙, |𝑙Γ|1 ,@𝑙Γ ¬@𝜄 𝜓, |𝑖|1 ,@𝑖 𝜄 , @𝑖 𝜓 Gen@, Ref, Red
@𝑙Γ p𝛾,@𝑙Γ 𝑐𝑙, |𝑙Γ|1 ,@𝑙Γ ¬@𝜄 𝜓, 𝜄 , 𝜓 GenÓ, IdleÓ, VacÓ

@𝑙Γ p𝛾,@𝑙Γ 𝑐𝑙, |𝑙Γ|1 ,@𝑙Γ ¬@𝜄 𝜓 , @𝜄 𝜓 Gen@, Ref, Red
@𝑙Γ p𝛾,@𝑙Γ 𝑐𝑙, |𝑙Γ|1 ,@𝑙Γ ¬@𝜄 𝜓 $ @𝜄 𝜓 U2C

p𝛾, 𝑙Γ , |𝑙Γ|1 $ @𝜄 𝜓 Intro@, Cl,  .

Suppose 𝜙𝑘 “ p𝜄 ‰ 𝜅q ^ |𝜄|1 ^ |𝜅|1. Where 𝑝` is the witness
introduced into Γ𝑘`1:

p𝛾, |𝜄|1 , |𝜅|1 ,@𝜄 𝑝
` ‰ @𝜅 𝑝

` $ p𝜄 “ 𝜅q Bool
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p𝛾, |𝜄|1 , |𝜅|1 ,@𝜄 𝑝
` ‰ @𝜅 𝑝

` $ @𝜄 𝑝
` “ @𝜅 𝑝

` SubId
p𝛾, |𝜄|1 , |𝜅|1 $ @𝜄 𝑝

` “ @𝜅 𝑝
` Bool

p𝛾, |𝜄|1 , |𝜅|1 $ @𝜄 𝜄 “ @𝜅 𝜄 Lemma A3.2
p𝛾, |𝜄|1 , |𝜅|1 $ @𝜅 𝜄 Ref, S5
p𝛾, |𝜄|1 , |𝜅|1 $ @𝜄 𝜅 similarly
p𝛾, |𝜄|1 , |𝜅|1 $ p𝜄 “ 𝜅q Intro&,  .

∎

Throughout, let Γ be a Lindenbaum set, and let ITerm` “ ITerm Y INom`.

Definition A3.8 (Canonical State Space). The canonical state space
of Γ is the set 𝑊Γ of all Lindenbaum sets Δ where for all 𝜙 P ℒH`, if
◻𝜙 P Γ, then 𝜙 P Δ.

Lemma A3.9 (Existence). If ◻𝜙 R Δ P 𝑊Γ, then 𝜙 R Δ1 for some
Δ1 P 𝑊Γ.

Proof : Let Δ–◻ “ t𝜓 | ◻𝜓 P Δu. Observe Δ–◻ Y t¬𝜙u is consistent
by RK. By Rigid and S5, Δ–◻ is also nominalized (since 𝑙Γ P Γ)
and differentiates terms (since Γ differentiates terms). Moreover, any
Δ1 Ě Δ–◻ will continue to have these properties (for differentiation of
terms, note that either p𝜄 “ 𝜅q P Δ–◻ or p𝜄 ‰ 𝜅q P Δ–◻ for any 𝜄 and 𝜅).
So we just need to show Δ–◻ Y t¬𝜙u can be consistently extended to
witness ¬@s. One can then extend this set into a maximal consistent
one.

Enumerate all formulas of the form ¬@𝜄 𝜓 as 𝜒1 , 𝜒2 , 𝜒3 , . . . . De-
fine the formulas 𝛿0 , 𝛿1 , 𝛿2 , . . . as follows: 𝛿0 B ¬𝜙; given 𝛿𝑛 is de-
fined so that Δ–◻ , 𝛿0 , . . . , 𝛿𝑛 & K, let 𝛿𝑛`1 B 𝜒𝑛`1 Ñp𝑙` P 𝜄^¬@𝑙` 𝜓q

where 𝜒𝑛`1 “ ¬@𝜄 𝜓 and 𝑙` is the first from INom` such that
Δ–◻ , 𝛿0 , . . . , 𝛿𝑛 , 𝜒𝑛`1 Ñ p𝑙` P 𝜄 ^ ¬@𝑙` 𝜓q & K. Given there always is
such a 𝑙`, Δ˚ “ Δ–◻ Y t𝛿0 , 𝛿1 , 𝛿2 , . . .u will consistently witness ¬@s.

Suppose for reductio that 𝛿1 , . . . , 𝛿𝑛 are defined but there is no
𝑙` meeting the above condition. Thus, for all 𝑙`, there are some
𝛾1 , . . . , 𝛾𝑚 P Δ–◻ such that p𝛾 $ p𝛿 Ñ ¬p𝜒𝑛`1 Ñ p𝑙` P 𝜄 ^ ¬@𝑙` 𝜓qq.
By RK, ◻ p𝛾 $ ◻pp𝛿 Ñ ¬p𝜒𝑛`1 Ñ p𝑙` P 𝜄 ^ ¬@𝑙` 𝜓qqq. Since ◻ p𝛾 P Δ,
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that means ◻pp𝛿 Ñ 𝜒𝑛`1q,◻pp𝛿 Ñ ¬p𝑙` P 𝜄 ^ ¬@𝑙` 𝜓qq P Δ. So if
◻pp𝛿 Ñ ¬ 𝜒𝑛`1q P Δ, then ◻¬ p𝛿 P Δ, and so Δ–◻ , 𝛿0 , . . . , 𝛿𝑛 $ K,
 . Hence, ◇pp𝛿 ^ 𝜒𝑛`1q P Δ, i.e., ◇pp𝛿 ^ ¬@𝜄 𝜓q P Δ. Now, where
𝑙Δ , |𝑙Δ|1 P Δ, the following are $-provable from 𝑙Δ , |𝑙Δ|1:

◇pp𝛿 ^ ¬@𝜄 𝜓q Ø◇¬p@𝑙Δ
¬ p𝛿 _ @𝜄 𝜓q Rigid, Intro@, S5

Ø◆„p@𝑙Δ
¬ p𝛿 ` @𝜄 𝜓q Bool

Ø◆„ @𝜄p@𝑙Δ
¬ p𝛿 ` 𝜓q VDist@

Ø¬@𝜄∎p@𝑙Δ
¬ p𝛿 ` 𝜓q S5, Dist`

@ , Bool.

