Package ‘bayesvl’

May 24, 2019

Type Package

Title Visually Learning the Graphical Structure of Bayesian Networks and Performing MCMC with ‘Stan’

Version 0.8.5

Date 2019-05-20

Author Viet-Phuong La [aut, cre], Quan-Hoang Vuong [aut]

Maintainer Viet-Phuong La <lvphuong@gmail.com>

Imports coda, bnlearn, ggplot2, bayesplot, viridis, reshape2, dplyr

Suggests loo (>= 2.0.0)

Depends R (>= 3.4.0), rstan (>= 2.10.0), StanHeaders (>= 2.18.0), stats, graphics, methods

Description Provides users with its associated functions for pedagogical purposes in visually learning Bayesian networks and Markov chain Monte Carlo (MCMC) computations. It enables users to: a) Create and examine the (starting) graphical structure of Bayesian networks; b) Create random Bayesian networks using a dataset with customized constraints; c) Generate ‘Stan’ code for structures of Bayesian networks for sampling the data and learning parameters; d) Plot the network graphs; e) Perform Markov chain Monte Carlo computations and produce graphs for posteriors checks. The package refers to one reference item, which describes the methods and algorithms: Vuong, Quan-Hoang and La, Viet-Phuong (2019) <doi:10.31219/osf.io/w5dx6> The ‘bayesvl’ R package. Open Science Framework (May 18).

License GPL (>= 3)

BugReports https://github.com/sshpa/bayesvl/issues

URL https://github.com/sshpa/bayesvl

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-24 13:40:06 UTC
bayesvl-package

R topics documented:

bayesvl-package ... 2
bayesvl bnlearn utilities .. 3
bayesvl graph utilities ... 4
bayesvl plot utilities .. 6
bayesvl stan utilities ... 9
bayesvl-class ... 11
Legends345 ... 12

Index 13

BayesVL package for Bayesian statistical analyses in R

Description

The R package for visually learning the graphical structures of Bayesian networks, and performing
Hamiltonian MCMC with Stan through bvl_model2Stan, bvl_modelfit

Details

Package: bayesvl
Type: Package
Version: 0.8.0
Date: 13 May 2019
License: GPL-3
Website: Bayesvl

Author(s)

Quan-Hoang Vuong, Viet-Phuong La

References

For documentation, case studies and worked examples, and other tutorial information visit the Ref-
erences section on our Github:

- github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf

See Also

bayesvl-class, bvl_modelfit, bvl_model2Stan
Examples

Design the model in directed acyclic graph
model <- bayesvl()

add observed data nodes to the model
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")

add path between nodes
model <- bvl_addArc(model, "B", "Lie", "slope")
model <- bvl_addArc(model, "C", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")

summary(model)

bayesvl bnlearn utilities
bnlearn interface for bayesvl objects

Description

Provides the interface to the functions in the bnlearn package for network diagnostics of an object of class bayesvl.

Usage

Interface to bn.fit function to fit the parameters of
a Bayesian network conditional on its structure.
bvl_bnBayes(dag, data = NULL, method = "bayes", iss = 10, ...)

Interface to bnlearn score function to compute the score of the Bayesian network.
bvl_bnScore(dag, data = NULL, ...)

Interface to arc.strength function to measure the strength of the probabilistic
relationships expressed by the arcs of a Bayesian network.
bvl_bnStrength(dag, data = NULL, criterion = "x2", ...)

Interface to bn.fit.barchart function to plot fit
the parameters of a Bayesian network conditional on its structure.
bvl_bnBarchart(dag, data = NULL, method = "bayes", iss = 10, ...)

bayesvl graph utilities

Arguments

- `dag`: an object of class bayesvl
- `data`: a data frame containing the variables in the model.
- `method`: a character string, either mle for Maximum Likelihood parameter estimation or bayes for Bayesian parameter estimation (currently implemented only for discrete data).
- `iss`: a numeric value, the imaginary sample size used by the bayes method to estimate the conditional probability tables associated with discrete nodes.
- `criterion`: a character string, the method using for measuring.
- `...`: extra arguments from the generic method.

Value

`bvl_bnscore()` return a number, value of score.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:

- github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf

bayesvl graph utilities

Utilities to manipulate graphs

Description

Manipulate directed acyclic graph of an object of class bayesvl.

