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Decoupling Topological Explanations from Mechanisms 

 

Abstract 

Recent debates concern the question of whether topological or “network” explanations are a 

species of mechanistic explanation. In this paper, we provide a more principled framework for 

the purposes of advancing these discussions. Our innovations on this front are threefold. First, 

we more precisely characterize the requirement that all topological explanations are mechanistic 

explanations, and show scientific practice to belie such a requirement. Second, we provide an 

account that unifies mechanistic and non-mechanistic topological explanations, thereby enriching 

both the mechanist and autonomist programs by highlighting when and where topological 

explanations are mechanistic. Third, we defend this view against some powerful mechanist 

objections. We conclude from this that topological explanations are autonomous from their 

mechanistic counterparts.  

 

1. Introduction. Recent literature discusses topological or “network” explanations in the life 

sciences (Bechtel 2020, Craver 2016, Darrason 2018, Green et al. 2018, Huneman 2010, Jones 

2014, Kostić 2018, 2019, 2020, Kostić and Khalifa 2021, Levy and Bechtel 2013, Matthiessen 

2017, Rathkopf 2018, Ross 2020). Some self-described mechanists have only focused on 

topological explanations as a species of mechanistic explanation (Bechtel 2020, Craver 2016, 

DiFrisco and Jaeger 2019, Levy and Bechtel 2013). For them, topological explanations appear to 
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rely on the time-honored scientific strategy of understanding a system by grasping how its 

components interact with each other. However, others—whom we shall dub “(topological) 

autonomists”—claim that topological explanations are markedly different than their mechanistic 

counterparts (Darrason 2018, Huneman 2010, 2018a, Kostić 2018, 2019, 2020, Rathkopf 2018). 

These debates have far-ranging implications. Ideally, they would provide scientists with 

guidelines for when mechanistic information is a prerequisite for a topological model’s being 

explanatory. Furthermore, if autonomists are correct, the debates should provide additional 

guidelines for when mechanistic information is simply an added bonus to a free-standing 

topological explanation. In addition to their scientific upshots, these debates between mechanists 

and autonomists contribute to wider philosophical discussions concerning explanatory pluralism, 

non-causal explanation, modeling, and the applicability of mathematics. Finally, engagement 

with topological explanations enriches both the mechanist and autonomist programs by 

highlighting when and where topological explanations are mechanistic. 

To make good on these promises, both mechanists and autonomists would benefit 

substantially from a more precise and systematic account of when topological explanations count 

as mechanistic. What kinds of considerations would either differentiate or unify topological and 

mechanistic explanations? This paper aims to fill this gap. The result is a novel argument for 

autonomism. To that end, Section 2 describes topological explanations in relatively neutral 

terms. Section 3 then presents and motivates, in our estimate, the most plausible and principled 

way of interpreting the claim that topological models are explanatory only insofar as they are 

mechanistic. Section 4 then provides a neuroscientific example that does not fit this mechanistic 

framework. Section 5 provides an autonomist alternative to the account of topological 

explanation offered in Section 3, which unifies topological explanations of both the mechanistic 
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and non-mechanistic varieties. Section 6 then shows how this account of topological explanation 

rebuts some powerful objections to autonomism.  

 

2. Background. Before embarking on these philosophical tasks, we review topological 

explanations’ basic concepts. Topological explanations describe how their respective explananda 

depend upon topological properties. For the purposes of this essay, we will focus on those 

topological properties that can be represented using the resources of graph theory.1 A graph is an 

ordered pair (V, E), where V is a set of vertices (or nodes) and E is a set of edges (links, or 

connections) that connect those vertices. For ease of locution, we will use the term “graph” or 

“topological model” to denote the mathematical representation of a topological structure, and 

“network” to denote a real-world structure (van den Heuvel and Sporns 2013, 683).  

Vertices and edges represent different things in different scientific fields. For example, in 

neuroscience, vertices frequently represent neurons or brain regions; edges, synapses or functional 

connections. In computer science, graphs frequently represent networks of cables between 

computers and routers or networks of hyperlinked web pages. In ecological and food networks, 

vertices might be species; edges, predation relations. 

Scientists infer a network’s structure from data, and then apply various graph-theoretic 

algorithms to measure its topological properties. For instance, clustering coefficients measure 

degrees of interconnectedness among nodes in the same neighborhood. Here, a node’s 

neighborhood is defined as the set of nodes to which it is directly connected. An individual node’s 

local clustering coefficient is the proportion of edges within its neighborhood divided by the 

 
1 Since the mechanist-autonomist debates chiefly concern network topology in the graph-theoretic sense, we will use 
“topology” and “graph-theory” interchangeably. Consequently, we bracket non-graph-theoretic branches of 
topology. 
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number of edges that could possibly exist between the members of its neighborhood. By 

contrast, a network’s global clustering coefficient is the ratio of closed triplets to the total 

number of triplets in a graph. A triplet of nodes is any three nodes that are connected by at least 

two edges. An open triplet is connected by exactly two edges; a closed triplet, by three. Another 

topological property, average (or “characteristic”) path length, measures the mean number of 

edges needed to connect any two nodes in the network. 

In their seminal paper, Watts and Strogatz (1998) applied these concepts to show how a 

network’s topological structure determines its dynamics. First, regular graphs have both high 

global clustering coefficients and high average path length. By contrast, random graphs have 

low global clustering coefficients and low average path length. Finally, they introduced a third 

type of small-world graph with high clustering coefficient but low average path length (Figure 

1). 

Highlighting differences between these three types of graphs yields a powerful explanatory 

strategy. For example, because regular networks have larger average path lengths than small-

world networks, things will “spread” throughout the former more slowly than the latter, largely 

due to the greater number of edges to be traversed. Similarly, because random networks have 

smaller clustering coefficients than small-world networks, things will also spread throughout the 

former more slowly than the latter, largely due to sparse interconnections within neighborhoods 

of nodes. Hence, ceteris paribus, propagation is faster in small-world networks. This is because 

the fewer long-range connections between highly interconnected neighborhoods of nodes shorten 

the distance between neighborhoods of nodes that are otherwise very distant, which enables them 

to behave as if they were first neighbors. For example, Watts and Strogatz showed that the 

nervous system of C. elegans is a small-world network, and subsequent researchers argued that 
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this system’s small-world topology explains its relatively efficient information propagation 

(Bullmore and Sporns 2012, Latora and Marchiori 2001).  

