
Notes on Some Ideas in Lloyd
Humberstone’s Philosophical
Applications of Modal Logic

Steven Kuhn Brian Weatherson
2018

Lloyd Humberstone’s recently published Philosophical Applications of Modal
Logic presents a number of new ideas in modal logic as well explication and
critique of recent work of many others. We extend some of these ideas and answer
some questions that are left open in the book.

Lloyd Humberstone’s recently published Philosophical Applications of Modal Logic
(Humberstone (2016)) presents a number of new ideas in modal logic as well explica-
tion and critique of recent work of many others. In this note we extend some of these
ideas and answer some questions that are left open in the book. Numbers without
other identification refer to pages in that book.

1 Local and Global Conditions

One theme sounded frequently in Humberstone (2016) is the relation between a local
condition, which describes a point in a frame and a global condition, which concerns
the frame as a whole. For example, the local conditions of being reflexive (𝑅𝑥𝑥) and
being reflexive with reflexive successors (𝑅𝑥𝑥 ∧ ∀𝑦(𝑅𝑥𝑦 → 𝑅𝑦𝑦)) are distinct, but their
universal possession by the points in a frame describes the same global condition of re-
flexivity. As a consequence, the non-equivalent modal axioms □𝑝 → 𝑝 and (□𝑝 →
𝑝) ∧□(□𝑞 → 𝑞) both define the class of reflexive frames. This example leads Humber-
stone to ask (189) whether there is a local property not implying that a point possessing
it is reflexive whose universal possession makes the frame reflexive. Affirmative answers
are supplied by the following formulas: ∀𝑦(𝑦=𝑥 ∧ 𝑅𝑥𝑥) ∨ (∃𝑦(𝑦 ≠ 𝑥) ∧ ∀𝑦(𝑦 ≠ 𝑥 → 𝑅𝑦𝑦))
(either x is the only world and it is reflexive or else there are other worlds, all of which are
reflexive), and ∃𝑧𝑅𝑥𝑧∧∀𝑧(𝑅𝑧𝑥 → 𝑅𝑧𝑧) (x has a successor and every world that can see x is
reflexive). The second example implies that the tense-logical formulas F⊤∧H(G𝑝 → 𝑝)
and G𝑝 → 𝑝 both define the class of reflexive frames.
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2 Fully Modalized Logics

Another topic that gets well-deserved attention in Humberstone (2016) is the prop-
erty of logics that Humberstone calls being “fully modalized.” (See 290-304.) The idea
is that in alethic modal systems the axiom □𝛢 → 𝛢 provides a logical connection be-
tween the modal and nonmodal formulas, whereas in a doxastic or deontic logic we
expect that matters concerning what is believed or what ought to be the case should be
logically independent of those concerning what is the case. The latter, but not the for-
mer, are fully modalized. But the idea needs to formulated with some care because we
don’t want the presence of, for example,𝛢 → □⊤ as a theorem to count against a logic’s
being fully modalized. As Humberstone puts it, in a fully modalized logic, “…we don’t
expect…the forging of any…logical connections between □𝛢 and 𝛢 for any given 𝛢 –
other than those which hold…derivatively” (291). The notion is captured in a rather
complicated way by E. Zolin in Zolin (2000) and Humberstone shows that the charac-
terization there is equivalent to the following simpler one: if there is a theorem of the
form 𝛭 ∨ 𝛮 where 𝛭 is fully a fully modalized formula (i.e., containing no sentence
letters not within the scope of a modal operator) and𝛮 is non-modal (i.e., containing
no occurrences of modal operators) then either𝛭 or𝛮 is itself a theorem. In this sec-
tion we show that Zolin’s characterization is also equivalent to an even simpler one that
is closer in spirit to the motivating remarks in Humberstone (2016): every theorem
is a tautological consequence of a fully modalized theorem. (Thus the theorems can
be divided into two categoriesthe essentially nonmodal ones, i.e., the tautologies, and
the essentially modal ones, i.e., the non-tautologies that are tautological consquences of
fully modalized theorems).

We begin by restating Zolin’s definition in our own terminology. If 𝑝1, …, 𝑝𝑛 are sen-
tence letters, then a state description in 𝑝1, …, 𝑝𝑛 is a conjunction 𝑝∗1 ∧ … ∧ 𝑝∗𝑛, where, for
1 ≤ 𝑖 ≤ 𝑛, 𝑝∗𝑖 is either 𝑝𝑖 or ¬𝑝𝑖. The (truth-functional) constituents of a formula 𝛢 are
the sentence-letters and □-formulas occurring in 𝛢 that do not properly occur within
the scope of any □. Zolin observes that every formula 𝛢 can be “decomposed” into a
formula of the form ⋁{(𝑝⃗ ∧ 𝛣(𝑝⃗)) ∶ 𝑝⃗ is a state description in the sentence letter con-
stituents of 𝛢}, where, for each 𝑝⃗ , 𝛣(𝑝⃗) is some truth functional combination of the
modal constituents of 𝛢. By fixing on a particular ordering of formulas and taking the
𝛣(𝑝⃗)’s to be in a disjunctive normal form that conforms to this ordering, we can sin-
gle out a unique decomposition of this kind. Let’s call it the Zolin form of 𝛢 and let’s
call the formulas 𝛣(𝑝⃗) that occur as right conjunct of a disjunct in the Zolin form of 𝛢,
the Zolin components of 𝛢. Note that every formula is truth-funtionally equivalent to
its Zolin form. Then, according to Zolin’s definition, a logic is fully modalized if ⊢ 𝛢
implies ⊢ 𝛣(𝑝⃗) for every 𝛣(𝑝⃗) that is a Zolin component of 𝛢.
Theorem 1

A logic L is fully modalized (according to Zolin’s definition) iff every theorem of L is a
tautological consequence of a fully modalized theorem.
Proof