Usage

added a new node to the graph.
bvl_addNode(dag, name, dist = "norm", priors = NULL, fun = NULL, out_type = NULL, lower = NULL, upper=NULL, test = NULL)

added a new path between nodes to the graph.
bvl_addArc(dag, from, to, type = "slope", priors = NULL, fun = NULL)

added a new path between nodes to the graph.
bvl_addArc(dag, from, to, type = "slope", priors = NULL, fun = NULL)
Arguments

- **dag**: an object of class `bayesvl`
- **name**: a character string, the name of a node.
- **dist**: a character string, distribution code of the node (norm, binom).
- **priors**: a vector of string, the priors of the node or path.
- **fun**: a character string, the transform function of the node.
- **out_type**: a character string, the variable data type (int, real, ...).
- **lower**: integer or real, the lower bound of variable data type (int or real).
- **upper**: integer or real, the upper bound of variable data type (int or real).
- **test**: a vector of testing values for variable.
- **from**: a character string, the name of node the path connect from.
- **to**: a character string, the name of node the path connect to.
- **type**: a character string, the path type between nodes (slope, varint, ...).

Value

`bvl_addnode()`, `bvl_addArc()` return object class `bayesvl`.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:

- github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf

Examples

dag = bayesvl()

add nodes to dag
dag = bvl_addNode(dag, "node1")
dag = bvl_addNode(dag, "node2")

add the path between two nodes
dag = bvl_addArc(dag, "node1", "node2")

summary(dag)
bayesvl plot utilities

Plot utilities for bayesvl objects

Description

Provides plot methods and the interface to the MCMC module in the bayesplot package for plotting MCMC draws and diagnostics for an object of class bayesvl.

Usage

Plot network diagram to visualize the model
bvl_bnPlot(dag, ...)

Plots histogram of regression parameters computed from posterior draws in grid layout
bvl_plotParams(dag, row = 2, col = 2, credMass = 0.89, params = NULL)

The interface to mcmc_intervals for plotting uncertainty intervals
computed from posterior draws
bvl_plotIntervals(dag, params = NULL, fun = "stat", stat = "mean",
 prob = 0.8, prob_outer = 0.95,
 color_scheme = "blue", labels = NULL)

The interface to mcmc_intervals for plotting density computed from posterior draws
bvl_plotAreas(dag, params = NULL, fun = "stat", stat = "mean",
 prob = 0.8, prob_outer = 0.95,
 color_scheme = "blue", labels = NULL)

bvl_plotPairs(dag, params = NULL, fun = "stat", stat = "mean",
 prob = 0.8, prob_outer = 0.95,
 color_scheme = "blue", labels = NULL)

bvl_plotDensity(dag, params = NULL, size = 1, labels = NULL)

bvl_plotDensity2d(dag, x, y, color = NULL, color_scheme = "red", labels = NULL)

bvl_plotTrace(dag, params = NULL)

bvl_plotDiag(dag)

bvl_plotGelman(dag, params = NULL)

bvl_plotGelmans(dag, params = NULL, row = 2, col = 2)

bvl_plotAcfs(dag, params = NULL, row = 2, col = 2)

bvl_plotTest(dag, y_name, test_name, n = 200, color_scheme = "blue")
Arguments

dag an object of class bayesvl
params Optional: character vector of parameter names.
fun Optional: statistic function.
stat Optional: the plotting function to call.
prob Optional: the probability mass to include in the inner interval. Default is 0.8.
prob_outer Optional: the probability mass to include in the outer interval. Default is 0.95.
row Optional: number of rows of grid layout.
col Optional: number of columns of grid layout.
credMass Optional: specifying the mass within the credible interval. Default is 0.89.
size Optional: the size of line width.
color_scheme Optional: color scheme. Default is "blue"
... extra arguments from the generic method
y_name a character string. Name of outcome variable
test_name a character string. Name of test variable and test value
n number of yrep values to plot
x a character string. Name of x parameter to pair with
y a character string. Name of y parameter to pair with
color a character string. Variable for color of points on density plot
labels Optional: character vector of parameter labels.

Value

bvl_plotIntervals(), bvl_plotPairs() return a ggplot object that can be further customized using the ggplot2 package.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:

