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Abstract

This paper proves normalisation theorems for intuitionist and classical
negative free logic, without and with the ιoperator for definite descriptions.
Rules specific to free logic give rise to new kinds of maximal formulas
additional to those familiar from standard intuitionist and classical logic.
When ιis added it must be ensured that reduction procedures involving re-
placements of parameters by terms do not introduce new maximal formulas
of higher degree than the ones removed. The problem is solved by a rule
that permits restricting these terms in the rules for @, D and ιto parameters
or constants. A restricted subformula property for deductions in systems
without ιis considered. It is improved upon by an alternative formalisation
of free logic building on an idea of Jaśkowski’s. In the classical system the
rules for ιrequire treatment known from normalisation for classical logic
with _ or D. The philosophical significance of the results is also indicated.

1 Introduction

It goes without saying that Russell’s theory of definite descriptions, expressions
of the form ‘the F’, carries great philosophical significance, and its importance
in the development of analytic philosophy is hard to overstate. As there may
not be a unique F, Russell proposed that ‘The F is G’ means ‘There is exactly
one F and it is G’: the definite description disappears upon analysis and is not a
genuine singular term.1

Despite its paradigmatic status, Russell’s theory has not met with universal
acceptance. A motive in the development of free logic by Hintikka, Lambert
and others was the formalisation of alternative theories.2 Free logic does not
require that singular terms refer nor that domains of quantification be non-
empty. Definite descriptions are treated as genuine singular terms. Nonetheless,
negative free logic retains some Russellian spirit: atomic formulas containing
singular terms cannot be true unless the terms refer.

The present paper investigates systems of natural deduction for classical
and intuitionist negative free logic with and without definite descriptions from

1See (Russell, 1905), (Russell, 1919, Ch. 16) and (Whitehead and Russell, 1910, Introduction, Ch.
3, Sec. (1), and Part I, Section B, ˚14).

2See Bencivenga (1986) for an overview and the further references later in the text.
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a proof-theoretic perspective. Normalisation theorems for various systems
formalised in Gentzen’s natural deduction are proved. They establish that maxi-
mal formulas – major premises of elimination rules that are concluded by an
introduction rule – can be removed from deductions by applying reduction pro-
cedures that transform them so that these inferences are avoided. Normalisation
theorems are analogous to Gentzen’s Hauptsatz for sequent calculus.3

I shall begin with systems without definite descriptions familiar from the
literature. To my knowledge, no normalisation theorems have been proved
for them. To fill this gap is the first contribution of this paper. The proofs
largely follow Prawitz’s method (Prawitz, 1965). For the classical system with

ιa method of Andou’s is adapted (Andou, 1995). Normalisation for free
logic requires considering new cases of maximal formulas that do not occur in
standard classical and intuitionist logic. Furthermore, I shall investigate the
form of normal deductions and consider a suitable subformula property. Due to
the rules for the quantifiers and those characteristic of negative free logic, this
notion has to be rather restricted. Thus I shall propose an alternative way of
formalising free logic inspired by Jaśkowski that improves on the situation.

The next contribution is to prove normalisation theorems for systems with
the ιoperator to formalise definite descriptions. Rules for ιsuitable for negative
free logic were given by Neil Tennant. Tennant also gives reduction procedures
for maximal formulas of the form ιxF “ t, but to my knowledge, no one has
explicitly proved normalisation for Tennant’s systems. In fact, for normalisation
to be provable as is standardly done by an induction over the complexity of
maximal formulas, the systems require modification. In a nutshell, the problem
is that as they stand, once ιterms are added, applying the reduction procedures
for maximal formulas with quantifiers and ιmay produce maximal formulas of
unbounded complexity because ιterms are substituted for free variables. To
solve this problem I transpose an observation of Andrzej Indrzejczak’s relating
to sequent calculi for free logics without definite descriptions (Indrzejczak,
2020b, Sec. 4) to natural deduction.4 The natural deduction version of a rule
of Indrzejczak’s permits the restriction of the rules for the quantifiers and ιto
free variables or constants in such a way that only these are replaced for free
variables in the reduction procedures. This ensures that the complexity of any
new maximal formulas is less than that of the maximal formula removed, and
induction can proceed as usual.

I shan’t consider a suitable subformula property for the systems with ι. As
Tennant’s rules introduce and eliminate the ιoperator in terms flanking “, this
would require too many exceptions.

Although the present paper focuses on formal issues, there will be occasion
to comment briefly on the philosophical upshot of the results. Normalisation
theorems are of interest in themselves, but they also have a wider philosophical
significance. In proof-theoretic semantics, the theory that the meanings of logical
expressions are defined by the rules of inference governing them, it is regarded
as a necessary condition for them to do so that they permit normalisation.5

3Gentzen’s Nachlass, edited by von Plato, also contains a normalisation result (von Plato, 2017).
4Indrzejczak notes the significance of his observation for the proof theory of definite descriptions

in the conclusion to the paper cited. His cut elimination theorems for sequent calculi for various
theories of definite descriptions are independent of it (Indrzejczak, 2018, 2020a, 2023).

5This approach originates ultimately with a fertile remark of Gentzen’s (Gentzen, 1934, §5.13).
It was the basis for Prawitz’s inversion principle and his proofs of normalisation for classical and
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Given the significance of Russell’s theory of definite description, it is a little
surprising that there is next to no discussion of the theory of definite descrip-
tions in proof-theoretic semantics. Proof-theoretic semantics so far has rarely
considered free logic and largely been restricted to sentence-forming operators
and quantifiers. Term-forming operators hardly feature in the literature at all. A
notable exception is Neil Tennant’s work.6 The present paper is a contribution to
the further development of a proof-theoretic semantics for definite descriptions
and term-forming operators in general.

2 Systems of Intuitionist and Classical Free Logic

2.1 Preliminaries

The definition of the language is standard, except that there is a special one-place
predicate D! and in some systems the operator ι. As usual in proof-theoretic
investigation, I assume that there is an unlimited stock of variables, called
parameters, used as free variables, distinct in shape from those whose occurrences
are bound by quantifiers: a, b . . . for the former, x, y, z . . . for the latter. Constants
are designated by c, d . . ., predicate letters by P,Q,R . . ., identity by “, and the
‘existence predicate’, indicating that a term refers, by D!. A,B . . . F,G . . . range
over formulas. If necessary, subscripts are used. The connectives are K,^,_,Ñ,
D and @.  A is defined as A Ñ K. ιtakes a variable and a formula F and forms a
singular term out of them, ιxF, where x is bound by ιx in F. The terms of the
language are the constants, parameters and the ιterms, the former two atomic,
the latter complex. t ranges over terms. Ax

t names the formula that results from
replacing the term t for all free occurrences of x in A. The distinction between
parameters and bound variables ensures that replacements of terms in formulas
is always possible.

Definition 1. Prime formulas are those formed from parameters and constants
by predicate letters, D! or =. Atomic formulas are those formed from terms by
these expressions.

Deductions are defined as usual as certain kinds of trees labeled with formulas. I
follow Troelstra’s and Schwichtenberg’s conventions for the discharge or closing
of assumptions (Troestra and Schwichtenberg, 2000, Sec 2.1.1): assumptions
are assigned assumption classes, rules close or discharge all formulas in an
assumption class, indicated by square brackets around the formulas in that class
and a numeral to their right and to the right of the inference at which these
assumptions are closed or discharged. Empty assumption classes, for vacuous
discharge, are permitted. I’ll use Π, Ξ, Σ to stand for deductions, often, as is
customary, displaying their conclusions below and some assumptions on top.

intuitionist logic. The view has been developed in detail by Dummett as part of a theory of meaning
(e.g. (Dummett, 1993, Chs 11-13)), a project to which Prawitz contributed, too (e.g. (Prawitz, 2006)).
The term ‘proof-theoretic semantics’ was coined by Schroeder-Heister, who also made important
contributions to the field. See (Schroeder-Heister, 2022) for an overview.

6See (Tennant, 1978) and (Tennant, 2004). Tennant prefers the intuitionist version of the systems
discussed in this paper. Strictly speaking, he would prefer an intuitionist core-logical version
(Tennant, 2017), but this book does not discuss definite descriptions. For Tennant’s take on meaning
and proof theory, see also (Tennant, 1987).
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Definition 2. Γ $S A means that there is a deduction of A in formal system S
from some of the formulas in Γ as open assumptions.

2.2 Intuitionist Negative Free Logic

These are the rules of Tennant’s system of intuitionist negative free logic INF
(Tennant, 1978, Sec. 7.10):

A B
p^Iq

A^ B
A^ B

p^Eq
A

A^ B
B

rAsi

Π
B

pÑ Iq i
A Ñ B

A Ñ B A
pÑ Eq

B

A
p_Iq

A_ B
B

A_ B A_ B

rAsi

Π
C

rBs j

Σ
C

p_Eq i, j
C

K
pKEq

B

rD!asi

Π
Ax

a
p@Iq i

@xA

@xA D!t
p@Eq

Ax
t

where in p@Iq, a does not occur in @xA nor in any undischarged assumptions of
Π except those in the assumption class of D!a.

Ax
t D!t

pDIq
DxA DxA

rAx
as

i rD!as j

Π
C

pDEq i, j
C

where in pDEq, a is not free in C, nor in DxA, nor in any undischarged assumptions
of Π except those in the assumption classes of Ax

a and D!a.

D!t
p“ Inq t “ t

t1 “ t2 Ax
t1

p“ Eq
Ax

t2

Rt1 . . . tn
pADq

D!ti

where R is an n-place predicate letter (but not D!) or identity and 1 ď i ď n.
The superscript n of p“ Inq indicates that this is in the introduction rule for

identity in negative free logic. pADq, the rule of atomic denotation, is typical for
negative free logic: an atomic sentence can only be assertible or true if all terms
that occur in it refer.

