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Minimal structure explanations, scientific understanding and explanatory 

depth 

 

Abstract 

 

In this paper, I outline a heuristic for thinking about the relation between 

explanation and understanding that can be used to capture various levels of 

“intimacy”, between them. I argue that the level of complexity in the 

structure of explanation is inversely proportional to the level of intimacy 

between explanation and understanding, i.e. the more complexity the less 

intimacy. I further argue that the level of complexity in the structure of 

explanation also affects the explanatory depth in a similar way to intimacy 

between explanation and understanding, i.e. the less complexity the greater 

explanatory depth and vice versa.  
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1. Introduction 

Many philosophers maintain that explanation is intimately tied to 

understanding, specifically many hold that the goal of scientific explanation is 

to provide understanding of physical phenomena or in general of nature (de Regt 

2009; Hempel 1948; Strevens 2008, 2013). The views about the relation 

between explanation and understanding range from largely dismissive (Hempel 

1948; Trout 2007) which see the scientific understanding as a pragmatic or 

psychological by-product of explanation which is not a proper subject of 

philosophical inquiry, and which should rather belong to psychology; to 

proposals to treat the understanding independently from the explanation i.e. that 

there could be understanding without explanation (Lipton 2009; Schurz and 

Lambert 1994; Newman 2013, 2015), or on the other hand, that there could not 

be understanding without explanation (Strevens 2008, 2013; Khalifa 2012, 

2017).  

In this paper, I outline a heuristic for thinking about the relation between 

explanation and understanding that can be used to capture various levels of 

“intimacy”, so to speak, between them, i.e. by using this heuristic we will be 

able to explain away some of the seemingly paradoxical cases in which it is 

claimed we could have the understanding without explanation, as well as cases 

where there can’t be understanding without explanation. The idea is that the 

level of complexity in the structure of explanation is inversely proportional to 

the level of intimacy between explanation and understanding, i.e. the more 

complexity the less intimacy, and vice versa. The structure of explanation is 
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understood in this paper as a description of the relation between the 

explanans and explanandum, and the complexity in this context should be 

understood as the number of components that are required to describe this 

relation. In this sense, the complexity of particular instances of explanation 

could possibly be measured, probably by using something like the minimum 

description length principle (Barron and Cover 1991; Barron et al 1998; 

Grünwald 2007), but developing such measure is out of the scope of this 

paper, because the primary goal of this paper is to point out the dependencies 

between the structure of explanation, scientific understanding and 

explanatory depth. The idea about the complexity in the structure of 

explanation could equally well be conceived in terms of a particular theory 

of explanation (mechanistic, functional, topological, semantic), in which 

case the theory of explanation will determine the complexity in the structure 

of explanation. This allows that the idea about the complexity in the 

structure of explanation be generalized from instance of explanations to 

theories of explanation as well, i.e. some theories of explanation describe 

more and some describe less complex structures of explanation.  I further 

argue that the level of complexity in the structure of explanation also affects 

the explanatory depth in a similar way to intimacy between explanation and 

understanding, i.e. the less complexity the greater explanatory depth and 

vice versa. A more precise way to specify what is meant by the “structure” 

of explanation is to say that the structure of explanation is a description D 

of the relation R between the explanans p and explanandum q, for example 
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in the general account of scientific explanation such as the D-N model the R 

represents logical entailment, and p has some subparts such as antecedent 

conditions and general laws, and q represents a description of the explanandum 

phenomenon. The D in this case has a form of a logical argument. Whereas in 

the minimal structure explanations such as the topological explanation, in 

describing the graph-theoretical dependency relations between topological 

variables we are simultaneously describing the relation between the explanans 

and explanandum.  

All explanations, regardless of their kind or type, have some structure. I 

understand the structure in terms of a description of the relation between 

explanans and explanandum. Sometimes, as in Hempel’s general theory of 

explanation, the structure will have the form of a deductive argument, that 

describes how the description of an explanandum is logically derived from a set 

of premises or why it should be expected given the premises (Hempel and 

Oppenheim 1948). Sometimes, as in a particular type of explanation such as the 

interventionist account, the explanation has a structure of “explanatory 

generalization” that describes invariant counterfactual dependency relations 

between the values of variables (Woodward and Hitchcock 2003). It seems at 

least intuitively plausible to think that different structures of explanations 

engage with counterfactual knowledge in different ways. For example, in the 

argument structure the connection between the counterfactual knowledge and 

explanation will depend on the truth of the premises and the counterfactual 

knowledge will be obtained in terms of derivation of the explanadum from a 
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variety of premises. The amount of counterfactual knowledge in that case 

