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Abstract

This paper investigates and develops generalizations of two-dimensional
modal logics to any finite dimension. These logics are natural extensions
of multidimensional systems known from the literature on logics for a
priori knowledge. We prove a completeness theorem for propositional
n-dimensional modal logics and show them to be decidable by means of
a systematic tableau construction.
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Introduction
Two-dimensional modal logics have been the object of increasing philosophical
interest given intuitive interpretations assigned to the modal operators. In
particular, that such logics provide us with a logical analysis of metaphysi-
cal necessity, actuality, and a priori knowledge is now an important facet of
prominent philosophical views in philosophy of language, epistemology, and
metaphysics. Logics developed with the purpose of shedding light on a priori
reasoning and its relation with the modal notions of necessity and actuality
arguably originated with Davies and Humberstone (1980), and have recently
been investigated by Restall (2012), Fritz (2013, 2014), Fusco (forthcoming),
and others. Furthermore, the semantic treatment of epistemic and indexi-
cal terms in the works of Evans (1979), Kaplan (1989), and Chalmers (2004,
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2014) make essential use of elements present in two-dimensional modal logics,
while Weatherson (2001) and Wehmeier (2013) adopt similar two-dimensional
semantics to provide formal treatments of both subjunctive and indicative
conditionals.

The goal of this paper is to generalize two-dimensional modal logics with
actuality operators to any finite dimension. To be more precise, the logics
investigated here are generalizations of the logic for epistemic two-dimensional
semantics studied by Fritz (2014) under the name 2Dg, which in a certain sense
is the same logic as those investigated proof-theoretically in Restall (2012) and
Lampert (2018)—although the logics in Lampert (2018) contain first-order
quantifiers. The formal language defined here contains several modal opera-
tors, one for each dimension, including indexed boxes, 2i, as well as actuality
operators, @i. As will be seen below, the resulting logics can be characterized
as logics of generalized diagonal sequences, and therefore as natural gener-
alizations of two-dimensional modal logics in which formulas in the scope of
certain operators are evaluated at the diagonal points of square models, that
is, models based on frames containing ordered pairs of worlds. Notwithstand-
ing the formal character and scope of this paper, whose principal concern is
with model- and proof-theoretic investigations of certain classes of frames and
models for modal logics, the development of n-dimensional modal logics is in
fact philosophically motivated and arises from considerations regarding the
expressive power of modal languages for necessity, actuality, and apriority. In
what follows we briefly describe some of these motivations as well as the plan
for the rest of the paper.

Background
Crossley and Humberstone (1977) introduced the actuality operator, @, to
remedy an expressive deficit in the first-order modal language,1 i.e. the lan-
guage of first-order logic augmented by the modal operators 2 and 3. What
they observed was that there is no formula in that language that expresses the
following truth condition:

(1) ∃w∀x(Rx-at-z → Sx-at-w),

where z is the “actual world” of the underlying frame.2 According to (1),
1See also Hazen (1976).
2It is common to notate the actual world as w∗ (see, for instance, Crossley and Humber-

stone (1977) and Davies and Humberstone (1980)), or even as @, if another symbol is used
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there is a world w such that every object that is R in the actual world z
is S in w. As Crossley and Humberstone (1977: 12) point out, there are
readings of English sentences with truth conditions corresponding to (1), such
as “It is possible for every red thing to be shiny”. But the most obvious
attempts to represent (1) in the object language all fail: 3∀x(Rx → Sx)
expresses the truth condition ∃w∀x(Rx-at-w → Sx-at-w), ∀x3(Rx → Sx) the
truth condition ∀x∃w(Rx-at-w → Sx-at-w) and, if we assume that truth in
a model is defined as real-world truth,3 i.e. truth at the actual world of the
model—in which case formulas are initially evaluated at z—∀x(Rx → 3Sx)
expresses the truth condition ∀x(Rx-at-z → ∃w(Sx-at-w)). None of these truth
conditions are equivalent to (1). Yet, in the presence of the actuality operator
(1) can be expressed by the formula 3∀x(@Rx → Sx). This is so because
the semantic evaluation clause for the actuality operator invariably takes back
the evaluation of a formula in its scope to the actual world of the frame. Let
M = (W, z,R,D, V ) be a model for the first-order modal language containing
@, where W is a set of possible worlds, z ∈ W , R ⊆ W ×W , D is a domain of
objects, and V is a valuation function defined as usual.4 For any formula ϕ,

M, w � @ϕ⇐⇒M, z � ϕ.5

So even if the formula @Rx occurs within the scope of 3, the semantic entry
for @ makes us consider the objects in the domain of the world introduced by
3 that are R in the actual world z, thereby, as it were, temporarily suspending
the scope of the 3 operator.

for the actuality operator (see, for instance, Wehmeier (2014)).
3This terminology comes from Crossley and Humberstone (1977: 15), where real-world

validity is defined as truth at the actual world of every model, and general validity as truth
at every world of every model. The distinction is not without a difference: the formula
@ϕ→ ϕ for example, being real-world but not generally valid. Since, however, there can be
worlds at which @ϕ → ϕ is false, real-world validity gives rise to contingent logical truths,
a point explored by Zalta (1988) in his defense of real-world validity over general validity
as the correct generalization of the Tarskian notion of logical truth for modal languages. A
reply to Zalta can be found in Hanson (2006), but we also direct the reader to Nelson and
Zalta (2012), French (2012), Hanson (2014), and Wehmeier (2014).

4We shall not be concerned with first-order models in this paper apart from this section.
For simplicity, though, one can just assume that the constant symbols in the first-order
modal languages mentioned here are interpreted rigidly, even though this undermines some-
what the purpose of extending two-dimensional modal languages with the first-order quan-
tifiers, where it is possible to distinguish, say, the metaphysical rigidity of proper names,
subsumed under the constant symbols of the language, from their epistemic non-rigidity.

5For simplicity, we leave the assignment function implicit here.
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There is, however, a subtle difference in the semantic clause for @ when we
move to a full-blooded two-dimensional modal logic.6 In this case, formulas are
evaluated against pairs of possible worlds, (w, v), where w is taken intuitively
as a counterfactual world and v as a world considered as actual (or an epistemic
scenario, such as in Fritz (2014)), and so the set of evaluation points W in
the frames can now be defined as the Cartesian product of some non-empty
underlying set of worlds, say, S. This means that rather than having a single
fixed actual world as a part of the frame, any world can be actual as long
as it occupies the second coordinate of the pair of worlds relative to which a
formula is evaluated. That is, to use a metaphor from Humberstone (2004:
26), we first dethrone the single actual world from the identity of the frames
or models, and formulate the semantic clause for @ as

M, (w, v) � @ϕ⇐⇒M, (v, v) � ϕ,7

where v can be any element of S. Then the truth conditions for 21ϕ, where 21

is now used for the metaphysical necessity operator, can be given with the aid
of its corresponding accessibility relation, R21 , which relates a pair (w, v) to
any pair (x, y) such that y = v. That is, the actual world is held fixed while the
counterfactual world varies. Additionally, two-dimensional modal languages
are equipped with a diagonal necessity operator, interpreted intuitively as an
apriority operator, which is sometimes taken as a primitive operator in the
language (Restall (2012), Fritz (2014), Lampert (2018)), or defined in terms
of other operators (Davies and Humberstone (1980)). Here we notate it as 22,
and its corresponding accessibility relation will be R22 , which in turn relates
a pair (w, v) to any pair (x, y) such that x = y. Intuitively, the semantic
entry for the apriority operator then says that a formula is true a priori if and
only if, no matter which world turns out to be actual, that formula remains
true in that world. The reason why we call this a diagonal operator is because
when models are defined with a domain of pairs of possible worlds the operator
22 projects precisely along the pairs consisting of identical coordinates. This
can be illustrated by distributing the pairs constructed out of possible worlds
w, v, u in a 2-D matrix, in which the X axis contains counterfactual worlds

6We distinguish the number of dimensions based on the evaluation points in the frames:
if formulas are evaluated against a possible world w, the semantics is one-dimensional. By
contrast, if formulas are evaluated against a pair (w, v) of possible worlds, we say that the
semantics is two-dimensional; similarly for triples (w, v, u), and so on.