 

  

 
Figure 1 

Different kinds of networks discussed in Watts and Strogatz (1998) 
 

3. Mechanism and Topology. Are topological explanations such as the one involving C. 

elegans just mechanistic explanations in fancy mathematical clothing? To answer this question, 

we first clarify what we mean by “mechanistic explanation” (Section 3.1) and then present a 

framework for interpreting topological explanations mechanistically (Section 3.2). This provides 

the stiffest challenge to autonomism, and thereby sets the stage for Section 4, where we show 

that autonomism is nevertheless unfazed by this mechanistic contender.2 

 
2 The ideas developed in Sections 3.1 and 3.2 are offered as a new foil to autonomism; they are not intended to 
systematize earlier criticisms of autonomism. Indeed, apart from a few mechanists discussed in Section 4.1, and 
Craver (2016), whom we discuss at length in Section 6, other challenges to autonomism are orthogonal to the 
position we develop below (Bechtel 2020, Green et al. 2018, DiFrisco and Jaeger 2019, Matthiessen 2017, Ross 
2020).  
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 3.1. Mechanistic Explanation. Before evaluating whether topological explanations are 

mechanistic explanations, we elucidate the latter. For our purposes, we focus on conceptions of 

mechanistic explanation that are minimal and nontrivial. Such conceptions provide the most 

formidable challenges to autonomism. Hence, when we show that some topological explanations 

are not mechanistic, we cannot be charged with chasing at ghosts. 

We discuss these two facets of mechanistic explanation in turn. To begin, Glennan (2017, 

17) provides a “minimal” characterization of mechanisms that captures a widely held consensus 

among mechanists about conditions that are necessary for something to be a mechanism, even if 

they differ about, e.g., the role of regularities, counterfactuals, and functions in mechanistic 

explanation: 

 

 A mechanism for a phenomenon consists of entities (or parts) whose activities and 

interactions are organized so as to be responsible for the phenomenon.3 

 

Because this conception is minimal, the counterexamples we raise to it below apply a fortiori to 

more demanding conceptions of mechanisms. 

Importantly, mechanists are sometimes criticized for being so vague as to trivialize the 

concept of mechanism (Dupré 2015). Since minimal conceptions are less committal than other 

conceptions of mechanism, they are especially susceptible to this criticism. To avoid trivializing 

mechanistic explanation, we appeal to claims about “entities,” “activities,” “interactions,” 

“organization,” and “responsibility” widely endorsed by mechanists. For instance, our arguments 

 
3 Craver and Tabery (2019) and Illari and Williamson (2010) provide similar “minimal” characterizations. 
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hinge on claims that entities and activities cannot be spatiotemporal regions determined merely 

by convention; that interactions cannot be mere correlations; etc. We further develop these 

claims as they arise in the discussion of our examples of non-mechanistic topological 

explanation. Should mechanists deny these requirements on entities, activities, and the like, then 

the burden of proof falls upon them to show that their alternative conception of mechanism is 

nontrivial. 

 Finally, mechanists typically distinguish between etiological, constitutive, and contextual 

mechanistic explanations (e.g., Craver 2001). Etiological explanations cite the causal history of 

the explanandum; constitutive explanations cite the underlying mechanism of that explanandum; 

and contextual mechanisms cite an explanandum’s contribution to the mechanism of which it is a 

part. Since underlying and overlying mechanisms can be synchronic with the phenomena that 

they explain, neither constitutive nor contextual explanations must cite their respective 

explananda’s causal histories, i.e., the prior events that produced the phenomenon. Therefore, 

constitutive and contextual explanations are distinct from etiological explanations. Furthermore, 

because constitutive explanations explain a larger system in terms of its parts, while contextual 

mechanisms do the exact opposite, constitutive and contextual explanations are also distinct. For 

ease of exposition, we will first discuss constitutive mechanistic explanations. Section 4.4 

discusses their etiological and contextual counterparts. 

 To summarize, we are trying to precisely characterize mechanistic explanations in a way 

that poses the stiffest challenge to our claim that some topological explanations are non-

mechanistic. To that end, we think that the most defensible conception of mechanistic 

explanation has two features: minimality and nontriviality. Furthermore, we will first compare 
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topological explanations to constitutive mechanistic explanations, and then turn to etiological 

and contextual ones. 

 
3.2. Mechanistic Interpretations of Topological Explanations. With a clearer conception 

of mechanistic explanation in hand, mechanists’ next task is to translate topological 

explanations’ characteristic graph-theoretic vocabulary into the language of mechanistic 

explanation—to provide a mechanistic interpretation of topological explanations (MITE). To that 

end, the preceding suggests that mechanists ought to hold that a topological model is explanatory 

only insofar as there exists a mechanism for which all the following conditions hold: 

 
(1) Node Requirement: the topological model’s nodes denote the mechanism’s entities or 

activities. 

(2) Edge Requirement: the topological model’s edges denote the interactions between the 

mechanism’s entities or activities. 

(3) Responsibility Requirement: the topological model specifies how the mechanism’s 

entities, activities, and interactions are organized4 so as to be responsible for the 

phenomenon. 

(4) Interlevel Requirement: the explanandum is at a higher level than the mechanism’s 

entities, activities, and interactions as described by the Node and Edge Requirements. 

 
The first three requirements fall out of Glennan’s minimal conception of mechanism; the last, 

from our initial focus on constitutive explanations. 

 
4 Given the definition of a graph, the Node and Edge Requirements entail an “Organization Requirement,” according 
to which the topological model must specify how entities or activities are organized with respect to their 
interactions. Because the Organization Requirement is a mere consequence of the Node and Edge Requirements, we 
keep it implicit hereafter, though we discuss some mechanist proposals for organization below. 
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As an illustration of the MITE’s plausibility, consider the earlier example in which the 

small-world topology of the C. elegans nervous system explains its capacity to process 

information more efficiently than would be expected if its topology were either regular or 

random. Here, the neural system’s components are individual neurons, which are represented as 

nodes in the topological model. Hence, the Node Requirement is satisfied. Furthermore, the 

edges of the graph denote synapses or gap junctions between different neurons, so the Edge 

Requirement is satisfied. Third, the Responsibility Requirement is satisfied, though this requires 

more detailed discussion. Suppose (as we shall throughout) that “responsibility” is characterized 

in terms of counterfactual dependence: 

 

Had the C. elegans neural network been regular or random (rather than small-world), 

then information transfer would have been less efficient (rather than its actual level of 

efficiency). 

 

In regular or random topologies, the synaptic connections between neurons will be different than 

they are in the actual small-world topology exhibited in C. elegans. Consequently, each of these 

networks describes a different potential mechanistic structure. Thus, this counterfactual shows 

how mechanistic differences are responsible for differences in information transfer. Finally, note 

that the efficiency of information transfer is a global property of the C. elegans nervous system. 