will be commensurate with the range of possible true premises. In the 

Woodwardian case, the connection between the structure of explanation and 

counterfactual knowledge is cast in terms of the amount or range of W-

questions (what-if-thing-had-been-different) one could ask about the 

dependency of the value of the explanandum variable from the value of the 

explanans variable. In this sense, it would seem plausible to assume that 

different structures of explanation connect in different ways to 

counterfactual knowledge and can affect the scope of counterfactual 

knowledge that it connects to. I show that in the case of topological 

explanation this connection is more direct in virtue of which it covers much 

wider range of counterfactual knowledge than the explanations in which the 

connection between explanans and explanandum is less direct (such as for 

example interventionist type of explanation). 

However, it is very important to distinguish what is minimal and what 

is complex in this context. I argue that it is the structure of explanation that 

can be very complex or minimally complex, not the explanation itself. Also, 

there is an important difference between simple and minimal here, in the 

sense that an explanation can be simple, but have a very complex structure, 

e.g. any explanation that has a deductive-nomological (D-N) structure. On 

the other hand, an explanation can be very complicated, but have a minimal 

structure, e.g. a topological explanation.  



 7 

 On this view, there are degrees of complexity in the structure of 

explanation, and so there could be very complex explanations which require 

a great deal of mediating knowledge to grasp the exact relation between the 

explanans and explanandum. Explanations with more complex structure would 

be Hempel’s general account of explanation or the D-N model1 (Hempel and 

Oppenheim 1948), Woodward’s interventionist account (Woodward and 

Hitchcock 2003), mechanistic explanation (Craver 2007; Kaplan and Craver 

2011; Machamer et al 2000), semantic explanation (Chalmers and Jackson 

2001). But there could be also explanations that require very little or none of 

mediation to grasp the exact relation between the explanans and explanandum. 

The latter ones I will call the minimal structure explanations. The best example 

of minimal structure explanation is topological explanation (Darrason 2018; 

Huneman 2010, 2015; Kostić 2018a,b; Rathkopf 2018), but perhaps there could 

be other too, e.g. minimal model explanations (Batterman and Rice 2014), some 

accounts of mathematical explanations in science (Batterman 2009; Lange 

2012), structural explanations (Huneman 2018).   

Even though, there are many different ways to think of understanding and 

its relation to the explanation and knowledge, none of them have explicitly 

treated the relation between the structure of explanation and understanding 

                                                
1 I do think that the topological explanations and in general minimal structure 
explanations do not conform to the Hempel’s general theory of explanation, just like 
mechanistic ones don’t fit it either. I also think that topological explanations are 
different from mechanistic ones in a number of significant ways as it will become more 
evident later in the paper. 
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specifically. To avoid circularity when using the terms “grasping” and 

“understanding” in referring to the structure of explanation, following Strevens 

(2008, 2013) and Khalifa (2017) I distinguish between “understanding-that” 

and “understanding-why”. Understanding-that refers to some basic cognitive 

abilities such as being a competent speaker of a language, knowing what certain 

mathematical relations mean, grasping the mathematical axioms and knowing 

what it means to say that they are logically primitive, or knowing that 

something is a fact. The understanding-why is really what we are after here, 

and it refers to knowledge of why something is the case, which is based on 

the knowledge of counterfactuals. For example, an explanation that has an 

argument structure, the explanandum is the conclusion in the logical 

argument that is derived from the set of premises that constitute the 

explanans. Famously, Hempel and Oppenheim (1948) represented it thusly 

in figure 1.  

 

In this case, we are talking about understanding-that of each of these 

premises. Furthermore, there is also the understanding-that of the rules of 

inference, order of derivation, validity and soundness. Of course, soundness 

or validity alone are not guarantees of a successful scientific explanation, 

i.e. one could have a correct understanding from the false explanation, if one 

was only following the explanatory relations in the D-N model for example. 

But in minimal structure explanations, topological being of them, such 

situation is not possible because explanatory relations in the topological 
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explanation do not depend on the contingent causal facts that are particular to 

any of the physical systems in question. That is why the minimality and the 

abstractness and generality that they entail are so important to emphasize.  