SinceΔwitnesses¬@s, there is an 𝑙` such that 𝑙` P 𝜄,¬@𝑙` ∎p@𝑙Δ
¬ p𝛿`

𝜓q P Δ. Reversing the provable equivalence above, we get◇pp𝛿^p𝑙` P

𝜄 ^ ¬@𝑙` 𝜓qq P Δ. But ◻pp𝛿 Ñ ¬p𝑙` P 𝜄 ^ ¬@𝑙` 𝜓qq P Δ, so Δ is incon-
sistent,  . ∎

Corollary A3.10 (Plenitude). For all Δ P 𝑊Γ and all 𝜙:
(a) ◻𝜙 P Δ iff 𝜙 P Δ1 for all Δ1 P 𝑊Γ.
(b) ◇𝜙 P Δ iff 𝜙 P Δ1 for some Δ1 P 𝑊Γ.

Definition A3.11 (Definable Sets). Where 𝑋 Ď 𝑊Γ and 𝜙 P ℒH`, we
define r𝑋s𝜄 B t𝜙 P ℒH` | 𝑋 “ tΔ P 𝑊Γ | @𝜄 𝜙 P Δuu.

Lemma A3.12 (Replacement of Equivalent Definitions). Where |𝜄|1 P

Γ:
(a) If @𝜄☆𝜙 P Δ for some 𝜙 P r𝑋s𝜄, then @𝜄☆𝜙 P Δ for all 𝜙 P r𝑋s𝜄.
(b) If @𝜄p𝜙◯𝜓q P Δ for some 𝜙 P r𝑋s𝜄 and𝜓 P r𝑌s𝜄, then @𝜄p𝜙◯𝜓q P

Δ for all 𝜙 P r𝑋s𝜄 and 𝜓 P r𝑌s𝜄.

Proof : We just prove (a) for illustration. Suppose 𝜙 P r𝑋s𝜄 is such
that @𝜄☆𝜙 P Δ. Let 𝜓 P r𝑋s𝜄. Thus, for all Δ1 P 𝑊Γ, @𝜄 𝜙 P Δ1 iff
Δ1 P 𝑋 iff @𝜄 𝜓 P Δ1. By Corollary A3.10, ◻p@𝜄 𝜙 Ø @𝜄 𝜓q P Γ. By
Rep (since |𝜄|1 P Γ), ◻p@𝜄☆𝜙 Ø @𝜄☆𝜓q P Γ. By Definition A3.8,
@𝜄☆𝜙 Ø @𝜄☆𝜓 P Δ. Hence, @𝜄☆𝜓 P Δ. ∎
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Definition A3.13 (Canonical Hyperconventions). Where |𝜅|1 P Γ,
the canonical 𝜅-hyperconvention 𝑐𝜅 over 𝑊Γ is defined as follows:
(i) 𝜋𝑐𝜅 “ ℘𝑊Γ

(ii) 𝑐𝜅p𝑝q “ tΔ P 𝑊Γ | @𝜅 𝑝 P Δu

(iii) If @𝜅 𝑐𝑙 P Γ, then each 𝑐𝜅p△q is defined as in Definition A2.14.
Otherwise, 𝑐𝜅p△qp𝑋1 , . . . , 𝑋𝑛q is the following set:

tΔ P 𝑊Γ | D𝜙1 P r𝑋1s𝜅 ¨ ¨ ¨ D𝜙𝑛 P r𝑋𝑛s𝜅 : @𝜅△p𝜙1 , . . . , 𝜙𝑛q P Δu .

For any 𝜄 P ITerm`, define the canonical 𝜄-convention as 𝐶𝜄 B

t𝑐𝜅 | p𝜅 P 𝜄q P Γu.

Note that 𝐶𝜄 is well-defined by the following lemma:

Lemma A3.14 (Identity for Canonical Hyperconventions). Where
|𝜅|1 , |λ|1 P Γ, 𝑐𝜅 “ 𝑐λ iff p𝜅 “ λq P Γ. Thus, if 𝑐𝜅 “ 𝑐λ, then p𝜅 P 𝜄q P Γ

iff pλ P 𝜄q P Γ.

Proof : The left-to-right direction follows since Γ differentiates terms.
The right-to-left direction follows from SubId and Corollary A3.10.∎

Finally, 𝐶𝜄 is always nonempty: if |𝜄|1 P Γ, then p𝜄 P 𝜄q P Γ; and if ¬ |𝜄|1 P Γ,
i.e., ¬@𝜄 Ó 𝑖.@𝜄 𝑖 P Γ, then since Γ witnesses ¬@s, p𝑙` P 𝜄q P Γ for some 𝑙`.

Definition A3.15 (Canonical Hypermodel). We define the canonical
hypermodel of Γ as ℳΓ “ x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓ , 𝑉Γy where:
• 𝐷ℂΓ “ t𝐶𝜄 | 𝜄 P ITerm` u (and so, 𝐷ℍΓ “ t𝑐𝜅 | |𝜅|1 P Γu)
• 𝐷ℙΓ “ ℙ𝐷ℍΓ

• 𝑉Γp𝑝q “ txΔ, 𝑐𝜅y | Δ P 𝑐𝜅p𝑝qu for each 𝑝 P Prop
• 𝑉Γp𝜄q “ 𝐶𝜄 for each 𝜄 P ITerm`.

Lemma A3.16 (Canonical Classical Convention). 𝐶𝑐𝑙 is classical.

