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Implications of Automating Science 
The Possibility of Artificial Creativity and the Future of Science 
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Introduction 

 

Science fiction writer Chiang’s (2002) short story titled “The evolution of 

human science” depicts a future age in which “metahumanity” acquires 

intelligence that outstrips human intelligence. There all original works of 

scientific research are generated by metahumans. Most human researchers have 

quit their jobs, and the rest of them are engaged in “hermeneutics,” or the study 

that aims to interpret metahuman science and make it comprehensible to humans. 

The narrator of the story considers the raison d'être for humanity’s science in this 

age. Although Chiang does not explain in detail what “metahumanity” is, one of 

its candidates is artificial intelligence (AI)―more specifically, what Searle (1980) 

calls “strong AI,” which has the real capacity for thinking.  

In reality, strong AI has not appeared yet, but AI technologies are increasingly 

applied to scientific research for various purposes. In 2017, Science issued a 

special issue titled “AI Transforms Science,” which reported the current status and 

future prospects of the use of AI in various scientific areas of physical, biological, 

and social sciences. Moreover, some researchers aim to realize “the automation 

of science” (King et al. 2004), that is, to make AI systems or robots execute 

research tasks without human intervention. It is impossible to predict at present 

whether the future Chiang depicts, where AI takes humanity’s place in science, 

will come true. At any rate, as automation proceeds, modes of scientific research 

as well as the state of the science community and the relationship between science 

and society will change dramatically. 

This tendency of automating science is remarkable in multiple respects. First, 
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it will radically change the overall state of science and technology, and so it may 

lead to large-scale innovation and to solving social problems. Second, since 

science is one of the most distinctive human activities, the idea of automating it 

prompts us to reconsider the aspects of our humanity itself. One of these aspects 

is human creativity. Renowned physicist Dyson (1988) states, “Science is at its 

most creative when it can see a world in a grain of sand and a heaven in a wild 

flower. Heavy hardware and big machines are also a part of the science, but not 

the most important part” (p. 158). As clearly shown in this passage, the view that 

human creativity constitutes a central value of science is widespread. However, 

as I will argue, the automation of science might undermine this creative character. 

In this article, I examine the prospect of automating science, focusing on two 

questions. First, can AI make creative discoveries? Second, what implications 

may the automation of science have on science and society? It will be shown that 

the attempt to address these questions leads to a reconsideration of philosophical 

questions concerning the nature and values of science. I will conclude that the 

prospect of success in automating creative discovery is not bright at present. 

Nevertheless, I will also argue, we should anticipate that the automation of science 

will have many serious implications for science and society. Therefore, we need 

to specify desirable ways of introducing AI technologies into science and devise 

measures against the demerits of automating science. 

In Section 1, I will introduce the current state and future goals of the 

automation of science. In Section 2, I will examine whether AI can make creative 

discoveries. Then, in Section 3, I will consider what implications the automation 

of science has for the science community and wider society.  

 

1. What Is the Automation of Science? 

 

1.1 The current state of applications of AI in science 

 

Scientific research has been a central target of AI research since its early days. 

Many studies conducted on this topic constitute a research area known as 

“machine discovery” or “computational discovery.” Two famous examples of 

their achievements are AM (Lenat 1977) and BACON (Langley et al. 1987). The 

former is a program that generate programs expressing mathematical concepts; 

for example, it succeeds in producing Goldbach’s Conjecture. The latter is a 

program that picks up invariants from data; for example, it succeeds in deriving 
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Kepler’s First Law from data concerning planetary orbits. Thus, early studies on 

machine discovery had aimed at simulating past discoveries made by human 

scientists. There also are attempts to make computers aid human researchers to 

discover new knowledge (see Langley 2000), but this approach had not become 

major until recently. 

Now, AI systems are increasingly applied to scientific research more 

practically. AI systems based on machine learning methods are used for various 

scientific purposes such as the detection of new particles in physics, classification 

of celestial bodies from image data in astronomy, prediction of efficient ways of 

chemical synthesis in chemistry, identification of the genome for a psychiatric 

disorder in biology, and analysis of the mood of masses from social medias in 

psychology (see Science News Staff 2017). Moreover, there are attempts to make 

AI systems survey literature by applying text mining methods (see Stix 2005) as 

well as attempts to make AI-based robots run experiments (see King et al. 2004; 

King 2010). Thus, AI is becoming a standard tool in diverse areas of physical, 

biological, and social sciences. (Although AI is becoming also widely used in 

applied science areas such as medicine and pharmacy, I focus on its use in basic 

science areas in this article.) 