(Left to right). Suppose L satisfies Zolin’s definition and ⊢𝐿 𝛢. Let (𝑝⃗1∧𝛣(𝑝⃗1))∨…∨(𝑝⃗𝑛∧
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𝛣(𝑝⃗𝑛)) be the Zolin form of𝛢. Then, according to Zolin’s definition, ⊢𝐿 𝛣(𝑝⃗𝑖) for each 𝑖,
1 ≤ 𝑖 ≤ 𝑛. Let𝛢′ = 𝛣(𝑝⃗1)∧…∧𝛣(𝑝⃗𝑛). 𝛢′ is fully modalized and, since each of its conjuncts
is provable in L, 𝛢′ is as well. All that remains is to show that 𝛢 is a truth-functional
consequence of 𝛢′. Let 𝛼 be any assignment of truth values to the constituents of 𝛢
such that 𝛼 ⊧ 𝛢′. Let 𝑝⃗𝛼 be the state description in the sentence letters that are truth-
functional constiuents of 𝛢 that corresponds to 𝛼 in the sense that each conjunct of 𝑝⃗𝛼
is the literal p or ¬𝑝 according to whether 𝛼(𝑝) is true or false. Then 𝛼 verifies (𝑝⃗𝛼∧𝛣(𝑝⃗𝛼)),
which is a disjunct of 𝛢 and so 𝛼 ⊧ 𝛢 as required.

(Right to left). We are given that every theorem of L is a tautological consequence
of some fully modalized theorem. Now suppose ⊢𝐿 𝛢 and 𝛣(𝑝⃗) is a Zolin component
of 𝛢, with a view towards showing ⊢𝐿 𝛣(𝑝⃗). By the initial suppositions, 𝛢 is a truth-
functional consequence of some fully modalized formula 𝛢′. Then the Zolin form of
𝛢, call it (𝑝⃗1 ∧ 𝛣(𝑝⃗1)) ∨ … ∨ (𝑝𝑛 ∧ 𝛣(𝑝⃗𝑛)), is also a truth functional consequence of 𝛢′,
where for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝛣(𝑝⃗𝑖) = 𝛣(𝑝⃗). We show that 𝛣(𝑝⃗) is provable in L by
showing that it is also a truth-functional consequence of the theorem 𝛢′. To that end,
let 𝛼 be any assignment of truth values to the constituents of 𝛢, such that 𝛼 ⊧ 𝛢′. Since
𝛢′ is fully modalized, its truth value under an assignment is not affected by the truth
assignments to sentence letters, so we can assume without loss of generality that these
conform to the state description . Since the disjunction (𝑝⃗1 ∧ 𝛣(𝑝⃗1)) ∨ … ∨ (𝑝⃗𝑛 ∧ 𝛣(𝑝⃗𝑛))
is a truth functional consequence of 𝛢′, 𝛼 must verify this disjunction. But 𝑝⃗1, …, 𝑝⃗𝑛
are state descriptions, so 𝛼 can verify only one disjunct of this formula, namely ∧𝛣(𝑝⃗).
Hence 𝛼 ⊧ 𝛣(𝑝⃗) as required. �

It is possible that there are applications for which Zolin’s more detailed normal-form
characterization of a fully modalized logic is more useful than the simple characteriza-
tion given here. But the proof below shows that property that Humberstone extracts in
Humberstone (2016) can be proved at least as easily from our simple characterization.
Theorem 2

Suppose every theorem of L is a tautological consequence of a fully modalized theorem.
Then ⊢𝐿 𝛭∨𝛮where𝛭 is fully modalized and𝛮 is modality-free implies either ⊢𝐿 𝛭
or ⊢𝐿 𝛮.
Proof

Assume the hypothesis of the claim and ⊢𝐿 𝛭∨𝛮 for appropriate𝛭 and𝛮. Then there
is some fully modalized L-theorem𝛢′ such that𝛭∨𝛮 is a truth functional consequence
of𝛢′. Suppose for reductio that neither𝛭 nor𝛮 is provable. Then neither𝛭 nor𝛮 is
a truth functional consequence of 𝛢′. So there is an assignment 𝛼 of truth values to the
constituents of𝛢′ and𝛭 that makes the former true and the latter false. Similarly, there
is an assignment 𝛽 to the constituents of𝛢′ and𝛮 that makes𝛢′ true and𝛮 false. Now
extend the assignment 𝛼 to the sentence letters in 𝛮 by assigning them the same truth
values as 𝛽 does, and call the result 𝛼′. Since 𝛼′ agrees with 𝛼 on the modal constituents
it verifies𝛢′ and falsifies𝛭. Since it agrees with 𝛽 on sentence letters, it falsifies𝛮. This
contradicts the earlier observation that (𝛭 ∨ 𝛮) is a truth functional consequence of
𝛢′. �
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3 “Nothing in Between” and the Equivalence of Modal
Logics

The impetus for Section 4.4 of Humberstone’s book (304-324) is Arthur Prior’s obser-
vation that the logical structure of moral concepts appears to be unlike those of quantity
and alethic modality:

In between “S must be P” and “S may be P” stands the simple “S is in fact
P”, just as “This S is P stands in between”Every S is P and “Some S is P”.
… But so far as I can see there is nothing among the moral or ‘deontic’
modalities that corresponds to these intermediary ‘existential’ or ‘alethic’
modalities. (Prior (1951) p145, quoted on 304 in Humberstone (2016).)

Early in the section,Humberstone notes that, in fact, there are strict logical intermedi-
aries between “𝛢 is obligatory” and “𝛢 is permitted” or indeed between any sentences𝛢
and B of decreasing logical strength in any reasonably well behaved modal logic, whether
their connectives are given a deontic reading or any other. For one can simply take as
intermediary, any formula 𝛢 ∨ (𝛣 ∧ 𝑝) where p is a sentence letter that does not occur
in 𝛢 or 𝛣. In this section we wish to point out that a consequence of this observation
is that there is a sense in which all modal logics meeting certain minimal requirements
are the same.