Lemma A3.17 (Truth). ℳΓ ,Δ, 𝑐𝜅 , 𝜙 iff @𝜅 𝜙 P Δ.
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Proof : By induction on the structure of formulas. The base cases
follow from Definitions A3.13 and A3.15 and Corollary A3.10.
IH. Suppose the claim holds for 𝜙 and 𝜓. Observe that 𝜙 P rv𝜙w

𝑐𝜅 s𝜅.
Connectives. We just do the ¬-case. Suppose first that @𝜅 𝑐𝑙 R Γ.

Then:

Δ, 𝑐𝜅 , ¬𝜙 ô Δ P 𝑐𝜅p¬qpv𝜙w
𝑐𝜅q

ô D𝜓 P rv𝜙w
𝑐𝜅 s𝜅 : @𝜅 ¬𝜓 P Δ Definition A3.13

ô @𝜅 ¬𝜙 P Δ Lemma A3.12.

Suppose now @𝜅 𝑐𝑙 P Γ. Then:

Δ, 𝑐𝜅 , ¬𝜙 ô Δ, 𝑐𝜅 . 𝜙 Lemma A3.16
ô @𝜅 𝜙 R Δ IH
ô ¬@𝜅 𝜙 P Δ maximality
ô @𝜅 ¬𝜙 P Δ Dist@ (since |𝜅|1 ,@𝜅 𝑐𝑙 P Δ).

@𝜄 case. Since 𝑉Γp𝜄q “ t𝑐λ | pλ P 𝜄q P Γu by Definition A3.15:

Δ, 𝑐𝜅 , @𝜄 𝜙 ô for all λ: pλ P 𝜄q P Γ ñ Δ, 𝑐λ , 𝜙

ô for all λ: pλ P 𝜄q P Γ ñ @λ 𝜙 P Δ IH
ô @𝜄 𝜙 P Δ (*)
ô @𝜅 @𝜄 𝜙 P Δ Red.

For (*): Suppose first that @𝜄 𝜙 R Δ. Since Δ witnesses ¬@𝜄,
p𝑙𝜄 P 𝜄q,¬@𝑙𝜄 𝜙 P Δ for some 𝑙𝜄 (so λ “ 𝑙𝜄 is our counterexample).
Conversely, suppose @𝜄 𝜙 P Δ. If pλ P 𝜄q P Γ, then @λ 𝜄 P Δ by
Rigid, and so by Elim@, Gen@, and Red, @λ 𝜙 P Δ.

Ó 𝑖 case. By VEÓ, we may assume WLOG that 𝜅 is free for 𝑖 in 𝜙.

ℳΓ ,Δ, 𝑐𝜅 , Ó 𝑖.𝜙 ô pℳΓq𝑖
t𝑐𝜅u

,Δ, 𝑐𝜅 , 𝜙

ô ℳΓ ,Δ, 𝑐𝜅 , 𝜙r𝜅{𝑖s Lemmas A3.3 and A3.4
ô @𝜅 𝜙r𝜅{𝑖s P Δ IH
ô @𝜅 Ó 𝑖.𝜙 P Δ DA@.

∎
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H▷
All the axioms and rules in H, plus:
Def▷ $ p𝜙1 , . . . , 𝜙𝑛 ▷ 𝜓q Ø◻pp𝜙1 ^ ¨ ¨ ¨ ^ 𝜙𝑛q Ñ 𝜓q

Rep▷ p𝜙1 “ 𝜙1
1q, . . . , p𝜓 “ 𝜓1q , p𝜙1 , . . . , 𝜙𝑛 ▷ 𝜓q “ p𝜙1

1 , . . . , 𝜙
1
𝑛 ▷ 𝜓1q

Table A5: Axioms and rules for provability in ℒHE

Theorem A3.18 (Completeness in ℒH). Where Γ Ď ℒH and 𝜙 P ℒH:
(a) If Γ ( 𝜙, then Γ $ 𝜙.
(b) If Γ )𝜙, then Γ , 𝜙.

Proof : For (a), suppose Γ & K. By Lemma A3.7, we can extend Γ to
a Lindenbaum set Γ`. By Lemma A3.17, Γ` , 𝑐𝑙Γ , 𝜙 iff @𝑙Γ 𝜙 P Γ`,
which holds (by Intro@ and Elim@) iff 𝜙 P Γ`. Hence, Γ` , 𝑐𝑙Γ , Γ. By
Definition A3.15, 𝑐𝑙Γ P 𝑉Γp𝑐𝑙q since @𝑙Γ 𝑐𝑙 P Γ by Intro@ and Cl. Hence,
Γ is classically satisfiable.

For (b), suppose Γ

)𝜙. Introduce a new interpretation nomi-
nal 𝑙 to the language. By Proposition A2.17, @𝑙 Γ ( @𝑙 𝜙. By (a),
@𝑙 Γ $ @𝑙 𝜙. Let 𝛾1 , . . . , 𝛾𝑛 P Γ be such that @𝑙 𝛾1 , . . . ,@𝑙 𝛾𝑛 $

@𝑙 𝜙. By Lemma A3.1, where 𝑖 is fresh, @𝑖 𝛾1 , . . . ,@𝑖 𝛾𝑛 $ @𝑖 𝜙. By
C2U, 𝑐𝑙,@𝑖 𝛾1 , . . . ,@𝑖 𝛾𝑛 , @𝑖 𝜙. By Gen@ (with @𝑐𝑙), Ref, and Red,
@𝑖 𝛾1 , . . . ,@𝑖 𝛾𝑛 , @𝑖 𝜙. Hence, by GenÓ and IdleÓ, 𝛾1 , . . . , 𝛾𝑛 , 𝜙.
Thus, Γ , 𝜙. ∎

A3.3 Axioms for ▷

It is straightforward to extend H into ℒHE. The two additional axioms
needed are stated in Table A5. The resulting system is called H▷. To
prove the completeness of H▷, we simply amend Definition A3.13 so that
𝑐𝜅p▷qp𝑋1 , . . . , 𝑋𝑛 , 𝑌q is defined as:

tΔ P 𝑊Γ | D𝜙1 P r𝑋1s𝜅 ¨ ¨ ¨ D𝜙𝑛 P r𝑋𝑛s𝜅 D𝜓 P r𝑌s𝜅 : @𝜅p𝜙1 , . . . , 𝜙𝑛 ▷ 𝜓q P Δu .