This trend of applying AI to science goes toward the automation of science. 

Researchers enthusiastic about AI aim to develop AI systems that automatically 

execute the whole tasks of scientific research (such as exploring the literature, 

designing and running experiments, interpreting data, writing and reviewing 

papers, and so on). One of the most remarkable achievements in this attempt was 

done by Robot Scientist “Adam,” which King’s research group developed (King 

et al. 2004; King et al. 2009; King 2010). Adam is a robot that generates 

hypotheses, derives their consequences, and tests them automatically by itself. By 

doing this, it discovered genes encoding an enzyme required for the growth of 

yeast in the area of functional genomics. Furthermore, as a future challenge, 

Hiroaki Kitano, the Director of Sony Computer Science Laboratories, has set a 

goal “to develop an AI system that can make major scientific discoveries in 

biomedical sciences and that is worthy of a Nobel Prize and far beyond” (Kitano 

2016b, p. 39). To denote this, a new mode of scientific research characterized by 

automation, some researchers use the term “AI-driven science.”1 

As matters now stand, AI systems are applied to science only to support 

                                                      
1 To my knowledge, the term “AI-driven science” was coined by Koichi Takahashi, a Japanese biologist 

working at the Institute of Physical and Chemical Research in Japan. 
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human researchers. Newspapers sometimes report that AI has discovered 

something, but this is not a precise description of the state of affairs. It is more 

accurate to say that humans have discovered something by using AI, since AI 

systems at present do not execute tasks with their own intentions: they are nothing 

but non-autonomous tools, as we will see in Section 2. However, there are some 

ambitious researchers who aim to develop truly autonomous AI systems for 

scientific research. For example, Kitano mentions “systems that acquire 

knowledge autonomously and make discoveries continuously” (Kitano 2016a, p. 

84, my translation) as the ultimate end of his challenge. Thus, AI-driven science 

is potentially a long range endeavor. 

 

1.2 Impacts of automating science and features of AI as a scientific technology 

 

Leaders of AI-driven science, such as King and Kitano, expect that the 

automation of science will bring enormous benefits. They typically mention two 

types of its merits: practical and intellectual. I will explain them in turn. 

As for the practical merits, King and his co-authors say, 

 

We consider this trend to increased automation of science to be both 

inevitable and desirable. It is inevitable because it will be required to deal 

with the challenges of science in the twenty-first century. It is also desirable 

because it frees scientists to make the high-level creative leaps at which 

they excel. (King et al. 2004, p. 251) 

 

One of what King et al. call “the challenges of science in the twenty-first century” 

above is the exponential increase in amount of data to be handled. Situations such 

as the rapid growth of gene databases and the emergence of petabyte-scale 

astronomical data through sky surveys make it impossible for researchers to 

analyze data by themselves. Given this, applying AI can be considered inevitable 

for science to progress further. Another practical merit King et al. mention, i.e., 

freeing scientists from non-creative tasks so that they can concentrate on creative 

ones, is also important, in particular under the present situation in which post-

doctoral researchers and graduate students, sometimes called “pipetting slaves,” 

devote long hours in the laboratory to dull and repetitive works such as cleaning 

pipettes. Furthermore, ambitious leaders of AI-driven science claim that the 

automation of science will dramatically increase research productivity, and 
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contribute to solving social problems. For example, Kitano mentions the practical 

merits of his challenge as follows: 

 

I anticipate that, in the near future, AI systems will make a succession of 

discoveries that have immediate medical implications, saving millions of 

lives, and totally changing the fate of the human race. (Kitano 2016b, p. 39) 

 

The other merits of automating science its proponents mention are intellectual: It 

sheds light on what science is (e.g., King 2010; Kitano 2016a). We can see this 

clearly by referring to what is called the “N = 1 problem” in biology. Biologists’ 

attempts to identify the essence of life are prevented by the fact that all the samples 

of life available to them belong to a single lineage of terrestrial lives. Even if 

biologists identify certain features of life common to all the available samples 

(such as being constituted by cells), they cannot tell whether they are essences of 

life or merely contingent features of terrestrial lives. Therefore, they put their hope 

in astrobiology and A-Life to obtain samples of other life forms. The same is true 

of science: The only sample of science available to us so far has been humanity’s 

science. This fact constitutes an obstacle to discriminate the essential features of 

science from its contingent ones resulting from constraints by human cognitive 

and other limitations. Therefore, it is helpful to develop AI capable of scientific 

research. If AI acquires the intelligence required for scientific research, it will 

probably develop sciences that are significantly different from humanity’s one. 