That system is composed of neurons connected via synapses, so mechanists appear justified in 

claiming that the nodes and edges of this network are at a lower level than its explanandum 
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property. Hence, the Interlevel Requirement is satisfied. Putting this all together, this means that 

the example fits the MITE.5 

 Before proceeding, we note three things. First, while other MITEs are certainly possible, 

this one strikes us as the most plausible. We have culled it from some of the foremost 

mechanists’ discussions of topological explanations (Craver 2016, Levy and Bechtel 2013, 

Glennan 2017). Indeed, our MITE also accords nicely with the widely used “Craver diagrams” in 

the mechanisms literature. As Figure 2 illustrates, such diagrams entail that there is a 

phenomenon (“S’s Ying”) at a higher level, and a mechanism exhibiting a graph-theoretic 

structure at the lower level, with nodes corresponding to entities (denoted by “Xi”) performing 

activities (denoted by “fi”), and edges corresponding to interactions (denoted by arrows). Since 

no other MITE has been offered, mechanists ought to propose an alternative MITE should they 

chafe at the one we propose here. Second, our working definition of autonomism throughout this 

paper is only that some topological explanations do not fit this MITE. This is consistent with 

some other topological explanations fitting this MITE. Third, it suffices for our purposes if only 

one of the MITE’s four requirements is violated. In other words, so long as our counterexample 

is even partly correct, autonomism (sub specie this MITE) is vindicated.  

 

 
5 Anyone who denies that this is sufficient for establishing that the explanation is mechanistic already subscribes to 
autonomism or should offer an alternative MITE. 
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Figure 2 

Craver (2007) diagram. 
 

4. Non-Mechanistic Topological Explanation. Autonomists have distanced themselves 

from mechanistic explanations in myriad ways. For instance, Rathkopf (2018) argues that 

topological explanations are normally used in nearly decomposable and non-decomposable 

systems, whereas mechanistic explanations are typically used in decomposable systems. Another 

autonomist approach treats topological explanations as conferring mathematical necessity upon 

their explananda (Huneman 2018a, Lange 2017). Still others claim that topological explanations 

are frequently more abstract than mechanistic explanations (Darrason 2018, Huneman 2018a, 

Kostić 2019). Ross (2020) and Woodward (2013) suggest that some topological explanations are 

resistant to the kinds of interventions that are characteristic of causal-mechanical explanations. 

Finally, Huneman (2018b) and Kostić (2018) argue that topological and mechanistic explanations 

involve different kinds of realization relations.  

 We provide a new argument for autonomism. So far as we can tell, it complements rather 

than competes with these other autonomist arguments, and has the added virtue of engaging a 

more precise mechanistic foil—the MITE developed above. Specifically, we use this foil to 

provide an example of a non-mechanistic topological explanation: Adachi et al.’s (2011) 
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explanation of the contribution of anatomically unconnected areas to functional connectivity in 

macaque neocortices. This explanation rests on the neuroscientific distinction between 

anatomical connectivity (AC) and functional connectivity (FC). While both kinds of connectivity 

are modeled using graph theory, only AC networks are naturally glossed as mechanisms. For 

instance, nodes are segregated anatomical regions of the brain (e.g., different Brodmann areas, 

gyri, and cortical lobes) and their edges are causal relations (what is sometimes called “effective 

connectivity”) that are frequently identified with axonal signal flows. Since this is the topological 

model that figures in Adachi et al.’s explanans, we will grant that it satisfies the MITE’s Node 

and Edge Requirements. However, we deny that this is a mechanistic explanation, for it violates 

the MITE’s Responsibility and Interlevel Requirements. After describing the explanation in 

some detail (Section 4.1), we examine these violations in turn (Sections 4.2 and 4.3). This shows 

that this explanation is not a constitutive mechanistic explanation. We round out our defense of 

autonomism by anticipating and rebutting two possible mechanist responses to our argument 

(Sections 4.4 and 4.5). 

 

4.1. Adachi et al.’s Explanation. We first discuss Adachi et al.’s explanandum and then 

their explanans. Adachi et al.’s dependent variable is (combined) DFC, “the regression slope of 

FC on the total number of length2-AC” patterns.6  Obviously, a better understanding of our 

explanandum, DFC, requires an understanding of both FC and length2-AC.  

 
6 Strictly speaking, the researchers explain two related phenomena. First, they claim that the frequency of both two-
node and three-node motifs in the AC network explain why a particular length2-AC pattern j, which may be a, b, or 
c, affects FC to the degree that it does (“DFCj”). Second, they claim that the frequency of three-node motifs explains 
why the totality of these patterns contribute to FC to the degree that they do (“combined DFC”). Our discussion 
focuses on the latter, though our arguments apply to the former as well. 
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Begin with FC. FC networks’ edges are synchronization likelihoods (SL). Stam et al. 

(2006, 93) provide a useful definition: 

 

The SL is a general measure of the correlation or synchronization between 2 time 

series… The SL is then the chance that pattern recurrence in time series X coincides with 

pattern recurrence in time series Y.  

 

As this definition suggests, FC networks’ nodes are time series. Depending on the study, these 

nodes can be interpreted in multiple ways. Many FC models are interpreted so that nodes 

correspond to the time series of blood oxygen level-dependent (BOLD) readings for an 

individual voxel in functional magnetic resonance imaging (fMRI) data. A voxel is a unit of 

graphic information that defines a three-dimensional region in space. Voxels are essentially the 

result of dividing the brain region of interest into a three-dimensional grid. By contrast, Adachi 

et al. (2011, 1587) opt for a less “operational” interpretation of their FC model. They do this by 

mapping different clusters of voxels onto 39 different anatomical regions or “areas” in the 

macaque cortex. Examples include visual area 4 and the mediodorsal parietal area. 

Consequently, their FC and AC models have the same nodes. 

Indeed, without this mapping of FC nodes onto anatomical regions, the neuroscientists 

could not characterize their explanandum with any precision. Specifically, they focus on 

“length2-AC” patterns—i.e., functionally connected pairs of regions that are only anatomically 

connected through some third region (see Figure 3). In other words, length2-AC patterns involve 

two brain areas that are functionally connected (and hence are correlated) but are also known to 



 14 

lack any direct causal link. Hence, the explanandum, DFC, describes the extent to which the 

totality of Patterns a, b, and c contributes to the overall FC in the macaque neocortex. 

With the explanandum clarified, we turn to Adachi’s explanans, which appeals to the 

global topological properties of the AC network. Specifically, Adachi et al. argue that the AC 

network’s frequency of three-node motifs (which they abbreviate as “MF3”) explains why the 

macaque’s DFC is as high as it is. In this context, a three-node motif is a triplet where the nodes 

denote anatomical regions and the edges denote anatomical connections. Thus, MF3 is a measure 

of how many of these triplets can be found in the macaque neocortex. 

Adachi et al. establish this explanation by running simulations involving thousands of 

randomly generated networks. Some of these networks have the same frequency of three-node 

motifs as the macaque brain but differ with respect to other topological properties. These other 

properties include global clustering coefficient, modularity, and the frequency of two-node 

motifs. Then, each network’s DFC is measured. In another run of simulations, they controlled for 

these other topological properties while varying the frequency of three-node motifs. Models in 

which the frequency of three-node motifs matched the macaque neocortex vastly outperformed 

models matching other topological properties in accounting for DFC. Once again using 

counterfactual dependence as a working definition of “responsibility,” this suggests the 

following: 

 

Had macaque neocortices had a different frequency of three-node network motifs (rather 

than a different clustering coefficient, modularity, or frequency of two-node network 

motifs), then these neocortices’ DFC would have been different (rather than its actual 

amount). 
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In other words, MF3 is “responsible” for the length2-AC patterns’ contributions to FC.  