7This can be compared with Davies and Humberstone (1980: 4), although they use a
different notation.
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and the Y axis worlds taken as actual. 22ϕ is then true if ϕ holds along the
diagonal points of the matrix, as seen in Figure 1 below.

w v u
w ϕ − −
v − ϕ −
u − − ϕ


Figure 1: 2-D matrix

It is possible to subsume the semantic clauses for 21 and 22 under a single
schema as follows. Let σ and τ be sequences (of length n) of possible worlds.
Then:

(GB) M, σ � 2iϕ⇐⇒ for every τ ∈ W , if σR2i
τ , then M, τ � ϕ,

where σR2i
τ if and only if the first i coordinates in τ are all identical and σ

and τ are identical beyond i, i.e. for all j > i, the jth coordinate of σ is the
same as the jth coordinate of τ .8 It is simple to check that (GB) delivers the
correct semantic entries for both 21- and 22-formulas. And since there is no
single distinguished point in the underlying frames anymore, we can add to
them a set D = {(z, z) | z ∈ S} of diagonal points, and define truth in a model
relative to the elements of D, in which case D is the set of distinguished points
of the underlying frame. This is by and large the approach used by Fritz (2014)
to define a class of what he calls matrix frames with distinguished elements for
the propositional two-dimensional language.

Of a first-order two-dimensional framework we may ask whether the fol-
lowing relative of the truth condition in (1) is expressible in it:

(1*) ∃(w, z)∀x(Rx-at-(z, z)→ Sx-at-(w, z)).

The answer is positive if @ is present in the language, for (1*) is expressed by
the formula 31∀x(@Rx → Sx). In fact, it would seem that standard proofs
for the analogous inexpressibility result in the one-dimensional setting would
transfer, more or less directly, to the two-dimensional setting if the latter did
not contain @ in the language. This can be done with Wehmeier’s (2003)
proof, for example, under the obvious generalization of the models for the

8Such sequences are defined more carefully in Definition 1.2.
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two-dimensional case. Now, assuming the availability of @, and given that 32

quantifies over diagonal pairs of worlds in W , it seems reasonable to expect
that the truth condition in (2) be expressible, too:

(2) ∃(w,w)∀x(Rx-at-(z, z)→ Sx-at-(w,w)).

But it is not obvious whether (2) can be expressed by a formula in this lan-
guage; the most obvious candidate, 32∀x(@Rx → Sx), expresses the truth
condition ∃(w,w)∀x(Rx-at-(w,w) → Sx-at-(w,w)). This is so because within
the scope of 32, @ is idle. Thus, the expressive deficit of the first-order (one-
dimensional) modal language that motivated the introduction of @ in the first
place seems to reoccur in the two-dimensional case: while @ is able to, as it
were, temporarily suspend the scope of 31, there is apparently no analogous
device in the two-dimensional language that has the same effect on the scope
of 32. Furthermore, there are readings of English sentences such as “It is not a
priori that not every red thing is shiny” whose truth conditions correspond to
(2). That is, besides the apparent inability to express truth conditions that,
on the face of it, should be expressible with the two-dimensional operators,
it does not seem to be possible to formalize relevant portions of the kind of
natural-language discourse targeted by two-dimensional semantics.

One way to fix this is to add a single distinguished point (pair of worlds)
back in the frames and a new operator, say, A, that forces formulas in its scope
to be evaluated at that distinguished point. In other words, A does just what
@ did in the one-dimensional case (before it was dethroned). If we let this
point be (z, z), the semantic clause for A will be:

M, (w, v) � Aϕ⇐⇒M, (z, z) � ϕ.

Now the truth condition (2) can be expressed by the formula32∀x(ARx→ Sx).
Alternatively, we can take a point z from the underlying set S as distinguished,
and instead of adding A to the language, add an operator D with the following
semantic clause:

M, (w, v) � Dϕ⇐⇒M, (w, z) � ϕ.

The truth condition (2) can then be expressed by the formula 32∀x(D@Rx→
Sx), and A can be simulated in this language by the compound operator D@.

Yet another option in a similar spirit is to dethrone the single distinguished
element of S and thereby move to three-dimensional frames, just as the original
actual world was dethroned in the introduction of two-dimensional frames.
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In this setting, formulas are evaluated relative to triples of worlds, that is,
W = S3, and a set of distinguished elements is defined in the frames as D =
{(z, z, z) | z ∈ S}. In this new language we can have three 2i operators whose
semantic entries can be fully specified by the (GB) clause above, this time
for i ∈ {1, 2, 3}. Accordingly, 21ϕ is true at a triple (w, v, u) if and only if
ϕ is true at any R21-related triple (x, y, z), where y = v and z = u; 22ϕ
is true at a triple (w, v, u) if and only if ϕ is true at any R22-related triple
(x, y, z), where x = y and z = u (i.e. at any triple (x, x, u)); and, finally,
23ϕ is true at a triple (w, v, u) if and only if ϕ is true at any R23-related
triple (x, y, z), where x = y = z (i.e. at any triple (x, x, x)). Now, just as
Fritz (2014) adds an accessibility relation for the actuality operator in the
two-dimensional frames,9 we can relabel the actuality operator @ as @2, add
a new actuality operator, @3, to the language, and accessibility relations to
describe their semantic clauses schematically as follows:

(GA) M, σ � @iϕ⇐⇒ for every τ ∈ W , if σR@i
τ , then M, τ � ϕ,

where σR@i
τ if and only if the first i coordinates in τ are all identical and

σ and τ are identical beyond i − 1. Thus, according to (GA), @2ϕ is true
at a triple (w, v, u) if and only if ϕ is true at any R@2-related triple (x, y, z),
where x = y = v and z = u (i.e. at the triple (v, v, u)); and @3ϕ is true
at a triple (w, v, u) if and only if ϕ is true at any R@3-related triple (x, y, z),
where x = y = z = u (i.e. at the triple (u, u, u)). Additionally, (GA) gives us
an @1 operator which turns out to be redundant, for @1ϕ is true at a triple
(w, v, u) if and only if ϕ is true at anyR@1-related triple (x, y, z), where x = w,
y = v, and z = u (i.e. at the triple (w, v, u) itself). If we now adapt the truth
condition (2) to the three-dimensional environment we obtain

(2*) ∃(w,w, z)∀x(Rx-at-(z, z, z)→ Sx-at-(w,w, z)),

which is expressible by the formula 32∀x(@3Rx→ Sx).
What motivated the introduction of the original actuality operator, and the

subsequent move to two dimensions, is really the same thing that motivates the
introduction of the new actuality operator into the two-dimensional language,
and the subsequent move to three dimensions. And even though it is not
obvious what natural language correspondents for operators such as 23 and @3

9There are many advantages in doing this, also illustrated by the fact that the axioms
involving actuality operators can then be defined as Sahlqvist formulas, and so the Sahlqvist
completeness theorem can be applied (see §1.3).
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might be, it is clear that the original expressive deficit in the first-order modal
language, which reoccurred in the two-dimensional case, seems to appear once
again in the three-dimensional setting since @3 does not seem able to reset the
point of evaluation within the scope of 33. That is to say, the following truth
condition is apparently not expressible by any formula in the three-dimensional
language under consideration:

(3) ∃(w,w,w)∀x(Rx-at-(z, z, z)→ Sx-at-(w,w,w)).

The most obvious candidate, 33∀x(@3Rx→ Sx), is unsuccessful for the same
reason 32∀x(@Rx→ Sx) fails to express the truth condition in (2).

It is now evident that analogous cases of expressive deficit will seem to occur
for any finite dimension n. To be more specific, where n ≥ 2, a first-order n-
dimensional language contains operators 2i and @i for each i ∈ {1, ..., n},
and a frame for this language is defined by a set W = Sn, where S is a
non-empty set of worlds, relations R2i

and R@i
for each i ∈ {1, ..., n}, a set

D = {s | s ∈ S} of distinguished points, where s is that sequence σ ∈ W
for which σi = s ∈ S for all 1 ≤ i ≤ n, besides a domain of objects D. The
truth conditions for 2i- and @i-formulas are set by (GB) and (GA). Then,
where σ = s and τ = t, the following truth condition would not seem to be
expressible by any formula in the n-dimensional language:

(n) ∃σ∀x(Rx-at-τ → Sx-at-σ).

In Lampert (2018), some of the philosophical ramifications of this general
case for two-dimensional semantics were explored. In particular, the move
from two to three-dimensions was motivated by the fact that some of the other
solutions to the expressive deficit of the first-order two-dimensional language—
namely, the ones involving the addition of the operators A or D—would result
in the frames validating Aϕ → 22Aϕ or D@ϕ → 22D@ϕ, respectively. But
according to the intuitive interpretation we assign to these operators, such
formulas should not be valid: if ϕ is true in the real actual world, it does not
follow intuitively that it is a priori that it is true in that world. However, a
similar issue ultimately arises in the three-dimensional language, as @3ϕ →
22@3ϕ, too, would be valid in its respective class of frames.