 But the understanding-why comes from knowledge of all these relations 

and it is also supported by counterfactual thinking, i.e. had something in the 

argument been different in certain ways, the conclusion and thus the 

explanandum would have been affected in certain ways. The purpose of the 

above example is to illustrate the point about the relation between the structure 

of explanation and counterfactual information. In this sense, the understanding 

is facilitated by the knowledge requirements for grasping the exact relation 

between the explanans and explanandum. This further means that the 

explanation requires only the knowledge facilitated by the understanding-that, 

whereas proper understanding requires the knowledge facilitated by the 

understanding-why. Another way to put it is that the understanding-why comes 

from the structure of explanation, and it has a form of counterfactual 

information about the dependency relations between the explanans and 

explanandum. 

What makes some structure of explanation more complex, is not the amount 

of background assumptions, but the number of components that are required to 

describe the relation between explanans and explanandum.2 In this sense, it 

                                                
2 In terms of measuring the complexity in the structure of explanation, one can also 

distinguish between different levels and kinds of components. For example, in the D-n 
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means the more components the more complex the structure of explanation, 

and vice versa. For example, in the D-N model of explanation (Hempel and 

Oppenheim 1948) besides the statements about antecedent conditions and 

general laws, there are several other components that play an important role in 

the derivation of the explanandum, these are: the rules of inference (modus 

ponens, modus tollens), order of derivation (what is derived from what), 

soundness and validity of the argument. This kind of description of 

explanatory relations allows that there could be false explanation that 

provides correct understanding of explanatory relations. For example, if we 

substitute the Phlogiston theory as a general law in the D-N model, we will 

still be able to understand various counterfactual dependencies that the 

model postulates, and thus to have a correct understanding-why despite 

having a false explanation. 

The complex structure of explanation can be represented schematically in the 

following way: 

(CSE): Understandingthat (X,Y,Z,W)	→ 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔-./ 

Where X,Y,Z and W in D-N model may represent antecedent 

conditions, general laws, validity, soundness, order of derivation, and 

some additional explanatory component respectively. In the mechanistic 

                                                
model, the components such as antecedent conditions and general laws seem to be 

different both in kind and in level from components such as rules of inference, 

soundness and validity.  
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explanation, these components would be: elements, activities, organizational 

principles, constitution relations, manipulability relations, variables. And in the 

semantic explanation these components could be: concepts, primary and 

secondary intensions, possible worlds, various possible world semantics that 

determine how intensions behave in various possible worlds. Based on all these 

explanatory components we are able to derive the explanandum from the 

explanans and to grasp various counterfactual dependency relations, i.e. to 

understand-why.  

Whereas in minimal structure explanation just by understanding-that of 

the mathematical dependencies that describe a topology (in the case of 

topological explanation), we are able to understand various counterfactual 

dependencies in the very same noetic act of grasping the description of 

topology, and thus to have almost unmediated understanding-why.   

The schematic representation of the minimal structure explanations would then 

look like this: 

Minimal structure explanation  

(MSE): 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔0120	(𝑇) → 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔-./ 

Where T is a description of mathematical dependencies in a certain 

topology.  

To better understand the point about the relation between the structure of 

explanation and understanding, consider an example of two different questions 

about the dependency of wiring costs and evolution of the brain dynamics on 

the network topology. In neuroscience, this issue often comes up in terms of 
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questions how the wiring costs drive the evolution of brain networks, and 

about how the network topology in the brain constrains the wiring costs and 

dynamics. The former question would require a mechanistic explanation, 

that takes into account very specific details of the system and describes 

various causal dependencies across various time-scales, between the 

network modules, cognitive functions and how these dynamical and 

functional features constrain the evolution of brain networks. For example, 

the relevant question in this context will be about how the actual network 

connections that facilitate low wiring costs will be preferred in the evolution 

of brain’s network structures. This explanation, by its very focus on the 

particular system and on its causal history will be less abstract and general. 

On the other hand, in the latter case, when explaining the topological 

constraints on the wiring costs, the explanation will have to take into account 

only the dependency relations between connectivity patterns in the network 

and the particular connections. By the very nature of this question, the 

explanation will be more abstract and general, because such dependency 

relations hold independently from any particular system, simply because 

they are mathematical dependencies that are actually describing the network 

model. Such explanation will have far fewer components and the relation 

between the explanans and explanandum in it will be much less mediated, 

because the very same dependency relations that are doing the explanatory 

work are the ones that are also used to describe the system in question.  
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These are two very different ways to answer two seemingly similar 

questions. However, it seems very difficult to resist the intuition that 

mechanistic and topological explanations, are of different levels of 

abstractness, generality and complexity (remember in topological explanation, 

the structure is rather minimal, because the relation between the explanans and 

explanandum is less mediated), and because of that they provide two different 

scopes of understanding. In this sense of level of complexity in the structure of 

explanation, the mechanistic explanation would conform to the CSE scheme of 

the structure of explanation, whereas the topological one would conform to the 

MSE scheme. 

