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The Use of Axiomatic Rejection

1. Introduction

The central  point  of  logic  is  an entailment  relation,  which in  different  contexts  is 

expressed as an implication in a system, syntactic derivability or semantic entailment. Let α 

and β be two formulae, such that α entails β. Two fundamental ways of reasoning take their 

sources in this relation: modus ponendo ponens (MP) - having asserted α assert β, and modus 

tollendo tollens (MT) - having rejected β reject α. Both of them are well known, intuitively 

clear and extensively used in scientific, philosophical and common sense reasoning. 

To build a formal system usually MP is used because we are interested basically in 

formulae which are valid. Such a system will be referred to as a positive system or positive 

part of a system. However there are some good reasons to formalise the opposite set of non-

valid formulae – the negative part of a system. It was Aristotle who invented the idea of such 

a formalisation (see [8]),  at the same time as he invented the axiomatic  method for valid 

formulae.  This  way of  formalisation  is  called  axiomatic  rejection.  Later  the  technique  of 

axiomatic rejection was developed by J. Łukasiewicz and his followers (see for example [8], 

[11], [12]). 

In the  system built  using  the  technique  of  axiomatic  rejection  some formulae  are 

rejected directly as rejected axioms, others indirectly with the use of rules of rejection. The 

basic  rule  of  rejection  is  MT.  Thus,  because,  the  positive  part  of  a  system describes  the 

entailment relation, which is used in a premise of MT, the negative part of a system cannot 

exist without its positive counterpart. In many cases other additional rules of rejection have to 

be used. They are specific for a particular logic, and express certain properties of it.

A  simple  example  of  such  a  presentation  of  logic  can  be  given  for  classical 

propositonal calculus. The positive part is well known, and consists of a usual set of axioms 

and rules. The negative part of the system consists of the following single rejected axiom Ax-1 

and the rule  MT expressed  by reversed  modus ponens  (MP-1)  and reversed Substitution  

(Subst-1):

Ax-1  | p

(Single propositional variable is rejected)
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| α → β ; | β
MP-1 

| α

(If α → β is provable and β is refutable, then α is refutable)

| e(α)
Subst-1 

| α

(If a substitution instance of α is refutable, then α itself is refutable)

There are three main applications of axiomatic rejection: 

(i) decidability proofs

(ii) completeness proofs

(iii) representation of negative knowledge in incomplete systems

In the  following three  paragraphs  these  applications  will  be  briefly described  and 

exemplified. This paper neither surveys the results on axiomatic rejection nor presents their 

details.  The paper is  meant to show the power of the method and variety of its  use. The 

completeness issues have not received enough attention so far, thus showing its importance is 

the main novelty of this paper.

2. Decidability

The  first  application  of  axiomatic  rejection  -  the  use  of  axiomatic  rejection  for 

decidability proofs – is, relatively, best known. Classical logic as well as intuitionistic logic 

and most  of  the  important  modal  systems received their  axiomatic  rejection  presentation, 

which provide proofs of decidability of the systems (see for example [12]). It is possible to 

give  such  a  proof  also  for  systems  lacking  Finite  Model  Property,  which  is  sometimes 

regarded as a necessary condition for decidability (see [11]).

There are two approaches towards decidability with the use of the method of axiomatic 

rejection. In the first of them it is proved that the set of theorems of a theory is decidable by 

showing that both sets of theorems and of non-theorems are recursively denumerable. These 

two sets are determined resp. by the positive and negative parts of an axiomatic system, and 

the  fact  that  they are  recursively denumerable  can  be  simply observed  from the  finitary 
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character  of  axioms  and rules.  Such  a  proof  is  valid  but  not  necessarily useful  for  more 

practical purposes, such as building efficient decision procedures. 

In the  second approach,  on  the  other  hand,  decidability is  proved by showing an 

efficient decision procedure. In most cases a notion of a normal form, connected with the 

logic concerned, is used. Any formula can be transformed into an equivalent formula in a 

normal form in the positive part of the system. Thus, having the rule of modus tollens, it is 

enough to be able to reject all non-theorems in a normal form. A formula in a normal form can 

be decomposed to a set of simpler formulae, in such a way that it is a theorem if and only if at 

least one of them is a theorem. Thus if all formulae resulting from the decomposition are non-

theorems, then the normal form is also a non-theorem. If we formulate that fact in a form of a 

rule of rejection, and add that rule to axiomatic formulation of rejection of simple formulae, 

we obtain the negative part of the system in concern. Normal forms, decomposition principles 

and  simple  formulae  vary  from  system  to  system,  but  the  general  schema  of  decision 

procedure remains the same1. 