4



I will often omit labels of rules in deductions, especially when they are
simple and the rules mentioned in the surrounding text, but I’ll add them where
I think this helps understanding, especially when deductions are more complex
and the rules involved less familiar.
D! is in one sense redundant, as what is often called Hintikka’s Law holds:7

$ D!t Ø Dx x “ t

In another sense it makes good sense to keep it primitive, if the meanings of
the quantifiers are to be defined by the rules governing them, as they are by
Tennant: without it, the definition of the meaning of the existential quantifier
would be circular.

2.3 Intuitionist Negative Free Logic with a Definite Descrip-
tion Operator

The system INF

ι

results by adding the ιoperator and Tennant’s introduction
and elimination rules for it to INF (Tennant, 1978, Sec. 7.10):

D!t

ra “ tsi

Ξ
Fx

a

rFx
as

j rD!ask

Π
a “ t

p

ιIq i, j,kιxF “ t

where a does not occur in ιxF, nor in t, nor in any undischarged assumptions
except those in the assumption classes of a “ t in Ξ or of Fx

a and D!a in Π.

ιxF “ t u “ t
p

ιE1q Fx
u

ιxF “ t Fx
u D!u

p

ιE2q u “ t

ιxF “ t
p

ιE3q
D!t

p

ιE3q is a special case of the rule pADq. But it is properly regarded as an
elimination rule for ι, for, as we’ll see, there is a reduction procedure for maximal
formulas of the form ιxF “ t that have been concluded by p ιIq and are premises
of p ιE3q. So whenever pADq could be applied to the conclusion of p ιIq, that is,
when it is concluded that the right term refers, this is regarded as an application
of p ιE3q. If it is the left term, the rule is pADq.

The rules for ιare what is now often called Lambert’s Axiom in rule form:

(LA) @zp ιxAx “ z Ø @ypAy Ø z “ yqq

INF

ι

is thus an intuitionist version of the minimal theory of definite descriptions
in negative free logic.8

A second axiom of Lambert’s, sometimes called ‘cancellation’,

(CA) ιxpx “ tq “ t

7Hintikka equates existence, or rather his interpretation of Quine’s dictum that to be is to be the
value of a bound variable, with the right hand side of the displayed formula (Hintikka, 1959a, 132f).

8Lambert developed his theory in (Lambert, 1961) and (Lambert, 1962), which are incorporated
and expanded in (Lambert, 2004a). Hintikka put forward a theory of definite descriptions around
the same time (Hintikka, 1959b). The label ‘minimal theory’ is from (Lambert, 2004b).
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is provable conditionally on the existence of t by an application of p ιIq in which
F is x “ t and D!a in the rightmost subdeduction is discharged vacuously:

D!t ra “ ts1 ra “ ts1
1ιxpx “ tq “ t

2.4 Classical Negative Free Logic with and without a Definite
Description Operator

CNF has the introduction and elimination rules forÑ, @ and“, pADq and pKECq:

r Asi

Π
K

pKECq i
A

Vacuous discharged being permitted, pKEq is a special case of pKECq. I’ll refer to
these applications of pKECq by the former label.

CNF

ι

results by adding ιand its rules to CNF.

2.5 Two Simplifying Lemmas

The two lemmas in this section absolve us from having to consider certain
tiresome cases in the normalisation theorem.

Lemma 1. p“ Eq may be restricted to atomic conclusions.

Proof. Well known and standard: break up a non-atomic formula by applying
elimination rules until atomic formulas are reached, apply p“ Eq, reconstitute it
by applying introduction rules. �

Lemma 1 holds for all the systems to be considered. More interesting and as far
as I know new to the literature is the following:

Lemma 2. pKEq may be restricted to prime conclusions.

Proof. (i) Evidently it is unnecessary to conclude K from K by pKEq. (ii) By a
well known and standard result, pKEqmay be restricted to atomic conclusions.
Thus it suffices to consider the case where the conclusion of pKEq is an atomic
formula. We’ll first reduce these cases to identities flanked by only one ιterm
and then treat those.

(iii) Let G be either D! or“ flanked by two ιterms or an n`m-place predicate
letter, 1 ă n, 0 ď m, forming a formula with n ιterms and m atomic terms, the
latter left implicit below:

K

Gp ιx1F1 . . .

ιxnFnq

These cases can all be reduced to applications of pKEq to identities flanked by
only one ιterm by the following method. Take n fresh parameters a1 . . . an and
infer a1 “

ιx1F1 . . . an “

ιxnFn and Gpa1 . . . anq by n` 1 applications of pKEq, then
apply p“ Eq n times to deduce Gp ιx1F1 . . .

ιxnFnq:
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K

an “

ιxnFn

K

a2 “

ιx2F2

K

a1 “

ιx1F1

K

Gpa1 . . . anq

Gp ιx1F1, a2 . . . anq

Gp ιx1F1,

ιx2F2 . . . anq

...
Gp ιx1F1,

ιx2F2 . . .

ιxn´1Fn´1, anq

Gp ιx1F1,

ιx2F2 . . .

ιxn´1Fn´1,

ιxnFnq

When G is an identity flanked by two ιterms, ιxF “ ιyH, there is a shorter
method, as a “ ιxF, a “ ιyH $

ιxF “ ιyH, but the method above works, too.
(iv) This leaves the case of an identity flanked by one ιterm. As “ is

symmetric, it suffices to consider the case:

K

ιxF “ b

where b is a an atomic term. Apply p ιIq with vacuous discharge, where a is a
fresh parameter:

K

D!b
K

Fx
a

K

a “ b

ιxF “ b

F may be a complex formula or K and contain further ιterms, so to establish
the lemma, parts (i), (ii), (iii) and (iv) may need to be applied again. (i) is
trivial: delete an application of pKEq that concludes K immediately whenever
it arises as part of the procedure. The method for establishing (ii) reduces the
number of connectives and quantifiers in conclusions of pKEq. The methods of
(iii) and (iv) reduce in addition the number of ιs in conclusions of pKEq. The
result, therefore, can be established by an induction over the complexity of
conclusions of pKEq. For the purposes of this lemma, let the degree for a formula
be the sum of connectives, quantifiers and ιs in it. The measure xd, ey, ordered
lexicographically, will do, where d is the highest degree of any conclusion of
pKEq, and e is the number of conclusions of pKEq of highest degree. Applying
any of the procedures in (ii), (iii) or (iv) either reduces e or, if there is only one
conclusion of pKEq of highest degree, reduces d. �

Lemma 2 holds for INF, INF

ι

and carries over to CNF and pKECq: its conclusion,
too, can be restricted to prime formulas (here the same as the atomic ones).

Lemma 2 does not carry over to pKECq in CNF

ι

: when discharge is not
vacuous, conclusions of pKECq cannot be restricted to prime, but only to atomic
conclusions: conclusions containing ιterms must be admitted, but only atomic
ones. It would go too far to give a rigorous proof of this result here, and in any
case, a further restriction is not needed for the normalisation proof to be given
later. The following should suffice to elucidate the reason why the result fails. To
show that pKECq need not be applied to conclude a complex formula A, the usual
procedure is to apply an elimination rule for the main operator of A, derive K by
assuming the negation of a subformula of A, conclude  A, apply pKECq to the
subformula, and to do so as often as required to apply an introduction rule for
the main operator of A to conclude A and discharge any auxiliary assumptions.
This method does not work here. Suppose Γ, ιxF “ a $ K. We could take a
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fresh parameter b and conclude Fx
b by p ιE1q from ιxF “ a and b “ a, assume  Fx

b
to derive K, and so deduce  ιxF “ a; thus Γ, b “ a $ Fx

b . We could apply p ιE2q

to ιxF “ a,Fx
b and D!b to derive b “ a, assume  b “ a to derive K and so deduce

 

ιxF “ a; thus Γ,Fx
b , D!b $ b “ a. Thus we have the two left deductions required

for an application of p ιIq. But we do not have D!b, and there is no way to derive
it from the material we are given. Besides, even with D!b we’d only be able to
derive ιxF “ b, not ιxF “ a, as p ιIq requires a fresh parameter. The situation is
no better for atomic formulas other than identities. To avoid concluding Pp ιxFq
we’d need a formula ιxF “ a to conclude  Pp ιxFq from  Ppaq, and there is no
way to discharge it.

Henceforth I shall assume all applications of p“ Eq, pKEq and pKECq to be
restricted according to Lemmas 1 and 2. That is, in CNF

ι

, applications of pKECq

with vacuous discharge are assumed to have prime conclusions, just as for
applications of pKEq in INF

ι

.

3 Preliminaries to Normalisation

3.1 General Notions

As usual, I assume that in any application of rules with restrictions on parameters
the parameter is introduced into the deduction solely for the purpose of that
application of the rule, occurring nowhere else.9 This ensures that in the
transformations applied to deductions in the process of normalisation, no
‘clashes’ of variables can occur. Πa

t names the deduction that results from

replacing the term t for all occurrences of the parameter a in Π.
Π
rAs
Σ

indicates

that Π is used to conclude all assumptions in the assumption class of A in Σ. This
notation is used to indicate that formulas discharged by a rule in one deduction
are instead concluded by another rule in a transformed deduction.

Definition 3. The major premise of an elimination rule is the formula that displays
the connective or ιin the general statement of the rule, here always the leftmost
premise. All others are minor premises.

Applications of p_Eq and pDEq give rise to sequences of formulas of the same
shape, all minor premises and conclusions of p_Eq or pDEq, except the first and
the last ones: the first is only a minor premise, the last only a conclusion. It
is convenient to capture this situation in a way that covers every formula in a
deduction (cf. (Prawitz, 1965, 49) and (Troestra and Schwichtenberg, 2000, 179):

Definition 4. A segment is a sequence of formulas C1 . . .Cn such that C1 is not
the conclusion of p_Eq or pDEq, Cn is not a minor premise of p_Eq or pDEq, and if
n ą 1 then for all i ă n, Ci is a minor premise of p_Eq or pDEq, Ci`1 the conclusion.
n is the length of the segment.