In this paper, however, we will not be concerned with philosophical impli-
cations of employing multidimensional frameworks to model a priori knowledge
of finite or ideal agents. Rather, we shall focus on the logical generalization
to higher-dimensions of logics for necessity, actuality, and a priori knowledge,
which do raise a variety of questions from a purely logical point of view. The
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n-dimensional frames with distinguished elements defined earlier are natural
generalizations of the two-dimensional matrix frames with distinguished ele-
ments defined in Fritz (2014). Fritz proves that such frames, which he defines
for a propositional two-dimensional language, admit of a finite axiomatization
through a more general class of matrix frames, which do not contain distin-
guished elements. Fritz calls the logic of such frames 2Dg. It is natural to ask,
in light of the constructions above, whether 2Dg is a special case of a more gen-
eral framework, and whether similar results transfer to n-dimensional frames
defined for n-dimensional propositional languages.10 Are these frames finitely
axiomatizable? Are the logics decidable? We settle these and more questions
in the course of this paper. In §1 we work towards proving a completeness the-
orem for the logic of n-dimensions relative to n-dimensional frames without
distinguished elements, and then we use this result to show that n-dimensional
frames with distinguished elements are also complete. In §2 we prove that the
resulting logics are decidable by means of n-dimensional tableaux and a sys-
tematic procedure guaranteeing termination for every tableau so constructed.
At the end of the paper we suggest some additional questions to be investigated
in future work.

1 The logic of sequence frames

1.1 Syntax and semantics

Definition 1.1 (Multidimensional language) Let PROP be a denumerable set
of propositional variables p, q, .... The language L@

n is recursively generated by
the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2iϕ | @iϕ

for all 1 ≤ i ≤ n, where n ≥ 2. The other Boolean connectives are defined as
usual, and 3iϕ := ¬2i¬ϕ. Finally, let O ∈ {2,@}.
Definition 1.2 (Sequences) Let S be a non-empty set and W = Sn, i.e. W is
the n-fold Cartesian product of S, so thatW contains sequences σ = (s1, ..., sn)
of elements s1, ..., sn ∈ S. When σ = (s1, ..., sn), we write σi for si. For s ∈ S,
s is that sequence σ for which σi = s for all 1 ≤ i ≤ n. Moreover, we say that

10It is reasonable to investigate the propositional languages first, especially because the
whole technology consisting of finitely many 2i and @i operators is already present at the
propositional level.
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a tuple σ is i-diagonal just in case σ1 = σ2 = ... = σi, and for any sequence
σ ∈ W , let σiz be that sequence τ for which τ1 = τ2 = ... = τi = z and for j > i,
τj = σj, so that σiz is always i -diagonal. We say that σ and τ are identical
beyond i if for all j > i, σj = τj.11

Now we define sequence frames for n-dimensional modal logics. The num-
ber of dimensions dictates the length of the sequences in the frame, which can
be thought of as sequences of possible worlds. Strictly speaking, all that is
needed to fully specify the desired frames are pairs (S, n), where S is a non-
empty set. Yet, it will be helpful to add the relations R2i

and R@i
to the

official definition of the frames, as these play an essential role in the Sahlqvist
completeness theorem proved in §1.3, besides making several definitions easier
to articulate. Thus the official definition of n-dimensional sequence frames is
the following:
Definition 1.3 (n-dimensional sequence frame) Let n ≥ 2. An n-dimensional
sequence frame for L@

n is a triple, F = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n), such that
W = Sn for some non-empty set S, R2i

⊆ W ×W and R@i
⊆ W ×W for all

1 ≤ i ≤ n, such that for any sequences σ, τ ∈ W ,

• σR2i
τ iff (i) τ is i-diagonal, and (ii) σ and τ are identical beyond i.

• σR@i
τ iff (i) τ is i-diagonal, and (ii) σ and τ are identical beyond i− 1.

Additionally, let F be the class of n-dimensional sequence frames.
To make the behaviour of each accessibility relation more explicit, we reg-

ister the main characteristic properties that hold in every n-dimensional se-
quence frame. We begin with the properties involving only the R2i

relations,
moving in turn to the properties involving only the R@i

relations, and then to
the properties involving both families of relations. The proofs of these facts
are straightforward, and so we omit them.
Proposition 1.1 Let 1 ≤ j ≤ i ≤ n and F = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) be

an n-dimensional sequence frame. Then:

(1) R21 is an equivalence relation.

(2) R2i
is serial, i.e. for all sequences σ there is a τ such that σR2i

τ .
11To illustrate some of the items defined above, in the case of basic modal logic σ is always

a one-place sequence, while in a two-dimensional modal logic σ is an ordered pair. Also, if,
for example, σ = (x, u, z, w), then σ3

u = (u, u, u, w).
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(3) (Upward transitivity) If σR2j
τ and τR2i

υ, then σR2i
υ.

(4) (Upward Euclideanity) If σR2j
τ and σR2i

υ, then τR2i
υ.

(5) (Downward weak density) If σR2i
τ , there is a υ such that σR2j

υ and
υR2i

τ .

(6) (Downward shift reflexivity) If σR2i
τ , then τR2j

τ .

(7) (Strictly decreasing weak density) When 1 < i ≤ n, if σR2i−1
τ , there is a

υ such that σR2i
υ and υR2i−1

τ .

σ

τ υ

R2j

R2i

R2i

σ

τ

υ

R2j

R2i

R2i

σ

τ

υ

R2i

R2i

R2j σ

τ

R2i

R2j

σ

τ

υ

R2i−1

R2i−1

R2i

Figure 2: Upward transitivity, upward Euclideanity, downward weak density,
downward shift reflexivity, and strictly decreasing weak density properties.

Proposition 1.2 Let 1 ≤ i ≤ n and F = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n) be an
n-dimensional sequence frame. Then:

(1) R@1 is reflexive.

(2) R@i
is serial.

(3) R@i
is functional, i.e. if σR@i

τ and σR@i
υ, then τ = υ.

(4) (Upward-downward transitivity) When 1 < i ≤ n, if σR@i
τ and τR@i−1

υ,
then σR@i

υ.
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σ

τ υ

R@i

R@i−1

R@i

Figure 3: Upward-downward transitivity.

Remark 1.1 By Proposition 1.2(3), it follows that each R@i
is a function.

Additionally, because R@1 is reflexive, R@1 is the identity function on the
frame.
Proposition 1.3 Let 1 ≤ j < i ≤ n and F = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) be

an n-dimensional sequence frame. Then:

(1) (Strictly decreasing act-box) When 1 < i ≤ n, if σR@i
τ , then σR2i−1

τ .

(2) (Act-box) If σR@i
τ , then σR2i

τ .

(3) (Mixed upward transitivity) If σR2j
τ and τR@i

υ, then σR@i
υ.

(4) (Mixed shift reflexivity) If σR2i
τ , then τR@i

τ .

σ

τ

R@i
R2i−1

σ

τ

R@i R2i

σ

τ υ

R2j

R@i

R@i

σ

τ

R2i

R@i

Figure 4: Strictly decreasing act-box, act-box, mixed upward transitivity, and
mixed shift reflexivity properties.

Note that downward shift reflexivity now follows immediately from mixed
shift reflexivity together with act-box and strictly decreasing act-box. Simi-
larly, the properties (5) and (7) in Proposition 1.1 are provable from the other
properties involving the R@i

relations. With respect to (3) and (4), that is,
upward transitivity and upward Euclideanity, they can also be derived from
the other properties alongside (simple) transitivity and the Euclidean prop-
erty. Thus, in order to characterize sequence frames syntactically we only need
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to add the modal axioms for transitivity and the Euclidean property along-
side the other axioms listed below. Moreover, from the properties listed in
Proposition 1.1 one can show that sequence frames have the property of left
commutativity as well as the Church-Rosser property, that is:
Corollary 1.1 Let 1 ≤ j ≤ i ≤ n, and F = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) be an

n-dimensional sequence frame. Then:

(1) (Left commutativity) If σR2j
τ and τR2i

υ, then there is a σ′ such that
σR2i

σ′ and σ′R2j
υ.

(2) (Church-Rosser) If σR2j
τ and σR2i

υ, then there is a σ′ such that τR2i
σ′

and υR2j
σ′.

Proof. (1). If σR2j
τ and τR2i

υ, it follows that σR2i
υ, by upward transitivity.

But then υR2j
υ, by downward shift reflexivity. Therefore, there is a sequence

σ′, namely, υ itself, such that σR2i
σ′ and σ′R2j

υ.
(2). If σR2j

τ and σR2i
υ, then τR2i

υ, by the upward Euclidean property.
But then υR2j

υ, by downward shift reflexivity. Therefore, there is a sequence
σ′, namely, υ itself, such that τR2i

σ′ and υR2j
σ′.

σ

τ υ

σ′

R2j

R2i

R2i

R2j

σ

τ σ′

υ

R2j

R2i

R2i

R2j

Figure 5: Left commutativity and Church-Rosser properties.