We will  show both  approaches  in the example  of  the modal  system S5.  The first 

approach in this case can be based on the observation concerning the set of extensions of the 

system. By rejecting all its extensions we can obtain a negative axiomatisation of it. The set of 

all  consistent extensions of S5 forms a chain of logics, and in each element of that chain 

necessity can be described by a finitely valued matrix. S5 is a limit of that chain, when the 

number of values goes to infinity (see [10]). In this situation, to reject all extensions of S5 the 

following rule of rejection can be used:

| α1, ... , | αn

(S5-I)   
| Lα1 ∨ ... ∨ Lαn

where α1, ... , αn are non-modal formulae. The rule can be interpreted as stating that there is no 

finite matrix for necessity in S5. Thus with any positive axiomatisation of theorems of S5 the 

axiomatisation  of  non-theorems consists  of  a  single rejected axiom Ax-1 and the rules  of 

rejection:  MP-1,  Subst-1 (taken from negative part  of classical propositional  calculus given 

above) and specific rule S5-I.

In the second approach the following S5 normal form can be used (see [1]): 
1 Presented way of building a decision procedure for a logic do not have to be connected with the axiomatic 
rejection. For example such a procedure is given by Scott for intuitionistic proposition calculus ([9]), by Lemmon 
for the modal system K ([7]) and by Hughes and Cresswell for S5 ([1]).
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(*) Lα0 → Lα1 ∨ ... ∨ Lαn-1∨ αn

where α0, α1, ... , αn are non-modal formulae. Formula (*) is a theorem of S5 if and only if at 

least one of the formulae α0 → αi (1 ≤ i ≤ n) is. The following rule of rejection represents that 

fact.

| α0 → α1, ... , | α0 → αn

(S5-II)   , 
| Lα0 → Lα1 ∨ ... ∨ Lαn-1∨ αn

The negative axiomatisation of S5 consists now of an axiom Ax-1, and rules : MP-1, Subst-1 S5-

II. 

To decide if any formula α is a theorem of S5, we transform α into its normal form, 

decompose that normal form into simple formulae (i.e. formulae from the premise of the rule 

S5-II) and since they are non-modal check them in classical propositional calculus. If any of 

them is a theorem then it can be proved in S5 that α is also a theorem. If all of them are non-

theorems, then they are rejected and so is α.

3. Completeness

The  second  use  of  axiomatic  rejection  is  for  showing  completeness.  It  is  more 

philosophically  interesting  than  the  first,  more  technical  one,  but  its  value  hasn’t  been 

acknowledged so far. Its importance lays mainly in the possibility of obtaining completeness 

results without the use of formal models, in spite of the general opinion that completeness is 

necessarily connected with models.

Usually a formal system is built by stating true facts and correct rules to constitute a 

proof system. On the other hand, a formal model of a fragment of reality, which is formalised, 

is built. Then the proof system is confronted with the model and if they match it is regarded as 

sound and complete (see fig. I). 

A model is a medium between the proof system and reality. Sometimes it is difficult to 

find a natural and clear formal model for a formalised fragment of reality and it is easier not to 

introduce it (compare [4]). Thus the possibility of considering completeness without model 

can be interesting and useful.
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In general a system is complete if there is no valid statement of the considered language 

that is absent in the set of theorems. To show this it is enough to proof that all non-theorems are 

not valid. Using the technique of axiomatic rejection for such a proof we first build an axiomatic 

system of non-theorems. Then we turn from a purely syntactic presentation into semantics and 

prove that any rejected formula is not valid by showing that rejected axioms are not valid (the 

easiest way is by a counterexample) and that rules of rejection preserve non-validity (see fig.II).

Such a procedure will be described here using the example of different formalisations of 

Aristotle’s syllogistic presented as an axiomatic first order theory. The first such formalisation 

was given by Łukasiewicz (see [8]). The language of the system consists of individual variables 

(X, Y, Z, ...), two binary predicates a and i (with infix notation) read respectively as every ... is ... 

and some ... are ... , and propositional connectives. As rules of derivation modus ponens, and 

substitution for individual  variables are taken and the rules of rejection are reversed modus 

ponens  (MP-1),  reversed  substitution  for  individual  variables  (Subst-1)  and  the  following 

disjunction rule (Dysj):

| K → A1, ... , | K → An 
(Dysj)   

| K → A1 ∨ ... ∨ An

where A1, ... , An (n ≥ 1) are atoms of the language and K is a conjunction of atoms. Axioms 

of  the  system,  in  addition  to  all  substitutions  of  propositional  calculus  theorems,  are  as 

follows.