I’ll say that C is on a segment and speak of segments as being premises,
conclusions, discharged assumptions of rules depending on whether their last
or first formulas are.

9Troelstra and Schwichtenberg call this the pure variable condition (Troestra and Schwichtenberg,
2000, Sec. 2.1.2). The terminology goes back to Prawitz (1965, 28f). Gentzen used the neat term
Eigenvariable (Gentzen, 1934, 186): each application of such a rule has its own variable.
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A segment of length 1 is a formula, and I shall often refer to them as such.
Occasionally I shall use the pleonasm ‘formula or segment’.

Definition 4 ignores a minor issue. Call an application of p“ Eq vacuous if the
major premise is t “ t. The definition ignores the possibility that the formulas
on a segment are minor premises and conclusions of vacuous applications of
p“ Eq. However, as then the minor premise and the conclusion of p“ Eq are
identical, they can evidently be removed from deductions without loss and
without trouble. Including this possibility is a needless complication. Vacuous
applications of p“ Eq can arise as a result of the transformations of deductions in
normalisation procedures. I shall assume that they are always removed together
with the procedure. I shall leave this largely implicit, but as a reminder that they
may occur, I shall at various points mention vacuous applications of p“ Eq.

Definition 5. A segment is maximal if its last formula is the major premise of an
elimination rule, and if its length is 1, it is the conclusion of an introduction rule.

Accordingly a maximal formula is a formula occurrence that is the conclusion of
an introduction rule and the major premise of an elimination rule.

The degree of a formula is normally defined as the number of logical symbols
occurring in it. For our purposes, however, quantifiers need to count for two
because of the existence assumptions in their rules. This ensures that @xA
and DxA always have a higher complexity than the premises and discharged
assumptions of their introduction rules. This is not needed for ι, as counting ι

and “ as one each, ιxF “ t always has a higher complexity than any premise or
discharged assumption of p ιIq (at least 2). The degree dpAq of a formula A and
dptq of terms is defined by simultaneous induction as follows:

Definition 6. (a) If A is a prime formula Rt1 . . . tn, then dpAq “ 0 if R is a predicate
letter, and dpAq “ 1 if R is D! or “. (b) dptq “ 0, if t is an atomic term, dpFq ` 1 if t
is ιxF. (c) If A is an atomic formula Rt1 . . . tn, then dpAq “ dpt1q ` . . . dptnq if R is
a predicate letter, and dpAq “ dpt1q ` . . . dptnq ` 1 if R is D! or “. (d) If A is:

(i) K, then dpAq “ 1;
(ii)  B, then dpAq “ dpBq ` 1;
(iii) B^ C, B Ą C or B_ C, then dpAq “ dpBq ` dpCq ` 1;
(iv) @xB or DxB, then dpAq “ dpBq ` 2

The degree of a segment is the degree of the formula on it.

3.2 Failure of the Subformula Property

As I won’t consider the subformula property for systems with ι, the definition
of subformula is standard:

Definition 7. A is a subformula of A; A is a subformula of  A; A,B are
subformulas of A ^ B, A _ B, A Ñ B; and for any atomic term t, Ax

t is a
subformula of DxA, @xA; and if A is a subformula of B and B is a subformula of
C, then A is a subformula of C.

The subformula property is usually defined as follows:

Definition 8. A deduction has the subformula property if every formula occurring
on it is a subformula of the conclusion or of some open assumption.

9



This fails already in standard first-order logic with identity. For instance:

t3 “ t4

t1 “ t2 Rt1t3
p“Eq

Rt2t3
p“Eq

Rt1t4

Rt2t3 is not a subformula of any other formula, and there is no way to rearrange
the deduction to change this. It also fails due to rules specific to negative free
logic. For instance, to deduce Ax

t from @xA requires D!t, which we may be able
to infer from an atomic formula Pt:

@xA
Pt
D!t

Ax
t

D!t need not be a subformula of another formula, and there may be no way to
rearrange this deduction. Identity gives rise to further cases, e.g. to conclude
t “ t by p“ Inq requires D!t, which may be concluded from Pt.

This circumscribes where exceptions to the subformula property are found.
I will later define a restricted version that holds for deductions in INF and CNF.

Comment. I am not regarding pADq as an introduction rule for D!, nor pDIq,
p@Eq and p“ Inq as elimination rules for it. There are philosophical questions
that arise here, which I will discuss briefly on p.19f. and p.22. An extended
discussion must wait for another occasion.10

3.3 Maximal Segments Specific to Negative Free Logic

Maximal formulas arise because of detours in deductions, to use Gentzen’s
phrase. Normalisation theorems show that these detours can be avoided. They
are unnecessary to derive the conclusion. The process of normalisation may
also remove unnecessary assumptions from the deduction. The thought is that
a proof in normal form appeals only to what is essential to prove the conclusion.

The rules of negative free logic give rise to detours in addition to those of
definition 5. For instance, p“ Inq followed by pADq and sometimes conversely:

D!t
p“Inq

t “ t
pADq

D!t

t “ t
pADq

D!t
p“Inq

t “ t

This is clearly unnecessary. Similarly when t “ t and D!t are stretched out by
p_Eq or pDEq. In the systems with ι, p ιE3q could be applied instead of pADq, but
this clearly makes no difference, as we can just rename the rule.

Definition 9. A maximal “-segment is a segment (of formulas t “ t) such that
its first formula is concluded by p“ Inq and its last is the premise of pADq. A
maximal D!-segment is a segment (of formulas D!t) such that its first formula is
concluded from t “ t by pADq and its last is the premise of p“ Inq.

10Some thoughts on this issue are in (Kürbis, 2021a).
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In CNF and CNF

ι

we may speak of maximal D!- and “-formulas.
Recall that we are ignoring vacuous applications of p“ Eq. This absolves us

from considering the case that a maximal “-segment contains what might be
called totally vacuous applications of p“ Eq, those where all three formulas of the
inference are t “ t.
p“ Eq gives rise to sequences of formulas quite similar to segments, except

that terms are replaced in the formulas constituting the segment:

Definition 10. An p“ Eq-segment is a sequence of segments σ1 . . . σn such that σ1
is the minor premise but not the conclusion of p“ Eq, σn is the conclusion but
not the minor premise of p“ Eq, and if 1 ă i ă n, σi is the conclusion of p“ Eq
and the minor premise of p“ Eq.

I’ll refer to the major premises to the left of formulas on an p“ Eq-segment as
the major premises of the segment.
p“ Eq-segments can give rise to unnecessary detours, if pADq is applied to

their last formulas or if their formulas have the form D!t. For example:

(a) i is 3 or 4:

t2 “ t4

t1 “ t2 t1 “ t3

t2 “ t3

t4 “ t3

D!ti

(b) i is 4, 5 or 6:

t3 “ t6

t2 “ t5

t1 “ t4 Rt1t2t3

Rt4t2t3

Rt4t5t3

Rt4t5t6

D!ti

(c)

t3 “ t4

t2 “ t3

t1 “ t2 D!t1

D!t2

D!t3

D!t4

These constructions involve terms that may not be needed to derive the conclu-
sion. In the systems without ι, these would be atomic terms that name objects
the existence of which may be irrelevant to proving the conclusion (by pADq,
for any t j in (a) and (b), D!t j). Free logic being concerned with the avoidance
of existence assumptions, this is undesirable. In the systems with ι, there may
in addition be complex terms that refer to objects by predicates that not are
needed to prove the conclusion: this would be a case of introducing unnecessary
concepts into the proof.

The p“ Eq-segments can be omitted:

(a) If i “ 3, D!t3 could have been concluded by pADq from the minor premise of
the first application of p“ Eq; if i “ 4, D!t4 could have been concluded by pADq
from the major premise of the last application of p“ Eq.
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(b) D!ti could have been concluded by pADq from one of the major premises of
p“ Eq; if one or more of t4, t5 or t6 happens to be the same as t1, t2 or t3, D!ti could
also have been concluded from the first formula of the segment.

(c) D!t4 could have been concluded by pADq from the major premise of the last
application of p“ Eq.

Clearly this situation generalises, and also to cases with p_Eq or pDEq interspersed.
As before, in the systems with ι, p ιE3q could be applied instead of pADq, but this
again makes no difference, and we just rename the rule.

Definition 11. An p“ Eq-segment is maximal if its last segment is premise of
pADq or if all formulas on it are formed from D! and a term.

To distinguish the maximal segments defined in this section from those defined
in the last section, I’ll refer to the latter by ‘maximal I{E-segments’ (for introduc-
tion/elimination). By ‘maximal segment’ I usually mean both, but sometimes
only I{E-segments, if it is clear from context what is meant.

The reduction procedures that remove the new maximal segments from
deductions are as follows:

I. For maximal D!- and “-segments: remove the application of the rule that
concludes the segment, the segment and the formula concluded from it (i.e. we
proceed directly from the formula from which the segment is concluded to the
rule applied to the formula concluded from the segment).

II. For maximal p“ Eq-segments: (i) If the formula on the segment is formed
from D! and a term, conclude its last formula from the major premise of the
last application of p“ Eq, removing all the rest. (ii) If not, conclude D!ti from
either the first formula of the segment or from the lowest major premise of an
application of p“ Eq that contains ti, removing all the rest.

Lemma 3. Any deduction can be transformed into one without maximal D!-, “- and
p“ Eq-segments.