 
Figure 3 

Different anatomical connectivity patterns (length = 2) discussed by Adachi et al. (2011). The black nodes, 1 and 2, 
are functionally connected by the dotted line, but are only indirectly anatomically connected via node 3 by the 

arrows. 
 

 

4.2. Responsibility Requirement.7 We now turn to our broader aim of arguing for 

autonomism, starting with the Responsibility Requirement, which states that topological models 

are only explanatory if they specify how the phenomenon counterfactually depends on how a 

mechanism’s entities, activities, and interactions are organized. We shall consider different 

 
7 Admittedly, we have made some nontrivial assumptions throughout the rest of Section 4 to even get this 
explanation to appear mechanistic. Should those assumptions be incongruous with Adachi et al.’s reasoning, then 
the burden of proof falls on mechanists to provide an alternative interpretation. We note that even with these 
generous allowances, Adachi et al.’s explanation does not fit the MITE. 
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mechanist proposals for how Adachi et al.’s explanation satisfies the Responsibility Requirement 

and show that each faces serious challenges. 

The most prominent mechanist strategy holds that many topological explanations 

describe an abstract kind of mechanistic organization (e.g., Bechtel 2009, Glennan 2017, 

Kuorikoski and Ylikoski 2013, Levy and Bechtel 2013, Matthiessen 2017). This “organization 

strategy” prompts three replies. First, the most precise versions of this strategy simply assume 

that mechanistic organization can be spelled out entirely in terms of graph-theory. This 

effectively concedes autonomism’s main tenets. For instance, Kuorikoski and Ylikoski (2013) 

define “organization” and “network structure” in terms of topological structure, as evidenced by 

both their examples and their acknowledgement of Watts as pioneering the “new science of 

networks.” However, this means that mechanistic organization just is topological structure. Since 

they also hold that some organization is explanatory unto itself, their position entails that some 

topological properties are explanatory unto themselves. This is tantamount to autonomism. 

Second, organization is supposed to refer to the structure of interactions between entities and 

activities that are constitutive of the phenomenon to be explained. Yet, in this example, the 

organization in question is of a system that is (partly) constituted by the phenomenon to be 

explained. After all, the anatomical regions that figure in each of these length2-AC patterns are 

parts of the anatomical network, and the latter’s frequency of three-node motifs drives the 

explanation. Third, different models with the same frequency of three-node motifs can posit 

radically different interactions between any three brain regions—radically different forms of 

organization—yet nevertheless predict the same FC structure.8 This would mean that the specific 

 
8 Levy and Bechtel (2013) discuss motifs’ explanatory significance in this way. However, unlike Adachi et al.’s 
explanation, they discuss examples in which the explanans is not the mere frequency of motifs, which is what drives 
our non-mechanistic interpretation of this example. 
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interactions between the mechanistic components are explanatorily idle, which also violates the 

Responsibility Requirement.  

Chastened by these problems, a mechanist might remain silent about organization, and 

instead insist that Adachi et al.'s explanation satisfies the Responsibility Requirement by 

specifying how DFC counterfactually depends on the macaque neocortex’s entities, activities, 

and interactions. However, this faces something we call the causal disconnection problem. In a 

nutshell, the problem is that: (a) mechanistic explanations require entities, activities, and 

interactions that are responsible for a phenomenon to be causally connected to that 

phenomenon,9 yet, (b) Adachi et al.’s explanation does not require these causal connections. To 

see why, let us distinguish different kinds of three-node anatomical motifs included in their 

calculation of MF3 (see Figure 4). If Adachi et al.’s explanation is mechanistic, then the only 

three-node anatomical motifs that can figure in Adachi et al.’s explanation are length2-AC 

patterns10 and anatomical motifs that are causally connected to a length2-AC pattern. However, 

Adachi et al.’s model implies that even if the only change in MF3 were to the number of three-

node motifs that are causally disconnected from length2-AC patterns, DFC would still change. 

Consequently, this explanation does not satisfy the MITE’s Responsibility Requirement.  

 

 
9 At the very least, the burden of proof would be on mechanists to argue otherwise without trivializing the concept of 
mechanism. Our arguments in this section aim to show that this endeavor is no small task. 
10 Length2-AC patterns are three-node anatomical motifs. To see this, simply remove the functional connection 
(dotted line) from each of the length2-AC patterns in Figure 3. 
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Figure 4 

Examples of three kinds of three-node anatomical connectivity motifs in Adachi et al. (2011). The dotted line in between the 
black nodes in the length2-AC pattern is a functional connection. The other, heavier dotted lines simply distinguish the three 
kinds of three-node anatomical motifs. Solid lines denote anatomical connections; arrows have been removed to indicate 
neutrality about the direction of causation between different anatomical regions.  

 
 

Finally, mechanists might try to avoid these problems by insisting that causally 

disconnected three-node AC motifs are explanatory irrelevant and only the length2-AC patterns 

and the AC-motifs that are causally connected to them are responsible for DFC. However, this 

proposal faces two challenges. First, mechanists would need a non-question-begging argument as 

to why models such as Adachi et al.’s are incorrect to treat causally disconnected motifs as 

explanatorily relevant. To our knowledge, no such arguments have been offered. Second, the 

Responsibility Requirement is not easily satisfied even if causally disconnected three-node AC 

motifs are excluded from the explanation. Indeed, Adachi et al. (2011, 1589) turn to a non-

mechanistic topological explanation precisely because of limitations in causal explanations of a 

phenomenon closely related DFC: why there is any functional connectivity in a length2-AC 

pattern. On the current mechanistic construal, length2-AC patterns’ functional connections (i.e., 
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the edge between nodes 1 and 2 in each of the patterns in Figure 3) should be explained by some 

indirect causal link; paradigmatically, via a third region serving as either an intermediate cause 

or a common cause of the functional connection between the two regions (Patterns b and c in 

Figure 3.) However, the anatomical structure in Pattern b—the “two-step serial relay”—

decreases FC. More importantly, Adachi et al. observe that a significant number of functional 

connections occur even when two functionally connected areas only share a common effect 

(specifically: a common efferent as represented by Pattern a.) To our knowledge, no mechanists 

claim that an effect can be responsible for its cause. Hence, functionally connected areas that are 

only anatomically connected via a common efferent (as in Pattern a) cannot satisfy the 

Responsibility Requirement. Consequently, even if the causal disconnection problem is 

bracketed, mechanisms alone cannot be responsible for DFC, which (to repeat) is the totality of 

functional connectivity for which length2-AC patterns are responsible.  