The minimal structure explanations also support an account of explanatory 

depth, that can be applied to both causal and non-causal explanations. The 

explanatory depth in this context is thought of in terms of richness of 

counterfactual explanatory relations that the explanation provides, so in this 

sense, the explanations which provide fewer counterfactual explanatory 

relations are less deep than the ones that provide more counterfactual relations.  

Depending on the complexity of the structure of explanation, the relation 

between explanation and understanding can be more intimate or less intimate, 

the more complex the structure of explanation the less intimate the relation 

between the explanation and understating, and vice versa. Because of the 

minimal structure and more direct relation between explanation and 

understanding, these explanations will be deeper, and more universal, because 
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they will provide more counterfactual dependency relations for our 

(armchair) grasping.   

Having set all the important distinctions in this section, in the next 

section I discuss the topological explanation, which has a minimal structure 

in exactly this sense.  

 

2. Minimal structure of topological explanation and scientific 

understanding 

 

In order to make my case, I discuss an example of scientific explanation 

that is pervasively used in biology (Levy and Bechtel 2013; Green et al 

2016; Huneman 2010, 2015), medicine (Darrason 2018), complexity theory 

(Rathkopf 2018) and neuroscience (Craver 20163; Kostić 2018 a,b), i.e. the 

topological explanation. The knowledge requirements to grasp the 

relationship between the explanans and explanandum in this context are so 

minimal that it seems that there is a sense of immediacy between mentally 

grasping or apprehending the descriptions of mathematical properties and 

                                                
3 It should be noted that Craver (2016) doesn’t accept the account of topological 

explanation as other authors that are cited here do. He argues that since topological 

explanations don’t provide a norm for distinguishing good from bad explanations, they 

can’t be considered explanations at all. At best, they constitute a new way to describe 

mechanisms.  



 15 

relations that characterise the topology of a system in question (or the 

understanding-that) and the property or behaviour in the system that we 

want to explain.  

Based on these considerations I argue that topological explanation has a 

minimal structure, which can be formulated in the following way: 

If a physical system or some of its aspects can be described as a 

network (by using graph theory, network analysis, network control theory 

and similar approaches), then just grasping the mathematical 

dependencies between topological properties and the network description 

suffices for the explanation of the behaviour or some properties of that 

physical system. 

 For example, to explain the efficiency of the signal processing in the 

brain, one will only have to understand the mathematical dependency between 

the clustering coefficient and average path length and the network. Similarly, 

in explaining the dynamics of the epidemics such as the speed of the spread of 

infection and what portion of the population will be affected, one will also 

have to understand the same dependencies between the clustering coefficient 

and the path lengths. The explanation itself does not depend on the details of 

these two very different systems. That’s why understanding the topology 

suffices for understanding the behaviour or properties of that physical system, 

without having to appeal to particular details of any of these systems.   

This definition allows to make a further claim, that in topological 

explanation the relation between the explanation and understanding is more 
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direct, i.e. in topological explanation describing the topological properties 

of networks at the same time, unmediated by the propositional structure, 

provides understanding of a physical fact we want to explain. More 

precisely, in topological explanation, an understanding of a mathematical 

characterization of topology allows us to grasp various counterfactual 

dependency relations between the explanandum and the description of 

topology (the explanans).  

To lay out this account properly, I’ll first explain what the topological 

explanation is, by using a simple example of Watts and Strogatz (1998) 

small-world model, and then show that the same explanatory relations hold 

in even more complex cases, such as for example use of topological 

hierarchical modularity in explaining various properties of the brain.  

The topological explanation has a structure of a counterfactual that 

describes a mathematical dependency between a set of topological 

properties and a network representation of a real-world system (Kostić 

2018c). Topology in this sense, refers to a specific global pattern of 

connectivity in a network or a graph. A network is a collection of nodes and 

edges, that are connected in certain ways, and a graph is a mathematical 

description of such a network (van den Heuvel and Sporns 2013, p. 683). 

The description of network topology and topological properties are obtained 

by quantifying networks.  

There are many ways to quantify networks and analyse their topologies. 