These properties are known for playing an important role in characterizing
product frames for product logics (see Gabbay et al (2003: 222)). Note, how-
ever, that the property of right commutativity, which holds in product frames,
does not hold in general for n-dimensional sequence frames.12 Consider, for
instance, the two-dimensional sequence frame F = (W,R21 ,R22 ,R@1 ,R@2)
displayed in Figure 6, where W = S2 and S = {w, v}. Then each of the
properties listed in Proposition 1.1, 1.2, and 1.3 hold in that frame, but while
(v, w)R22(v, v) and (v, v)R21(w, v), there is no pair σ′ such that (v, w)R21σ

′

and σ′R22(w, v).
12Right commutativity in our framework corresponds to the property that for all σ, τ, υ,

if σR2iτ and τR2jυ, then there is a σ′ such that σR2jσ
′ and σ′R2iυ, for 1 ≤ j ≤ i ≤ n.
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(w,w)(v,w)

(v, v) (w, v)

F

R21

R22

R22 R22
R22

R21

R22

R21,2

R21

R21,2

R21

Figure 6: Two-dimensional sequence frame displaying only the R2i
relations

falsifying right commutativity.

Even though no accessibility relation except for R21 is in general reflexive
or symmetric, there is at least a weak sense in which n-dimensional sequence
frames can be seen as generalizations to n dimensions of S5-frames, a sense
that emerges when we restrict attention to the relations between sequences
that are i-diagonal for some i. Consider the following definition:
Definition 1.4 Let S be non-empty and W = Sn as before. R2i

is pseudo-
reflexive if it is reflexive on W i; it is pseudo-symmetric if for all σ, τ ∈ W i,
σR2i

τ implies τR2i
σ; it is pseudo-transitive if for all σ, τ, υ ∈ W i, σR2i

τ and
τR2i

υ implies σR2i
υ; and pseudo-Euclidean if for all σ, τ, υ ∈ W i, σR2i

τ and
σR2i

υ implies τR2i
υ. Finally, R2i

is a pseudo-equivalence relation if it is
pseudo-reflexive and pseudo-Euclidean.

Note that if n = 1 (and the language is one-dimensional), the pseudo no-
tions coincide with the original notions, so they are legitimate generalizations
of the latter. Now it can be shown that every n-dimensional sequence frame
contains a subframe on which every relation R2i

is an equivalence relation:
Proposition 1.4 Let F = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) be an n-dimensional

sequence frame. For each 1 ≤ i ≤ n, R2i
is an equivalence relation on W i. In

other words, for each 1 ≤ i ≤ n, R2i
is a pseudo-equivalence relation on W .

Proof. Obviously, R2i
is pseudo-reflexive, since any member of W i is i-

diagonal and identical with itself beyond i. Moreover, it is easy to see that
R2i

is pseudo-Euclidean, for if σR2i
τ and σR2i

υ, then σ, τ , and υ are all
identical beyond i, so that τR2i

υ as long as υ ∈ W i.

14



In addition, observe that any n-dimensional sequence frame has a certain
kind of universality property governing its last accessibility relation, R2n , in
the sense that every point inW is R2n-related to every n-diagonal point. This
property, which we may call shift universality, plays an important role in the
completeness theorem below, for we use the fact that if a point is n-diagonal,
then it isR2n-accessible to any point in the frame. Yet, shift universality is not
modally definable. To verify this, let F1 = (W1,R1) be a usual Kripke frame
with points w, u, v such that R1 = {(w, v), (v, v), (u, v)}, and F2 = (W2,R2) a
frame with points a, b, c such that R2 = {(a, b), (b, b), (c, b)}. Then the first-
order formula expressing shift universality, that is, ∀x∃y(yRx → ∀z zRx), is
valid in both F1 and F2, but not in their disjoint union, as illustrated in Figure
7. Therefore, by the Goldblatt-Thomason theorem—which states that a first-
order definable class of frames is modally definable if and only if it is closed
under taking disjoint unions, generated subframes, bounded morphic images,
and reflects ultrafilter extensions—shift universality is not modally definable.13

w v u

F1

a b c

F2

w v u

a b c

⊎
i∈{1,2} Fi

Figure 7: Non-definability of shift universality.

Next we define concepts such as models based on n-dimensional sequence
frames, truth of a formula at a sequence in a model, as well as the core logical
notions of validity and consequence.

13The Goldblatt-Thomason theorem is proved in Blackburn et al. (2001: 180-183), §3.8,
Theorem 3.19. The reader can also find definitions for the notions of disjoint unions, gen-
erated subframes, bounded morphic images, and ultrafilter extensions in Blackburn et al.
(2001), §3.3. The notions of generated subframes and bounded morphic images will be used
later in the proof of Lemma 1.5.
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Definition 1.5 (n-dimensional sequence models) An n-dimensional sequence
model is a quadruple, M = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n, V ), where V is a func-

tion assigning to each p ∈ PROP a subset V (p) ⊆ W . We say that M is based
on an n-dimensional sequence frame, F = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n).

Definition 1.6 (Truth) We define ‘ϕ is true at σ in a model M’, written
M, σ � ϕ, by recursion on ϕ. For a sequence σ ∈ W , and a valuation V in M,

M, σ � p ⇐⇒ σ ∈ V (p)

M, σ � ¬ϕ ⇐⇒ M, σ 2 ϕ
M, σ � (ϕ ∧ ψ) ⇐⇒ M, σ � ϕ and M, σ � ψ

M, σ � 2iϕ ⇐⇒ for every τ ∈ W , if σR2i
τ , then M, τ � ϕ

M, σ � @iϕ ⇐⇒ for every τ ∈ W , if σR@i
τ , then M, τ � ϕ

Definition 1.7 (Logical notions) A sentence ϕ is satisfiable in a model M iff
there is a sequence σ inM such thatM, σ � ϕ, and satisfiable in a frame F iff it
is satisfiable in a model based on F. A sentence ϕ is valid in an n-dimensional
sequence model M, written M � ϕ, iff M, σ � ϕ for every σ ∈ W . A sentence
ϕ is valid at a point σ in a frame F, written F, σ � ϕ, iff ϕ is true at σ in
every model M based on F, and ϕ is valid in a frame F, written F � ϕ, iff it is
valid at every point in F. A sentence ϕ is valid on a class of frames C, written
C � ϕ, iff ϕ is valid in every F ∈ C. A sentence ϕ is a logical consequence of a
set of sentences Γ over a class of frames C if and only if for every M in C and
sequence σ in M, if M, σ � γ for all γ ∈ Γ, then M, σ � ϕ.

1.2 Axiomatization

In this section we axiomatize n-dimensional sequence frames. The logic of
n-dimensional sequence frames is called S@n:
Definition 1.8 (The logic S@n) Let 1 ≤ i ≤ n, where n ≥ 2. S@n is the

16



classical normal modal logic defined by the following axioms:

(T21) 21p→ p.

(42i
) 2ip→ 2i2ip.

(52i
) 3ip→ 2i3ip.

(T@1) @1p→ p.

(D@i
) @ip→ ¬@i¬p.

(F@i
) ¬@i¬p→ @ip.

(Ai) 2i−1p→ @ip, for 1 < i ≤ n.

(ATi) 2ip→ @ip.

(A4i) @ip→ 2j@ip, for 1 ≤ j < i ≤ n.

(ARi) 2i(@ip→ p).

Where `n denotes the provability relation in S@n, Γ `n ϕ if and only if there
are formulas ψ1, ..., ψn in Γ such that `n ψ1 ∧ ... ∧ ψn → ϕ.

As derived rules we can also add the rule of regularity and the rule of
congruentiality, similarly to the basic modal case:

(RR) If `n p→ q, then `n 2ip→ 2iq.

(RC) If `n p↔ q, then `n 2ip↔ 2iq.

Moreover, left commutativity 2i2jp → 2j2ip and the Church-Rosser axiom
3j2ip→ 2i3jp are both derivable from the axioms above.

With the exception of T@1 , and by setting n = 2, the axioms above are
just the ones found in Fritz (2014: 391), for the logic 2Dg. Note that by
setting n = 2 there are two box-like operators in the language, namely, 21,
corresponding to the (metaphysical) necessity operator 2 in 2Dg, and the
final box-like operator 22, corresponding to the a priori operator A in 2Dg.
The reason why T@1 is not found in 2Dg is because its language has a single
actuality operator which, provided n = 2, corresponds to @2 in L@

2 . Having
a single actuality operator in the language is, after all, expected since 2Dg is
designed to be a logic of necessity, actuality, and the a priori, and hence @2 is
just the traditional actuality operator found in other two-dimensional modal
logics, such as Davies and Humberstone’s (1980) logic for deep necessity, for
example. As mentioned before, we have added @1 to the language for the sake
of generality, so that there are n boxes and actuality operators. Nevertheless, it
is now easy to see that p→ @1p is derivable from the axioms above, and hence
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p ↔ @1p is also derivable, by T@1 , which in turn means that @1 is directly
eliminable from the language L@

2 (in fact, L@
n ) without loss of expressive power.