The emergence of these alien sciences will contribute to our understanding of 

what science is.  

Although I am somehow sceptic about optimistic discourses by leaders of AI-

driven science, I nevertheless agree with them on the prediction that it will 

radically change the overall state of science and technology. Underlying its 

potential power to cause such changes are some unique features of AI as a 

scientific technology. Of course, various technological devices, such as telescopes, 

microscopes, and computers, have been used in scientific research throughout the 

history of science. However, AI has some features that are not found in other 

scientific technologies. I will mention just two of these features. 

First, AI systems can be used to carry out research tasks automatically and 

make human intervention unnecessary. This is the very feature that underlies the 

practical merits of the automation of science, such as increase in the productivity 

of research and liberation of people from non-creative research tasks.  
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Second, AI systems may generate knowledge beyond human understanding. 

Since older devices presuppose manipulation by humans, they are designed so 

that their behaviors remain within the range of human understanding. In contrast, 

AI systems do not necessarily have this limitation. Indeed, they may even have 

the potential to bring forth kinds of “alien science,” a system of knowledge that 

understands the world in certain ways different from ours. Kevin Kelly, the 

founding editor of Wired magazine, makes this point by saying, 

 

AI could just as well stand for “alien intelligence.” (…) An AI will think 

about science like an alien, vastly different than any human scientist, 

thereby provoking us humans to think about science differently. (Kelly 

2016, p. 48). 

 

However, the automation of science may bring significant problems and 

undesirable effects as well as the benefits described above. As an example of these 

problems, it blurs who does the research at the price of making human intervention 

unnecessary. This will pose difficult problems concerning credit and 

responsibility for scientific research. As another example, researchers who use AI 

in their research face a “black box” problem: What they discover by using AI 

systems might go beyond their understanding. This can pose difficult questions as 

to whether such findings qualify as “knowledge” (or “scientific knowledge”) and 

how much epistemic value they have.  

Further discussion of these issues is beyond the scope of this article. Instead, 

I concentrate henceforth on the issues concerning creativity. 

 

2. The Possibility of Artificial Creativity 

 

Leaders of AI-driven science focus especially on scientific discovery. Since 

discovery is the process of yielding new knowledge, and since it is thought to be 

one of the most creative phases of scientific research, its automation will have 

great impacts both practically and intellectually. However, because scientific 

discovery requires creativity, it can be difficult for AI systems (and robots) to 

execute it automatically. This section examines whether AI can make creative 

discoveries, and, if possible, how they can be automated. 
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2.1 What is creativity? 

 

Let us clarify what “creativity” means by referring to Boden’s analysis of the 

concept. Boden (2004) defines creativity as the capacity to create ideas or artifacts 

that are new, surprising, and valuable.2  Although she defines it as a kind of 

capacity, activities of exercising it and products created by such activities can be 

called creative, too. Typically cited examples of such activities are artistic creation, 

technological invention, and scientific discovery. 

In addition to a definition, Boden proposes two taxonomies of creativity. The 

first distinguishes two sorts of creativity in terms of the kinds of “newness”: One 

is “psychological creativity,” which concerns a creative product that is new to the 

individual who produces it; and the other is “historical creativity,” which concerns 

a creative product that is new to humanity (or to a certain community). Of course, 

scientific creativity is classified as the latter. Hence, for scientific AI to be creative, 

it must avail itself of some method to generate ideas that go beyond past 

knowledge of the overall science community. 

Boden’s second taxonomy distinguishes the following three types of creativity 

in terms of the ways surprising ideas are generated: (1) “combinatorial creativity,” 

which is achieved by combining familiar ideas in some unfamiliar way; (2) 

“exploratory creativity,” which is achieved by exploring a “conceptual space” 

following some style; and (3) “transformational creativity,” which is achieved by 

transforming a pre-existing conceptual space. Here, Boden uses the term 

“conceptual space” to refer to a space that consists of all possible ideas about some 

topic. In the context of scientific discovery, all possible hypotheses to a question 

constitute the conceptual space concerning the question, for example. Section 2.3 

will examine approaches to artificial creativity by referring to these three kinds of 

creativity. 

 

2.2 Can artificial creativity be realized? 

 

There has been a lively debate concerning whether AI can be creative. A 

common argument against artificial creativity is called Lady Lovelace’s objection. 