In summary, we have considered three ways of trying to mechanistically interpret MF3: 

as describing a mechanism’s organization; as describing a mechanism’s entities, activities, and 

interactions while allowing for causal disconnections; and as describing a mechanism’s entities, 

activities, and interactions while prohibiting causal disconnections. In each case, the claim that a 

mechanism is responsible for DFC faces formidable challenges. 

   

4.3. Interlevel Requirement. Adachi et al.’s explanation also violates the Interlevel 

Requirement. We provide three arguments. First, constitutive mechanistic explanations require 

explananda to be at higher levels than the parts and activities that explain them. However, given 

the way that Adachi et al. interpret their FC model, both the FC and AC networks have the same 

brain regions as their nodes. Because the explanans and explanandum appeal to the same entities, 
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the FC network is not at a higher level than the AC network in this explanation.11 Moreover, the 

anatomical regions that figure in MF3 are minimally at the same level as the anatomical regions 

in the length2-AC patterns that figure in DFC. Indeed, the explanation allows for some 

anatomical regions that figure in MF3 to be identical to those that figure in DFC. 

In our estimate, this first argument understates the degree to which this explanation violates 

the Interlevel Requirement. This leads to our second argument. As already noted, a constitutive 

mechanistic explanation of DFC would need to appeal to the entities, activities, and interactions 

constitutive of (and thus at a lower level than) the anatomical regions and their axonal 

connections—and this explanation works in the exact opposite direction. Adachi et al. appeal to 

the frequency of three-node network motifs, a global property of the AC network. This network 

is constituted by these anatomical regions. In other words, a higher-level property is explaining 

the behavior of lower-level constituents. Hence, the MITE’s Interlevel Requirement has been 

violated.12 

Finally, one may argue that both DFC and MF3 are global properties of the macaque 

neocortex. If this is correct, then it is not even clear that Adachi et al.’s explanation appeals to 

levels at all. 

 

4.4. Contextual and Etiological Explanation. This explanation’s violation of the 

Interlevel Requirement may prompt mechanists to reply that this merely shows it not to be a 

constitutive mechanistic explanation. However, it may still be either a contextual or etiological 

mechanistic explanation. We briefly show that such replies face significant challenges. 

 
11 For related arguments, see Kostić (2019) on the “immediacy” and Rathkopf (2018) on the “near decomposability” 
of some topological explanations. 
12 For related arguments, see Huneman (2018b) and Kostić (2018) on realization in topological explanations. 
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Craver (2001, 63) provides the most precise definition of contextual mechanistic 

explanation: 

 

A contextual description of some X's f-ing characterizes its mechanistic role; it describes 

X (and its f-ing) in terms of its contribution to a higher (+ 1) level mechanism. The 

description includes reference not just to X (and its f-ing) but also to X's place in the 

organization of S's y-ing.  

 

If Adachi et al.’s explanation is a contextual mechanistic one, then the system (S) is the 

macaque’s neocortex, the relevant system capacity (y) is its frequency of three-node motifs, the 

component X’s are the length2-AC patterns in the neocortex, and the activity/property (f) of 

these patterns is their functional connectivity. 

In Craver’s definition, a part’s activities are supposed to “contribute” to the system’s 

capacities. We take this to require, at a minimum, that S's y-ing counterfactually depends on X’s 

f-ing, i.e., 

 

Had it not been the case that X f’s, then it would not be the case that S y’s.  

 

This accords well with Craver’s paradigmatic examples of contextual mechanistic explanations, 

e.g., the heart pumping blood.13 This contributes to circulation and, consonant with our 

suggestion, the following is true:  

 
13 It works well with Craver’s other examples as well, e.g., neurotransmitters. Our arguments could be illustrated 
with these examples as well. 
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Had the heart not pumped blood, then it would not have distributed oxygen and calories 

throughout the body.  

 

By analogy, if Adachi et al.’s explanation is contextually mechanistic, then the following should 

figure prominently: 

 

Had macaque neocortices’ DFC been different (rather than its actual amount), then these 

neocortices would have had a different frequency of three-node network motifs (rather 

than their actual frequency). 

 

However, a quick review of Section 4.1 shows this to be precisely the converse of the 

counterfactual that figures in Adachi et al.’s explanation. Nor does this counterfactual accord 

with their methodology: they run simulations in which they vary MF3 to see how DFC 

changes—not the other way around. Consequently, DFC does not contribute to MF3; this is not a 

contextual mechanistic explanation. 

As an alternative, mechanists might claim that Adachi et al.’s explanation is an 

etiological mechanistic explanation. Here, Bechtel’s (2009, 557-559) account of “situated 

mechanisms” (or mechanistic explanations that “look up”) seems especially instructive. 

Bechtel’s chief example is how stimuli in the environment contribute to the mechanistic 

explanation of visual processing. Quite plausibly, environmental stimuli provide etiological 

explanations of why the mechanism for vision behaves as it does. For example, an apple and 

various environmental conditions (lighting, the absence of smoke and mirrors, etc.) are part of 
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the causal history of why a person comes to see an apple. So, by analogy, if Adachi et al.’s 

explanation involves a situated mechanism, then MF3 is a “network environment” that is part of 

DFC’s causal history. 

Like Craver’s account of contextual mechanistic explanation, situated mechanisms appeal 

to a higher-level mechanism or environment to explain a lower-level entity. However, unlike 

contextual mechanisms, situated mechanistic explanations do not require the lower-level entity to 

“contribute” to a higher-level mechanism in the ways we have discussed. For instance, a visual 

system does not need to contribute to the lighting conditions in its environment. This 

immediately avoids the problems raised by treating Adachi et al.’s explanation as contextually 

mechanistic.  

Despite these initial attractions for the mechanist, other autonomists have raised 

challenges with identifying topological and etiological mechanistic explanations that apply here. 

For instance, while causes precede their effects, topological explanantia need not precede 

topological explananda (Huneman 2010, 218-219). Since MF3 does not temporally precede DFC, 

the explanation is not etiological.14 Thus, MF3 is not an “environmental condition” in Bechtel’s 

sense.15 

  

4.5. Defending Explanatoriness. At this point, we have at least shown that Adachi et al.’s 

topological model is not mechanistic. Assuming our arguments are sound, mechanists’ only 

 
14 Additionally, causes and effects are frequently thought to be metaphysically distinct (Lewis 2000, 78), while 
topological explanantia and explananda frequently overlap, imply, and/or are identical to each other (Kostić 2019, 
Reutlinger 2018). Insofar as the same motifs figure in both MF3 and DFC, this would pose a further problem to 
construing this explanation etiologically. 
15 Perhaps situated mechanistic explanations are not etiological. However, then mechanists must show that situated 
mechanistic explanations do not face the problems we have raised with the organizational strategy in Section 4.2 and 
contextual mechanistic explanations in this section. 
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recourse is to deny that this model is explanatory. So far as we can tell, the most plausible 

argument to this effect is best glossed as a methodological concern about the design of the study: 

do the statistical and computational models provide sufficient evidence for DFC’s counterfactual 

dependence upon MF3? Since these statistical and computational considerations do not preclude 

symmetric correlations between variables, the objection implies that the study provides just as 

good of evidence for the following symmetric counterfactual: Had DFC increased, then MF3 

would have increased. Since explanation is widely thought to be asymmetric, mechanists may be 

tempted to deny that Adachi et al.’s model is explanatory. 