Therefore, by discounting the @1 operator, S@n is a generalization of 2Dg to
n dimensions with many actuality operators.

1.3 Completeness

The axioms listed above are all Sahlqvist formulas, and hence we can compute
their locally corresponding frame conditions by the general Sahlqvist algorithm
for converting modal formulas into first-order formulas (see Blackburn et al.
(2001, chapter 3.6) for a general description), from which it follows that S@n

is strongly complete with respect to the class of frames it defines.
Informally, we say that a class of frames C is defined by a set of formulas

Γ (respectively, formula ϕ) if for every frame F, F ∈ C just in case F � Γ
(respectively, F � ϕ). Additionally, let ψ(x) be a formula of first-order logic
where x is the only free variable in ψ. Then ψ(x) locally corresponds to a
modal formula ϕ if ψ(x) expresses a condition satisfiable on a point w in a
first-order structure F just in case ϕ is valid at w in F, where F is taken as
a Kripke frame. That is, for any frame F and point w in F, F, w � ϕ just in
case F, α[x/w] � ψ, where α[x/w] is the assignment function that sends x to
w. Then the following first-order formulas locally correspond to the axioms of
S@n:

T21 21p→ p wR21w

42i
2ip→ 2i2ip ∀vz((wR2i

v ∧ vR2i
z)→ wR2i

z)

52i
3ip→ 2i3ip ∀vz((wR2i

v ∧ wR2i
z)→ vR2i

z)

T@1 @1p→ p wR@1w

D@i
@ip→ ¬@i¬p ∃v(wR@i

v)

F@i
¬@i¬p→ @ip ∀vz((wR@i

v ∧ wR@i
z)→ v = z)

Ai 2i−1p→ @ip ∀v(wR@i
v → wR2i−1

v), for 1 < i ≤ n

ATi 2ip→ @ip ∀v(wR@i
v → wR2i

v)

A4i @ip→ 2j@ip ∀vz((wR2j
v ∧ vR@i

z)→ wR@i
z), for 1 ≤ j < i ≤ n

ARi 2i(@ip→ p) ∀v(wR2i
v → vR@i

v)

Theorem 1.1 (Sahlqvist completeness) S@n is sound and strongly complete
with respect to the class of frames FS@n (that is, the class of first-order frames
defined by S@n).
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Proof. By Theorem 4.42 in Blackburn et al. (2001), the proof of which can be
found in chapter 5.

Let an S@n-frame be any frame in FS@n . It is clear that the axioms above
are sound, too, with respect to the class of all n-dimensional sequence frames,
given their correspondence to the first-order properties of these frames. An
important question is whether the axioms above are also sufficient, that is,
whether they settle the completeness problem for S@n with respect to n-
dimensional sequence frames. This question is settled here by generalizing
the approach in Fritz (2014), in which a completeness theorem for 2Dg is
derived by first passing through an intermediate class of frames—in that case,
the frames defined in Restall (2012). But rather than using an intermediate
class of frames such as Restall’s, we take the point-generated subframe of a
frame in FS@n and construct a bounded morphism from a sequence frame onto
this point-generated subframe. Still, the proof strategy extends the main ideas
employed in Fritz (2014), Lemmas 2.5-8.

First we prove a series of lemmas in order to establish the main complete-
ness result for S@n. In particular, Lemmas 1.1 to 1.4 are instrumental in the
proof of Lemma 1.5, which is in turn the principal lemma for the completeness
theorem, namely, Theorem 1.3.
Lemma 1.1 The following Sahlqvist formulas are derivable in S@n. Let 1 ≤
j < i ≤ n:

(1) (Seriality) `n 2ip→ 3ip.

(2) (Upward transitivity) `n 2ip→ 2j2ip. This formula corresponds to the
frame condition ∀vz((wR2j

v ∧ vR2i
z)→ wR2i

z).

(3) (Upward Euclideanity) `n 3ip → 2j3ip. This formula corresponds to
the frame condition ∀vz((wR2j

v ∧ wR2i
z)→ vR2i

z).

Proof. (1). This is derivable from ATi and its dual, @ip→ 3ip.
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(2). Consider the following derivation:

1. `n 3ip→ 2i3ip 52i

2. `n 2i3ip→ @i3ip ATi

3. `n 3ip→ @i3ip 1, 2

4. `n ¬@i¬2i¬p→ 2i¬p 3

5. `n @i2ip→ 2ip D@i
, 4

6. `n 2j@i2ip→ 2j2ip Necj,K2j
, 5

7. `n @i2ip→ 2j@i2ip A4i

8. `n @i2ip→ 2j2ip 6, 7

9. `n 2ip→ 2i2ip 42i

10. `n 2i2ip→ @i2ip ATi

11. `n 2ip→ @i2ip 9, 10

12. `n 2ip→ 2j2ip 8, 11

(3). Consider the following derivation:

1. `n 2i3ip→ 3i3ip (1)

2. `n 3i3ip→ 3ip Dual of 42i

3. `n 2i3ip→ 3ip 1, 2

4. `n 2j2i3ip→ 2j3ip Necj, 3,K2j

5. `n 2i3ip→ 2j2i3ip (2)

6. `n 3ip→ 2i3ip 52i

7. `n 3ip→ 2j3ip 4, 5, 6

For the next lemmas, ROi
[X] is the image of the set X under the relation

ROi
, and for each function R@i

, R@i
(w) is the unique v such that wR@i

v, and
im(R@i

) is the image of the function R@i
.

Lemma 1.2 Let F = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n) be an S@n-frame, w ∈ W ,
and Fw = (Ww, (Rw

2i
)1≤i≤n, (Rw

@i
)1≤i≤n) the subframe of F generated by w.

Then:

(1) Ww = Rw
21

[Rw
22

[...[Rw
2i

[...[Rw
2n

[{w}]]]]]].

(2) vRw
2n
u if and only if u ∈ im(Rw

@n
).
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Proof. (1). One inclusion is clear. For the other direction, let

Z = Rw
21

[Rw
22

[...[Rw
2i

[...[Rw
2n

[{w}]]]]]].

We first prove that (1a) w ∈ Z, and then that (1b) Z is closed under every
relation Rw

Oi
in the frame Fw.

(1a). Let z be the element in Ww such that Rw
@n

(w) = z, and for each i
such that 1 ≤ i < n, let Rw

@i
(w) = zi and Rw

@i
(zi) = vi. Then wRw

2n
z, by

ATn, and both wRw
2n−1

zn−1 and zn−1Rw
2n−1

vn−1, by ATn−1. So wRw
2n−1

vn−1,
by transitivity of Rw

2n−1
. But wRw

2n−1
z follows by An, and so zRw

2n−1
vn−1,

since Rw
2n−1

is Euclidean. Then

wRw
2n
zRw

2n−1
vn−1.

Moreover, both wRw
2n−2

zn−2 and zn−2Rw
2n−2

vn−2 follow by ATn−2. So
wRw

2n−2
vn−2, by transitivity of Rw

2n−2
. Also, both wRw

2n−2
zn−1 and

zn−1Rw
2n−2

vn−1, by An−1. So wRw
2n−2

vn−1, again by transitivity of Rw
2n−2

.
Hence vn−1Rw

2n−2
vn−2, as Rw

2n−2
is Euclidean. Then

wRw
2n
zRw

2n−1
vn−1Rw

2n−2
vn−2.

By repeating this argument multiple times, it follows that there is a chain

wRw
2n
zRw

2n−1
vn−1Rw

2n−2
vn−2...Rw

23
v3Rw

22
v2.

Now, by A2, both wRw
21
z2 and z2Rw

21
v2, whence wRw

21
v2 and so v2Rw

21
w, by

transitivity and symmetry of Rw
21
, respectively, thereby extending the chain

above to

(∗) wRw
2n
zRw

2n−1
vn−1Rw

2n−2
vn−2...Rw

23
v3Rw

22
v2Rw

21
w.

Therefore, w ∈ Z.
(1b). For Rw

21
, suppose that v ∈ Rw

21
[Z]. Then there is a u ∈ Z such

that uRw
21
v. But since u ∈ Z, it follows by an argument similar to that which

established (∗) in (1a) that there are zn, ..., z2 ∈ Ww such that

wRw
2n
znRw

2n−1
zn−1Rw

2n−2
zn−2...Rw

23
z3Rw

22
z2Rw

21
u.

By transitivity of Rw
21
, it then follows that z2Rw

21
v, and so v ∈ Z.