Proof. Procedures I and II reduce the number of applications of rules in the
deduction. None is added. Applying them will therefore come to an end. We
can proceed in the following way. (1) Recall that vacuous applications of p“ Eq
are always removed. (2) Remove maximal “- and D!-segments. Carrying out
procedure I does not introduce new maximal“-, D!- or p“ Eq-segments. The latter
is evident. Removing a maximal “-segment could only introduce a maximal
D!-segment if the segment from which it is concluded and the segment concluded
from it are concluded by pADq and premise of p“ Inq respectively, in which case
they are both already maximal D!-segments. Then two maximal D!-segments are
fused into one (with length one less than their sum). Similarly when removing
maximal D!-segments. The procedure shortens any such sequence of maximal
“- and D!-segments, but as they have the same formulas first and last, the entire
sequence can also be removed at once. (3) Three cases are to be considered when
removing maximal p“ Eq-segments. (a) Both parts of procedure II can introduce
a new maximal “-segment if the last or lowest major premise of p“ Eq is ti “ ti
or if the first formula of the maximal p“ Eq-segment has this form. If the former,
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the application of p“ Eq is vacuous, and the problem is avoided by removing
vacuous applications of p“ Eq. If the latter, the first formula is the conclusion
of p“ Inq and the last formula of the maximal p“ Eq-segment is the premise of
pADq, so the problem is solved by removing everything between the premise of
p“ Inq and the conclusion of pADq (i.e. move straight from the premise of p“ Inq

to the rule applied to the conclusion of pADq). (b) Both parts of procedure II can
introduce a new maximal D!-segment if the last formula of the p“ Eq-segment
is the premise of p“ Inq. In the case of part (i), the major premise of the last
application of p“ Eqwould then have to have the form t “ t, in which case the
application is vacuous and the problem solved by removing it. In the case of
part (ii), either the first formula of the maximal p“ Eq-segment or the lowest
major premise is ti “ ti. If the latter, the application of p“ Eq is vacuous, so
remove it. If the former, D!ti is concluded by pADq from premise ti “ ti, so the
problem is solved by removing everything between the premise of pADq and
the conclusion of p“ Inq (i.e. move straight from the premise of pADq to the rule
applied to the conclusion of p“ Inq). (c) It can create a maximal p“ Eq-segment
if one of the major premises is the last formula of an p“ Eq-segment. Then
continue the process there. Consider the entire cluster of p“ Eq-segments, that
is, the maximal p“ Eq-segment, all p“ Eq-segments concluding any of its major
premises, and all p“ Eq-segments concluding any of their major premises, etc.
By removing the maximal p“ Eq-segment the number of applications of p“ Eq
has been reduced in this cluster, hence the process comes to an end. �

3.4 Normal Form and Rank of Deductions

The definition of normal form is standard:

Definition 12. A deduction is in normal form if it contains no maximal segments.

Normalisation is proved by induction over the complexity of deductions, where
maximal D!-, “- and p“ Eq-segments are not counted, as they are taken care of
by Lemma 3:

Definition 13. The rank of a deduction is the pair xd, ly, where d is the highest
degree of a maximal I/E-segment or 0 if there is none, and l is the sum of the
lengths of I/E maximal segments of highest degree. xd, ly ă xd1, l1y iff either (i)
d ă d1 or (ii) d “ d1 and l ă l1.

4 Normalisation and Subformula Property for INF

4.1 Normalisation

The reduction procedures for removing maximal segments of length 1 (i.e.
formulas) with the sentential connectives as main operators are standard and
won’t be repeated: they are those given by Prawitz (1965, 35ff). The permutative
reduction procedures for shortening maximal segments of length longer than 1
are standard, too: for p_Eq they are those given by Prawitz (1965, 51), for pDEq a
trivial variation of those given by him. The reduction procedures that remove
applications of p_Eq and pDEq in which vacuous discharge occurs are also as
usual: applications of p_Eq in which no or only one assumption is discharged
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are evidently superfluous, similarly if no assumption is discharged by pDEq.
Applications of that rule that discharge only one assumption, however, are not
superfluous and not removed, unless the major premise is derived by pDIq.

The reduction procedures for maximal formulas with quantifiers as main
operators do not pose much of a problem either, but Tennant omits them from
(Tennant, 1978), and Troelstra and Schwichtenberg do not consider normalisation
of a corresponding system (Troestra and Schwichtenberg, 2000, 6.5), so here they
are. Replace the inferences on the left by those on the right:

rD!asi

Π
Ax

a

@xA
Σ
D!t

i
Ax

t

{

Σ
rD!ts
Πa

t

Ax
t

Ξ
Ax

t

Σ
D!t

DxA

rAx
as

i rD!as j

Π
C i, j

C

{

Ξ
rAx

t s

Σ
rD!ts

Πa
t

C

Theorem 1. Deductions in INF can be brought into normal form.

Proof. By an induction over the rank of deductions by applying the reduction
procedures for maximal segments. The methods of Prawitz (1965, 50) and
Troelstra and Schwichtenberg (2000, 182) work here, too. Prawitz chooses a
maximal segment of highest degree such that no maximal segment of highest
degree stands above it or above a minor premise to its right or has an element
that is such a minor premise. Troelstra and Schwichtenberg choose the rightmost
maximal segment of highest degree that has no maximal segment of highest
degree standing above it. We check that the reduction procedures lower the rank
of deductions. But first apply Lemma 3. Hence the reduction procedures cannot
increase the lengths of maximal p“ Eq-segments, as they were all removed.
For the sentential connectives, the situation is as for intuitionist logic, except
that maximal “-, D!- or p“ Eq-segments may be created. So apply Lemma 3
afterwards. The following cases need to be considered regarding the reduction
procedures for the quantifiers. (a) They could introduce a maximal formula Ax

t
or, if it is already on a maximal segment, increase its length. In both cases the
rank of the deduction is lowered because the degree of Ax

t is lower than that of
the maximal formula removed. (b) (i) If D!t is the conclusion of pADq in Σ and
D!a is premise of p“ Inq in Π the procedure introduces a maximal D-segment. (ii)
If D!t is conclusion of p“ Eq in Σ and D!a is premise of pADq in Π the procedure
introduces a maximal p“ Eq-segment. Both cases are dealt with by applying
Lemma 3 immediately after the reduction step. �

4.2 Subformula Property

The following modifies Prawitz’s notion of a path slightly to fit INF:

Definition 14. A path is a sequence of formulas A1 . . .An such that
(a) A1 is an assumption not discharged by p_Eq of pDEq;
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(b) if Ai is any premise of an introduction rule other than pDIq, the left premise
of pDIq, the premise of pADq or p“ Inq, the minor premise of p“ Eq or the major
premise of an elimination rule other than p_Eq, pDEq or p“ Eq, then Ai`1 is the
conclusion of the rule;
(c) if Ai is the major premise of p_Eq or pDEq, then Ai`1 is an assumption
discharged by the rule;
(d) An is either the minor premise of pÑ Eq or p@Eq, the right premise of pDIq, the
major premise of p“ Eq or the conclusion of the deduction.

Paths are naturally divided into segments. Indeed, in the definition above,
‘segment’ could replace ‘formula’. I will speak of paths being in deductions and
of formulas and segments being on paths.

Definition 15. A path that ends in the conclusion of a deduction has order 0; a
path has order n` 1 if its last formula ends to the left or right of a formula on a
path with order n.

Corollary 1. On a path in a deduction in INF in normal form major premises of
elimination rules precede conclusions of introduction rules.

Proof. Suppose there is a conclusion A of an introduction rule on a path. Let σ1
be the segment beginning with A. If the path does not end with σ1, then (1) σ1
cannot be the major premise of p“ Eq, nor the right premise of p@Eq or pDIq; (2)
as A is the conclusion of an introduction rule, σ1 cannot be the minor premise of
p“ Eq, nor the premise of p“ Inq, pADq or pKEq; (3) as the deduction is normal,
it cannot be the major premise of an elimination rule. Hence it can only be
premise of an introduction rule for a sentential connective or the left premise of
p@Iq or pDIq. But the same applies to any other segment, if the path continues.
Hence for any path on which there is a conclusion of an introduction rule, if
there are also major premises of elimination rules on it, they must precede the
conclusions of introduction rules. �

Corollary 2. A path in a deduction in INF in normal form begins with a (possibly
empty) sequence of major premises of elimination rules (only formulas, not segments),
which is followed either by the last segment of the path or by a sequence of premises of
pADq or p“ Inq or minor premises of p“ Eq or by a premise of an introduction rule, and
ends in a (possibly empty) sequence of conclusions of introduction rules.

Proof. By Corollary 1, any major premises of elimination rules precede the
introduction rules. The premises of p“ Inq, p“ Eq and pADq are atomic and
so cannot come before major premises of elimination rules. For the same
reason, they cannot come after any introduction rules. This leaves the place in
between. �

The first part of a path may be called the E-part, the last the I-part, the one in
the middle the M-part. Notice that the M-part is never empty. The following
corollary establishes a result about the form of M-parts of paths in deductions
in normal form. It is here that p“ Eq and the rules specific to negative free logic,
p“ Inq and pADq, are applied, and because of normal form, these applications
are only very limited and follow a certain order. For instance, if all three rules
just mentioned are applied, they must be applied in the order pADq, p“ Inq,
p“ Eq, where (“ Inq concludes the minor premise of p“ Eq, and there follow no
more applications of pADq or p“ Inq.
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Corollary 3. (i) On the M-part of a path in a deduction in normal form:
(a) There is at most one application of pADq;
(b) There is at most one application of p“ Inq;
(c) If there is an application of pADq and an application of p“ Inq, pADq precedes

p“ Inq and there are no applications of p“ Eq between them.

(ii) The first segment of an M-part of a path in a deduction in normal form may be:
(a) the first segment of an p“ Eq-segment: then its last segment is the last segment

of the M-part;
(b) the premise of pADq: then its conclusion is either the last segment of the M-part,

or it is the premise of p“ Inq, in which case the premise of pADq is different from the
conclusion of p“ Inq, and the conclusion of p“ Inq is either the last segment of the
M-part or first premise of an p“ Eq-segment the last conclusion of which is the first
segment of the M-part;

(c) the premise of p“ Inq: then its conclusion is either the last segment of the M-part
or the first premise of an p“ Eq-segment the last conclusion of which is the last segment
of the M-part;

(d) the last segment of the M-part.