We will argue that this objection is inconclusive given mechanists and autonomists’ 

common ground. To see why, we underscore the importance of background knowledge in 

inferring explanations (Lipton 2004, Psillos 2007). For instance, even in well-designed 

experiments, background information is often required to infer the most plausible causal or 

mechanistic explanation. Similarly, we suggest that the following background knowledge helps 

to vindicate Adachi et al.’s inference:  

 

AC’s Explanatory Priority: If x is statistically relevant to y, and x only represents AC, 

while y represents (at least some) FC, then it is prima facie more plausible to infer that x 

explains y than vice versa. 

 

According to this principle, there is prima facie reason to believe that MF3 explains DFC rather 

than vice versa because MF3 only traffics in anatomical connectivity, while DFC traffics in both 

anatomical and functional connectivity. One motivation for this principle is that interventions on 

brain regions, neurons, and synapses are easier to conceive of than interventions on voxels and 
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synchronization likelihoods. Since interventions frequently serve as a guide to explanation, this 

gives AC networks their presumptive explanatory priority. That said, this priority is only prima 

facie; more rigorous testing and further theoretical considerations can overturn it. This 

background principle also accords with Adachi et al.’s reasoning. Based on their simulations and 

statistical analyses, they claim that MF3 “shapes”16 and “influences”17 DFC. They do not claim 

the converse, as the symmetric counterfactual suggests.  

 For mechanists who are sympathetic to AC’s explanatory priority (Craver 2016, Povich 

2015),18 the objection is thereby defused: while Adachi et al.’s simulations and statistical tests 

are not sufficient unto themselves to license an explanatory claim, they become so in conjunction 

with this principle. Presumably, these mechanists take AC’s explanatory priority to be a 

consequence of: (a) AC networks typically containing more mechanistic information than FC 

networks and (b) mechanistic information providing more reliable evidence for judging the 

plausibility of counterfactuals than information about functional connectivity. Our argument only 

requires AC’s explanatory priority. So, these mechanists can only reject it on pain of also 

rejecting (a) or (b).19 

But suppose that other mechanists would bite this bullet and reject AC’s explanatory 

priority. We will argue that this entails that mechanistic and topological explanations are equally 

(in)vulnerable to symmetry problems. If asymmetry is a requirement on all correct explanations, 

then this means that both mechanists and autonomists are in trouble. On the other hand, if some 

correct explanations are symmetric, then autonomists can learn some valuable lessons from 

mechanists. For instance, Craver and Bechtel (2007, 553) claim that “all of the interesting cases 

 
16 Adachi et al. (2011, 1586, 1589-1591). 
17 Adachi et al. (2011, 1586, 1591). 
18 Section 6 discusses Craver’s position on FC and AC in greater detail. 
19 Note that our reply to this objection commits autonomists neither to (a) nor to (b).  
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of interlevel causation are symmetrical: components act as they do because of factors acting on 

mechanisms, and mechanisms act as they do because of the activities of their lower-level 

components.” Indeed, Craver (2013) seems to leverage this point into taking constitutive and 

contextual mechanistic explanations to be simply two “perspectives” on the same system. So, 

seemingly harmless symmetries will exist when X constitutively explains Y and Y contextually 

explains X. Autonomists could devise analogues to constitutive and contextual mechanistic 

explanations to tolerate symmetries in a similar manner. On such a view, Adachi et al. would 

adopt one “perspective” in which MF3 explains DFC, but from another perspective, DFC 

explains MF3. So, regardless of whether AC enjoys explanatory priority over FC, autonomists 

are no worse off than mechanists with respect to symmetry. 

In summary, while Adachi et al.’s explanation satisfies the Node and Edge Requirements, 

this does not make it a mechanistic explanation. The reasons for this are twofold. First, only 

topological properties are responsible for the explanandum; not mechanistic ones. Second, the 

explanation does not invoke the appropriate levels required for a constitutive mechanistic 

explanation. Thus, we have a counterexample to the most plausible mechanistic interpretation of 

topological explanations (MITE). Hence, absent some other MITE, we conclude that some 

topological explanations are non-mechanistic. Furthermore, this explanation not only resists 

characterization as a constitutive mechanistic explanation, but also as a contextual and as an 

etiological one. This suggests that other MITEs will face steep challenges going forward. 
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5. Autonomist Account. A more convincing case for autonomism would provide a 

general account of topological explanation.20 To that end, we take a's being F to topologically 

explain why b is G if and only if: 

(T1) a is F (or approximately so);  

(T2) b is G (or approximately so);  

(T3) F is a topological property;  

(T4) G is an empirical property; and 

(T5) Had a been F’ (rather than F), then b would have been G’ (rather than G). 

The account appears consonant with several others. It most strongly resembles Kostić’s (2020) 

account, but omits certain details of his account that are not relevant to the tasks at hand. 

Proponents of more general counterfactual theories of noncausal explanation (e.g., those 

mentioned in note 24) should also be amenable to this account of topological explanation. We 

extend these views by using this account to unify topological explanations of both the 

mechanistic and non-mechanistic varieties. The former will satisfy the MITE and T1-T5; the 

latter will only satisfy T1-T5.21 

Let us briefly motivate this analysis of topological explanation, and then show that it 

achieves the desired unification. The first two conditions, T1 and T2, are standard constraints on 

explanations—that the explanans and explanandum must be approximately true. Note that such a 

 
20 Importantly, with the exception of Kostić (2020), no autonomist provides anything like necessary and sufficient 
conditions for topological explanation. While meta-philosophical views may vary regarding the viability of such 
analyses, in the current context, such an approach evinces a more principled and rigorous unification of mechanistic 
and non-mechanistic topological explanations than other philosophical approaches to topological explanation. That 
being said, these other philosophical approaches appear well-suited for the different projects that our fellow 
autonomists have pursued.  
21 We postpone comparisons with other accounts of topological explanation for future work. 
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view still leaves ample room for idealization and other fruitful distortions of properties other than 

F and G. Furthermore, as T4 indicates, we assume that b is G is an empirical proposition, i.e., the 

sort of claim that can serve as a proper scientific explanandum.22 Furthermore (and as our 

examples show), in many topological explanations “a” and “b” denote one and the same system. 