* github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf
Examples

```r
## create network model
model <- bayesvl()
## add the observed data nodes
model <- bvl_addNode(model, "O", "binom")
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "Viol", "binom")
model <- bvl_addNode(model, "VB", "binom")
model <- bvl_addNode(model, "VC", "binom")
model <- bvl_addNode(model, "VT", "binom")
model <- bvl_addNode(model, "Int1", "binom")
model <- bvl_addNode(model, "Int2", "binom")

## add the transform data nodes and arcs as part of the model
model <- bvl_addNode(model, "B_and_Viol", "trans")
model <- bvl_addNode(model, "C_and_Viol", "trans")
model <- bvl_addNode(model, "T_and_Viol", "trans")
model <- bvl_addArc(model, "VB", "B_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "B_and_Viol", "*")
model <- bvl_addArc(model, "VC", "C_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "C_and_Viol", "*")
model <- bvl_addArc(model, "VT", "T_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "T_and_Viol", "*")
model <- bvl_addArc(model, "B_and_Viol", "0", "slope")
model <- bvl_addArc(model, "C_and_Viol", "0", "slope")
model <- bvl_addArc(model, "T_and_Viol", "0", "slope")

model <- bvl_addNode(model, "B_and_Lie", "trans")
model <- bvl_addNode(model, "C_and_Lie", "trans")
model <- bvl_addNode(model, "T_and_Lie", "trans")
model <- bvl_addArc(model, "VB", "B_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "B_and_Lie", "*")
model <- bvl_addArc(model, "VC", "C_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "C_and_Lie", "*")
model <- bvl_addArc(model, "VT", "T_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "T_and_Lie", "*")
model <- bvl_addArc(model, "B_and_Lie", "0", "slope")
model <- bvl_addArc(model, "C_and_Lie", "0", "slope")
model <- bvl_addArc(model, "T_and_Lie", "0", "slope")

model <- bvl_addArc(model, "Lie", "0", "slope")
model <- bvl_addNode(model, "Int1_or_Int2", "trans")
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "*")
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "*")
model <- bvl_addArc(model, "Int1_or_Int2", "0", "varint")

## Plot network diagram to visualize the model
```
bayesvl stan utilities

Build RStan models from directed acyclic graph

Description

Build Stan models from directed acyclic graph of an object of class bayesvl.

Usage

build Stan models from directed acyclic graph.
bvl_model2Stan(dag, ppc = "")

compile and simulate samples from the model.
bvl_modelFit(dag, data, warmup = 1000, iter = 5000, chains = 2, ppc = "", ...)

summarize the stan priors used for the model.
bvl_stanPriors(dag)

summarize the stan parameters used for the model.
bvl_stanParams(dag)

summarize the generated formula at the node.
bvl_formula(dag, nodeName, outcome = T, re = F)

Arguments

dag an object of class bayesvl
data a data frame or list containing the data
warmup Optional: Number of warmup iterations. By default, half of iter
iter Optional: Number of iterations of sampling. Default is 5000
chains Optional: Number of independent chains to sample from. Default is 2
ppc Optional: a character string contains posterior predictive check scripts
... extra arguments from the generic method
nodeName A character string contains the node name
outcome Optional: Whether show out distribution
re Optional: Whether run recursive for all up-level nodes
Value

`bvl_model2Stan()` return character string of rstan code generated from the model.

`bvl_modelFit()` return an object class `bayesvl` which contains result with the following slots.

```r
model  Stan model code
stanfit stanfit object returned by `stan`
standata The data
pars    Parameter names monitored in samples
formula Generated formula from the model
```

`bvl_stanPriors()` return character string of rstan priors generated from the model.

`bvl_stanParams()` return character string of rstan parameters generated from the model.

Author(s)

La Viet-Phuong, Vuong Quan-Hoang

References

For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:

- github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf

Examples

```r
# Design the model in directed acyclic graph
model <- bayesvl()
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")

model <- bvl_addArc(model, "B", "Lie", "slope")
model <- bvl_addArc(model, "C", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")

# Generate the Stan model's code
model_string <- bvl_model2Stan(model)
cat(model_string)

# Show priors in generated Stan model
bvl_stanPriors(model)
```
Class bayesvl: object class of bayesvl model

Description

This object contains an object of class bayesvl, return by bayesvl.

Slots

call: Original function call that produced the fit
nodes: The list of nodes in model
arcs: The list of arcs in model
pars: List of parameters
stanfit: Object of class stanfit
rawdata: Observed data frame
standata: Data used in sampling
posterior: Coerce to a Data Frame of object of class stanfit
elapsed: Elapsed time of MCMC simulation

Methods

show signature(object = "bayesvl"): print the default summary for the model.
summary Displays the model slot.

References

For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:

- github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf

See Also

bayesvl

Examples

Design the model in directed acyclic graph
model <- bayesvl()

add observed data nodes to the model
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")
add path between nodes
model <- bv1_addArc(model, "B", "Lie", "slope")
model <- bv1_addArc(model, "C", "Lie", "slope")
model <- bv1_addArc(model, "T", "Lie", "slope")

summary(model)

Legends345

Legends345 data

Description

Legends345.