The best known are the node and network degrees. A node degree is a 
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measure of number of connections a node maintains, whereas a network degree 

is the average number of connections that nodes in a network maintain. Another 

example would include the measures of path lengths (average number of edges 

that have to be traversed to reach one node from the other) and clustering 

coefficient (measure of tendency of nodes that are connected among themselves 

to form connected triangles of nodes that are connected among themselves and 

therefore create very densely interconnected groups of nodes, that are called 

cliques). The path length is therefore a global property of the network and the 

clustering coefficient is the local network property. These measures are used to 

characterise network topology of various systems, regardless of what nodes and 

edges represent in those systems. For example, a network that has a low value 

for path lengths (i.e. short path length) and high clustering coefficient, is the 

way to characterise a small-world topology. Mathematically speaking, the 

small-world topology enables nodes that are in distant cliques, to be reachable 

from any other node in the network through significantly fewer steps than in 

any other kind of topology, and in that way, shorten the distance between the 

neighbourhood of nodes and neighbourhoods of neighbourhoods. This 

mathematical feature of small-world topology affects (mathematically) the 

network communication, because whatever process or activity or a mechanism 

we want to drive through such network the small-world topology will determine 

or in general constrain its dynamics (Kaiser and Hilgetag 2004, p. 312; van den 

Heuvel and Sporns 2013, p. 683).  

Famously, the Watts and Strogatz (1998) small-world model was used to 
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show the functional significance of small-world topology for dynamical 

systems (Watts and Strogatz 1998, p. 441). They used the example of the 

small-world model in the spread of infectious disease. They looked into a 

simple rewiring procedure of a family of graphs, so that starting from a ring 

lattice which has n nodes and k edges per node, they rewired each edge 

randomly with a probability p. The procedure allowed them to probe the 

graph properties between completely regular (p=0) to completely random 

(p=1), as is shown in figure 2.  

As mentioned above, they quantified the structural properties of the 

graphs by using the measures of average path length (Lp) and clustering 

coefficient (Cp). In doing so they have found that the properties of a regular 

graph at (p=0) are that of a large-world where L grows linearly with n (the 

number of nodes). On the other hand, in random networks at (p=1) which 

are poorly clustered, the L grows only logarithmically with n. The topology 

of a graph in the region between the regular and random graphs (where the 

wiring probability distribution is 0<p<1) has surprisingly low L and high C. 

These properties obtain due to introduction of few long-range connections 

or edges which then shorten the distance not only between the pairs of nodes 

that they connect, but also between the neighbourhood of nodes that are 

connected to that pair of nodes, and thus further shortens the distance 

between the neighbourhoods and also neighbourhoods or neighbourhoods. 

A very important point to keep in mind is that at the local level of a clustered 

neighbourhood of nodes, the change from a regular to small-world topology 
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is not detectable because replacing a short-range edge from such a highly-

clustered neighbourhood with a long-range one, leaves the value of C 

(clustering coefficient) practically unchanged, but the L(p) drops dramatically.  

To test the functional significance of small-world topology for dynamical 

systems they used a simplified model for the spread of infectious disease. They 

started with the same structure of family of graphs, where an infected individual 

is introduced into a healthy population and after a period of sickness which lasts 

a unit of dimensionless time, the infective individual is removed either by 

immunity or by death. During sickness, each of these individuals can infect their 

neighbours with some probability r. On each time step, the disease spreads 

through the graph (through the edges) until it either infects the whole population 

or it dies out and, in the process, infects only a portion of the population. The 

results these tests have shown are that:  

1) Critical infectiousness r-half rapidly decreases for small p; and 

2) The time T(p) that is required to infect the entire population, regardless 

of its structure, has the same functional form as a characteristic path 

length L(p).  

To Watts and Strogatz this clearly shows that:  

“All the models indicate that network structure influences the speed and 

extent of disease transmission, but our model illuminates the dynamics as an 

explicit function of structure, rather than for a few particular topologies, such as 

random graphs, stars and chains.” (Watts and Strogatz 1998, p. 442).  
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In this example, the knowledge that is required to understand the 

description of small-world topology, or in Watts and Strogatz’s vocabulary, 

to understand the “structure” is the very same knowledge that is required to 

understand the dynamics. Spreading of the infection along the edges of the 

graph is described by the very descriptions of its topological properties, i.e. 

the critical infectiousness decreases with topological randomness and the 

time T(p) to infect the entire population has the same functional form as the 

path length L(p). This feature of topological explanation allows us to 

understand the dynamics without any additional propositional apparatus or 

mediation. The structure of explanation in this case is minimal, in a sense 

that to grasp or to understand-that of the topological description of the 

dynamics is to grasp the explanatory relevant counterfactual dependencies 

or to understand-why.   