The proof goes through as in §A3.2, adding the relevant inductive steps for
▷.
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A4 Completeness with Propositional Quantifiers
We now extend these results to languages with propositional quantifiers.
In §A4.1, we state the additional axioms and rules governing quantifiers.
In §A4.2, we revise the proof of completeness from §A3.2. In §A4.3, we
consider how these results are affected when ▷ is introduced.

A4.1 Axiomatizing Quantifiers

The new axioms and rules for the quantifiers are stated in Table A6. We call
the resulting system QH. This axiomatization makes use of the following
abbreviations (where 𝑝 is not free in 𝜙):

E𝜙 B D𝑝p𝑝 “ 𝜙q

p△𝜅 “ △λq B @𝑝1 @𝑞1 ¨ ¨ ¨ @𝑝𝑛 @𝑞𝑛rp@𝜅 𝑝1 “ @λ 𝑞1 & ¨ ¨ ¨ & @𝜅 𝑝𝑛 “ @λ 𝑞𝑛qĄ

p@𝜅△p𝑝1 , . . . , 𝑝𝑛q “ @λ△p𝑞1 , . . . , 𝑞𝑛qqs.

If𝑉p𝜅q “ t𝑐1u and𝑉pλq “ t𝑐2u, the truth conditions reduce to the following:

𝑤, 𝑐 , E𝜙 ô v𝜙w
𝑐

P 𝜋𝑐

𝑤, 𝑐 , △𝜅 “ △λ ô 𝑐1p△q “ 𝑐2p△q.

Intuitively, E𝜙 says that 𝜙 denotes a world proposition that “exists” accord-
ing to the current hyperconvention. This formula is not trivially satisfied:
if, say, 𝑊 R 𝜋𝑐 , then ℳ , 𝑤, 𝑐 . Ep𝑝 Ą 𝑝q since for no 𝑄 P 𝐷ℙ does 𝑄p𝑐q “ 𝑊 .

Note that Elim@ does not allow substituting any 𝜓 for 𝑝 (even if 𝑝 is
free for 𝜓), since 𝜓 need not denote an existent proposition according to
a hyperconvention. For example, if H R 𝜋𝑐 , then ℳ , 𝑤, 𝑐 , @𝑝◆ 𝑝 (since
𝑃p𝑐q P 𝜋𝑐 for any 𝑃 P ℙ𝐷ℍ

) even though ℳ , 𝑤, 𝑐 . ◆p𝑞 & „ 𝑞q (since
vp𝑞 & „ 𝑞qw

ℳ ,𝑐
“ H regardless of 𝑐). However, since𝑉p𝑝q is always a visible

proposition (𝑉p𝑝qp𝑐q P 𝜋𝑐), instantiation with other propositional variables
is allowed. Note also the PII axiom, which is effectively the principle of the
identity of indiscernibles for hyperconventions: if 𝑐1 and 𝑐2 have the same
proposition space, and interpret the propositional variables and connectives
the same way, then 𝑐1 “ 𝑐2. The soundness of PII is ensured by the two
minimal constraints on proposition domains in Definition A2.11.17

17 Note that, where 𝑉p𝜄q “ t𝑐1u and 𝑉p𝜅q “ t𝑐2u, the premise @𝑝p@𝜄 𝑝 “ @𝜅 𝑝q of PII si-
multaneously guarantees that 𝜋𝑐1 “ 𝜋𝑐2 and that 𝑐1p𝑝q “ 𝑐2p𝑝q for all 𝑝. If, for instance,
𝑋 P 𝜋𝑐1 ´𝜋𝑐2 , then by constraint (ii) in Definition A2.11, there is a𝑃 P 𝐷ℙ such that𝑃p𝑐1q “ 𝑋.
And 𝑃p𝑐2q ‰ 𝑋 since 𝑃p𝑐2q P 𝜋𝑐2 . If instead 𝑐1p𝑝q ‰ 𝑐2p𝑝q, then 𝑃𝑝p𝑐1q ‰ 𝑃𝑝p𝑐2q, where
𝑃𝑝 P 𝐷ℙ by constraint (i). Either way, there is a 𝑃 P 𝐷ℙ such that ℳ𝑝

𝑃
, 𝑤, 𝑐 . @𝜄 𝑝 “ @𝜅 𝑝.
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QH
All the axioms and rules in H, plus:
K@ $ @𝑝p𝜙 Ñ 𝜓q Ñ p@𝑝 𝜙 Ñ @𝑝 𝜓q

Dual@ „ @𝑝 𝜙 -, D𝑝 „ 𝜙

Elim@ @𝑝 𝜙 , 𝜙r𝑞{𝑝s where 𝑞 is free for 𝑝 in 𝜙

Vac@ 𝜙 , @𝑝 𝜙 where 𝑝 does not occur free in 𝜙

ClEx $ E𝜙
OpEx E△p𝜙1 , . . . , 𝜙𝑛q -, pE𝜙1 & ¨ ¨ ¨ & E𝜙𝑛q

TrEx △p𝜙1 , . . . , 𝜙𝑛q , pE𝜙1 & ¨ ¨ ¨ & E𝜙𝑛q

PII |𝜄|1 , |𝜅|1 , @𝑝p@𝜄 𝑝 “ @𝜅 𝑝q, t△𝜄 “ △𝜅u
△

, p𝜄 “ 𝜅q

BF∎ @𝑝∎𝜙 , ∎@𝑝 𝜙

BF@ @𝑝 @𝜄 𝜙 , @𝜄 @𝑝 𝜙

BFÓ @𝑝 Ó 𝑖.𝜙 , Ó 𝑖. @𝑝 𝜙

Gen@ if , 𝜙, then , @𝑝 𝜙

Table A6: Axioms and rules for provability in ℒQH

The proofs of Lemmas A3.3 and A3.4 remain unchanged. In addition,
we have the following (which is needed to prove the soundness of Elim@):

Lemma A4.1 (Propositional Relabeling). If 𝑞 is free for 𝑝 in 𝜙, then
v𝜙r𝑞{𝑝sw

ℳ
“ v𝜙w

ℳ𝑝

𝑉p𝑞q . Similarly for simultaneous substitution.