For Rw
2i
, where 1 < i ≤ n, suppose that v ∈ Rw

2i
[Z]. Then there is a u ∈ Z

such that uRw
2i
v. But since u ∈ Z, it follows by an argument similar to the

one establishing (∗) in (1a), that there are zn, ..., z2 ∈ Ww such that

wRw
2n
znRw

2n−1
zn−1Rw

2n−2
zn−2...Rw

23
z3Rw

22
z2Rw

21
u.
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By upward transitivity, it follows that z2Rw
2i
v. Now, if i = 2, then z3Rw

22
v,

by transitivity of Rw
22
, from which it follows that v ∈ Z, as Rw

21
is reflexive.

If, on the other hand, 2 < i < n, since z3Rw
22
z2, it follows that z3Rw

2i
v, by

upward transitivity; since z4Rw
23
z3 and z3Rw

2i
v, it follows that z4Rw

2i
v by up-

ward transitivity; after multiple repetitions of this argument, since ziRw
2i−1

zi−1
and zi−1Rw

2i
v, it follows that ziRw

2i
v by upward transitivity. Then vRw

@i
v, by

ARi, whence vRw
2i−1

v, by Ai, and so vRw
@i−1

v, by ARi−1, whence vRw
2i−2

v, by
Ai−1, and so on. After multiple repetitions of this argument, vRw

@3
v, by AR3,

whence vRw
22
v, by A3. Also vRw

21
v, since Rw

21
is reflexive, and so v ∈ Z. In

case i = n, since wRw
2n
zn, and znRw

2n
v follows as in the argument above, it

then follows that wRw
2n
v by transitivity of Rw

2n
. The rest of the argument for

the descending chain is exactly as the case 2 < i < n above.
For Rw

@1
, suppose that v ∈ Rw

@1
[Z] = Z, since Rw

@1
is the identity function.

So v ∈ Z.
For Rw

@i
, where 1 < i ≤ n, suppose that v ∈ Rw

@i
[Z]. Then there is a

u ∈ Z such that uRw
@i
v. So uRw

2i
v, by ATi. That v ∈ Z now follows from the

argument for Rw
2i
.

(2). For the left-to-right direction, suppose that vRw
2n
u. By ARn, uRw

@n
u,

so u ∈ im(Rw
@n

). For the converse, assume that u ∈ im(Rw
@n

), and let z be the
element in Ww such that Rw

@n
(w) = z. Now, consider any point v ∈ Ww. We

show that (2a) vRw
2n
z, and then that (2b) zRw

2n
u, from which vRw

2n
u follows

by transitivity of Rw
2n
, thereby proving the lemma.

(2a) Since v ∈ Ww, it follows by an argument similar to the one establishing
(∗) in (1a) that there are zn, ..., z2 ∈ Ww such that

wRw
2n
znRw

2n−1
zn−1Rw

2n−2
zn−2...Rw

23
z3Rw

22
z2Rw

21
v.

By symmetry of Rw
21
, it follows that vRw

21
z2. Now consider z′3 ∈ Rw

@2
(z3). By

AT2, it follows that z3Rw
22
z′3. So z3Rw

22
z2 and z3Rw

22
z′3, from which z2Rw

22
z′3

follows from the Euclidean property of Rw
22
. So vRw

21
z2 and z2Rw

22
z′3, hence

vRw
22
z′3, by upward transitivity. Now consider z′4 = Rw

@3
(z4). By AT3, it

follows that z4Rw
23
z′4. So z4Rw

23
z3 and z4Rw

23
z′4, from which z3Rw

23
z′4 follows

from the Euclidean property of Rw
23
. Since z3Rw

22
z′3, it follows that z′3Rw

23
z′4,

by upward Euclideanity. And since vRw
22
z′3, it follows that vRw

23
z′4, by up-

ward transitivity. By repeating this argument multiple times, it follows that
vRw

2n−1
z′n. Now consider z = Rw

@n
(w). By ATn, it follows that wRw

2n
z. So

wRw
2n
zn and wRw

2n
z, whence znRw

2n
z, by the Euclidean property ofRw

2n
. Then

znRw
2n−1

z′n (by a previous iteration of the argument) and znRw
2n
z, so z′nRw

2n
z

follows by upward Euclideanity. Therefore, vRw
2n−1

z′n and z′nRw
2n
z, from which
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vRw
2n
z follows by upward transitivity.

(2b). Since u ∈ Ww, by hypothesis, it follows by an argument similar to
the one establishing (∗) in (1a) that there are zn, ..., z2 ∈ Ww such that

wRw
2n
znRw

2n−1
zn−1Rw

2n−2
zn−2...Rw

23
z3Rw

22
z2Rw

21
u.

Consider z = Rw
@n

(w). Then wRw
2n
z, by ATn. Since Rw

2n
is Euclidean, it

follows that zRw
2n
zn. Since u ∈ im(Rw

@n
), there is a un ∈ Ww such that

unRw
@n
u. By ATn, unRw

2n
u, whence uRw

@n
u, by ARn, and so uRw

2n
u, by ATn.

By An, in turn, it also follows that unRw
2n−1

u, so uRw
@n−1

u by ARn−1, whence
uRw

2n−2
u by An−1. Then uRw

@n−2
u by ARn−1, whence uRw

2n−3
u by An−2. By

repeating this argument multiple times, it follows that uRw
23
u by A4 and,

similarly, that uRw
22
u by A3. Now, since z2Rw

21
u and uRw

22
u, z2Rw

22
u follows

by upward transitivity. And because z3Rw
22
z2 and z2Rw

22
u, z3Rw

22
u follows by

transitivity of Rw
22
. But since z3Rw

22
u and uRw

23
u, z3Rw

23
u follows by upward

transitivity, and so z4Rw
23
u follows by transitivity of Rw

23
. By repeating this

argument multiple times it follows that znRw
2n−1

u. But since uRw
2n
u, it follows

that znRw
2n
u by upward transitivity. And since zRw

2n
zn, it follows that zRw

2n
u

by transitivity of Rw
2n
, as desired.

Lemma 1.3 Let F = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n) be an S@n-frame, and v ∈
W . Then R@i

(R@i+1
(v)) = R@i+1

(v), for 1 ≤ i < n.

Proof. Let R@i+1
(v) = z. Then vR2i+1

z, by ATi+1, and so zR@i+1
z follows

by ARi+1. Now zR2i
z follows by Ai+1, and zR@i

z follows by ARi. So
vR@i+1

zR@i
z, and hence

R@i
(R@i+1

(v)) = R@i
(z) = z = R@i+1

(v),

as desired.

In order to establish the main completeness result of this section we
now want to show the existence and relevant properties of certain fam-
ilies of surjective functions, which are essential to construct the relevant
bounded morphism from a sequence frame onto an S@n-frame (or, more
precisely, a point-generated subframe of an S@n-frame). In Fritz’s (2014),
Lemma 2.8, completeness proof for the two-dimensional case, this is done
as follows. Let F = (W,R21 ,R22 ,R@1 ,R@2) be an S@2-frame, and Fw =
(Ww,Rw

21
,Rw

22
,Rw

@1
,Rw

@2
) the subframe of F generated by w. Validity is

preserved by taking generated subframes,14 and hence the S@2 axioms hold
14This is proved in Blackburn et al. (2001: 140), Theorem 3.14(ii).
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in Fw. Now, for every element w ∈ Ww there is a surjective function
g1w : Ww → Rw

21
[g0∅(w)] such that g1w(w) = Rw

@2
(g0∅(w)), where g0∅ = IdWw . The

family g1 of surjections exists since for every w ∈ Ww, Rw
21

[g0∅(w)] ⊆ Ww, and
also becauseRw

@2
is a function such thatRw

@2
⊆ Rw

21
, byA2. We then construct

a two-dimensional sequence frame, F′ = (W ′,R′21
,R′22

,R′@1
,R′@2

), where
W ′ = Ww×Ww, and define a map f from W ′ onto Ww by f((w, v)) = g1v(w),
which is a bounded morphism from F′ onto Fw—this can be verified by a
standard back-and-forth argument. Since we know by Sahlqvist completeness
(Theorem 1.1) that S@2 is strongly complete with respect to S@2-frames, com-
pleteness of S@2 relative to the class of two-dimensional sequence frames now
follows since modal satisfaction is invariant under taking bounded morphisms
between models, and the fact that every formula in the language is satisfiable
in an S@2-model if and only if it is satisfiable in a point-generated submodel of
it.15 This is by and large Fritz’s argument except for minor notational differ-
ences, the absence of anR@i

relation, and the fact that he uses an intermediate
class of frames from Restall (2012) indirectly instead of the point-generated
subframes Fw.