Proof. (i) (a) The conclusion of pADq has the form D!t. To apply it again we
need a formula that is either an identity or formed from a predicate letter. The
only rules that could be applied are p_Eq, pDEq, p“ Eq and p“ Inq. The first two
conclude D!t again and p“ Eq concludes a formula of the same form and there’d
be a maximal p“ Eq-segment, which is excluded as the deduction is in normal
form. Applying p“ Inq permits us to conclude a formula to which pADqmay be
applied, but doing so would create a maximal D!-segment, which is excluded on
paths of deductions in normal form. (b) follows for similar reasons: to apply
p“ Inq twice, the second application requires a premise of the form D!t, and this
could only be brought along by an application of pADq, which would create a
maximal “-segment. (c) follows because if p“ Inq preceded pADq there would
be a maximal “-segment, and if there were applications of p“ Eq in between
pADq and p“ Inq, there would be a maximal p“ Eq-segment.

(ii) (a) If there was an application of pADq later, this would be a maximal
p“ Eq-segment, contradicting normality. If there was an application of p“ Inq,
the formulas on the p“ Eq-segment would have the form D!t, also contradicting
normality. (b) The conclusion of pADq is of form D!t and hence by normality
no p“ Eq can follow immediately. If the premise of pADq was the same as the
conclusion of p“ Inq, we’d have a maximal D!-segment. If a p“ Eq-segment
follows after p“ In), it follows from (a) that it ends the path. (c) follows from
clause (i). (d) requires no argument. �

Corollary 4. (i) Any formula in the E-part of a path in a deduction in normal form is a
subformula of the immediately preceding formula.

(ii) Any formula in the I-part of such a path is a subformula of its immediate
successor.

(iii) The first formula of the M-part is either the first formula of the path or a
subformula of the last formula of the E-part; the last formula of the M-part is either the
last formula of the path or a subformula of the first formula of the I-part. Formulas in
between may not be subformulas of any other formulas.

Proof. (i), (ii) and (iii) are evident by inspection of the rules and Corollary 3. �

16



Definition 16. A deduction has the free subformula property if all formulas are
subformulas of the undischarged assumptions or of the conclusion of the
deduction, except possibly formulas of the form t1 “ t2 or Rt1 . . . tn on p“ Eq-
segments; formulas of the form D!t that are minor premises of p@Eq or right
premises of pDIq; or formulas of the form D!a that are discharged by p@Iq or pDEq.

Corollary 5. Deductions in INF in normal form have the free subformula property.

Proof. By inspection of the rules and an induction over the order of paths. For
paths of order 0 this follows immediately from Corollary 4. Evidently the exempt
formulas all and only occur on M-part of paths. Suppose the corollary holds for
paths of order n and consider a path π of order n` 1. There are four ways in
which a path can end.

(I) π ends in a minor premise of pÑ Eq. There are two options.
(A) π has an E-part. Then apart from any formulas between the first and the

last of the M-part, which are exempt, the situation is as in intuitionist logic. The
last formula of π is a subformula of a formula of a path of lower order, hence
any formulas on π’s I-part and the last formula of the M-part are subformulas
of a path of lower order. The first formula of the M-part is a subformula of the
last formula of π’s E-part, and all formulas on the E-part are either subformulas
of an undischarged assumption of the deduction or, if they are subformulas of
a discharged assumption of the deduction, they are discharged by pÑ Eq, and
hence are subformulas of a formula on a path of lower order. (As there is an
E-part, they cannot be discharged by p@Iq.

(B) π has no E-part. Then the first formula of the M-part is either an
undischarged assumption of the deduction, or it is discharged by pÑ Eq, or it
has the form D!a and is discharged by p@Iq or pDEq (it can’t be Ax

t , as then there’d
be an E-part). In the first two cases, we’re done. In the other two cases, D!a is
exempt, but we need to consider any other formulas on the path. D!a can only
be premise of p“ Inq or the last formula of the M-part, hence only options (ii) (c)
and (d) of Corollary 3 can be the case. If (ii) (d), there are four options. D!a is on
a segment that is (1) minor premise of p@Iq, (2) right premise of pDEq, (3) minor
premise of pÑ Eq or (4) premise of an introduction rule. (1) and (2) are exempt.
If (3), it is a subformula of a formula on a path of lower order. If (4), π ends in a
minor premise of pÑ Eq, and again it is a subformula of a formula on a path of
lower order.

If (ii) (c), there are two options. (1) If there is no p“ Eq-segment, the conclusion
of p“ Inq is on the last segment of the M-part, which can only be minor premise
of pÑ Eq or premise of an introduction rule, and hence it is a subformula of a
formula on a path of lower order. (2) If there is an p“ Eq-segment, the formulas
on it are exempt, and its last formula is either on a segment that is minor premise
of pÑ Eq or premise of an introduction rule, and the situation is as before.

(II) π ends in the major premise of p“ Eq. Then π has no I-part and the last
formula of its M-part is t1 “ t2. There are two options. (1) t1 “ t2 is also the first
formula of π’s M-part. If it is an undischarged assumption of the deduction
or discharged by pÑ Eq, we’re done. If it is discharged by p_Eq or pDEq, it is a
subformula of a formula on the E-part of π, and hence a subformula of the first
formula on π, and thus either of an undischarged assumption or one discharged
by pÑ Iq and again we’re done. (2) t1 “ t2 is not the first formula of π’s M-part.
As the deduction is normal, it cannot have been concluded by p“ Inq, and hence
can only be the last formula of an p“ Eq-segment or concluded by an elimination
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rule. If the latter, we’re done as in previous cases. If the former, it and all
formula on the p“ Eq-segment are exempt, but the usual reasoning applies to
the first formula of the p“ Eq-segment.

(III) Here we consider the two options that π ends in a minor premise of p@Iq
or the right premise of pDEq. Then π has no I-part, and there are two options
for its M-part. (1) It consists only of a segment D!t. (2) D!t is concluded by pADq.
(The option that it is concluded by p“ Eq is excluded by normality). (1) If D!t is
an undischarged assumption, discharged by pÑ Iq, or if π has an E-part, we’re
done, for reasons as before; if it is discharged by (@Iq or pDEq (right discharged
assumption), it is exempt. (2) Then it is exempt, and reasoning as before applies
to the premise of pADq. �

In relation to the usual definition of subformula property we have:

Corollary 6. Any exceptions to the subformula property in deductions in normal form
in INF occur between the first and the last formula of the M-part of paths.

Proof. Immediate from Definition 8 and Corollary 4. �

5 A System inspired by Jaśkowski

It would be possible to loosen the restriction on the subformula property for
deductions in normal form a little. The proof of Corollary 5 shows that formulas
pD!aq that are premises of p@Eq or pDIq are often subformulas of the undischarged
premises or conclusions of deductions in normal form, namely if they are
concluded by elimination rules or discharged by p_Eq or pÑ Iq or if they take the
place of the discharged assumption Ax

a of pDEq. Similarly for those discharged
by p@Iq or pDEq, if they are premises of introduction rules. We could also count
formulas of the form D!t that are the minor premise of p@Eq as subformulas of
its major premise and those that are the right premise of pDIq as subformulas
of its conclusion, in analogy with pÑ Eq and p^Iq; and analogously counting
assumptions D!a discharged by p@Iq and pDEq as subformulas of the conclusion
and the major premise, respectively. This makes some sense, as after all the
quantifiers are supposed to carry existential import and range only over what
exists. But this still leaves occurrences of formulas of the form D!t that are not
subformulas of any formulas on the deduction, namely those concluded by
pADq and the premises of p“ Inq and variations thereof.

A more elegant option with a better result goes back to Jaśkowski (Jaśkowski,
1934, Sec. 5). Eschew use of D! altogether, permit terms to occur in rules, and
reformulate the rules in which it occurred accordingly:

rasi

Π
Ax

a
p@IJq i

@xA

@xA t
p@EJq

Ax
t

where in p@Iq, a does not occur in @xA nor in any undischarged assumptions of
Π except those in the assumption class of a.
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where in pDEq, a is not free in C, nor in DxA, nor in any undischarged assumption
of Π except those in the assumption classes of Ax

a and a.

t
p“ InJq t “ t

Rt1 . . . tn
pADJq ti

where R is an n-place predicate letter or identity and 1 ď i ď n.

Call the reformulated system INFJ.
INFJ loses none of the expressiveness of INF: as observed, $ D!t Ø Dx x “ t,

so D! is in this sense redundant. p“ Eq-segments in which the minor premises
and conclusions have the form D!t are no longer possible, but the normalisation
theorem showed them to be superfluous.

Terms appearing as premises or conclusions of the J-rules also occur in their
conclusions or other premises. This gives a notion of a subformula property:

Definition 17. A deduction has the free term subformula property if all formulas
and terms on it are or occur in subformulas of its undischarged assumptions
or its conclusion, except possibly formulas of the form t1 “ t2 or Rt1 . . . tn on
p“ Eq-segments.

The normalisation proof goes through exactly as before, except that it is a little
simpler, as one kind of maximal p“ Eq-segments need no longer be considered:

Theorem 2. Deductions in INFJ can be brought into normal form.

The form of paths in deductions in normal form stays mutatis mutandis the same
as established in corollaries 1, 2, 3 and 4, and so:

Corollary 7. Deductions in normal form in INFJ have the free term subformula
property.

For the classical version CNFJ similar results hold as to be established for CNF.
It should be possible to go even further by adopting an approach to identity

formalised by Indrzejczak, where the role of terms is assimilated entirely to
that of formulas, and identity statements are proved on the basis of rules for
terms. Then the subformula property holds even in the presence of identity. See
(Indrzejczak, 2021). Pursuing this further must be left for another occasion.