The third condition, T3, distinguishes topological explanations from other kinds of 

explanations. Hence, it is crucial that we define a topological property. Let a predicate be 

topological if it correctly describes a graph (or subgraph) and occurs in some nontrivial theorem 

derived using only mathematical statements, including the characterization of the graph in terms 

of its vertices and edges. Then a graph’s topological predicates denote its corresponding 

network’s topological properties. Paradigmatically, topological properties concern quantifiable 

patterns of connectivity in a network. Clustering coefficient, average path length, and frequency 

of three-node motifs are examples. As the examples above show, each of these topological 

properties is measurable and hence also empirical. 

 Finally, the fifth condition, T5, guarantees that the topological model is explanatory. As 

many others have noted, what distinguishes explanations from other kinds of representations is 

the former’s capacity to support such change-relating counterfactuals,23 or answer “what-if-

things-had-been-different questions” (Jansson and Saatsi 2017, Reutlinger 2016, Woodward 

2003, 2018).24 Topological explanations also answer these questions, but they are distinctive in 

being underwritten by counterfactual differences in a system’s topological properties. Such 

counterfactuals can describe what would happen if the system exhibited another topological 

 
22 T4 restricts topological explanations to empirical sciences; it excludes those in mathematics. 
23 Space being limited, we hope to address recent challenges to this “counterfactual assumption” (e.g., Khalifa, 
Doble, and Millson 2018, Lange 2019) in the specific context of topological explanations in future work. 
24 Jansson and Saatsi, Reutlinger, and Woodward discuss only one topological explanation: Euler’s analysis of 
Königsberg bridges. We provide a more general account of topological explanation that covers both this simple 
example and more sophisticated topological explanations propounded by contemporary scientists. Also, as noted 
above, their concern is not with contrasting topological explanations with mechanistic explanations.  
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property (in which case F’ is contrary to F) or if it simply lacked its actual topological property 

(in which case F’ is contradictory of F). Furthermore, we assume that only non-backtracking 

counterfactuals underwrite T5. 

Crucially, T1-T5 allow some topological explanations to be mechanistic, but do not 

require all such explanations to work this way. For instance, both Watts and Strogatz’s and 

Adachi et al.’s explanation readily fit our account. Begin with Watts and Strogatz. Small-

worldness is a topological property that can be predicated of the nervous system of C. elegans. 

Thus, T1 and T3 are satisfied. Similarly, the extent to which information spreads throughout this 

nervous system is an empirical property that can be accurately predicated of this network. So, T2 

and T4 are satisfied. Finally, in Section 2, we presented the counterfactual that would satisfy T5:   

 

Had the C. elegans neural network been regular or random (rather than small-world), 

then information transfer would have been less efficient (rather than its actual level of 

efficiency). 

 

We saw that this explanation was both topological and, in virtue of satisfying the MITE, was also 

mechanistic. Turn now to Adachi et al.’s non-mechanistic topological explanation. Frequency of 

network motifs is a topological property that can be accurately predicated of macaque 

neocortices. In this context, DFC is characterized by observed correlations, specifically between 

different BOLD signal flows between different time series of brain areas, and by anatomical 

connections in length2-AC patterns which were confirmed in earlier studies (e.g., Honey et al. 

2007). Hence, explananda will be true statements about these empirical facts. Thus, T1-T4 are 

satisfied. Finally, we have already rehearsed the relevant counterfactual in Section 4.1:  
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Had macaque neocortices had a different frequency of three-node network motifs (rather 

than a different clustering coefficient, modularity, or frequency of two-node network 

motifs), then these neocortices’ DFC would have been different (rather than its actual 

amount). 

 

So, Adachi et al.’s explanation also satisfies T5. However, unlike the explanation involving C. 

elegans, this explanation violated the MITE. Thus, we see that T1-T5 form the common core 

shared by both mechanistic and non-mechanistic topological explanations. 

 

6. Functional Connectivity. We have argued that some topological explanations are 

non-mechanistic. Moreover, we have also claimed that T1-T5 provide sufficient conditions for 

genuinely autonomous topological explanations, such as Adachi et al.’s. Craver provides a 

potential counterexample to this latter claim. To wit, he takes his counterexample to show that 

topological models are explanatory only insofar as they are mechanistic explanations. Hence, a 

more complete defense of topological explanations’ autonomy should address Craver’s 

challenge. To that end, we first present Craver’s challenge, and then defend our core thesis that 

some topological explanations are not mechanistic explanations from this challenge. 

 Craver (2016, 704-706) argues that FC models are examples of topological models that 

are not explanations, chiefly because they do not represent mechanisms. As an illustration, we 
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discuss Helling, Petkov, and Kalitzin’s (2019) study of the relation between mean functional 

connectivity25 (MFC) and the likelihood of an epileptic seizure (ictogenicity).  

 Craver observes that FC networks’ nodes “need not… stand for working parts,” i.e., for 

the entities that constitute a mechanism.26 Rather, many FC models’ nodes are conventionally 

determined spatiotemporal regions adopted mostly because they are “conveniently measurable 

units of brain tissue rather than known functional parts.” For instance, Helling et al.’s FC 

model’s nodes are readings from EEG channels, i.e., the electrodes measuring the brain’s 

electrical activity.27 EEG channels are spaced evenly—at increments of 10% or 20% of the 

distance from the bridge of the nose to the lowest point of the skull from the back of the head. 

This suggests that the spatial units represented by these nodes are merely conventional. As 

mentioned above, nontrivial conceptions of mechanism should distinguish entities and activities 

from spatiotemporal regions merely determined by convention. For instance, while pistons, 

gears, camshafts and the like are entities in the mechanism for a car’s moving, each one-

centimeter cube comprising a car is not an entity in that mechanism.  

Similarly, while turning a crankshaft describes a piston’s activity, whatever happens 

every two seconds to a piston does not (barring extraordinary coincidence of course.) Yet, the 

nodes in FC models pick out temporal units that are just as conventional as the spatial ones. In 

Helling et al.’s FC model, nodes are time series of readings from EEG channels. For each EEG 

channel, a time series was constructed by sampling its readings several times per second. So, in 

 
25 As mentioned above, functional connectivity’s edges are correlations. Since correlations can be stronger or 
weaker, MFC is measuring the average strength of the correlations that exist between any two nodes in an FC 
network. 
26 In the same sentence, Craver makes the stronger claim that FC networks’ nodes do not stand for working parts. 
However, as Adachi et al.’s explanation illustrates, this is not always the case. 
27 Craver focuses on FC models constructed from fMRI data, but his objections also apply to FC models constructed 
from EEG data. 
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our parlance, it’s quite clear that FC models violate the MITE’s Node Requirement: they do not 

denote entities and activities constituting a mechanism.  