                                                      
2 Though the condition of surprise is often dropped from the requirements for creativity in psychological 

literature, I think it captures an important aspect of creative activities such as scientific research. For 

example, Dyson says, “For science to be great it must involve surprises, it must bring discoveries of 

things nobody had expected or imagined.” (Dyson 1988, p. 165, emphasis added.) 
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It is so called since its most classical version is found in Ada Lovelace’s comment 

on Charles Babbage’s analytic engine. According to this objection, machines 

(such as computers and robots controlled by them) cannot be creative because 

they can do only what they are programed to do. If a machine creates something, 

the relevant creativity should be attributed to its programmer rather than the 

machine. 

However, also famous is Turing’s (1950) reply to this objection:  

 

This may be parried for a moment with the saw, “There is nothing new 

under the sun.” Who can be certain that “original work” that he has done 

was not simply the growth of the seed planted in him by teaching, or the 

effect of following well-known general principles. (p. 450) 

 

Here, Turing points out that even human creativity is not creation ex nihilo, and 

argues that being programmed is on a par with being taught or informed. The 

moral we can learn from his reply is that to think artificial creativity cannot be 

realized in principle might be tantamount to mystifying human creativity. 

Opponents of artificial creativity would not be convinced, yet. Rather, they 

might claim that Lady Lovelace’s objection can be refined by focusing on 

autonomy (see Boden 2014). The revised argument goes as follows: Machines 

cannot be creative, since creativity requires autonomy, and machines that can do 

only what they are programed to do necessarily lack it. In this context the term 

“autonomy” is used in the philosopher’s sense in which it denotes the ability to 

set one’s own goals freely (for example, choosing the tasks). It should be 

distinguished from mere “automaticity” (or “autonomy” in the roboticists’ sense), 

which denotes the ability to operate without being controlled by other agents. It 

is important to note here that agents can be automatic without being autonomous: 

There can be agents that execute tasks set by others without being controlled by 

others.  

The claim that creativity requires autonomy seems plausible to a certain 

degree (though not to the full extent, since we do not understand even how 

autonomy is realized in humans). More controversial is the claim that machines 

necessarily lack autonomy. To defend this claim, some theorists argue that 

autonomy requires life. However, life is a complex phenomenon that consists of 

many features of living systems (such as reproduction, metabolism, self-

organization, evolution, development, etc.), and it is not clear which feature is 
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relevant to autonomy and why it is relevant. Moreover, it is not obvious that AI 

systems necessarily lack the relevant feature: Studies in A-Life have shown that 

many interesting features of living systems can be realized by artificial systems. 

Anyway, it is without controversy that no AI systems applied to scientific research 

today lack autonomy, and there seems to be little prospect that truly autonomous 

AI scientists will appear in the near future. Thus, the revised version of Lady 

Lovelace’s objection seems reasonable for the time being.  

Nevertheless, we should be careful to identify what this consideration means. 

According to the idea, even when an AI system devoid of autonomy produces 

something comparable to products of human creative activities, it does not qualify 

as exercising true creativity: it turns out instead that the AI system only simulates 

creativity. This view, though, does not exclude the possibility that even such a 

non-creative AI system can exhibit as good performance as truly creative agents 

do. Moreover, at present, proponents of AI-driven science do not necessarily aim 

to develop truly autonomous, strong AI scientists, but rather to devise AI systems 

as mere useful tools for scientific research. So, if AI systems can perform research 

tasks as well as human researchers, it can be argued that whether they are truly 

creative or not in themselves is not important for the immediate goals of AI-driven 

science. Furthermore, regardless of whether such systems are deemed truly 

creative or not, we can still wonder how to develop such high-performance AI 

systems. Therefore, let us put aside the issue of artificial autonomy, and consider 

next how creative discoveries can be achieved through the use of AI. (Henceforth, 

for simplification, I use the term “creativity” to refer not only to the capacity 

exercised by truly autonomous agents, but also to the capacity exhibited by non-

autonomous systems that generate ideas in as high-performance as them.) 

 

2.3 How can artificial creativity be realized? 

 

In this section we examine three ways to achieve creative discoveries through 

the use of AI, which correspond to three kinds of creativity Boden identifies (i.e., 

explorative, transformative, and combinatory creativity). 

 

The combinatorial approach 

 

A major view of creative activity (including scientific discovery) states that it 

consists of an unfamiliar combination of familiar ideas. This view has been put 
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forth by various theorists (e.g., Poincaré 1908; Asimov 1959) and supported in 

the psychology of science (e.g., Simonton 2004). Let us call it the “combinatorial 

view.” In the domain of science, a famous example of discoveries accomplished 

in this manner is Darwin’s (and Wallace’s) discovery of evolution by natural 

selection. It is said that Darwin came to his theory of evolution by combining 

multiple ideas such as the idea of “overpopulation and weeding out” which he 

drew from Malthus, the idea of selective breeding of animals and plants, and the 

idea concerning how species diverge, which he confirmed during the voyage of 

the Beagle (see Asimov 1959; Bowler 1983). 