We identify a “logic” with a many-one deducibility relation on formulas satisfying
the usual structural conditions. (So the logic with all tautologies as axioms and no rules
of inference is distinct from a similar logic with modus ponens as a rule of inference.)
The minimal requirements are just that logics are classically based and substitution-
closed.By classically based we mean that their languages contain the Booleanconnectives
(or at least some truth-functionally complete subset thereof) and that these behave clas-
sically under the deducibility relation, so that, for example 𝛢 ∧ 𝛣 ⊢ 𝐶 iff 𝛢 ⊢ (𝛣 → 𝐶).1
If a logic is classical, we may safely identify it with the set of its theorems, knowing
that these will determine the deducibility relation. By substitution-closed we mean that
𝛢′1, …, 𝛢′𝑛 ⊢ 𝛣′ whenever 𝛢′1, …, 𝛢′𝑛 and 𝛣′ are the result of uniformly replacing sentence
letters by formulas in 𝛢1, …, 𝛢𝑛 and 𝛣 such that 𝛢1, …, 𝛢𝑛 ⊢ 𝛣. The requirement that the
logic is classically based ensures that 𝛢 ∨ (𝛣 ∧ 𝑝) is a logical intermediary between 𝛢 and
𝛣. The requirement that it is substitution-closed implies that it is a strict intermediary.
For if it provably implied 𝛢, then its substitution instance 𝛢 ∨ (𝛣 ∧ 𝛣) would provably
imply𝛢, and𝛢would be provably equivalent to 𝛣. And if it was provably implied by 𝛣,
then𝛢∨ (𝛣∧𝛢)would be provably implied by 𝛣 and again𝛢would be equivalent to 𝛣.
By saying that these logics are the same we mean something close to what is sometimes
called translationally equivalent.2 Let us say that logics 𝐿1 and 𝐿2 areweakly translation-
ally equivalent if there is a map 𝑠 ∶ 𝛢↦𝛢𝑠 from formulas of 𝐿1 to formulas of 𝐿2 and a

1In the terminology of Humberstone (2011, 62), these logics are #-classical for every Boolean connective
#. Humberstone (2011) spells out necessary and sufficient conditions that are omitted here. The term
classical which might have been preferred over classically based is avoided because classical modal logic is
sometimes used for other purposes.

2A paradigm case is the relation between classical propositional logic formulated with ¬ and ∧ and that
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map 𝑡 ∶ 𝐶↦𝐶𝑡 from formulas of 𝐿2 to formulas of 𝐿1 satisfying the following conditions
(where ⊢𝑖 is ⊢𝐿𝑖 for 𝑖 = 1, 2):

1. 𝛢1, …, 𝛢𝑛 ⊢1 𝛣 implies 𝛢1𝑠, …, 𝛢𝑛𝑠 ⊢2 𝛣𝑠
2. 𝐶1, …, 𝐶𝑚 ⊢2 𝐷 implies 𝐶1𝑡, …, 𝐶𝑚𝑡 ⊢1 𝐷𝑡
3. 𝛢 1⊣⊢1(𝛢𝑠)𝑡
4. 𝐶 2⊣⊢2 (𝐶𝑡)𝑠.

s and t are to be thought of as translations between the logics. If 𝐿1 and 𝐿2 are weakly
translationally equivalent then the word implies in i and ii can be strengthened to
if and only if, so that s and t are faithful embeddings. For example, by condition ii,
𝛢1𝑠, …, 𝛢𝑛𝑠 ⊢2 𝛣𝑠 implies (𝛢1𝑠)𝑡, …, (𝛢𝑛𝑠)𝑡 ⊢1 (𝛣𝑠)𝑡, and so, by condition iii 𝛢1, …, 𝛢𝑛 ⊢1 𝛣.
But the strengthened versions of i and ii still do not imply iii and iv. (See, for example,
French (2010) pp 111-124.) 𝐿1 and 𝐿2 are said to be translationally equivalent if
the translations securing their weak equivalence meet some additional requirement,
commonly that they be compositional, i.e., that they be maps 𝑓 such that for every
n-ary connective # in the source language there is formula schema 𝜎 of the target
language with 𝑛 schematic variables such that 𝑓(#𝛢1…𝛢𝑛) = 𝜎(𝑓(𝛢1), …, 𝑓(𝛢𝑛)). If we are
interested in what can be said within a logic rather than the structure of the formulas
saying it, however, the restriction to compositional translations seems unwarranted.
A translation can be “sentence by sentence” rather than “symbol by symbol.” It is
plausible to take formulas to be saying the same thing in a logic when they are provably
equivalent. In that case the structure of the things that can be said in a logic is given by
its Lindenbaum lattice. By this, we mean the structure (𝛸, ≤) where the members of X
are the equivalence classes [𝛢]𝐿 of formulas 𝛢 under the relation 𝐿⊣⊢𝐿 and [𝛢]𝐿 ≤ [𝛣]𝐿
iff 𝛢 ⊢ 𝐿𝛣. In that case, we may say that two logics are the same with regards to what
they can say if their Lindenbaum lattices are isomorphic. It is not difficult to show
that under conditions of interest here, this condition coincides with weak translational
equivalence.
Theorem 3

i. If*𝐿1 and𝐿2 are weakly translationally equivalent then they have isomorphic Lin-
denbaum lattices.

ii. If 𝐿1 and 𝐿2 are classically based and they have isomorphic Lindenbaum lattices
then they are weakly translationally equivalent.

Proof
Here and below, we drop the subscripts from the brackets and turnstile symbols, when
the logic is intended is clear. To prove i, suppose s and t satisfy conditions i-iv defining
weak translational equivalence. Let Φ([𝛢]) = [𝛢𝑠]. We show that Φ is an isomorphism.
i)Φ is well defined. Suppose [𝛢] = [𝛣]. Then𝛢⊣⊢𝛣. By condition i, this implies𝛢𝑠⊣⊢𝛣𝑠.

formulated with the Sheffer stroke. The notion has been defined in a number of ways, which are nicely
surveyed in chapter 5 of French (2010). The definitions that follow are close to those in Kuhn (1978).
Other definitions may diverge when certain Boolean connectives are absent or fail to behave classically,
but our emphasis here is on logics for which they coincide.
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Hence [𝛢𝑠] = [𝛣𝑠] and Φ([𝛢]) = Φ([𝛣]), as required. ii)Φ is 1-1. Suppose Φ([𝛢]) =
Φ([𝛣]). Then [𝛢𝑠] = [𝛣𝑠] and so 𝛢𝑠⊣⊢𝛣𝑠. By condition ii, (𝛢𝑠)𝑡⊣⊢(𝛣𝑠)𝑡. By condition iii,
𝛢⊣⊢𝛣, and so [𝛢] = [𝛣], as required. iii)Φ is onto. Take any 𝐶 in the language of 𝐿2. By
condition iv, 𝐶⊣⊢(𝐶𝑡)𝑠. Hence [𝐶] = [(𝐶𝑡)𝑠]. Therefore [𝐶] = Φ([𝐶𝑡]), and [𝐶] is in the
range of Φ, as required.