The reason why understanding the topology of the network suffices for 

the explanation of the feature in question of that system is that the 

topological explanation describes the (counterfactual) dependency relations 

between the topological properties and the network representation of the 

system. Once the system is described as a network, the network is quantified 

to obtain the topological properties. The counterfactual relations between 

topological properties and the network representation is what provides the 

immediacy between explanans and explanandum. The “bridge” between 

mathematics and the physical system is the fact that topological properties 

and the dependency relations between them are the properties and the 
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dependencies that mathematically define that network model in the first place. 

In this case, one might object that in connecting the mathematical explanans 

to a physical fact requires some kind of an empirical premise, and adding the 

empirical premise gives some kind of propositional structure, which further 

shows that the understanding is mediated and that the topological explanation 

is not minimal in a sense I presented here. On this view, grasping the 

explanatory relations that are posited in the explanation is what constitutes the 

understanding. Strevens calls this view a simple account of understanding 

(Strevens 2008, 2013). According to this view, there cannot be understanding 

without explanation, because it is the very structure of explanation (the structure 

here should be understood as a structure of propositions that describe causal 

relations) that provides the correct explanatory relations between the 

propositions and mentally grasping those relations is what constitutes a 

scientific understanding. For example, one can know that the Newton’s second 

law of motion is true, but without grasping its content, i.e. grasping the exact 

explanatory relations that the structure of explanation provides, they will not be 

able to understand a phenomenon that is explained by that law. Simply put, the 

structure of explanation merely supplies the explanatory relations for our 

(mental) grasping. The grasping in his sense is a tacit form of knowledge, more 

like a direct apprehension. For a lack of better definition Strevens claims that 

the understanding or direct apprehension is:  
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“the fundamental relation between mind and world, in virtue of which 

the mind has whatever familiarity it does with the way world is.” (Strevens 

2013, p. 511). 

A possible objection at this point could be that one could always 

“translate” an explanation from minimal structure to more complex one and 

have the same result. For example, Craver (2016) puts the topological 

explanation in argument structure. He puts it this way:  

“Empirical Premise. Königsberg’s bridges form a connected network 

with four nodes. Three nodes have three edges; one has five.  

Mathematical Premise. Among connected networks composed of four 

nodes, only networks containing zero or two nodes with odd degree contain 

Eulerian paths.  

Conclusion. There is no Eulerian path around the bridges of 

Königsberg.” (Craver 2016: 700).  

Indeed, one can always do this kind of translation, but such translated 

explanation would not only be superfluous, because there is already a 

simpler one (the topological one that conforms to the MSE scheme), but it 

would also compromise explanatory depth. As we will see, 

greater complexity compromises depth, but deeper explanations 

provide more understanding. More precisely, in cases where both 

topological and mechanistic explanations can be given, the particular 

explananda will dictate which kind of explanation to use, and when the 

explanandum requires appealing to some general or abstract features, the 
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topological explanation will be the one to go with. Topological explanations 

exemplify how minimal structure explanations provide greater depth, by 

having more intimate relation between explanation and understanding.  

The same can be done with the Watts and Strogatz example, but as we have 

seen, in their case, the dynamics of epidemics is precisely described by the 

measure of critical infectiousness which increases or decreases with topological 

randomness, and the time to infect the entire population has the same functional 

form as the topological measure of path length, which makes the explanation 

conform to the MSE scheme. In other words, the dynamics of an epidemics is 

described topologically, and grasping the description of topology suffices for 

the understanding of the dynamics. 

The minimal structure of topological explanation and its relation to 

understanding provide an interesting insight into the more general issue of 

explanatory depth, which I discuss in the next section.  

 

3. Minimal structure and explanatory depth  

 

As it was shown in the previous section, topological explanation has a 

minimal and noetic structure, i.e. the relation between the explanans and 

explanandum is less mediated or more direct. The more direct relation here 

means that just mentally grasping a mathematical dependency between 

topological properties and a mathematical representation of a system provides 
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the understanding-why of properties or behaviours of that system that we 

want to explain. 

Some topologies are very complex, so that in explanations based on 

them would seem to require that grasping the relation between the explanans 

and explanandum would be more mediated than Watts and Strogatz cases. 