Usage

```r
data(Legends345)
```

Format

1. O: Whether or not happy ending for main character
2. VB: Whether or not the main character behaves in accordance with the core values of Buddhism
3. VC: Whether or not the main character behaves in accordance with the core values of Confucianism
4. VT: Whether or not the main character behaves in accordance with the core values of Taoism
5. Lie: Whether or not the main character tells lie
6. Viol: Whether or not the main character commits acts of violence
7. Int1: Whether there are interventions from the supernatural world
8. Int2: Whether there are interventions from the human world

References

For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:

- github.com/sshpa/bayesvl/master/References/bvl_ug_en08.pdf

Examples

```r
data(Legends345)

data1 <- Legends345
head(data1)
```
Index

*Topic bayesvl
 bayesvl-package, 2
*Topic classes
 bayesvl-class, 11
*Topic directed acyclic graphs, bayesvl, bayesvl bnlearn
 bayesvl bnlearn utilities, 3
*Topic directed acyclic graphs, bayesvl, bayesvl plots
 bayesvl plot utilities, 6
*Topic directed acyclic graphs, bayesvl
 bayesvl graph utilities, 4
 bayesvl stan utilities, 9
*Topic legends
 Legends345, 12
*Topic package
 bayesvl-package, 2

bayesvl, //
bayesvl (bayesvl-package), 2
bayesvl bnlearn (bayesvl bnlearn utilities), 3
bayesvl bnlearn utilities, 3
bayesvl graph utilities, 4
bayesvl graphs (bayesvl graph utilities), 4
bayesvl plot utilities, 6
bayesvl plots (bayesvl plot utilities), 6
bayesvl stan (bayesvl stan utilities), 9
bayesvl stan utilities, 9
bayesvl-class, 11
bayesvl-package, 2
bvl_addArc (bayesvl graph utilities), 4
bvl_addArc, bayesvl-method
 (bayesvl-class), 11
bvl_addNode (bayesvl graph utilities), 4
bvl_addNode, bayesvl-method
 (bayesvl-class), 11
bvl_bnBarchart (bayesvl bnlearn utilities), 3
bvl_bnBarchart, bayesvl-method (bayesvl bnlearn utilities), 3
bvl_bnBayes (bayesvl bnlearn utilities), 3
bvl_bnBayes, bayesvl-method (bayesvl bnlearn utilities), 3
bvl_bnPlot (bayesvl plot utilities), 6
bvl_bnPlot, bayesvl-method (bayesvl bnlearn utilities), 3
bvl_bnScore (bayesvl bnlearn utilities), 3
bvl_bnScore, bayesvl-method (bayesvl bnlearn utilities), 3
bvl_bnStrength (bayesvl bnlearn utilities), 3
bvl_bnStrength, bayesvl-method (bayesvl bnlearn utilities), 3
bvl_formula (bayesvl stan utilities), 9
bvl_model2Stan, 2
bvl_model2Stan (bayesvl stan utilities), 9
bvl_modelFit, 2
bvl_modelFit (bayesvl stan utilities), 9
bvl_modelFit, bayesvl-method
 (bayesvl-class), 11
bvl_plotAcfs (bayesvl plot utilities), 6
bvl_plotAreas (bayesvl plot utilities), 6
bvl_plotDensity (bayesvl plot utilities), 6
bvl_plotDensity2d (bayesvl plot utilities), 6
bvl_plotDiag (bayesvl plot utilities), 6
bvl_plotGelman (bayesvl plot utilities), 6
bvl_plotGelmanS (bayesvl plot utilities), 6
bvl_plotIntervals (bayesvl plot utilities), 6
bvl_plotPairs (bayesvl plot utilities), 6
bvl_plotParams (bayesvl plot utilities), 6
bvl_plotTest (bayesvl plot utilities), 6
bvl_plotTrace (bayesvl plot utilities), 6
bvl_stanParams (bayesvl stan utilities), 9
bvl_stanParams, bayesvl-method (bayesvl-class), 11
bvl_stanPriors (bayesvl stan utilities), 9

Legends345, 12

show, bayesvl-method (bayesvl-class), 11
stan, 10
summary, bayesvl-method (bayesvl-class), 11
References

[3] Ho, M. T., Vuong, Q. H. (2019). The values and challenges of ‘openness’ in addressing the reproducibility crisis and regaining public trust in social sciences and humanities. European Science Editing, 45(1), 14-17, DOI: 10.20316/ESE.2019.45.17021.