The proof of ii is facilitated by a lemma. Let us say that a translation 𝑓∶ 𝛢↦𝛢𝑓 con-
forms to falsum if ⊥𝑓⊣⊢⊥; to negation if (¬𝛢)𝑓⊣⊢¬𝛢𝑓; to conjunction if (𝛢∧𝛣)𝑓⊣⊢𝛢𝑓 ∧𝛣𝑓
and similarly for all the other Boolean connectives. To prove part ii of the theorem, we
use only that s and t conform to conjunction, but we take the opportunity to prove
something more general.
Lemma 1.

Suppose s and t are translations securing the weak equivalence of classically based modal
logics 𝐿1 and 𝐿2. Then s and t conform to all the Boolean connectives.
Proof

Suppose s and t satisfy the hypothesis of the lemma. We show that s and t conform to
falsum (i) and the conditional (ii) and that it follows that they conform to all the other
Boolean connectives (iii).

(i): (We include the subscripts for clarity here.) Since 𝐿1 and 𝐿2 are classically based,
⊥ ⊢2 ⊥𝑠 and ⊥ ⊢1 ⊥𝑡. From the second of these it follows that ⊥𝑠 ⊢2 (⊥𝑡)𝑠, and therefore
that ⊥𝑠 ⊢2 ⊥. Hence ⊥2⊣⊢2⊥𝑠 and so s conforms to ⊥. The proof that t conforms to ⊥ is
similar.

(ii): Since 𝐿1 is classically based, (𝛢 → 𝛣), 𝛢 ⊢ 𝛣. By condition i of weak translational
equivalence (𝛢 → 𝛣)𝑠, 𝛢𝑠 ⊢ 𝛣𝑠. Since 𝐿2 is classically based, (𝛢 → 𝛣)𝑠 ⊢ (𝛢𝑠 → 𝛣𝑠).
Similarly, since 𝐿2 is classically based, (𝛢 → 𝛣)𝑡, 𝛢𝑡 ⊢ 𝛣𝑡. By condition (ii) of weak
translational equivalence, (𝛢𝑠 → 𝛣𝑠)𝑡, (𝛢𝑠)𝑡 ⊢ (𝛣𝑠)𝑡. By condition iii, (𝛢𝑠)𝑡⊣⊢𝛢 and
(𝛣𝑠)𝑡⊣⊢𝛣, and so (𝛢𝑠 → 𝛣𝑠)𝑡, 𝛢 ⊢ 𝛣. Since 𝐿1 is classically based, (𝛢𝑠 → 𝛣𝑠)𝑡 ⊢ 𝛢 → 𝛣.
By condition i, ((𝛢𝑠 → 𝛣𝑠)𝑡)𝑠 ⊢ (𝛢 → 𝛣)𝑠, which implies by condition iv that (𝛢𝑠 →
𝛣𝑠) ⊢ (𝛢 → 𝛣)𝑠. We have now shown that (𝛢 → 𝛣)𝑠⊣⊢(𝛢𝑠 → 𝛣𝑠), and so s conforms to
→. The proof that t conforms to → is similar.

(iii): It can be shown that s and t conform to each of the remaining Boolean
connectives by expressing them in terms of falsum and the conditional. For example
(¬𝛢)𝑠⊣⊢(𝛢 → ⊥)𝑠. Since s conforms to the conditional and falsum, (¬𝛢)𝑠⊣⊢𝛢𝑠 → ⊥.
Since the logics are classically based, (¬𝛢)𝑠⊣⊢¬𝛢𝑠. The other cases are similar. �

We proceed to the proof of part ii of the theorem. Suppose Φ is an isomorphism
between the Lindenbaum lattices (𝛸1, ≤1) and (𝛸2, ≤2) of 𝐿1 and 𝐿2. Let s map each for-
mula 𝛢 in the language of 𝐿1 to any member of Φ([𝛢]) and let t map each formula 𝐶
in the language of 𝐿2 to any member of Φ−1([𝐶]). We show that s and t meet the four
conditions for weak translational equivalence. For i, suppose 𝛢1, …, 𝛢𝑛 ⊢ 𝛣. Since 𝐿1
is classically based 𝛢1 ∧ … ∧ 𝛢𝑛 ⊢ 𝛣, and so [𝛢1 ∧ … ∧ 𝛢𝑛] ≤ [𝛣]. Since Φ is an isomor-
phism, Φ([𝛢1 ∧ … ∧ 𝛢𝑛]) ≤ Φ([𝛣]), and so (𝛢1 ∧ … ∧ 𝛢𝑛)𝑠 ⊢ 𝛣𝑠. Since s conforms to
conjunction, (𝛢1𝑠 ∧ … ∧ 𝛢𝑛𝑠) ⊢ 𝛣𝑠. Since 𝐿2 is classically based, 𝛢1𝑠, …, 𝛢𝑛𝑠 ⊢ 𝛣𝑠. The
proof that condition ii is satisfied is similar. For conditions iii and iv note that, since
𝛢𝑠 ∈ Φ([𝛢]), [𝛢𝑠] = Φ([𝛢]). Similarly, [𝐶𝑡] = Φ−1([𝐶𝑡]). Together these two identities
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imply [(𝛢𝑠)𝑡] = Φ−1(Φ([𝛢]) and [(𝐶𝑡)𝑠] = Φ(Φ−1[𝐶]). It follows that [(𝛢𝑠)𝑡] = [𝛢] and
[(𝐶𝑡)𝑠] = [𝐶] and therefore that conditions iii and iv are satisfied. �

Since the modal logics under consideration are classically based, their Lindenbaum
lattices are Boolean algebras, i.e., we can define from ≤ operations ∧,∨, and ¬ satisfying
the usual Boolean axioms. Humberstone’s observation that these logics provide strict
intermediaries implies that they are dense. Using 𝛸<𝑌 to mean 𝛸 ≤ 𝑌 and not 𝑌 ≤ 𝛸,
we have that [𝛢]<[𝛣] implies that there is some element [𝛪] such that [𝛢]<[𝛪]<[𝛣]. But a
Boolean algebra is dense iff it is atomless. (If the algebra is dense and 0<𝛸 then there is
is an element 𝛪, that precedes x, in the sense that 0<𝛪<𝛸, so x cannot be an atom. Con-
versely if the algebra has no atoms, then there is an intermediary 𝛪 between 0 and x, so
if 𝛸<𝑌, 𝛸 ∨ (𝛪 ∧ 𝑌) is an intermediary between x and 𝑌.) A basic theorem of Boolean
algebra states that the theory of atomless Boolean algebras isℵ0-categorical, i.e., that any
two countable atomless Boolean algebras are isomorphic.It follows that any two reason-
ably well-behaved modal logics are weakly translationally equivalent. There is a sense in
which adding□ or any other non-Boolean connectives to the language of propositional
logic and axioms and rules of derivation to the usual rules for classical logic adds nothing
to what can be said. This observation contrasts starkly with what happens when trans-
lations are required to be compositional. In Pelletier and Urquhart (2003), it is shown
that if well-behaved modal logics 𝐿1 and 𝐿2 are are translationally equivalent, then, for
any number 𝑛, the number of Kripke frames with 𝑛 worlds validating 𝐿1 is the same as
the number validating 𝐿2. It follows if two logics have the finite frame property (as all
the most familiar modal logics do) and one is a sublogic of the other, they cannot be
translationally equivalent. The observation here demonstrates the importance for the
Pelletier/Urquhart result of the requirement that the translations be compositional.

We do know that the translations between classically based modal logics conform to
the Boolean connectives. This allows us to sharpen the result slightly in the direction
of Pelletier/Urquhart.
Theorem 4

Suppose 𝐿1 and 𝐿2 are classically based modal logics. Then 𝐿1 and 𝐿2 are weakly trans-
lationally equivalent by way of translations 𝑠∗ and 𝑡∗ that preserve the Boolean connec-
tives.
Proof

Since the logics are classically based they have isomorphic Lindenbaum lattices. By the
previous theorem they are weakly translationally equivalent. Let s and t be the transla-
tions securing this similarity. We define 𝑠∗ and 𝑡∗ by cases:

1. 𝑠∗(𝛢) = 𝛢𝑠 if 𝛢 is a sentence letter or 𝛢 = #𝛢1…𝛢𝑛 for # an 𝑛-ary non-Boolean
connective

2. 𝑠∗(⊥) = ⊥
3. 𝑠∗(¬𝛢) = ¬𝛢𝑠∗
4. 𝑠∗(𝛢#𝛣) = 𝛢𝑠∗#𝛣𝑠∗ if # is ∧, ∨,→ or↔.

The clauses for 𝑡∗ are similar.
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Induction using sentence letters and formulas #𝛢1…𝛢𝑛 for # non-Boolean as a base
and appeal to the conformity property establishes that 𝑠∗(𝛢)⊣⊢𝛢𝑠 and 𝑡∗(𝐶)⊣⊢𝐶𝑡. It fol-
lows that 𝑠∗ and 𝑡∗, which preserve the Boolean connectives, also satisfy the conditions
for weak translational equivalence. �

Note, however, that the result of Pelletier and Urquhart (2003) ensures that 𝑠∗ and
𝑡∗ are not in general compositional. So one should not presume, for example, that the
𝑠∗-translation of □(𝑝 ∧ 𝑞) is any function of the 𝑠∗ translations of p and 𝑞.

4 S4 ⊕ 5′ = S4⊕F
Consider the following two axioms:

• 5′: (𝑝 ∧ ¬□𝑝 ∧□(𝑝 ∨□(𝑝 → □𝑝))) → □¬□𝑝
• F: (𝑝 ∧♢□𝑞) → □(♢𝑝 ∨ 𝑞)

These emerge in Humberstone’s survey (402-420) of the logical terrain between S4 and
S5 for plausible epistemic logics. F figures prominently in Stalnaker (2006) and 5′ in
Voorbraak (1991). Humberstone (410) asks whether it is possible to derive F from S4
and 5′. The point of this section is to argue that it is. We’ll also show something that
is already clear in Humberstone’s text, which is that 5′ can be proven in S4F, so S4F =
S45′. Humberstone in fact shows something considerably stronger, namely that S4F
is complete with respect to the class of transitive, reflexive, semi-Euclidean frames, and
5′ is sound with respect to the class of those frames. (The semi-Euclidean frames are
those which satisfy ∀𝑥𝑦𝑧((𝑥𝑅𝑦∧𝑥𝑅𝑧) → (𝑦𝑅𝑧∨𝑧𝑅𝑥)). The term semi-Euclidean is taken
from Voorbraak (1991).) From these results it follows there must be some proof of 5′
in S4F. But the status of F in S45′ was an open question.

It will be convenient to label three additional formulas that appear in the course of
our derivation of F:

• 5′′ ∶ (𝑝 ∧♢¬𝑝 ∧♢□𝑝) → ♢(¬𝑝 ∧♢(𝑝 ∧ ¬□𝑝))
• A: (♢𝑝 ∨□𝑞) ∧♢¬(♢𝑝 ∨□𝑞) ∧♢□(♢𝑝 ∨□𝑞)
• B: ¬(♢𝑝 ∨□𝑞) ∧♢((♢𝑝 ∨□𝑞) ∧ ¬□(♢𝑝 ∨□𝑞))