To see how this method can be generalized for n dimensions it is in-
structive first to briefly mention the adaptation of the argument above for
three dimensions, as the definition of the bounded morphism in this case
will need multiple families of surjections which are constructed in stages,
just as in the n case. So, let F be an S@3-frame, and Fw the subframe
of F generated by w. In order to prove that S@3 is complete relative to
three-dimensional sequence frames, we construct a three-dimensional sequence
frame, F′ = (W ′, (R′2i

)1≤i≤n, (R′@i
)1≤i≤n), where W ′ = Ww×Ww×Ww, and a

bounded morphism from F′ onto Fw. This is done as follows. Let g0∅ = IdWw .
Then for every w ∈ Ww there is a surjective function g1w : Ww → Rw

22
[g0∅(w)]

such that

(i) g1w(w) = Rw
@3

(g0∅(w)).

The family g1 of surjections exists since for any w ∈ Ww, Rw
22

[g0∅(w)] ⊆ Ww,
and also because Rw

@3
is a function such that Rw

@3
⊆ Rw

22
, by A3. Additionally,

for every w, v ∈ Ww there is a surjective function g2w,v : Ww → Rw
21

[g1v(w)]
such that

(ii) g2w,v(w) = Rw
@2

(g1v(w)).

15See Blackburn et al. (2001), §2.1, for the definitions of bounded morphisms between
models and generated submodels, as well as the relevant invariance results.
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The family g2 of surjections exists since for any w, v ∈ Ww, Rw
21

[g1v(w)] ⊆ Ww,
and also because Rw

@2
is a function such that Rw

@2
⊆ Rw

21
, by A2. Then for

every w ∈ Ww, since g2w,w(w) = Rw
@2

(g1w(w)), by (ii), g1w(w) = Rw
@3

(g0∅(w)), by
(i), and Rw

@2
(Rw

@3
(w)) = Rw

@3
(w), by Lemma 1.3, it follows that

(iii) g2w,w(w) = Rw
@3

(w).

The map f from W ′ onto Ww defined by f((w, v, z)) = g2v,z(w) is then a
bounded morphism from F′ onto Fw, which can again be verified by a standard
back-and-forth argument.

The aim of the next two lemmas is to register the existence of similar
surjections in the general n-dimensional case as well as to construct the desired
bounded morphism for the completeness proof.
Lemma 1.4 Let F = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) be an S@n-frame. Then:

(1) There is a sequence g0, ..., gn−1 of families of surjective functions defined
on W , where the family gi is indexed by W i, g0∅ = IdW , and for each
1 ≤ i ≤ (n− 1) and every w1, ..., wi ∈ W ,

giw1,...,wi
: W → R2n−i

[gi−1w2,...,wi
(w1)]

such that

giw1,...,wi
(w1) = R@n−(i−1)

(gi−1w2,...,wi
(w1)).

(2) If an initial segment of w1, ..., wn−1 is such that w1 = ... = wj = z, for
1 ≤ j ≤ (n− 1), and z ∈ W , then

gn−1w1,...,wn−1
(z) = R@j+1

(g
n−(j+1)
wj+1,...,wn−1(wj)).

Proof. (1). The proof is by induction on 1 ≤ i ≤ (n − 1). For i = 1, since
for any w1 ∈ W , R2n−1 [g

0
∅(w1)] ⊆ W , and R@n is a function such that R@n ⊆

R2n−1 , by An, there is a family of surjective functions

g1w1
: W → R2n−1 [g

0
∅(w1)]

such that

g1w1
(w1) = R@n(g0∅(w1)).

Assume the induction hypothesis, for i = k, where 1 ≤ k < (n− 1), that there
is family of surjective functions
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gkw1,...,wk
: W → R2n−k

[gk−1w2,...,wk
(w1)]

such that

gkw1,...,wk
(w1) = R@n−(k−1)

(gk−1w2,...,wk
(w1)).

We show that the lemma holds for i = k + 1. Since, by the induction hy-
pothesis, there are functions gkw1,...,wk

, and both R2n−(k+1)
[gkw2,...,wk+1

(w1)] ⊆ W
and R@n−k

⊆ R2n−(k+1)
, by An−k, it follows that there is a family of surjective

functions

gk+1
w1,...,wk+1

: W → R2n−(k+1)
[gkw2,...,wk+1

(w1)]

such that

gk+1
w1,...,wk+1

(w1) = R@n−k
(gkw2,...,wk+1

(w1)),

as desired.
(2). The proof is by induction on j. For j = 1, it follows from (1) that

gn−1w1,...,wn−1
(z) = R@2(g

n−2
w2,...,wn−1

(w1)).

Now let j = k, where 1 ≤ k < (n− 1), and assume that

gn−1w1,...,wn−1
(z) = R@k+1

(g
n−(k+1)
wk+1,...,wn−1(wk)).

Suppose that w1 = ... = wk+1 = z. Then the family of surjections

g
n−(k+1)
wk+1,...,wn−1 : W → R2n−(n−(k+1))

[g
(n−(k+1))−1
wk+2,...,wn−1(wk+1)]

is such that

g
n−(k+1)
wk+1,...,wn−1(wk) = R@n−((n−(k+1))−1)

(g
(n−(k+1))−1
wk+2,...,wn−1(wk+1)),

by (1), and hence

gn−1w1,...,wn−1
(z) = R@k+1

(R@n−((n−(k+1))−1)
(g

(n−(k+1))−1
wk+2,...,wn−1(wk+1))).

Note, moreover, that n− ((n− (k + 1))− 1) = k + 2, and hence

gn−1w1,...,wn−1
(z) = R@n−((n−(k+1))−1)

(g
(n−(k+1))−1
wk+2,...,wn−1(wk+1)),

by Lemma 1.3, as desired.

Lemma 1.5 Let F = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n) be an S@n-frame, w ∈ W ,
and Fw = (Ww, (Rw

2i
)1≤i≤n, (Rw

@i
)1≤i≤n) the subframe of F generated by w.

Then Fw is a bounded morphic image of a sequence frame.
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Proof. Let F, w ∈ W , and Fw be as in the hypothesis. Because gen-
erated subframes preserve validity between frames, all of the S@n axioms
hold in Fw. So in what follows we construct a sequence frame, F′ =
(W ′, (R′2i

)1≤i≤n, (R′@i
)1≤i≤n), such that W ′ = (Ww)n, where (Ww)n is the

n-fold Cartesian product of Ww, and a surjective bounded morphism f : F′ �
Fw. Then, where σ ∈ (Ww)n, let f : (Ww)n → Ww be defined as

f(σ) = gn−1σ2,...,σn
(σ1),

where the sequence g0, ..., gn−1 of families of surjective functions is defined on
Ww. We prove that f so defined is a bounded morphism from F′ onto Fw by
checking the back and forth conditions for each accessibility relation as follows:

[R21 ] Suppose that σR′21
σ′. Then σ and σ′ are identical beyond 1.

So f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)], and f(σ′) = gn−1σ′2,...,σ
′
n
(σ′1) ∈

Rw
21

[gn−2σ3,...,σn
(σ2)], from which it follows that f(σ)Rw

21
f(σ′). Conversely, sup-

pose that f(σ)Rw
21
z. Since

f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)],

it follows that z ∈ Rw
21

[gn−2σ3,...,σn
(σ2)]. And since gn−1σ2,...,σn

is a surjection, there
is a v ∈ Ww such that gn−1σ2,...,σn

(v) = z, whence f(σ1
v) = gn−1σ2,...,σn

(v) = z.
Furthermore, σR′21

σ1
v .

[R2i
, 1 < i < n] Suppose that σR′2i

σ′. Then σ′ is i-diagonal and
identical with σ beyond i. So f(σ′) = gn−1σ′2,...,σ

′
n
(σ′1) = Rw

@i
(gn−iσ′i+1,...,σ

′
n
(σ′i)),

by Lemma 1.4(2), and f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)]. Since
gn−iσ′i+1,...,σ

′
n
(σ′i)Rw

@i
f(σ′), it follows that gn−iσ′i+1,...,σ

′
n
(σ′i)Rw

2i
f(σ′), by ATi. Also,

gn−iσ′i+1,...,σ
′
n
(σ′i) ∈ Rw

2i
[g

(n−i)−1
σi+2,...,σn(σi+1)], since the sequences σ and σ′ are identical

beyond i, whence g(n−i)−1σi+2,...,σn(σi+1)Rw
2i
f(σ′), by transitivity of Rw

2i
. But

gn−2σ3,...,σn
(σ2) ∈ Rw

22
[gn−3σ4,...,σn

(σ3)],

gn−3σ4,...,σn
(σ3) ∈ Rw

23
[gn−4σ5,...,σn

(σ4)],

...,

gn−iσi+1,...,σn
(σi) ∈ Rw

2i
[g

(n−i)−1
σi+2,...,σn(σi+1)].