Theorem A4.2 (Soundness in ℒQH). Where Γ Ď ℒQH and 𝜙 P ℒQH:
(a) If Γ $ 𝜙, then Γ ( 𝜙.
(b) If Γ , 𝜙, then Γ

)𝜙.

Table A7 contains some useful derivable theorems and rules. The proof
of Lemma A3.1 still goes through. However, Lemma A3.2 no longer holds
in QH: e.g., $ @𝑝p𝑝 Ñ @𝑖 𝑝q Ñ p𝑞 Ñ @𝑖 𝑞q yet & @𝑝p𝑝 Ñ @𝑖 𝑝q Ñ p𝑐𝑙 Ñ

@𝑖 𝑐𝑙q.18 Instead, only a restricted form of Lemma A3.2 holds (fortunately,
this suffices):

18 To see why the latter is unsound, suppose𝑉p𝑖q “ t𝑐u where 𝑐 is not classical and𝜋𝑐 “ tt𝑤uu.
Then where 𝑐˚ P 𝑉p𝑐𝑙q, 𝑤, 𝑐˚ , @𝑝p𝑝 Ñ @𝑖 𝑝q and 𝑤, 𝑐˚ , 𝑐𝑙; yet 𝑤, 𝑐˚ . @𝑖 𝑐𝑙.
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Lemma A4.3 (Propositional Substitution). If $ 𝜙 and 𝑞 is free for 𝑝
in 𝜙, then $ 𝜙r𝑞{𝑝s.

QH (theorems and derivable rules)
Theorems
Dual@ ¬@𝑝 𝜙 %$ D𝑝 ¬𝜙

VDistD D𝑝p𝜙 ^ 𝜓q %$ p𝜙 ^ D𝑝 𝜓q where 𝑝 does not occur free in 𝜙

VE@ @𝑝 𝜙 $ @𝑞 𝜙r𝑞{𝑝s where 𝑞 is free for 𝑝 in 𝜙 and 𝑞 does not occur free
in @𝑝 𝜙

K@ @𝑝p𝜙 Ą 𝜓q, @𝑝 𝜙 , @𝑝 𝜓

IntroD 𝜙r𝑞{𝑝s , D𝑝 𝜙 where 𝑞 is free for 𝑝 in 𝜙

NecEx E𝜙 , ∎E𝜙
„ E𝜙 , ∎„ E𝜙

BF◆ ◆ D𝑝 𝜙 , D𝑝◆𝜙

BF`

@ |𝜄|1 ,@𝜄 D𝑝 𝜙 , D𝑝 @𝜄 𝜙

CBF@ @𝜄 @𝑝 𝜙 , @𝑝 @𝜄 𝜙

Derivable Rules
RK@ if 𝜙1 , . . . , 𝜙𝑛 $ 𝜓, then @𝑝 𝜙1 , . . . , @𝑝 𝜙𝑛 $ @𝑝 𝜓

Table A7: Some useful theorems and derivable rules in QH

A4.2 Completeness

Now for completeness. The lemmas from §A3.2 whose proof need revision
are Lemmas A3.7, A3.9, A3.14, A3.16 and A3.17. Throughout, let Prop` and
INom` be as before, and let ℒQH` be the expansion of ℒQH with these new
terms but without propositional quantifiers binding elements of Prop` (so
members of Prop` are treated as propositional “constants”).

Definition A4.4 (Henkin Set). A set Γ Ď ℒQH` is Henkin if it is a
maximal consistent set that is nominalized, witnesses ¬@s, and:
(iii) Γ` witnesses Ds: if D𝑝 𝜙 P Γ`, then there is a 𝑝 P Prop` not in

𝜙 such that 𝜙r𝑝`{𝑝s P Γ`.

Note that Henkin sets do necessarily not differentiate terms in the sense
of Definition A3.6. We don’t want to assume that if p𝜄 ‰ 𝜅q P Γ`, then
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p@𝜄 𝑝
` ‰ @𝜅 𝑝

`q P Γ` for some 𝑝` since Γ` might contain @𝑝p@𝜄 𝑝 “ @𝜅 𝑝q.
In that case, Γ` would have to contain p△𝜄 ‰ △𝜅q for some△.

Lemma A4.5 (Henkin). If Γ Ď ℒQH is consistent, then there is a
Henkin set Γ` Ď ℒQH` where Γ Ď Γ`.

Proof : Proof is as before except we revise the definition of Γ𝑘`1:

Γ𝑘`1 “

$

’

’

’

’

&

’

’

’

’

%

Γ1
𝑘

if 𝜙𝑘 R Γ1
𝑘
; otherwise:

Γ1
𝑘

Y t𝑙` P 𝜄,¬@𝑙` 𝜓u if 𝜙𝑘 “ ¬@𝜄 𝜓 and 𝑙` is unused
Γ1
𝑘

Y t𝜓r𝑝`{𝑝su if 𝜙𝑘 “ D𝑝 𝜓 and 𝑝` is unused
Γ1
𝑘

otherwise

We need to show that if Γ1
𝑘

is consistent and 𝜙𝑘 “ D𝑝 𝜓, then Γ𝑘`1 is
consistent. Suppose otherwise. That means for some 𝛾1 , . . . , 𝛾𝑛 P Γ𝑘 ,
where 𝑞 P Prop is fresh:

p𝛾, D𝑝 𝜓 $ ¬𝜓r𝑝`{𝑝s

p𝛾, D𝑝 𝜓 $ ¬𝜓r𝑞{𝑝s Lemma A4.3
@𝑞 p𝛾, @𝑞 D𝑝 𝜓 $ @𝑞 ¬𝜓r𝑞{𝑝s RK@

p𝛾, D𝑝 𝜓 $ @𝑞 ¬𝜓r𝑞{𝑝s Vac@

p𝛾, D𝑝 𝜓 $ @𝑝 ¬𝜓 VE@

p𝛾 $ ¬ D𝑝 𝜓 Dual@,  .