Comment. If the rules for the quantifiers are to define their meanings, a thesis
of proof-theoretic semantics, an explanation of the use of terms as premises
and conclusions in the J-rules is required. Adopting Jaśkowski’s account lends
itself to a neat approach to addressing this issue, and it has an interesting
historical antecedent as a philosophical foundation. Jaśkowski introduces a
symbol analogous to the sign of supposition of propositions to be placed in
front of variables (although he preferred to call them ‘arbitrary constants’). This
marks that the referent of the variable, not otherwise defined, is kept constant
throughout the reasoning to follow. It corresponds to the phrase ‘Consider an

19



arbitrary x’ used in proofs. Like the domains of suppositions of propositions,
the ‘domain of constancy’, as Jaśkowski calls it, of a variable can be closed
by an application of a rule, in his case the introduction rule for the universal
quantifier. Jaśkowski has no primitive rules for the existential quantifier, but
evidently they are exactly analogous to those for the universal quantifier. A
philosophical foundation for this approach can be found in Brentano. Textor
develops an explanation of the meaning of the existence predicate on the basis
of Brentano’s account of acknowledging or positing objects (Textor, 2017).11

This is a non-propositional attitude: thinkers acknowledge or posit objects in
thought. Acknowledging or positing that something exists is to be explained
as a propositional attitude derivative thereof. Textor motivates the use of an
existence predicate in natural deduction as part of his account, and this could be
used to motivate the rules of INF. But the attitude of acknowledging or positing
objects also lends itself to be incorporated directly into the rules to motivate
those of INFJ. Using t as a premise in p@EJq and pDIJq indicates that t has been
acknowledged: only terms referring to acknowledged objects are legitimate
terms to use in these rules. An object can only be asserted to be self-identical if
it has been acknowledged, which is p“ InJq. Some rules permit the discharge of
such acknowledgments: their conclusions hold no matter which object has been
acknowledged, as is the case in p@IJq and pDEJq: they no longer commit to the
acknowledgement. ‘Positing an object’ is a neat description of what happens if
an assumption is made for the sake of discharge by p@Iq and pDEq. Finally, some
propositions commit one to acknowledging objects, e.g. atomic propositions,
which motivates pADJq.

6 Adding Definite Descriptions

6.1 A Problem Solved by a New Rule for Identity

For a normalisation theorem to be provable by induction over the complexity
of formulas, we must count ιterms in addition to connectives and quantifiers,
as was already done in Definition 6. This creates a problem with the reduction
procedures for maximal formulas of form @xA and DxA: if t is a complex term,
they may introduce maximal formulas of higher degree than those removed.
There is no apparent systematic way of avoiding this, e.g. by applying the
reduction procedures to a suitably chosen formula. Replacing a parameter by
an ιterm increases the complexity of the formula. Looking only at a maximal
formula of highest degree, we do not know whether the replacement of a
parameter by an ιterm will not turn a maximal formula that had a lower than
maximal degree before into one the degree of which is now higher.

The problem is most straightforwardly solved by an observation made by
Indrzejczak (2020b, Sec. 4) in relation to a number of free logics formulated in
cut free sequent calculi: p@Eq and pDIq can be restricted to atomic instantiating
terms, given the rule of the next lemma, which is derivable in INF.

Lemma 4. This rule is derivable given p“ In), pDIq and pDEq:
11(Kürbis, 2015) is a comment on a presentation of Textor’s paper before publication.
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D!t

ra “ tsi

Π
C

p“ InGq i
C

where the parameter a does not occur in t, C nor any open assumptions of Π
other than those of the assumption class of a “ t.

Proof. As observed earlier, D!t $ Dx x “ t, apply pDEq. �

p“ InGq is a new introduction rule for “. It has the form of what Negri and
von Plato (2001, 217) and Milne (2015; 2010) call general introduction rules. In its
presence p“ Inq is redundant:

Lemma 5. Given p“ Eq and p“ InGq, p“ Inq is derivable.

Proof.

D!t
ra “ ts1 ra “ ts1

p“Eq
t “ t

p“InGq 1t “ t
�

The symmetry of identity will play a prominent role in the following, so we
prove it here, which also gives another example of a use of p“ InGq:

Lemma 6. t1 “ t2 $ t2 “ t1.

Proof.

t1 “ t2
pADq

D!t1

t1 “ t2 ra “ t1s
1

p“Eq
a “ t2 ra “ t1s

1
p“Eq

t2 “ t1
p“InGq 1t2 “ t1

�

Notice once more how the subformula property cannot be upheld: D!t1, a “ t1 and
a “ t2 are not subformulas of any undischarged premises or of the conclusion.

Now for the point of introducing p“ InGq:

Lemma 7. Given p“ InGq, p@Eq and pDIq may be restricted to atomic terms.

Proof. Any application of pDIq and p@Eqwhere t is complex can be replaced by
the following, where a is a fresh parameter:

D!t
ra “ tsi

@xA
ra “ tsi

pADq
D!a

p@Eq
Ax

a
p“Eq

Ax
t

p“InGq i
Ax

t

D!t

ra “ tsi Ax
t

p“Eq
Ax

a

ra “ tsi
pADq

D!a
pDIq

DxA
p“InGq i

DxA
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�

The proof in fact shows something stronger: p@Eq and pDIq can be restricted
to parameters, as t might as well be a constant. But this is not needed in the
following.

Comment. Kürbis (2021b; 2022) counts formulas discharged by general intro-
duction rules that are the major premises of their elimination rules as maximal.
There would, indeed, be a reduction procedure for such formulas, where all
maximal formulas arising from an application of p“ InGq are replaced together
after the following pattern:

D!t

ra “ tsi
Σ
Ax

a

Ax
t

Π
C

i
C

{

Σa
t˚

Ax
t

Πa
t˚

C

If there are non-maximal formulas in the assumption class of a “ t, then Πa
t˚

and Σa
t˚ are the results of removing the ensuing vacuous applications of p“ Eq.

But this won’t work if t is an ιterm. As before, the replacement of a by t in Π
and Σ may then create maximal formulas of unknown degree. What is more,
the use to which p“ InGq is put in handing normalisation in the presence of ι

prevents us from removing Kürbis-style maximal formulas from deductions:
this use will generate maximal formulas of exactly that kind.

The following philosophical questions arise. Should we not demand that
these formulas be removable from deductions? Furthermore, the deduction that
derives p“ InGq in the proof of Lemma 4 contains a maximal formula. So p“ InGq

comes at the cost of hiding a detour.12 This is not the place to address these
questions exhaustively, so a sketch of an answer must suffice. The answer to both
questions lies, I think, in the connection between reference and existence. If a
definite description ιxF refers, i.e. if D! ιxF, then p“ InGq permits the introduction
of an ad hoc name for its referent. We can, that is, baptise the object, to use
Kripke’s expression. This allows us to refer to it without having to describe
it as an F. The significance of this comes out in modal contexts. The name is
rigid, the definite description need not be. The move ensures that we can talk
about the same object in every possible world. By contrast, we cannot baptise
what does not exist; here all we have is the definite description. These are issues
orthogonal to those of how the meanings of logical expressions are defined by
their rules. So even if p“ InGq hid or gave rise to unremovable maximal formulas,
this would not upset the aims of proof-theoretic semantics. Further discussion
of the wider issues touched upon here must wait for another occasion.

6.2 Reduction Procedures for ιand Restrictions of its Rules

The reduction procedures for identities flanked by an ιterm, the first two taken
from (Tennant, 1978, 169), are the following:

1. p ιIq followed by p ιE1q:
12I owe this objection to a referee.
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Σ1

D!t

ra “ tsi

Ξ
Fx

a

rFx
as

j rD!ask

Π
a “ t

i, j,kιxF “ t
Σ2

u “ t
Fx

u

{

Σ2

ru “ ts
Ξa

u

Fx
u

2. p ιIq followed by p ιE2q:

Σ1

D!t

ra “ tsi

Ξ
Fx

a

rFx
as

j rD!ask

Π
a “ t

i, j,kιxF “ t
Σ2

Fx
u

Σ3

D!u
u “ t

{
rFx

us

Σ2

rD!us
Σ3

Πa
u

u “ t

3. p ιIq followed by p ιE3q:

Σ1

D!t

ra “ tsi

Ξ
Fx

a

rFx
as

j rD!ask

Π
a “ t

i, j,kιxF “ t
D!t

{
Σ1

D!t

The same problem as for the quantifiers arises. If u is a complex term, Ξa
u and Σa

u
may contain maximal formulas of higher degree than the formula ιxF “ t that is
removed by the first and second reduction procedures. A new problem is that if
u is a complex term, Fx

u can turn into a maximal formula of unknown degree.
u “ t, D!u and D!t pose no problem, as, if maximal, they are handled by Lemma
3.

This problem is solved by the following lemma, which also builds on an
observation of Indrzejczak’s (2023). In the following deductions, double lines
mark inferences by symmetry of identity (Lemma 6).

Lemma 8. Given p“ InGq and p“ Eq, t and u in p ιIq, p ιE1q and p ιE2q can be restricted
to atomic terms.