Can we develop AI systems that make creative discoveries by adopting the 

combinatorial view? Combination can be accomplished by AI and robots. 

However, as Boden (2004) states, most of the resulting products are not valuable. 

Therefore, a certain method of selecting valuable ideas is required. Taking this 

point into account, once Poincaré (1908) denied that machines can make 

mathematical discoveries, since the rules concerning selecting valuable ideas are 

too subtle for machines to apply. Though his argument seems to be question-

begging, it is persuasive that the combinatorial approach faces a dilemma: On the 

one hand, to conceive of a surprising idea, unexpectedness of the combination is 

important; on the other hand, as Boden (2016) suggests, some kind of relevance 

of combined ideas is important for conceiving of a valuable idea. Unexpected 

combinations of relevant ideas are rarely found. Especially, it seems quite difficult 

to conceive of combinations of relevant ideas each of which belongs to a different 

knowledge domain, as we find in Darwin’s theory of evolution. 

What capacities or mechanisms do the trick in the case of humans? An often-

cited candidate is analogy, or the kind of inference that derives knowledge of 

unfamiliar problems or situations from knowledge of familiar problems or 

situations. According to cognitive scientists Holyoak and Thagard (1995), it 

involves the mental act that associates knowledge of some familiar problem or 

situation (a “base”) and knowledge of unfamiliar one (a “target”), and finds out 

some structural similarity between them. Holyoak and Thagard also point out that 

analogy plays an important role as a “mental mechanism for combining and 

recombining ideas in novel ways” (ibid., p. 13) in creative thinking including 

scientific discovery, and they mention many examples to demonstrate it. For 

example, acts of analogy that find similarities between the struggle for life in 

humans and that in animals and plants and between selective breeding (artificial 

selection) and natural selection enabled Darwin to build his theory of evolution.  
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However, there is a finding suggesting that analogy plays only a limited role 

in scientific discovery. Psychologist Dunbar (1997) shows, on the basis of 

fieldwork in several labs, that analogy that associates pieces of knowledge from 

different science areas (to take an example from molecular biology, one that 

invokes knowledge of something other than organisms rather than knowledge of 

organs in the same organism or knowledge of different organisms) is rarely used 

in research practice, and that analogy is less frequently used for generation of 

hypotheses than for explanation. Given these points, it might be better to regard 

analogy as a means to understanding rather than to discovery.3 At any rate, it is 

sure that we do not have enough knowledge of the role analogy plays in scientific 

discovery or of the mechanisms underlying analogy. 

Another consideration is concerned with aesthetic judgement. Poincaré 

claimed that the selection of useful combinations of ideas is enabled by aesthetic 

sensitivity. Though he also argued that machines cannot make aesthetic judgement 

(and therefore he denied the possibility of artificial creativity), there is room for 

doubt in this regard. Thus, an interesting orientation of future research lies in 

examining how we could develop AI systems capable of making aesthetic 

judgement, as well as trying to understand the role of aesthetic judgement and the 

nature of aesthetic values in scientific discovery.  

 

The exploratory approach 

 

Another view of creativity, which is especially popular in cognitive science, 

states that scientific discovery consists in the exploration of possible ideas. Let us 

call this view the “exploratory view.” This view is a natural consequence of 

fundamental assumptions of cognitive science, namely, that scientific discovery 

is problem solving and that problem solving is searching the problem space (i.e., 

the space that consists of all possible solutions) for the solution by means of 

heuristics (see Simon 1996). For example, according to cognitive scientist Anzai 

(1985), there is evidence in the literature that Watson and Click’s discovery of the 

double helix structure of DNA and Faraday’s discovery of the law of induction 

were accomplished in this manner. 

Then, should we adopt the exploratory view to achieve creative discoveries 

by AI? Surely exploration can be accomplished by AI systems even much more 

                                                      
3  Actually, some complication must be added to this consideration, since it seems that we cannot 

discover what we cannot understand. I do not pursue this point further in the present article. 
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effectively than by humans. Nevertheless, there is a good reason to think that 

producing something merely by following a mechanical procedure of exploration 

does not qualify as a creative act. Philosopher Novitz (1999) shows this clearly 

by referring to the example of Goodyear’s invention of vulcanized rubber. To 

make rubber products heat- and cold-resistant, Goodyear had combined rubber 

with various substances at hand haphazardly, and it took many years to finally 

produce sulfur. Though no doubt Goodyear made an important discovery as a 

result of an admirable effort, it is difficult to say that his discovery is a creative 

one comparable to Newton’s and Darwin’s ones. 