System I axioms  

Ax1-I XaX

Ax2-I XiX

Ax3-I XaY ∧ YaZ → XaZ

Ax4-I XiY ∧ YaZ → ZiX

Ax -11-I XaZ ∧ YaZ → XiY

The rules of the system are not controversial. All except Dysj are straightforward and 

the rule Dysj can be interpreted as stating that the positive part of a theory can be axiomatized 

using Horn formulae - i.e. formulae of a form A1 ∧ ... ∧ An → B, where A1 , ... , An , B are 
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atoms (see [6]), which seems to be right. However the set of axioms was criticized. Słupecki 

([13]) noticed that Ax1-I and Ax2-I were never used by Aristotle. Indeed they are false when 

we take  into  consideration  names  without  denotation  like  unicorn (Aristotle  regarded all 

atomic statements with such names as false). Słupecki proposes another set of specific axioms 

with the same rules (rejected part was added later in [2]).

System II axioms 

Ax1-II XaY → XiY

Ax2-II XiY → YiX

Ax3-II XaY ∧ YaZ → XaZ

Ax4-II XiY ∧ YaZ → ZiX

Ax -11-II XaY ∧ YaY → XiX

Ax -12-II YaX ∧ XaZ ∧ YaY ∧ ZaZ → XaX

Ax -13-II XaZ ∧ YaZ ∧ XaX ∧ YaY ∧ ZaZ → XiY

In this case we have the system that is sound (all positive axioms are valid) but not 

complete. With the natural interpretation of the predicates, axioms Ax -11-II and Ax –12-II are 

valid. Unlike the false statements every unicorn is a unicorn and some unicorns are unicorns 

similar statements with names with denotation like  every horse is a horse and some horses  

are horses are true. The ancestors of both considered axioms provide that names used in 

predecessor have denotation. Thus we came up with another set of axioms which construct a 

system that is sound and complete.

System III axioms  2  

Ax1-III XiY → YaY

Ax2-III XaY → XiY

Ax3-III XaY ∧ YaZ → XaZ

Ax4-III XiY ∧ YaZ → ZiX

Ax -11-III XaZ ∧ YaZ → XiY

Ax -12-III XaX → YiY

2 The proof that the negative part of this system is a complement of positive is similar to the proofs for previous 
axiomatisations.
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Axiom Ax1-III represents the fact that for every name Y with denotation YaY is true. 

Axioms Ax2-III – Ax4-III are well known rights of Aristotle’s syllogistic. For rejected axioms 

we can use the following counterexamples: in Ax -11-III we can put horse for X, camel for Y 

and animal for Z; in Ax –12-III – horse for X and unicorn for Y.  This completes the proof of 

soundness and completeness of our axiomatisation of Aristotle’s syllogistic.

In the proof only intuitions about single statements of the considered language were 

used.  This  is  easier  and  safer  method  than  introducing  model,  because  there  are  several 

models  that  could  be  considered  and  choosing  between  them  is  more  difficult  then 

considering truth or falsity of individual statements. Furthermore syllogistic is a theory of two 

simple relations between names and is simpler then the notion of set and general concept of 

relation, which are engaged in formal models. 

4. Negative information in incomplete systems

The third use of axiomatic rejection is connected with situations, when our knowledge 

is not complete. It gives a very natural way of formalising incomplete knowledge in computer 

programs written in Prolog. In the standard Prolog a negative answer is given for a query 

whenever there is  no data for positive answer. With the incomplete information it  can be 

misleading because  the  same answer  is  given  when  data  allow for  the  justified  negative 

answer for a query and where there is no data at all. That problem can be solved with the use 

of axiomatic rejection. A usual Prolog program is extended by a set of rejected formulae. If 

there is no positive answer for a query, then the query is added to the program and we try to 

derive rejected formulae in a program modified in this way. If we succeed, then by modus 

tollens we can reject the query and give the justified negative answer. Otherwise the answer 

is: no data for answer. 3

As an example here is presented a program describing family relations in a situation of 

incomplete information (for details see [5]). Let it consists of the following clauses.

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Y,Z).

parent(“John”,”Mark”).

parent(”Mark”,”Ann”).

If we put a query about an entirely new person e.g. Jane, such as:

3 Similar concept is present in [3] independently from the works on axiomatic rejection.
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:- ancestor(“Jane”,”Ann”)

in  standard  Prolog  we obtain  answer  “No”,  as  for  a  query for  which  negative  answer  is 

justified, like:

:- ancestor(“Ann”, “John”)

However if we add to the program a rejected formula:

ancestor(X,X) 

and proceed as described the above two cases will be distinguished.

5. Conclusions

Various  possible  applications  of  the  method  of  axiomatic  rejection  have  been 

considered. It is useful for decidability proofs – even for systems without the finite model 

property,  completeness  proofs  without  the  use  of  formal  models  and  representation  of 

negative information in incomplete systems. As an example of completeness result we have 

shown the correct axiomatisation of Aristotle’s syllogistic. 
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