We will show the following:
Theorem 5

i. 5′ K⊣⊢K 5
′′

ii. ⊢KT4 ¬F→ A
iii. ⊢5′′ A→ ♢B
iv. ⊢S4 ¬♢B

i allows us to work within S45′′ rather than S45′, and ii, iii, iv constitute a reductioproof
of Fwithin that system. It should be noted that Humberstone uses 5′ as a label for the
schema corresponding to the axiom given here. We work within a natural deduction
system that allows us to use a rule of truth-functional consequence under assumptions,
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and to apply rules of necessitation and uniform substitution to formulas that are not
under any assumptions.
Proof To prove i we note the following chain of K-equivalent formulas:
1. (𝑝 ∧ ¬□𝑝 ∧□(𝑝 ∨□(𝑝 → □𝑝))) → □¬□𝑝 (=5′)
2. (𝑝 ∧ ¬□𝑝 ∧ ¬□¬□𝑝) → ¬□(𝑝 ∨□(𝑝 → □𝑝))
3. (𝑝 ∧♢¬𝑝 ∧♢□𝑝) → ♢¬(𝑝 ∨□(𝑝 → □𝑝))
4. (𝑝 ∧♢¬𝑝 ∧♢□𝑝) → ♢(¬𝑝 ∧ ¬□(𝑝 → □𝑝))
5. (𝑝 ∧♢¬𝑝 ∧♢□𝑝) → ♢(¬𝑝 ∧♢(𝑝 ∧ ¬□𝑝)) (=5′′)

A derivation sketch establishing ii is given below. We make free use of K and truth
functional logic, but we note steps that use T or 4.

1. ¬((𝑝 ∧♢□𝑞) → □(♢𝑝 ∨ 𝑞))(Assumption ¬F)
2. p (from 1)
3. ♢𝑝 ∨□𝑞(from 2 using T)
4. ♢(¬♢𝑝 ∧ ¬𝑞) (from 1)
5. ♢(¬♢𝑝 ∧ ¬□𝑞) (from 4 using T)
6. ♢¬(♢𝑝 ∨□𝑞)(from 5)
7. ♢□𝑞(from 1)
8. ♢□□𝑞(from 7 using 4)
9. ♢□(♢𝑝 ∨□𝑞) (from 8)

10. (♢𝑝 ∨□𝑞) ∧♢¬(♢𝑝 ∨□𝑞) ∧♢□(♢𝑝 ∨□𝑞)(from 3,6,9)
11. ¬F→ A(from 1-10)

For iii note that a substitution of ♢𝑝 ∨□𝑞 for p in 5′′ results in the formula A→ ♢B.
Finally, we establish iv by the derivation sketch below.

1. ¬(♢𝑝 ∨□𝑞) ∧♢((♢𝑝 ∨□𝑞) ∧ ¬□(♢𝑝 ∨□𝑞))
(Assumption B)

2. ¬(♢𝑝 ∨□𝑞) (from 1)
3. □¬𝑝 (from 2)
4. □□¬𝑝 (from 3 using 4)
5. ♢((♢𝑝 ∨□𝑞) ∧ ¬□(♢𝑝 ∨□𝑞)) (from 1)
6. ♢(□¬𝑝 ∧ (♢𝑝 ∨□𝑞) ∧ ¬□(♢𝑝 ∨□𝑞)) (from 4,5)
7. ♢(□¬𝑝 ∧□𝑞 ∧ ¬□(♢𝑝 ∨□𝑞)) (from 6)
8. ♢(□¬𝑝 ∧□□𝑞 ∧ ¬□(♢𝑝 ∨□𝑞)) (from 7 using 4)
9. ♢(□¬𝑝 ∧□□𝑞 ∧ ¬□□𝑞) (from 8)

10. ¬B (from 1-9 by reductio)
11. □¬B (from 10 by necessitation)
12. ¬♢B (from 11)

As we mentioned above, Humberstone shows that there must be a proof of 5′ in S4F.
For the sake of symmetry, we sketch that proof. As it turns out, only KF is required,
which we could not have known from Humberstone’s completeness result.



10 IshaniMaitra and BrianWeatherson

1. (𝑝 ∧♢□𝑞) → □(♢𝑝 ∨ 𝑞)(F)
2. (¬(𝑝 → □𝑝) ∧♢□𝑝) → □(♢¬(𝑝 → □𝑝) ∨ 𝑝)(from 1 by substitution)
3. ¬((𝑝 ∧ ¬□𝑝 ∧□(𝑝 ∨□(𝑝 → □𝑝))) → □¬□𝑝)(Assumption ¬5′)
4. 𝑝 ∧ ¬□𝑝 ∧□(𝑝 ∨□(𝑝 → □𝑝)) ∧♢□𝑝(from 3)
5. ¬(𝑝 → □𝑝) ∧♢□𝑝(from 4)
6. □(♢¬(𝑝 → □𝑝) ∨ 𝑝)(from 2,5)
7. ♢¬𝑝(from 4)
8. ♢(¬𝑝 ∧♢¬(𝑝 → □𝑝) ∨ 𝑝)(from 6,7)
9. ♢(¬𝑝 ∧♢¬(𝑝 → □𝑝))(from 8)

10. □(𝑝 ∨□(𝑝 → □𝑝))(from 4)
11. ♢(¬(𝑝 ∨□(𝑝 → □𝑝)) ∧ (𝑝 ∨□(𝑝 ∧□𝑝)))(from 9, 10)
12. 5′(from 3-11 by reductio)

■

5 Ain’t Necessarily So

Humberstone’s “logic of coming about” (452-469) adds to the language of classical
sentential logic a modal operator D. D𝛢 is to be read as it comes about that 𝛢 and un-
derstood as being something like Nuel Belnap’s a sees to it that 𝛢, except that it abstracts
from the idea of agency. Models are triples ⟨𝑈, 𝑓, 𝑉⟩ where 𝑈 and 𝑉 are sets and valua-
tions of the kind familiar from modal logic and 𝑓 is a unary function from𝑈 to𝑈. The
truth definition has the usual clauses for the classical connectives and the additional
clause:

• ⟨𝑈, 𝑓, 𝑉⟩ ⊧𝑥 D𝛢 iff ⟨𝑈, 𝑓, 𝑉⟩ ⊧𝑥 𝛢 and not ⟨𝑈, 𝑓, 𝑉⟩ ⊧𝑓(𝑥) 𝛢.
Truth in the model is truth at all 𝑢∈𝑈, and validity is is truth in all models. Among the
valid schemas and validity-preserving rules that he draws attention to are the following:

• D0: Substitution instances of tautologies
• D1: D𝛢 → 𝛢
• D2: (𝛢 ∧D𝛣) → D(𝛢 ∧ 𝛣)
• D3: D(𝛢 ∧ 𝛣) → (D𝛢 ∨D𝛣)
• MP: 𝛢 → 𝛣,𝛢 / 𝛣
• RD𝑚,𝑛: (𝛣1 ∧ … ∧ 𝛣𝑚) → (𝛢1 ∨ … ∨ 𝛢𝑛) /
(𝛣1 ∧ … ∧ 𝛣𝑚) → ((D𝛢1 ∧ … ∧D𝛢𝑛) → (D𝛣1 ∨ … ∨D𝛣𝑚))

The last rule schema is intended to include the cases 𝑚 = 0 and 𝑛 = 0 with the usual
stipulation that an empty conjunction is ⊤ and an empty disjunction is ⊥. The reader is
asked to show that D2 and D3 are provable from the remaining schemas as an exercise
and the valid formulas are then shown to be axiomatized by D0, D1, MP and all the
RD rules. In this section we consider two additional schemas.

• D4: (D𝛢 ∧D𝛣) → D(𝛢 ∨ 𝛣)
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• D5:¬D⊤
We show that the valid formulas of coming-about logic are axiomatized by D0, D1, D3,
D4, D5 MP and RD1,1. Since we can always add a rule of substitution while replacing
the schematic variables in D1, D3, D4 by sentence letters and replacing D0 by a finite
set of axioms for sentential logic, this shows that Humberstone’s infinite axiomatization
can be replaced by a simple finite one.

D4 plays a special role among the axioms and rules considered. Suppose D𝛢 is in-
terpreted as it is contingently true that 𝛢 (or, as the section head suggests, that 𝛢, while
true, is not necessarily so). More precisely, replace the function 𝑓 in Humberstone’s
models by an accessibility of the usual kind and his truth clause forD by the following:

• CT: ⟨𝑈, 𝑅, 𝑉⟩ ⊧𝑥 D𝛢 iff ⟨𝑈, 𝑅, 𝑉⟩ ⊧𝑥 𝛢 and, for some 𝑦 such that 𝑥𝑅𝑦, not ⟨𝑈, 𝑅, 𝑉⟩ ⊧𝑦
𝛢

It is easy to check that D0, D1, D2, D3 and D5 all remain valid and MP and RD1,1
still preserve validity. But when 𝑅 is not a function then D4 can be falsified: Let 𝑈 =
{𝑤, 𝑢, 𝑣}, 𝑅 = {(𝑤, 𝑢), (𝑤, 𝑣)}, 𝑉(𝑝) = {𝑤, 𝑢} and𝑉(𝑞) = {𝑤, 𝑣}. So D4 is independent of the
five axioms and two rules just given. In fact, as we shall show, these axioms and rules are
sufficient to axiomatize the contingently true operator under the interpretation CT.

First, however, we turn to the connection between the formula schemas and the
rule schema RD𝑚,𝑛 and the proof that the logic of coming about is finitely axiomati-
zable. Note that any logic containing D0 and closed under MP is closed under truth-
functional consequence (TFC). This facilitates the proof of the following:
Claim 1

In the presence of D0, D1 and MP: D2 is provable from RD1,1, D3 is provable from
RD2,1, D4 is provable from RD1,2 and D5 is provable from RD0,1
Proof

The required derivations are sketched below.
1. (𝛢 ∧ 𝛣) → 𝛣 by D0
2. (𝛢 ∧ 𝛣) → (D𝛣 → D(𝛢 ∧ 𝛣))from 1 by RD1,1
3. (𝛢 ∧ 𝛣 ∧D𝛣) → D(𝛢 ∧ 𝛣))from 2 by TFC
4. (𝛢 ∧D𝛣) → D(𝛢 ∧ 𝛣))from 3 and D1 by TFC

::: {.content-visible when-format=“docx”
:::
1. (𝛢 ∧ 𝛣) → (𝛢 ∧ 𝛣) by D0
2. (𝛢 ∧ 𝛣) → (D(𝛢 ∧ 𝛣) → (D𝛢 ∨D𝛣))from 1 by RD2,1
3. D(𝛢 ∧ 𝛣) → (D𝛢 ∨D𝛣)from 2 and D1 by TFC

::: {.content-visible when-format=“docx”
:::
1. (𝛢 ∧ 𝛣) → (𝛢 ∨ 𝛣) by D0
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2. (𝛢 ∧ 𝛣) → ((D𝛢 ∧D𝛣) → D(𝛢 ∨ 𝛣)) from 1 by RD1,2
3. D(𝛢 ∧ 𝛣) → D(𝛢 ∨ 𝛣)from 2 and D1 by TFC

::: {.content-visible when-format=“docx”
:::
1. ⊤ → ⊤by D0
2. ⊤ → (𝐷⊤ → ⊥)from 1 by RD0,1
3. ¬𝐷⊤from 2 by TFC

Since Humberstone has already shown that D0 and D1 are valid and that modus po-
nens and every instance of RD𝑚,𝑛 preserves validity, the claim is sufficient to show that
our new axiom system is sound. To prove sufficiency, it is sufficient to show that, for
all 𝑚, 𝑛 ≥ 0, RD𝑚,𝑛 is derivable in the new system. To this end, notice first that D3 and
D4 generalize, i.e., if ⊢ indicates provability in the new axiom system then:

• D3*: For all 𝑛≥1, ⊢ D(𝛢1 ∧ … ∧ 𝛢𝑛) → (D𝛢1 ∨ … ∨D𝛢𝑛), and
• D4*: For all 𝑛≥1, ⊢ (D𝛢1 ∧ … ∧D𝛢𝑛) → D(𝛢1 ∨ … ∨ 𝛢𝑛).

For these claims to be sensible without grouping conjuncts and disjuncts our logic must
allow replacement of truth-functional equivalents. Humberstone’s proof (453) of the
claim that his logic satisfies the stronger property of being “congruential,” i.e., closed
under replacement of provable equivalents uses only D0 and RD1,1 so we can help our-
selves to this result. The claims can then be proved by induction on 𝑛. In each case the
basis case follows from D0. The inductive step for D3* uses D3 and that for D4* uses
D4.