For this reason, some theorists (e.g., Gaut 2003) claim that creativity requires 

a certain non-mechanical factor such as “flair.” However, such a claim does not 

qualify as satisfying unless what kinds of cognitive capacities and mechanisms 

constitute the “flair” is clarified. Moreover, proponents of the exploratory view 

would reply that, even given that the good-old fashioned “generation-test method” 

Goodyear adopted does not suffice to yield creative achievements, we can achieve 

them by adopting certain more sophisticated procedures. For example, Dawkins 

(1986) says, “Effective searching procedures become, when the search-space is 

sufficiently large, indistinguishable from true creativity” (p. 66). 

Nevertheless, it seems reasonable to suspect that a discovery accomplished by 

exploration is not deemed radically creative as long as it is made according to 

some pre-existing style. What matters is the nature of the surprise evoked. 

According to Boden (2004), any idea resulting from exploring a pre-existing 

conceptual space can be described and yielded by applying pre-existing 

generative rules. Though it sometimes causes a surprise that something 

unexpected happens, we can understand that it comes under familiar patterns once 

it happened. In contrast, radically creative ideas are ones that could not be yielded 

merely by applying pre-existing generative rules: They evoke huge surprises by 

making possible something that had not been thought to be possible. 

 

The transformational approach 

 

Then, how can such a radically creative discovery be achieved? Boden claims 

that transforming the conceptual space is a means to such achievement. 4 

                                                      
4 Novitz denies Boden’s identification of radical creativity with transformational creativity, arguing that 

radically creative ideas can be produced even when any relevant conceptual space does not exist. I 

concede that the transformational approach is not the only means to radical creativity. What matters for 
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Although the kinds of discoveries made in this manner are rare, Kepler’s 

discovery of his First Law is one example. The pre-modern astronomy Ptolemy 

established was governed by the thought that the orbits of planets are round. 

Kepler departed from this way of thinking after examining Tycho Brahe’s 

observation data concerning planetary orbits and found that planets orbit 

elliptically. As is well known, this discovery led to the scientific revolution in the 

17th century. 

The transformational approach seems to grasp better the creative character of 

creative discoveries than the exploratory approach does. Then, is it possible to 

allow AI to transform the conceptual space automatically? According to Boden 

(2004), transformation of a conceptual space can be achieved by deviating or 

modifying the constraints that shape it. For example, non-Euclidian geometrics 

was established by removing the fifth postulate (“parallel postulate”) of Euclidian 

geometrics. Once, as is in this case, we specify the constraints that shape a 

conceptual space, we might succeed in yielding transformation of the conceptual 

space automatically by formulating the task of deviation or modification of it as a 

search problem. This is an interesting possibility. However, there is a difficulty to 

the approach: Most scientific problems are ill-defined, and therefore it is hard in 

many cases to specify the constraints in any formal procedure. Philosophers of 

science Bechtel and Richardson (1993) point out this feature of scientific 

problems by saying, “the constraints defining an adequate solution are not sharply 

delineated, and even the structure of the problem space itself is unclear” (p. 15). 

Unless we can specify the constraints, we can neither deviate nor alter them. Of 

course, this difficulty also confronts human researchers attempting to make 

scientific discoveries. Indeed, it might be the very reason that discoveries depend 

heavily on accidents or serendipity. As long as AI does not overcome this 

difficulty, any attempt to automate the process of discovery will not achieve great 

success. 

 

As the discussion above demonstrates, all three approaches to scientific 

discovery by AI have some difficulty or uncertainty in the present situation and 

cannot be seen as a decisive way to make creative discoveries yet. 

 

                                                      

radical creativity is the effect that a novel style of thought and a novel conceptual space emerge, rather 

than the means to it. At the same time, I agree with Boden that the transformation of pre-existing 

conceptual space is, though not essential, an effective means to that effect. 
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2.4 Possibility of the brute force approach to artificial creativity 

 

In this subsection, let us examine a currently proposed approach to AI-driven 

scientific discovery. The approach in question is the one proposed by Kitano. He 

puts forward “a brute force approach in which AI systems generate and verify as 

many hypotheses as possible” (Kitano 2016b, p. 46). This can be regarded as an 

extreme version of the exploratory approach. As Kitano realizes, this approach 

differs substantially from ones in which human researchers achieve discoveries. 