 Craver (2016, 705) also observes that FC models’ “edges do not necessarily represent 

anatomical connections, causal connections, or communications,” i.e., they flout the MITE’s 

Edge Requirement. Recall that this requires a topological explanation’s edges to represent 

interactions between entities or activities. The edges in Helling et al.’s model are 

synchronization likelihoods, which are correlations between pattern recurrences in the time series 

data generated by two or more EEG channels. For mechanists, interactions cannot be mere 

correlations (Bechtel 2015, Craver and Tabery 2019, Glennan 1996).28  

 Craver takes these two points to plant the kiss of death for philosophers of explanation—

guilt by Hempelian association: 

 
FC matrices are network models. They provide evidence about community structure 

in the brain. Community structure is relevant to brain function. But the matrices do 

not explain brain function. They don’t model the right kinds of stuff: the nodes aren’t 

working parts, and the edges are only correlations. As for the barometer and the 

storm, A is evidence for B, and B explains C, but A does not explain C.29 

 
Craver is tapping on a powerful intuition: in most sciences, models consisting only of 

correlations are (at best) merely evidential but not explanatory of anything they represent. Call 

this the barometer intuition. In the case of FC models, the barometer intuition seems even more 

 
28 Violating the Node and Edge Requirements entails violation of the Responsibility Requirement. Our discussion 
leaves this implicit throughout. 
29 In the original example, a storm’s occurrence can be inferred from a barometer’s reading. This is not an 
explanation, yet it satisfies Hempel’s covering law model. 
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acute, for the correlations are between spatiotemporal units that lack causal roles in virtue of 

being merely conventional. 

However, our view contradicts the barometer intuition. Helling et al. conducted 

prospective studies involving subjects with focal seizures either starting treatment with an anti-

epileptic drug or undergoing drug tapering over several days. They collected EEG data from 

each patient in order to calculate each patient’s MFC. Helling et al. found that MFC decreased 

for those who responded positively to their drug treatment, and increased for those who 

responded negatively. 

 Their model thereby satisfies T5. For instance, suppose that we ask why a patient 

responded negatively to anti-epileptic drugs. Then the relevant counterfactual would be: 

 
Had the patient’s MFC decreased (rather than increased), then the patient would have 

responded positively (rather than negatively).30  

 
Because MFC is a topological property, positive drug response is an empirical property, and the 

relevant statements are true, the model also satisfies T1-T4. Thus, Section 5’s account claims 

that this is an explanation, which conflicts with the barometer intuition. Given how powerful the 

barometer intuition is, this appears to pose a serious problem to the account of topological 

explanation proposed in Section 5. 

As we see it, the most straightforward autonomist reply embraces the barometer intuition 

and agrees with Craver about FC models’ lack of explanatory power. However, it does not budge 

one inch on autonomism’s more central point that some topological explanations are not 

mechanistic explanations. The argument is simple: Craver’s point is that FC networks’ 

 
30 More precisely, had the patient’s MFC decreased (rather than increased), then the patient’s ictogenicity would 
have been lower (rather than its actual value). 
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topological properties are insufficient as explanantia. However, not all topological explanations 

work this way. For example, Adachi et al.’s topological explanation only features functional 

connectivity in the explanandum; other topological explanations do not use FC modeling at all. 

Hence, Craver’s argument does not undermine Section 4’s arguments. 

Autonomists still must distinguish explanatory and non-explanatory topological models. 

This will require that they add further conditions to Section 5’s unified account of topological 

explanation. Autonomists might contrast Adachi et al.’s explanation with Helling et al.’s FC 

model and propose that topological models are explanatory only if they satisfy T1-T5, plus:  

 

T6. The topological model of a satisfies the Node and Edge Requirements.  

 

Adachi et al.’s explanation satisfies T6, but (typical) FC models do not. Thus, we see that these 

views are autonomist in claiming that some of these explanations are non-mechanistic (namely 

those that violate either the Responsibility or Interlevel Requirement). However, we do not claim 

that this is the only way of supplementing T1-T5 or even of responding to Craver’s challenge. 

Other approaches are possible and should be explored in future research.31 

 

7. Conclusion. We began by noting that the debate between autonomists and mechanists 

suffered from imprecision. Specifically, the discussion lacked a clear account of how all 

topological explanations could be mechanistic. We have filled this gap, albeit in the service of 

providing examples of non-mechanistic topological explanations. We conclude that topological 

explanations sometimes swing freely of mechanistic considerations. 

 
31 For instance, Kostić (forthcoming) argues, pace the barometer intuition, that FC models such as Helling et al.’s 
are indeed explanatory. 
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 Of course, there is further work to be done. For instance, we have not discussed how 

graphs represent their respective networks, and this feeds naturally into the vibrant literature on 

scientific representation (Frigg and Nguyen 2017).32 Whether similarity, structuralist, 

inferentialist, or some other account of representation best accords with topological explanations 

promises to be an interesting topic, broaching upon longstanding issues such as the applicability 

of mathematics. 

 Refining the kinds of counterfactuals that topological explanations ought to support is 

another exciting avenue of further development. As we see it, this has three crucial implications 

for advancing the position developed here. First, while we sketched an argument as to why some 

topological explanations are noncausal, future work should further investigate the link between 

topology and etiology. For instance, a prominent view is that causal explanations differ from 

noncausal ones in supporting counterfactuals involving interventions (Woodward 2003). Hence, 

a suggestive line of research is to explore the relationship between topological explanations and 

interventions. 

 Second, some have argued that topological explanations detached from any “ontic 

dependence relation” will fail to respect explanation’s characteristic “directionality” (Craver 

2016, Craver and Povich 2017). Whereas these ontic dependence relations used to be restricted 

to causal-mechanical relations, recent work has sought to broaden their range substantially 

(Povich 2018). Consequently, all topological explanations may still track with one of these 

broader ontic dependency relations. Alternatively, Kostić and Khalifa (2021) argue that nothing 

ontic is needed to account for topological explanations’ directionality. Clarifying the precise 

nature of the counterfactuals involved in topological explanations helps to circumscribe what a 

 
32 See Hochstein (2016) for a relevant discussion of representation and (non-)mechanistic explanation. 



 36 

more liberalized conception of ontic dependency relations entails, and thus proves useful in 

navigating these theoretical options (cf. Povich 2019). 

Finally, further attention to the counterfactuals involved in topological explanations 

promises to address concerns that topological explanations are especially susceptible to classic 

Hempelian problems (such as asymmetry, irrelevance, and the like) because of their extensive 

appeal to mathematical derivations. We have already made a small contribution in assuaging this 

worry, by showing how our account can distinguish explanatory from evidential models, thereby 

blocking any tight analogy with Hempel’s difficulties in preventing a barometer from 

“explaining” a storm. Moreover, using an analysis quite similar to our own, Kostić (2020) has 

outlined several ways that topological explanations are asymmetric. Nevertheless, assembling all 

of these points in a more systematic way would shed further light on topological explanations.  

In closing, topological explanations are not merely a further chapter in the mechanist 

handbook. Attempts to incorporate all of them into a mechanistic framework are mistaken and 

fail to respect the unique features of these explanations. Moreover, doing so would foreclose 

several interesting questions to which philosophers of science would be well-served to attend. 
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