∎

Lemma A4.6 (Existence (Revised)). Suppose ◻𝜙 R Δ P 𝑊Γ. Then
there is a Δ1 P 𝑊Γ such that 𝜙 R Δ1.

Proof : As before, Δ–◻Y t¬𝜙u is guaranteed to be consistent and nom-
inalized. Enumerate all sentences of the form ¬@𝜄 𝜓 or of the form
D𝑞 𝜓 as 𝜒1 , 𝜒2 , 𝜒3 , . . . . We define a sequence of formulas 𝛿0 , 𝛿1 , 𝛿2 , . . .
as before except the definition depends on the form of 𝜒𝑛`1. If
𝜒𝑛`1 “ ¬@𝜄 𝜓, define 𝛿𝑛`1 as in Lemma A3.9. If 𝜒𝑛`1 “ D𝑞 𝜓, then
define 𝛿𝑛`1 B 𝜒𝑛`1 Ñ 𝜓r𝑝`{𝑞s, where 𝑝` is the first propositional
variable such that Δ–◻ , 𝛿0 , . . . , 𝛿𝑛 , 𝜒𝑛`1 Ñ 𝜓r𝑝`{𝑞s & K. As before, it
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suffices to show that there always is such a 𝑝`. Suppose 𝛿0 , . . . , 𝛿𝑛 are
defined but there is no 𝑝` meeting the above condition. Reasoning as
before, this means that ◻pp𝛿 Ñ 𝜒𝑛`1q P Δ and ◻pp𝛿 Ñ ¬𝜓r𝑝`{𝑞sq P Δ

for all 𝑝`. Once again, it must be that◇pp𝛿^𝜒𝑛`1q P Δ. Let 𝑝 be fresh.
By VE@,◇pp𝛿 ^ D𝑝 𝜓r𝑝{𝑞sq P Δ. By VDistD,◇ D𝑝pp𝛿 ^ 𝜓r𝑝{𝑞sq P Δ. By
BF◆ and Bool, D𝑝◇pp𝛿 ^ 𝜓r𝑝{𝑞sq P Δ. Since Δ witnesses Ds, there
is a 𝑝` such that ◇pp𝛿 ^ 𝜓r𝑝`{𝑞sq P Δ, contradicting the fact that
◻pp𝛿 Ñ ¬𝜓r𝑝`{𝑞sq P Δ,  . ∎

The proofs of the intermediate lemmas through Lemma A3.12 remain
intact. To continue, we revise the definition of a canonical hyperconvention
(Definition A3.13).

Definition A4.7 (Canonical Hyperconventions (Revised)). Let |𝜅|1 P

Γ. Define the canonical 𝜅-hyperconvention 𝑐𝜅 over 𝑊Γ as follows:
(i) 𝜋𝑐𝜅 “ t𝑋 | D𝑝` P Prop` : 𝑝` P r𝑋s𝜅 u

(ii) 𝑐𝜅p𝑝q “ tΔ P 𝑊Γ | @𝜅 𝑝 P Δu

(iii) 𝑐𝜅p△qp𝑋1 , . . . , 𝑋𝑛q is defined as follows (regardless of whether
@𝜅 𝑐𝑙 P Γ):

tΔ P 𝑊Γ | D𝜙1 P r𝑋1s𝜅 ¨ ¨ ¨ D𝜙𝑛 P r𝑋𝑛s𝜅 : @𝜅△p𝜙1 , . . . , 𝜙𝑛q P Δu .

The definition of 𝐶𝜄 is as before.

Since 𝜋𝑐𝜅 is no longer the full powerset, we must ensure that this does
define a hyperconvention in that the outputs of 𝑐𝜅 are always within 𝜋𝑐𝜅 .

Lemma A4.8 (Canonical Hyperconventions are Hyperconventions).
Let |𝜅|1 P Γ.
(a) If @𝜅 𝑐𝑙 P Γ and r𝑋s𝜅 ‰ H, then 𝑋 P 𝜋𝑐𝜅 .
(b) 𝑐𝜅p𝑝q P 𝜋𝑐𝜅 .
(c) 𝑐𝜅p△qp𝑋1 , . . . , 𝑋𝑛q P 𝜋𝑐𝜅 for any 𝑋1 , . . . , 𝑋𝑛 P 𝜋𝑐𝜅 .

Proof : For (a), let 𝜙 P r𝑋s𝜅. By ClEx and C2U, 𝑐𝑙, 𝜅 , E𝜙. By Gen@
and Ref, @𝜅 𝑐𝑙 , @𝜅 E𝜙. By U2C, @𝜅 𝑐𝑙 $ @𝜅 E𝜙. Thus, @𝜅 E𝜙 P Γ. By
BF`

@ , D𝑝p𝑝 “𝜅 𝜙q P Γ. By D-witnessing, there is a 𝑝` P Prop` such that
p𝑝` “𝜅 𝜙q P Γ. By Dist@, p@𝜅 𝑝

` “ @𝜅 𝜙q P Γ. By Corollary A3.10,
𝑝` P r𝑋s𝜅. Hence, 𝑋 P 𝜋𝑐𝜅 .
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For (b), D𝑞◻p@𝜅 𝑞Ø@𝜅 𝑝q P Γby IntroD. SinceΓwitnesses Ds, there
is a 𝑝` P Prop` such that ◻p@𝜅 𝑝

` Ø @𝜅 𝑝q P Γ. By Corollary A3.10,
𝑐𝜅p𝑝q “ tΔ P 𝑊Γ | @𝜅 𝑝

` P Δu. Hence, 𝑝` P r𝑐𝜅p𝑝qs𝜅, i.e., 𝑐𝜅p𝑝q P 𝜋𝑐𝜅 .
For (c), we just show the☆-case. Let 𝑋 P 𝜋𝑐𝜅 . Suppose first @𝜅 𝑐𝑙 P