He states that the current state of scientific discovery, which depends on unreliable 

intuition and serendipity, is at the level of “cottage industry” (ibid., p. 41). Thus, 

he declares, “AI scientific discovery systems have the potential to drive a new 

revolution that leads to new frontiers of civilization” (ibid., p. 48). 

Can Kitano’s brute force approach accomplish his purpose to bring about 

innovation in the mode of research? It may be possible, and his proposal surely is 

worth pursuing. However, when it comes to creativity, there is a worry, namely, 

that the science resulting from it does not seem to exhibit creativity. This is 

because, as Goodyear’s case suggests, a discovery accomplished by merely 

exploring some pre-existing conceptual space yields no huge surprise, no matter 

how exhaustive the exploration is. Proponents of the brute force approach would 

reply that, though the approach in question may not achieve something like human 

creativity, it will achieve a different kind of creativity. It is true that creativity can 

take other forms than ours; to think otherwise is to commit a sort of 

anthropocentric chauvinism. However, why would activities that are considered 

non-creative if they are carried out by humans be deemed creative when they are 

carried out by machines? If we are to reject anthropocentrism, we should think 

that whether activities are creative or not does not depend on who carries out them. 

This thought leads to exclusion of the brute force approach from the means to 

creative discovery. Moreover, if the brute force approach will nonetheless become 

prevalent, the value of science as a creative activity might be compromised. 

 

Let us summarize this section. While there is no sound ground for the claim 

that AI cannot make creative discoveries in principle, we do not have enough 

knowledge to automate such discoveries. Indeed, we do not fully understood how 

humans achieve them yet. Therefore, in order to develop AI systems that make 

them, we should accumulate empirical knowledge concerning human creativity at 

the first onset. If we avoid such a steady effort and harry to automate science in 
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ways that resort to brute force, it could lead to a state of affairs in which some 

non-creative mode of scientific research would prevail. 

There is no doubt that, as the use of AI becomes common in science, modes 

of scientific discovery will change. On this occasion, it seems fruitful, at least for 

the time being, to establish organizations in which AI systems and human 

researchers can cooperate in an appropriate way, rather than leaving the whole 

process of discovery to AI systems. As long as AI is introduced into science in 

such a manner, it will become a powerful tool for discovery due to its great 

capacity for exploration. 

 

3. The Implications of Automating Science 

 

In this section, let us consider what implications the AI-driven science may 

have on the scientific community and wider society. The automation of science 

will not only benefit scientists and other people, but also bring about undesirable 

effects. Although there are many kinds of worries (some of which I mentioned 

briefly in the end of Section 2.2), here I will examine just two of them: 

technological unemployment and undermining the value of science. 

One of the worries about the automation of science is the threat of 

technological unemployment. Will AI take human researchers’ jobs, as Chiang 

depicts? At present, many researchers would answer “no” to this question. For 

example, Frey and Osborne’s famous report “The Future of Employment” (2013) 

states that jobs requiring creativity (such as those of artists and scientists) cannot 

easily be automated. Indeed, as we saw in Section 1, leaders of AI-driven science 

(e.g., King et al. 2004) often claim that the automation of science will liberate 

researchers from dull tasks and enable them to concentrate on creative works. We 

have, though, some reasons to cast doubts on such optimistic expectations, as 

explained below. 

The prediction that truly creative AI will not appear seems plausible in the 

short term. However, this does not mean that human researchers’ position is 

secure. The reason is that the place of creative tasks in the whole system of science 

may not remain constant. Rather, even given that tasks requiring creativity are 

difficult to automate, the weight of these tasks in the whole scientific research 

might decrease. Norman (2007) makes this point with respect to the general 

context of the effect of automation:  
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In general, whenever any task is automated, the impact is felt far beyond 

the one task. Rather, the application of automation is a system issue, 

changing the way work is done, restructuring jobs, shifting the required 

tasks from one portion of the population to another, and, in many cases, 

eliminating the need for some functions and adding the need for others. (p. 

117) 

 

Norman’s general observation applies especially well to science. In contemporary 

society, scientific research is regarded as an important means of innovation and 

solution to social problems, and so a huge amount of public resources is spent on 

it. Therefore, if it turns out that AI-driven science is much more productive in 

generating useful knowledge and applications than traditional modes of research, 

it is possible that governments will spend resources on the former rather than the 

latter and, consequently, many researchers will lose their jobs. 