Proof. (1) Replace an application of p ιIqwhere t is a complex term ιyG by:

D! ιyG

rb “ ιyGsl

rb “ ιyGsl
pADq

D!b

[a “ bsi rb “ ιyGsl
p“Eq

ra “ ιyGs

Ξ

Fx
a

rFx
as

j rD!ask

Π

a “ ιyG

ιyG “ a

rb “ ιyGsl

ιyG “ b
p“Eq

a “ b
p

ι

Iq i, j,kιxF “ b
p“Eq ιxF “ ιyG

p“InGq lιxF “ ιyG

where a and b are fresh parameters.
(2) (a) Replace an application of p ιE1q where t is a term ιyG and u atomic by:

ιxF “ ιyG
pADq

D! ιyG

ιxF “ ιyG

ιyG “ ιxF

ra “ ιyGsi

ιyG “ a
p“Eq ιxF “ a

ra “ ιyGsi

ιyG “ a u “ ιyG
p“Eq u “ a

p

ι

E1q
Fx

u
p“InGq i

Fx
u
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where a is a fresh parameter.
(b) Replace an application of p ιE1qwhere u is a term ιzH and t atomic by:

ιzH “ t
pADq

D! ιzH

ιzH “ t
pADq

D!t

rb “ ιzHsi

ιxF “ t rb “ ts j
p

ι

E1q
Fx

b
p“Eq

Fxι

zH
p“InGq j

Fxι

zH
p“InGq i

Fxι

zH

where b is a fresh parameter.
(c) If both t and u are complex, either carry out procedure (a) and replace

the inference by p ιE1q by the construction in (b), or carry out procedure (b) and
replace the inference by the construction in (a).

If both t and u are complex, there are also two alternative methods that lead
to less complex deductions. (i) Say u is ιxH. Then replace u in p ιE1q by a fresh
parameter b, so that it concludes Fx

b, derive Fxι

zH from b “ ιzH by p“ Eq, and
discharge the former by an application of p“ InGq, with its premise derived from

ιzH “

ιyG by pADq. Then apply construction (a). (ii) Say t is ιyG. Then replace
t in p ιE1q by a fresh parameter a and discharge the ensuing formulas ιxF “ a
and u “ a by applications of p“ InGq with their premises derived by pADq. Then
apply construction (b).

(3) (a) Replace an application of p ιE2q where t is a term ιyG and u atomic by

ιxF “ ιyG
pADq

D! ιyG
ra “ ιyGsi

ra “ ιyGsi

ιyG “ a ιxF “ ιyG
p“Eq ιxF “ a Fx

u D!u
p

ι

E2q u “ a
p“Eq

u “ ιyG
i

u “ ιyG

where a is a fresh parameter.
(b) Replace an application of p ιE2qwhere u is a term ιyG and t atomic by

D! ιyG

rb “ ιyGsi

ιxF “ t

rb “ ιyGsi Fxι

yG
p“Eq

Fx
b

rb “ ιyGsi
pADq

D!b
p“Eq

b “ t
p“Eq ιyG “ t

p“InGq iιyG “ t

(c) If both t and u are complex, either carry out procedure (a) and replace
the inference by p ιE2q by the construction in (b), or carry out procedure (b) and
replace the inference by the construction in (a).

Here, too, when both t and u are complex, there are methods that lead to less
complex deductions, but this is left to the reader. �

Comment. The restriction on the rules for ιmay have philosophical significance.
Došen requires of an analysis of the meaning of an expression that a sentence in
which it occurs only once is paraphrased by an equivalent sentence in which it
does not occur (Došen, 1989, 369, 371f). The reason is that otherwise it is not
clear that the expression or rather a sequence of occurrances of that expression
has been analysed. This requirement is reminiscent of one often imposed on
rules of sequent calculi, especially those intended to define the meanings of
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connectives by their inference rules. Wansing calls rules in which the connective
they govern occurs only once and only in the conclusion explicit ((Wansing, 1994,
127), (Wansing, 2000, 10)). Although pADq cannot be so restricted, it may be
motivated independently by a general requirement behind negative free logic:
the truth or assertibility of an atomic proposition requires that all the terms
occurring in it refer. Another criterion Wansing imposes is separation: no other
connective than the one they govern is mentioned in the rules. The rules for ι

do not satisfy separation, as identity occurs in them, but requiring separation
is rather too stringent. It is a legitimate procedure to define one expression
in terms of another. The meaning of the second expression then depends on
the first. In set theory, e.g., operations on the numbers are defined after the
numbers have been defined. What should be avoided is that such dependencies
are circular.

6.3 Normalisation

Due to these problems and their solutions I will prove normalisation not for
INF

ι

, but for the system INF

ι

1 that results from it by replacing p“ Inq by p“ InGq

and restricting t in p@Eq, pDIq and p ιIq, and t and u in p ιE1q and p ιE2q to atomic
terms. These systems are equivalent:

Theorem 3. Γ $INF

ιA iff Γ $INF

ι

1 A

Proof. From lemmas 4, 5, 7 and 8. �

We need to modify some definitions. p“ InGq is often treated similarly to pDEq.
The parameter of an application of p“ InGq is assumed to be used solely for that
application and to occur nowhere else in the deduction, and it also gives rise to
segments:

Definition 18. In definition 4, insert ‘or p“ InGq’ after pDEq.

Definition 5 stays the same. In Definition 14, paths continue with a discharged
assumption from the premise of p“ InGq, but we won’t have much occasion to
consider this notion.

Definition 9 requires change and there is one more case to be considered:

Definition 19. A maximal “-segment is (i) a segment of formulas t “ t such that one
of them is the minor premise of p“ InGq and the last is the premise of pADq or p ιE3q,
or (ii) a segment (of formulas a “ t) such that the first is discharged by p“ InGq and
the last is the premise of pADq or p ιE3q with conclusion D!t. A maximal D!-segment is
a segment that is concluded by pADq or p ιE3q and major premies of an application of
p“ InGq with conclusion t “ t.

If D!a is concluded, this is not counted as maximal. Such segments are used in
the proof that the rules for quantifiers and ιcan be restricted. These are not
detours and a formula different from the premise is concluded.

The new reduction procedures are as follows:

I. Maximal “-segments (i): proceed from the rule that concludes the major
premise to the rule applied to the maximal segment, removing all the rest. To
illustrate the case where the last formula of the segment is the premise of pADq
or p ιE3q:

25



Σ
D!t

ra “ tsi

Π
t “ t

it “ t
D!t

{
Σ
D!t

II. Maximal “-segments (ii): conclude the conclusion of pADq or p ιE3q from
whatever concludes the major premise of p“ InGq, leave everything else. To
illustrate with a simple example:

Π
D!t

ra “ tsi

D!t
Σ
C

i
C

{ Π
D!t

Π
rD!ts
Σ
C

i
C

The final application of p“ InGq is required only if there are formulas in the
assumption class of a “ t that are not premises of pADq or p ιE3q.

III. Analogous to I: proceed from the rule that concludes the major premise to
the rule applied to the maximal segment, removing all the rest. To illustrate the
case where the first formula of the segment is the premise of pADq or p ιE3q:

Σ
t “ t
D!t

ra “ tsi

Π
t “ t

it “ t

{
Σ

t “ t

Should there be more than one application of p“ InGq in the rules that give rise
to the segment, pick the lowest one.

Lemma 3 goes through with a slight modification. In case II, if more than one
formula a “ t is discharged and Π is not empty, the new reduction procedure
increases the number of applications of rules in a deduction and multiplies any
maximal D!-, “- or p“ Eq-segments in Π.

Lemma 9. Any deduction can be transformed into one without maximal D!-, “- and
p“ Eq-segments.

Proof. The procedures cannot introduce new maximal p“ Eq-segments. As
before, the procedures may introduce new maximal “- and D!-segments or
increase the length of existing ones, but as before in this case we remove them
all together at once. To avoid multiplying maximal segments by procedure II,
apply it to a maximal“-segment of this kind so that no other of that kind stands
above it and remove all maximal “-segments of kind (i) and all maximal p“ Eq-
and D!-segments that stand above it before applying the procedure. �

Theorem 4. Deductions in INF

ι

1 can be brought into normal form.

Proof. By induction over the rank of deductions.
The usual method for handling maximal segments works also when a

formula concluded by p“ InGq is major premise of an elimination rule: permute
the application upwards.
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Vacuous applications of p“ Eq are removed as before and assumed to be
removed whenever they arise.

With p@Eq and pDIq restricted to atomic terms, the degree of any maximal
formula affected by the replacement of parameters by terms in the reduction
procedures stays the same. Thus the rank of deductions is reduced when
the reduction procedures are applied according to the methods of Prawitz
or Troelstra and Schwichtenberg. They can introduce new maximal D!t- or
“-segments: these are removed by an appeal to Lemma 9 immediately after
carrying out the reduction procedure.

With p ιIq, p ιE1q and p ιE2q restricted so that t and u are atomic, the reduction
procedures for maximal formulas ιxF “ t work as they should. Replacements of
parameters by terms can no longer increase the degree of any maximal formulas.
Any maximal formulas Fx

u that are introduced by the procedure now have lower
degree than the one removed, as dpFx

uq “ dp ιxF “ tq ´ 2q. They can introduce
vacuous applications of p“ Eq, which are removed as usual, and new maximal
D!- and “–segments, which are removed by an appeal to Lemma 9 immediately
after the reduction. �

6.4 Failure of the Subformula Property

I shan’t consider a modified subformula property for deductions in INF

ι

1. There
are too many exceptions. To give but one example, consider a derivation of ‘The
F is G’, where G is not “, arguably the more typical use of definite descriptions:

Σ1

D!t

ra “ tsi

Ξ
Fx

a

rFx
as

j rD!ask

Π
a “ t

i, j,kιxF “ t
Σ2

Gy
t

Gyι

xF

ιxF “ t would need to be exempt from the subformula property.
There may be something systematic to the exceptions: they all involve D! or

“. But further investigation of this question must await another occasion.

7 Normalisation for CNF

Here I shall be brief. Normalisation is a little easier, as there are no segments
longer than 1 to be considered, and paths are little simpler, too. But the rest
stays more or less the same, and we have:

Theorem 5. Deductions in CNF can be brought into normal form.