One way to answer this objection is that regardless of how complex the 

topology is, understanding-that of such topology would still belong to the 

explanans, and it’s not an additional knowledge that is required to properly 

grasp the relation between the explanans and explanandum. This answer is 

based on the distinction between the simple and minimal from the beginning 

of the paper. According to this distinction, an explanation could be simple 

and still have a very complex structure, but explanation could be very 

complicated (in terms of grasping or understanding-that of highly abstract 

mathematical relations to describe certain topologies) but still have a 

minimal structure, i.e. to understand-that of the topology is to understand-

why of a range of counterfactual dependencies between topological 

properties and a network representation of a system.  

The other way could be that this account maybe doesn’t apply to all 

cases of topological explanations, indicating a pluralist view about 

topological explanation, according to which there could be different kinds 

of topological explanations. This could very likely be the case, given the 

richness and complexity of connectivity patterns in real world systems.  
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 However, minimal structure explanations provide greater explanatory 

depth in virtue of being more abstract and general, and in that way, they 

provide more counterfactual dependency relations for our grasping. This 

seems plausible, because an explanation that is less abstract and general would 

seem to provide fewer counterfactual dependency relations than the explanation 

that is more abstract and general, in virtue of being applicable to fewer classes 

of phenomena and in virtue of being able to cover fewer W-questions (what-if-

things-have-been-different-questions). Something that is more abstract and 

more general by its very definition is encompassing something else that is more 

concrete, specific, localized and particular, and in virtue of that it can provide 

more counterfactual dependency relations than something that is more concrete, 

particular and specific. 

This should be an uncontroversial claim because it is compatible with three 

influential accounts of explanatory depth in terms of generality and abstractness. 

Given that the minimal structure explanations hold independently from any 

actual system, the explanatory depth that they provide is compatible with the 

Deductive-Nomological account of explanatory depth (Hempel and Oppenheim 

1948) in terms of applicability to a range of possible systems. This account is 

also compatible with the interventionist account of explanatory depth 

(Hitchcock and Woodward 2003) in terms of a range of counterfactual answers 

to what-if things-had-been-different questions. I consider Strevens’ (2008, 

2013) simple account of understanding as a variety of interventionist account, 

and that it offers a similar conception of explanatory depth. Finally, minimal 
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structure explanation account of explanatory depth is also compatible with 

Weslake’s (2010) abstractive account in terms of providing various levels of 

abstraction in the explanation itself (micro-macroscopic levels). 

An interesting consequence of this view would be that the more complex 

the structure of explanation the more it is susceptible to cases where we get 

understanding from completely false explanations (Ptolemaic explanation 

of planetary orbits, Caloric theory explanation of heat, astrological 

explanation of personality traits or events, and many other). Because in 

those cases the understanding-that of various elements and explanatory 

relations in the explanans has a lot to do with understanding the rules of 

inference, validity, soundness, or in mechanistic explanation, it has to do 

with mapping a model onto a mechanism, that could all stand in correct 

explanatory relations, but some ontic detail might be false, and the false 

explanation would still produce correct understanding. Recall the example 

from the beginning in which just by replacing a law of nature in the D-N 

model with a Phlogiston theory, we can get a correct understanding from 

false explanation.  

But in explanations with minimal structure, it is difficult to see how one 

would get a correct understanding from false explanation, because for 

example, in topological explanation, understanding the mathematical 

relations that describe the topological properties (understanding-that) is to 

understand their counterfactual mathematical dependency relations and thus 

to understand-why. In other words, in topological explanation the correct 
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explanatory relations do not hinge on contingent causal or ontic facts, but 

instead hold in virtue of inherently mathematical dependencies, and so 

having a proper grasp of various counterfactual dependency relations between 

the topological properties and the network representation (understanding-why) 

is actually a part of having a proper grasp (understanding-that) of a 

mathematical description of a topology.  

This explanatory pattern and the relation between the explanans and 

explanandum in topological explanation will be the case even in very complex 

systems such as the brain. The brain has a small world topology, and the small-

worldliness perfectly describes its topology at the global level as well at the 

local level of connected triangles of nodes. The intermediate level of brain’s 

network organisation is best described through the network measures of 

community structure or network modularity (Meunier et al 2010, p. 2). The 

modules in a network that are also called communities, are subsets of nodes that 

are densely interconnected among themselves in the same module, but sparsely 

connected to the nodes in other modules (ibid). Since the nodes in the same 

module are very densely connected, the existence of connections between the 

nodes in different modules plays a role in shortening the path lengths in the 

network architecture, thus providing another way to characterize small world 

topology, i.e. the high clustering within a module and existence of links between 

nodes in different modules is what significantly shortens the path lengths in the 

whole network, and thus constitute the small-world topology. It should be noted 

that even though the modular networks are small-world topologies, not all 
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small-world networks are also modular, e.g. the Watts and Strogatz (1998) 

model is small-world but not modular (Meunier et al 2010, p. 2). In many natural 

systems, the brain being one of them, each module can be partitioned even 

further into sub-modules, so the brain has a hierarchical modularity which 

is approximately invariant over a number of levels in the hierarchy (ibid). 