This allows us to show that RD𝑚,𝑛 is derivable for all positive 𝑚 and 𝑛: Suppose ⊢
(𝛣1 ∧ … ∧ 𝛣𝑚) → (𝛢1 ∨ … ∨ 𝛢𝑛). Then by RD1,1,
⊢ (𝛣1 ∧ … ∧ 𝛣𝑚) → (D(𝛢1 ∨ … ∨ 𝛢𝑛) → D(𝛣1 ∧ … ∧ 𝛣𝑚)). By D3* and TFC, ⊢ (𝛣1 ∧ … ∧
𝛣𝑚) → (D(𝛢1 ∨ … ∨ 𝛢𝑛) → (D𝛣1 ∨ … ∨ D𝛣𝑚)). By D4* and TFC, ⊢ (𝛣1 ∧ … ∧ 𝛣𝑚) →
((D𝛢1 ∧ … ∧D𝛢𝑛) → (D𝛣1 ∨ … ∨D𝛣𝑚)).

It remains only to check the cases𝑚=0 and 𝑛=0. But for all𝑚, RD𝑚,0 is a consequence
of TFC: if (𝛣1 ∧ … ∧ 𝛣𝑚) → ⊥ is provable then so is any formula with 𝛣1 ∧ … ∧ 𝛣𝑚 as
antecedent, including the consequence of RD𝑚,0.

For the case 𝑚 = 0 we will need D4* and D5. Suppose ⊢ ⊤ → (𝛢1 ∨ … ∨ 𝛢𝑛). Then
(𝛢1 ∨ … ∨ 𝛢𝑛) is provably equivalent to ⊤. Since ⊢ ¬𝐷⊤ and our logic is congruential
it follows that ⊢ ¬D(𝛢1 ∨ … ∨ 𝛢𝑛). By D4, ⊢ ¬(D𝛢1 ∧ … ∧ D𝛢𝑛). By TFC, ⊢ ⊤ →
((D𝛢1 ∧ … ∧D𝛢𝑛) → ⊥), and so RD0,𝑛 is derivable.■

Our proof that Humberstone’s logic of coming about has a simple, finite axiomati-
zation is complete and so we turn our attention to the axiomatization of the logic of
contingent truth.
Theorem 6

The axioms D0, D1, D3, D4, D5 and rules MP and RD1,1 provide a complete axioma-
tization of the logic of contingently true under the interpretation CT.
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Proof
Soundness was observed above so it is sufficient to prove sufficiency. This can be done
by constructing a canonical model out of maximally consistent sets in a familiar way.
Let𝛭𝑐 = (𝑊𝑐, 𝑅𝑐, 𝑉𝑐), where𝑊𝑐 is the set of all maximally consistent formulas, 𝑉𝑐(𝑝) =
{𝑤∈𝑊𝑐 ∶ 𝑝∈𝑤}, and 𝑥𝑅𝑐𝑦 iff 𝛢∈𝑦whenever both 𝛢∈𝑥 and D𝛢∉𝑥.
Lemma 2 (Witness lemma)

If D𝛢∈𝑥 then ∃𝑦(𝑥𝑅𝑐𝑦 and 𝛢∈𝑦).
Proof

Suppose D𝛢∈𝑥 and let 𝑦− = {𝛣∶ 𝛣∈𝑥 and D𝛣∈𝑥} ∪ {¬𝛢}. Then 𝑦− is consistent. For
otherwise either ⊢ 𝛢 or there are formulas 𝛣1, …, 𝛣𝑛 such that for 1 ≤ 𝑖 ≤ 𝑛, 𝛣𝑖∈𝑥 and
D𝛣𝑖∈𝑥 and ⊢ 𝛣1 ∧ … ∧ 𝛣𝑛 → 𝛢. In the first case, by D0, ⊢ 𝛢↔⊤. Since the logic is
congruential, ⊢ D⊤, violating D5. So we may assume that the second case obtains. By
RD1,1, ⊢ 𝛣1∧…∧𝛣𝑛 → (D𝛢 → D(𝛣1∧…∧𝛣𝑛)). Each𝛣𝑖 is a member of x by construction
and D𝛢 is a member of x by supposition, so it follows that D(𝛣1 ∧ … ∧ 𝛣𝑛)∈𝑥. By D3*
this implies D𝛣1 ∨ … ∨ D𝛣𝑛 ∈ 𝑥. But by construction none of the formulas D𝛣𝑖 is a
member of x, so we have reached a contradiction. Thus 𝑦− is consistent as claimed. By
Lindenbaum’s lemma, it can be extended to a maximal consistent set y satisfying the
conditions of the lemma. �
Lemma 3 (Truth Lemma)

In the canonical model for our logic, ⊧𝑥 𝛢 iff 𝛢∈𝑥.
Proof

By induction on 𝛢. We consider the case 𝛢 = D𝛣. First suppose ⊧𝑥 𝛢. By the truth
definition, ⊧𝑥 𝛣 and ∃𝑦(𝑥𝑅𝑐𝑦 and ⊭𝑦𝛣). By induction hypothesis, 𝛣∈𝑥 and ∃𝑦(𝑥𝑅𝑐𝑦 and
𝛣∉𝑦). By the definition of 𝑅𝑐, D𝛣∈𝑥 as required.

For the converse, suppose 𝛢∈𝑥. By the witness lemma, ∃𝑦(𝑥𝑅𝑐𝑦 and 𝛣∈𝑦). By induc-
tion hypothesis, ∃𝑦(𝑥𝑅𝑐𝑦 and ⊧𝑦𝛣). Furthermore, since𝛢∈𝑥, D1 implies that 𝛣∈𝑥, and,by
induction hypothesis, this implies that ⊧𝑥 𝛣. So, by the truth definition, ⊧𝑥 𝛢, as re-
quired. �

To prove the theorem note that, by Lindenbaum’s lemma, any consistent set in the
logic described can be extended to a maximal consistent set, which will be one of the
worlds in the canonical model. By the truth lemma, all the members of the set will be
true at that world. �
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