Γ. Then for some 𝜙 P ℒQH`, 𝜙 P r𝑋s𝜅, i.e., 𝑋 “ tΔ P 𝑊Γ | @𝜅 𝜙 P Δu.
Thus, by Lemma A3.12, 𝑐𝜅p☆qp𝑋q “ tΔ P 𝑊Γ | @𝜅☆𝜙 P Δu P 𝜋𝑐𝜅 .
Suppose instead @𝜅 𝑐𝑙 R Γ. So for some 𝑝` P Prop`, 𝑝` P r𝑋s𝜅, i.e.,
𝑋 “ tΔ P 𝑊Γ | @𝜅 𝑝

` P Δu. Thus, 𝑐𝜅p☆qp𝑋q “ tΔ P 𝑊Γ | @𝜅☆ 𝑝` P Δu

by Lemma A3.12. By OpEx, BF`

@ , and Dist@, D𝑞p𝑞 “𝜅 ☆ 𝑝`q P Γ. By
witnessing Ds, there is a 𝑞` P Prop` such that p𝑞` “𝜅 ☆ 𝑝`q P Γ.
Hence, 𝑐𝜅p☆qp𝑋q “ tΔ P 𝑊Γ | @𝜅 𝑞

` P Δu P 𝜋𝑐𝜅 . ∎

We must also verify Lemma A3.14 still holds in order for 𝐶𝜄 to be well-
defined.

Lemma A4.9 (Identity for Canonical Hyperconventions (Revised)).
Where |𝜅|1 P Γ and |λ|1 P Γ:

𝑐𝜅 “ 𝑐λ ô p𝜅 “ λq P Γ.

Proof : The right-to-left direction is as before. For the left-to-right
direction, suppose p𝜅 ‰ λq P Γ. By PII, either (i) @𝑝p@𝜅 𝑝 “ @λ 𝑝q R Γ

or (ii) p△𝜅 “ △λq R Γ for some △ P t¬,^,_,Ñ,◻,◇u. We’ll show
that either way, 𝑐𝜅 ‰ 𝑐λ.

Suppose (i). By Dual@ and witnessing Ds, there is a 𝑝` such that
p@𝜅 𝑝

` ‰ @λ 𝑝`q R Γ. Thus, 𝑐𝜅p𝑝`q ‰ 𝑐λp𝑝
`q, since:

𝑐𝜅p𝑝`q “ tΔ P 𝑊Γ | @𝜅 𝑝
` P Δu ‰ tΔ P 𝑊Γ | @λ 𝑝` P Δu “ 𝑐λp𝑝

`q.

Suppose instead (ii). I’ll just do the ☆ case to illustrate. By Dual@
and witnessing Ds, p@𝜅 𝑝

` “ @λ 𝑞`q Ą p@𝜅☆ 𝑝` “ @λ☆ 𝑞`q R Γ for
some 𝑝` and 𝑞`. Hence, p@𝜅 𝑝

` “ @λ 𝑞`q P Γ, and so 𝑐𝜅p𝑝`q “

𝑐λp𝑞
`q. Moreover, p@𝜅☆ 𝑝` “ @λ☆ 𝑞`q R Γ. Thus, by Lemma A3.12:

𝑐𝜅p☆qp𝑐𝜅p𝑝`qq “ tΔ P 𝑊Γ | @𝜅☆ 𝑝` P Δu

‰ tΔ P 𝑊Γ | @λ☆ 𝑞` P Δu “ 𝑐λp☆qp𝑐λp𝑞
`qq “ 𝑐λp☆qp𝑐𝜅p𝑝`qq.

Hence, 𝑐𝜅p☆q ‰ 𝑐λp☆q. ∎
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Definition A4.10 (Canonical Hypermodel (Revised)). The canoni-
cal hypermodel of Γ is the hypermodel ℳΓ “ x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓ , 𝑉Γy is
defined as in Definition A3.15, except where Prop˚ “ Prop Y Prop`:

𝐷ℙΓ “ t𝑃 P ℙ𝐷ℍΓ
| D𝑝˚ P Prop˚ @𝑐𝜅 P 𝐷ℍΓ : 𝑝˚ P r𝑃p𝑐𝜅qs𝜅 u

It is easy to check that 𝐷ℙΓ satisfies conditions i and ii from Defini-
tion A2.11. Note also that 𝑉Γp𝑝q P 𝐷ℙΓ by Lemma A4.8(b).

Lemma A4.11 (Canonical Classical Convention (Revised)). Where
𝑐𝜅 P 𝐶𝑐𝑙 :

¬𝑐𝜅 𝑋 “ 𝑋 𝑋 ^𝑐𝜅 𝑌 “ 𝑋 X 𝑌 ◻𝑐𝜅 𝑋 “ t𝑤 P 𝑊 | 𝑋 “ 𝑊 u

𝑋 _𝑐𝜅 𝑌 “ 𝑋 Y 𝑌 𝑋 Ñ𝑐𝜅 𝑌 “ 𝑋 Y 𝑌 ◇𝑐𝜅 𝑋 “ t𝑤 P 𝑊 | 𝑋 ‰ Hu .

Proof : We show 𝑐𝜅p¬qp𝑋q “ 𝑋 for illustration. Suppose 𝑝` P r𝑋s𝜅.
By Lemma A3.12 and Dist@, 𝑐𝜅p¬qp𝑋q “ tΔ P 𝑊Γ | ¬@𝜅 𝑝

` P Δu.
By maximal consistency, 𝑐𝜅p¬qp𝑋q “ tΔ P 𝑊Γ | @𝜅 𝑝

` R Δu. Hence,
𝑐𝜅p¬qp𝑋q “ 𝑋 by Definition A3.11. ∎

Lemma A4.12 (Truth). ℳΓ ,Δ, 𝑐𝜅 , 𝜙 iff @𝜅 𝜙 P Δ.