Also, the prediction that AI will liberate researchers seems too optimistic. It 

is often said that past attempts to automate labors have not liberated humans from 

unattractive works, but instead gave birth to populations engaged in mechanical 

and inhuman works. Norman says, “Even successful automation always comes at 

a price” (ibid.) and mentions drawbacks of automation such as the need for 

maintenance. To apply these general lessons, we should not expect that the 

automation of science will eliminate dull tasks in research. Indeed, the job of 

scientific researcher itself might be unattractive even if it would not be replaced. 

Another worry about the automation of science is concerned with its more far-

reaching effect: it may undermine a central value of science. Science constitutes 

an important part of human culture. However, the automation of science may 

undermine its cultural value by decreasing the room for human ingenuity in 

scientific research. To specify the threat concretely and to find a way to deal with 

it, it is useful to refer to discussions held in the past when new technologies were 

introduced into science. In this spirit, let us reflect on discourses made when “big 

science” emerged. 

Big science is a family of scientific programs that are funded large budgets, 

carried out by large teams of researchers, and exploit large devices (e.g., giant 

telescopes, spacecrafts, particle accelerators, nuclear fusion reactor, etc.). Starting 

with the Manhattan Project, they emerged during and after the Second World War. 

Since then they have caused controversies due to the impacts on science and 

society. For example, as we saw above, Dyson viewed human creativity as the 
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basis of a central value of science and claimed that large devices are not important 

for scientific research. Likewise, Weinberg, a nuclear physicist who coined the 

term “big science,” was worried about the consequences of big science’s growth 

(Weinberg 1961). One of his concerns was directed at scientists’ tendency of 

“spending money instead of thought” (ibid., p. 162), which, Weinberg states, may 

ruin science. These discourses suggest that scientific research has an aspect as a 

drama, protagonists of which are humans who try to understand the world by 

exercising their creativity. This is, however, the very aspect that the automation 

of science may endanger. 

Therefore, in introducing AI into science, we must specify its implications and 

devise some measures against its demerits beforehand. To set a guiding principle 

in this attempt, we should refer to Weinberg’s following comment: 

 

Big Science is an inevitable stage in the development of science and, for 

better or for worse, it is here to stay. What we must do is learn to live with 

Big Science. We must make Big Science flourish without, at the same time, 

allowing it to trample Little Science (ibid., p. 162).  

 

The first sentence of this passage corresponds to King’s diagnosis that science 

will inevitably be automated (see Section 2.2). Thus, punning on Weinberg’s 

passage, we should say, “What we must do is learn to live with AI-driven Science. 

We must make AI-driven Science flourish without, at the same time, allowing it 

to trample Humanity’s Science.” 

Thus, we must discuss potential demerits of automating science and measures 

against them so that we find desirable ways of introducing AI into science. Some 

of the matters on the agenda are concerned with science policy: for example, 

resource allocation between AI-driven science programs and traditional ones, 

measures to ensure employment of researchers, and so on. Some are concerned 

with science education, such as alteration of science curriculum in universities.5 

To address these issues, it is important to take opinions from various stakeholders 

such as researchers, practitioners of science policy, science education and science 

communication, and broader citizens. 

 

                                                      
5 The automation of science also raises issues concerning institutional systems of scientific research 

such as the authorship system and the referee system, although they are not discussed in the present 

article due to the limitation of space. 
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Conclusion 

 

This article examined the implications of the automation of science, focusing 

on creativity. My view is that, although the attempt to automate science faces 

difficult challenges in realizing artificial creativity, it nevertheless will have 

significant impacts, both desirable and undesirable, on science and society. 

In conclusion, I stress that the automation of science raises many issues that 

require transdisciplinary research and discussions. On the one hand, to address 

issues concerning its effect on science and society, it is essential to hold a 

discussion whose participants include not only AI researchers and scientific 

researchers who use AI systems, but also researchers and practitioners of science 

policy, science education, and science communication, as well as sociologists and 

philosophers of science. On the other hand, issues concerning the possibility of 

automating scientific discovery provide opportunities for reconsidering 

philosophical questions such as “What is scientific discovery” and “What kinds 

of values does science have?” from a new perspective. Although these topics are 

deeply philosophical, they also require contributions from researchers of 

empirical sciences such as cognitive scientists, psychologists, and sociologists. 

By coping with these issues in transdisciplinary collaboration, we will gain a 

better understanding of the nature and values of science, and this will be one of 

the most important benefits of AI-driven science. 
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