Hierarchical modularity has a tremendous explanatory potential, especially 

when it comes to explaining dynamics, information processing at multiple 

scales, system’s evolvability and stability. For example, small-worldliness 

that is rooted in hierarchically modular topology in the brain will be 

advantageous for the locally segregated processing in highly specialized 

functions (e.g. in visual motion detection) because the high clustering within 

the module will enable low wiring costs, and at the same time in such 

topology the short path lengths will more easily facilitate globally integrated 

processing of some of the more generic functions (e.g. working memory). 

Furthermore, hierarchical modular topology will be conducive for high 

dynamical complexity because it allows that both segregated and integrated 

activities co-exist in the system, or because such topology allows that both 

synchronisation and de-synchronisation coexist across the network. 

Topological modularity will also allow that marginally stable networks of 

submodules be combined or divided while at the same time preserve 

network stability at the global level.  

In all of these cases, the explanatory pattern is the same. By grasping the 

mathematical dependency between a global pattern of hierarchical 
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topological modularity and a network representation of the brain, we are 

immediately able to know (without any kind of mediation through 

propositional structure) that small-world topology that stems from network 

modularity at the same time enables low wiring cost (through high clustering 

within a module) and thus it is favourable for the locally segregated functions, 

while also supporting integrated processing through short path lengths when it 

comes to more generic functions such as working memory. In Strevens’ 

terminology, a description of topology immediately provides explanatory 

relations for our grasping.  

The hierarchical modular topology is a way to describe the small-world 

topology in greater detail than the original Watts and Strogatz model (1998), 

and the dependencies and constraints between topological properties and the 

dynamical features in the brain, provide incomparably richer patterns of 

counterfactual dependencies than the description of small-world topology based 

only on the path lengths and clustering coefficient. However, despite this, the 

relation between the topology and dynamics remains equally unmediated as in 

the Watts and Strogatz case, i.e. understanding-that of the hierarchical modular 

topology suffices for understanding-why of the dynamics. As we recall, the 

modules enable greater signal processing efficiency locally, and the connections 

between different modules in the whole network as well as within the hierarchy 

of submodules enables global integration of functions across the network, but 

also synchronisation and desynchronization activities across the whole network. 

An explanation of the various dynamical features of the brain in this context 
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will only appeal to various mathematical dependencies between topological 

variables (such as node and network degree, path length, betweeness centrality) 

in order to provide a very rich set of counterfactual dependencies and thus 

to provide the greater understanding.         

After having discussed the account of explanatory depth that the 

minimal structure explanations provide, in the last section I will summarise 

my argument.  

4. Conclusion  

As we have seen, in topological explanation the understanding-that of 

certain mathematical relations that describe topology in a system requires 

minimal mediation or no mediation through any kind of propositional 

structure at all, in order to obtain the understanding-why, e.g. mentally 

grasping various mathematical relations that describe network modularity 

allows to grasp the function integration across different scales in the very 

same noetic act. To that effect, topological explanation has a minimal 

structure. It is based on understanding mathematical descriptions of 

topologies. 

 This account of explanation covers various levels of intimacy between 

the explanation and understanding, from the ones in which explanation and 

understanding are the most distinct (meaning delivering understanding 

requires a great deal more of mediating knowledge), e.g. Strevens (2008, 

2013) and Khalifa (2012, 2017); to cases where the explanation has a 

minimal structure and the delivery of understanding is less mediated.  
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This is a gradual view of explanation, according to which the less of the 

structure it has the more of the understanding it provides, and vice versa. This 

has to do with the explanatory depth, because the explanations with minimal 

structure provide greater explanatory depth in virtue of being more general, 

more abstract, and both of these features stem from the abstractness and 

generality of various topologies. The explanatory depth in this sense is based on 

the fact that minimal structure of topological explanation provides more 

possible explanatory relations, it casts the counterfactual net much wider so to 

speak, which also increases applicability of explanation across very diverse 

domains of cases. It provides answers to more counterfactual questions, and 

finally, it provides answers about counterfactual dependencies across multiple 

scales and levels of abstraction and organisation.  
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