Proof : The proof is the same as before, except now we must tweak
the connectives case and also deal with the quantifier cases. For the
connectives, I’ll just do the ¬-case. The proof is the same except
when v𝜙w

𝑐𝜅 R 𝜋𝑐𝜅 . In that case, Δ, 𝑐𝜅 . ¬𝜙 (see page 11). Thus,
we must show that @𝜅 ¬𝜙 R Δ. Since v𝜙w

𝑐𝜅 R 𝜋𝑐𝜅 , there is no 𝑝` P

rv𝜙w
𝑐𝜅 s𝜅, i.e., no 𝑝` such that◻p@𝜅 𝑝

` Ø @𝜅 𝜙q P Γ. By D-witnessing,
¬ D𝑝◻p@𝜅 𝑝 Ø @𝜅 𝜙q P Γ. By Bool, Dist@, and BF`

@ , ¬@𝜅 E𝜙 P Γ. By
OpEx, ¬@𝜅 E¬𝜙 P Γ. By NecEx, ◻¬@𝜅 E¬𝜙 P Γ. By TrEx and RK,
◻¬@𝜅 ¬𝜙 P Γ. Hence, ¬@𝜅 ¬𝜙 P Δ, and so @𝜅 ¬𝜙 R Δ.

For the quantifiers, here’s the @-case (the D-case is similar):
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ℳΓ ,Δ, 𝑐𝜅 , @𝑝 𝜙 ô for all 𝑃 P 𝐷ℙΓ : pℳΓq
𝑝

𝑃
,Δ, 𝑐𝜅 , 𝜙

ô for all 𝑝˚ P Prop˚ : pℳΓq
𝑝

𝑉Γp𝑝˚q
,Δ, 𝑐𝜅 , 𝜙 def. of 𝐷ℙΓ

ô for all 𝑝˚ P Prop˚ : ℳΓ ,Δ, 𝑐𝜅 , 𝜙r𝑝˚{𝑝s Lemma A4.1
ô for all 𝑝˚ P Prop˚ : @𝜅 𝜙r𝑝˚{𝑝s P Δ IH
ô ¬ D𝑝 ¬@𝜅 𝜙 P Δ (*)
ô @𝑝 @𝜅 𝜙 P Δ Dual@
ô @𝜅 @𝑝 𝜙 P Δ BF@, CBF@.

The left-to-right direction of the (*) step follows from D-witnessing,
while the right-to-left direction follows from IntroD and VE. ∎

Lemma A4.13 (Closure for Canonical Classical Convention). Let
𝑐𝜅 P 𝐶𝑐𝑙 . Then v𝜙w

ℳ ,𝑐𝜅 P 𝜋𝑐𝜅 for any 𝜙 P ℒQH` and any ℳ based on
x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓy.

Proof : Let 𝑐𝜅 P 𝐶𝑐𝑙 , let 𝜙 P ℒQH`, let ℳ “ x𝑊Γ , 𝐷ℂΓ , 𝐷ℙΓ , 𝑉y. Let
𝑞1 , . . . , 𝑞𝑛 be the free propositional variables in 𝜙. By definition
of 𝐷ℙΓ, there are some 𝑞˚

1 , . . . , 𝑞
˚
𝑛 P Prop˚ such that 𝑉p𝑞𝑖qp𝑐𝜅q “

tΔ P 𝑊Γ | @𝜅 𝑞
˚
𝑖

P Δu “ 𝑉Γp𝑞˚
𝑖
qp𝑐𝜅q for all 𝑐𝜅 P 𝐷ℍΓ. By Lemmas A4.1

and A4.12, v𝜙w
ℳ ,𝑐𝜅 “ tΔ P 𝑊Γ | @𝜅 𝜙r𝑞˚

1 {𝑞1 , . . . , 𝑞
˚
𝑛{𝑞𝑛s P Δu. Hence,

𝜙r𝑞˚
1 {𝑞1 , . . . , 𝑞

˚
𝑛{𝑞𝑛s P rv𝜙w

ℳ ,𝑐𝜅 s𝜅, and so v𝜙w
ℳ ,𝑐𝜅 P 𝜋𝑐𝜅 . ∎

From here, the proof of completeness is the same. (In particular, Lem-
mas A4.11 and A4.13 show that 𝐶𝑐𝑙 is classical.) Thus:

Theorem A4.14 (Completeness in ℒQH). Where Γ Ď ℒQH and 𝜙 P

ℒQH:
(a) If Γ ( 𝜙, then Γ $ 𝜙.
(b) If Γ )𝜙, then Γ , 𝜙.

A4.3 Axioms for ▷

In adding ▷ to the language, the main complication involves PII. Since ▷
can take any number of arguments on the left, we cannot state “▷𝜅 “ ▷λ”
as a single formula. In fact, completeness is not possible in ℋ as it stands,
since consequence is not compact in ℋ . In particular, Γ ( p𝜄 “ 𝜅q, where
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△

Y t▷𝜄 “𝑛 ▷𝜅u𝑛P𝜔. Yet Γ0 *

p𝜄 “ 𝜅q for each finite Γ0 Ď Γ. Still, as we’ll see in Part B, there are natural
restricted classes of hypermodels on which PII is sound as is.19 Over such
classes, completeness can be restored.

A5 Conclusion
Hyperlogic is a hyperintensional system that is designed to regiment, and
facilitate reasoning about, metalogical claims within the object language.
This is achieved by introducing a multigrade entailment operator, propo-
sitional quantifiers, and modified hybrid operators into the language. To
interpret these claims, we introduced hyperconventions, i.e., maximally
specific interpretations, into points of evaluation. While one might suspect
that the logic of hyperlogic is uninteresting, as we’ve seen, this suspicion
is incorrect. We presented dual axiomatic systems for both classical and
universal consequence in a number of fragments of hyperlogic and proved
their soundness and completeness.

The minimal logic of hyperlogic explored in this paper is fairly weak
and assumes next to nothing about the possible interpretations of the con-
nectives. It also does not yet include hyperintensional operators like belief
operators or counterfactuals. In Part B of this series, we begin to fill these
gaps by exploring stronger logics that can be obtained by imposing various
restrictions on the class of hypermodels and also by adding hyperintensional
operators to the language.
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