Deductions in normal form in CNF have a version of the subformula property
similar to what Prawitz finds in classical logic (Prawitz, 1965, 42):

Corollary 8. Any exceptions to the subformula property in normal deductions in CNF
occur between the first and the last formula of the M-part of paths or are assumptions
 A discharged by pKECq and formulas K concluded from them.
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8 Normalisation for CNF

ι

CNF

ι

1 arises from CNF

ι

by replacing p“ Inq by p“ InGq, and restricting p@Eq to
atomic instantiating terms and p ιIq, p ιE1q and p ιE2q to atomic t and u.

Theorem 6. Γ $CNF

ιA iff Γ $CNF

ι

1 A

Proof. As for theorem 3. �

Recall that pKECq with vacuous charges is treated like pKEq, i.e. its conclusions
are restricted to prime conclusions (Lemma 2). If discharge is not vacuous, its
conclusions cannot be so restricted. Atomic formulas containing ιterms must
be admitted. We therefore need to consider further cases of maximal formulas,
namely formulas concluded by pKECq that are major premise of p ιE1q, p

ιE2q, p

ιE3q

or premise of pADq. The last gives rise to an anomaly: the maximal formula
may have degree 0 if ti in the conclusion is atomic.

The new reduction procedures follow the pattern of those given by Stålmarck
in his normalisation proof for classical logic (Stålmarck, 1991, 131ff): they
permute the applications of the elimination rules or pADqupwards and, assuming
the negations of their conclusions, apply pKECq to them instead. Here the
latter only happens in two of the new cases, though. I shall adapt Andou’s
simplification of Stålmarck’s method to the present case (Andou, 1995).13 In
fact, due to the absence of D and _ from CNF

ι

1 and the ensuing possibility of
restricting pKECq to atomic formulas, the proof is simpler than Andou’s.

Following Andou, define a new kind of segment and when they are maximal:

Definition 20. A segment is a sequence of formulas arising from applications
of p“ InGq as in Definition 4 or a sequence of formulas A1 . . .An such that A1 is
not the conclusion of pKECq, and for all i, Ai is the minor premise of pÑ Eq the
major premise of which is discharged by pKECq, Ai`i is the conclusion of that
application of pKECq, and An is not a minor premise of pÑ Eq the major premise
of which is discharged by pKECq.

Where there is need to distinguish the two, call the latter ‘pKECq-segments’. The
length of segments is defined as always, their degree as in Definition 6.

Definition 21. Add the following at the end of Definition 5 of maximal segment:
‘or a segment the last formula of which is the conclusion of pKECq and the major
premise of an elimination rule or the premise of pADq’.

Crucial to Andou’s method is the following:

Definition 22. An assumption discharged by pKECq is regular if it is the major
premise of pÑ Eq. A proof is regular if all assumptions discharged by pKECq in it
are regular.

Lemma 10. (a) Any proof can be transformed into a regular proof. (b) In a regular
proof, any assumption discharged by pKECq stands to the right of a formula on a
pKECq-segment.

Proof. (a) If  A is discharged by pKECq but not major premise of pÑ Eq, deduce
it by pKECq and discharge a regular assumption instead:

13Mancosu et al. (2021) give a detailed exposition of Andou’s method, which is also from where I
learnt about it.
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r Asi rAs j

K j
 A

where i is the label of the original application of pKECq and j is fresh. (b) is
immediate. �

The effect of this lemma is that the minor premise of pÑ Eq is always available
in the upwards permutations of the elimination rules or pADq. Remove all
formulas in assumption class i by concluding the conclusion of pÑ Eq according
to the pattern below and replace pKECq accordingly or remove it altogether:

1. pKECq followed by p ιE1q:

r 

ιxF “ tsi
Ξ

ιxF “ t
pÑEq

K

Π

K
pKECq iιxF “ t

Σ

u “ t
p

ι

E1q
Fx

u

{

r Fx
us

j

Ξ

ιxF “ t
Σ

u “ t
p

ι

E1q
Fx

u
pÑEq

K

Π

K
pKECq j

Fx
u

2. pKECq followed by p ιE2q:

r 

ιxF “ tsi
Ξ

ιxF “ t
pÑEq

K

Π

K
pKECq iιxF “ t

Σ1

Fx
u

Σ2

D!u
p

ι

E2q u “ t

{
r u “ ts j

Ξ

ιxF “ t
Σ1

Fx
u

Σ2

D!u
p

ι

E2q u “ t
pÑEq

K

Π

K
pKECq j

u “ t

3. pKECq followed by pADq:

r Rt1 . . . tns
i

Ξ

Rt1 . . . tn
pÑEq

K

Π

K
pKECq i

Rt1 . . .Rtn
pADq

D!ti

{

Ξ

Rt1 . . . tn
pADq

D!ti

p

ιE3q being a special case of pADq, pKECq followed by p ιE3q is handled as in 3.

Theorem 7. Deductions in CNF

ι

1 can be brought into normal form.

Proof. First, transform the deduction into a regular deduction. Lemma 9 goes
through as before, so apply it next. Then proceed by an induction over the
rank of deductions, defined as in Definition 13 adjusted so as to count the new
maximal segments of Definition 21. Note that the highest degree of a maximal
segment can now be 0, namely if the formula on a maximal pKECq-segment
is prime. Hence deductions may have rank x0, ly, where l ą 0, which cannot
happen in standard classical logic.

Maximal segments arising from p“ InGq and from introducing and eliminating
formulas as major premises are treated as usual.

Maximal pKECq-segments are handled as follows. Due to the restriction of
pKECq, their last formulas are atomic. All four procedures shorten or remove
the maximal segment to which they are applied.
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In cases 1 and 2, any new maximal segments created by the reduction
procedure have lower degree than the one shortened or removed, because due
to the restriction on p ιIq t and u are atomic. Thus dpFx

uq “ dp ιxF “ tq ´ 2 and
dpu “ tq ď dp ιxF “ tq ´ 1.

In case 3, the following possibilities arise:
(a) If Rt1 . . . tn is prime (i.e. R is a predicate letter), the degree of the maximal

pKECq-segment is 0, and cannot be lowered. But as the segment on which it is is
shortened by 1, this poses no problem.

(b) If Rt1 . . . tn is ιxF “ t and it is concluded by p ιIq in Ξ, the procedure creates
a maximal formula of the same degree as the one removed, so we remove it
immediately by the third reduction procedure for maximal formulas ιxF “ t,
leaving only the deduction of the premise D!t of p ιIq.

(c) The possibilities removed with Lemma 9 are: If Rt1 . . . tn is concluded by
p“ Eq in Ξ, then the procedure introduces a maximal p“ Eq-segment. If Rt1 . . . tn
is t “ t, then if it is concluded by p“ InGq in Ξ the procedure introduces a new
maximal“-segment. It cannot introduce a new maximal D!-segment: this would
require the conclusion D!t of pADq to be major premise of p“ InGq, so there would
have been a maximal D!-segment already, which were assumed to have been
removed.

The method by which Prawitz or Troelstra and Schwichtenberg choose a
maximal segment to which to apply a permutative reduction procedure works
for maximal pKECq-segments, too. It ensures that there are no longest maximal
segments of highest degree in Ξ or the Σs, and so the rank of the deduction is
lowered. �

9 Conclusion

The normalisation theorems for systems of intuitionist and classical negative
free logic without and with definite descriptions proved in this paper required
considering new kinds of maximal formulas specific to negative free logic.
The systems with definite descriptions required a formulation that avoids
reduction procedures that involve arbitrarily complex terms being substituted
for parameters. For the systems without definite descriptions, deductions in
normal form have been shown to fulfil a restricted notion of subformula property.
A system inspired by Jaśkowski with an improved result has been proposed.
The question remains whether there is an interesting notion of subformula
property for the systems with definite descriptions.

From the philosophical perspective, what is often considered to be a necessary
condition for the meanings of expressions to be defined by rules of inference is
thus fulfilled. A novelty of the present paper is that it opens up the prospects
that the meanings of term-forming operators may also be so defined. Whether
what has been established is also sufficient for proof-theoretic semantics is open
to further discussion. Philosophical questions that arise have been touched
upon. A satisfactory discussion of these issues must await another occasion.
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Göteborg, Uppsala: Almqvist and Wiksell.

Prawitz, D. (2006). Meaning approached via proofs. Synthese 148, 507–524.
Russell, B. (1905). On denoting. Mind 14(56), 479–493.
Russell, B. (1919). Introduction to Mathematical Philosophy. Routledge.
Schroeder-Heister, P. (2022). Proof-theoretic semantics. In E. N.

Zalta and U. Nodelman (Eds.), The Stanford Encyclopedia of Phi-
losophy. https://plato.stanford.edu/archives/win2022/entries/

proof-theoretic-semantics/.
Stålmarck, G. (1991). Normalisation theorems for full first order classical natural

deduction. Journal of Symbolic Logic 52(2), 129–149.
Tennant, N. (1978). Natural Logic. Edinburgh: Edinburgh University Press.
Tennant, N. (1987). Anti-Realism & Logic. Truth as Eternal. Oxford: Clarendon.
Tennant, N. (2004). A general theory of abstraction operators. The Philosophical

Quarterly 54(214), 105–133.
Tennant, N. (2017). Core Logic. Oxford University Press.
Textor, M. (2017). Towards a neo-Brentantian theory of existence. The Philosopher’s

Imprint 17(6), 1–20.
Troestra, A. and H. Schwichtenberg (2000). Basic Proof Theory (2 ed.). Cambridge

University Press.
von Plato, J. (Ed.) (2017). Saved from the Cellar. Gerhard Gentzen’s Shorthand Notes

on Logic and Foundations of Mathematics. Cham: Springer.
Wansing, H. (1994). Sequent calculi for normal modal propositional logic. Journal

of Logic and Computation 4(2), 125–142.
Wansing, H. (2000). On the idea of a proof-theoretic semantics and the meaning

of the logical operations. Studia Logica 64, 3–20.
Whitehead, A. N. and B. Russell (1910). Principia Mathematica, Volume 1.

Cambridge University Press.

32