So gn−iσi+1,...,σn
(σi)Rw

2i
f(σ′), by the Euclidean property of Rw

2i
. Now,

g
n−(i−1)
σi,...,σn (σi−1) ∈ Rw

2i−1
[gn−iσi+1,...,σn

(σi)]. So g
n−(i−1)
σi,...,σn (σi−1)Rw

2i
f(σ′), by up-

ward Euclideanity. By an analogous argument, since g
n−(i−2)
σi−1,...,σn(σi−2) ∈

Rw
2i−2

[g
n−(i−1)
σi,...,σn (σi−1)], it follows that g

n−(i−2)
σi−1,...,σn(σi−2)Rw

2i
f(σ′), by upward
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Euclideanity. By multiple repetitions of this argument, it follows that
gn−2σ3,...,σn

(σ2)Rw
2i
f(σ′). Since gn−1σ2,...,σn

(σ1) ∈ Rw
21

[gn−2σ3,...,σn
(σ2)], by upward

Euclideanity, again, it follows that gn−1σ2,...,σn
(σ1)Rw

2i
f(σ′), and therefore

f(σ)Rw
2i
f(σ′). Conversely, suppose that f(σ)Rw

2i
z. Then f(σ) = gn−1σ2,...,σn

(σ1)
∈ Rw

21
[gn−2σ3,...,σn

(σ2)]. So

gn−2σ3,...,σn
(σ2)Rw

21
f(σ)Rw

2i
z,

from which gn−2σ3,...,σn
(σ2)Rw

2i
z follows by upward transitivity. Now, gn−2σ3,...,σn

(σ2)
∈ Rw

22
[gn−3σ4,...,σn

(σ3)], whence

gn−3σ4,...,σn
(σ3)Rw

22
gn−2σ3,...,σn

(σ2)Rw
2i
z,

from which gn−3σ4,...,σn
(σ3)Rw

2i
z follows by upward transitivity. Similarly,

gn−3σ4,...,σn
(σ3) ∈ Rw

23
[gn−4σ5,...,σn

(σ4)], whence

gn−4σ5,...,σn
(σ4)Rw

23
gn−3σ4,...,σn

(σ3)Rw
2i
z,

from which gn−4σ5,...,σn
(σ4)Rw

2i
z follows by upward transitivity. By repeating this

argument, gn−iσi+1,...,σn
(σi)Rw

2i
z, but since gn−iσi+1,...,σn

(σi) ∈ Rw
2i

[g
(n−i)−1
σi+2,...,σn(σi+1)], it

follows that

g
(n−i)−1
σi+2,...,σn(σi+1)Rw

2i
gn−iσi+1,...,σn

(σi)Rw
2i
z,

and so g
(n−i)−1
σi+2...σn(σi+1)Rw

2i
z follows by transitivity of Rw

2i
. Then z ∈

Rw
2i

[g
(n−i)−1
σi+2,...,σn(σi+1)]. Now, since gn−iσi+1,...,σn

is a surjective function, it follows
that there is a v ∈ Ww such that

(∗) gn−iσi+1...σn
(v) = z.

So consider the i-diagonal sequence (v, ..., v, σi+1, ..., σn) ∈ (Ww)n, which is
identical with σ beyond i. Then σR′2i

(v, ..., v, σi+1, ..., σn), and so:

f((v, ..., v, σi+1, ..., σn)) = gn−1v,...,v,σi+1,...,σn
(v) [by def. of f ]

= Rw
@i

(gn−iσi+1,...,σn
(v)) [by Lemma 1.4(2)]

= Rw
@i

(z). [by (∗)]

So zRw
@i
f((v, ..., v, σi+1, ..., σn)), whence zRw

2i
f((v, ..., v, σi+1, ..., σn)), by ATi.

Then f(σ)Rw
2i
f((v, ..., v, σi+1, ..., σn)) follows by transitivity of Rw

2i
. Further-

more, zRw
@i
z follows from the original hypothesis and ARi, in which case both

zRw
@i
f((v, ..., v, σi+1, ..., σn)) and zRw

@i
z, from which f((v, ..., v, σi+1, ..., σn)) =

z follows by F@i
, as desired.
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[R2n ] Suppose that σR′2n
σ′. So σ′ is n-diagonal. Then f(σ′) =

gn−1σ′2,...,σ
′
n
(σ′1) = Rw

@n
(σ′n), by Lemma 1.4(2), whence f(σ′) ∈ im(Rw

@n
). It follows

that f(σ)Rw
2n
f(σ′), by Lemma 1.2(2). Conversely, suppose that f(σ)Rw

2n
z. So

zRw
@n
z, by ARn, in which case there is a v ∈ Ww, namely, u, such that

(?) Rw
@n

(v) = z,

as Rw
@n

is a function. Now consider the sequence σnv ∈ (Ww)n. Then:

f(σnv ) = gn−1v,...,v(v) [by def. of f ]
= Rw

@n
(v) [by Lemma 1.4(2)]

= z. [by (?)]

Additionally, σR′2n
σnv .

[R@1 ] Suppose that σR′@1
σ′. Then σ = σ′. Since Rw

@1
is reflexive, it follows

that f(σ)Rw
@1
f(σ′). Now suppose that f(σ)Rw

@1
z. Because Rw

@1
is reflexive,

f(σ)Rw
@1
f(σ), hence f(σ) = z, as Rw

@1
is a function. Also, σR′@1

σ.
[R@i

, 1 < i < n] Suppose that σR′@i
σ′. Then σ′ is i-diagonal and identical

with σ beyond i− 1. So

f(σ′) = gn−1σ′2,...,σ
′
n
(σ′1) = Rw

@i
(gn−iσ′i+1,...,σ

′
n
(σ′i)),

by Lemma 1.4(2), and f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)]. Then
f(σ)Rw

21
gn−2σ3,...,σn

(σ2), by symmetry of Rw
21
. Also,

gn−2σ3,...,σn
(σ2) ∈ Rw

22
[gn−3σ4,...,σn

(σ3)],

gn−3σ4,...,σn
(σ3) ∈ Rw

23
[gn−4σ5,...,σn

(σ4)],

...,

g
n−(i−1)
σi,...,σn (σi−1) ∈ Rw

2i−1
[gn−iσi+1,...,σn

(σi)].

Now, since σ′ is identical with σ beyond i−1, it also follows that gn−(i−1)σi,...,σn (σi−1)
∈ [gn−iσ′i+1,...,σ

′
n
(σ′i)]Rw

2i−1
. And since gn−iσ′i+1,...,σ

′
n
(σ′i)Rw

@i
f(σ′), it follows that

gn−iσ′i+1,...,σ
′
n
(σ′i)Rw

2i−1
f(σ′), by Ai, and so

g
n−(i−1)
σi,...,σn (σi−1)Rw

2i−1
f(σ′),

as Rw
2i−1

is Euclidean. But since gn−(i−2)σi−1,...,σn(σi−2) ∈ Rw
2i−2

[g
n−(i−1)
σi,...,σn (σi−1)], it

follows that gn−(i−2)σi−1,...,σn(σi−2)Rw
2i−1

f(σ′), by upward Euclideanity. And since
g
n−(i−3)
σi−2,...,σn(σi−3) ∈ Rw

2i−3
[g
n−(i−2)
σi−1...σn(σi−2)], it follows that
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g
n−(i−3)
σi−2,...,σn(σi−3)Rw

2i−1
f(σ′),

again by upward Euclideanity. By repeating this argument, it follows that
gn−2σ3,...,σn

(σ2)Rw
2i−1

f(σ′), by upward Euclideanity. Then f(σ)Rw
2i−1

f(σ′), follows
from upward Euclideanity, too. But since gn−iσ′i+1,...,σ

′
n
(σ′i)Rw

@i
f(σ′), it follows

that f(σ′)Rw
@i
f(σ′), by ATi and ARi, respectively. So f(σ)Rw

@i
f(σ′), by A4i.

Conversely, suppose that f(σ)Rw
@i
z. Consider the sequence σ′ ∈ (Ww)n such

that σ′ is i-diagonal and identical with σ beyond i− 1. Then σR′@i
σ′. So

f(σ′) = gn−1σ′2,...,σ
′
n
(σ′1) = Rw

@i
(gn−iσ′i+1,...,σ

′
n
(σ′i)),

by Lemma 1.4(2), and f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)]. By the same
argument as in the forth direction, it follows that f(σ)Rw

@i
f(σ′). But since

f(σ)Rw
@i
z, by assumption, it follows that f(σ′) = z, by F@i

.
[R@n ] Suppose that σR′@n

σ′. Then σ′ is n-diagonal and identical with σ
beyond (n− 1). So

f(σ′) = gn−1σ′2,...,σ
′
n
(σ′1) = Rw

@n
(σ′n),

by Lemma 1.4(2), and f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)]. Since
σn = σ′n, it follows that σnRw

@n
f(σ′), and so both σnRw

2n−1
f(σ′), by An,

and f(σ′)Rw
@n
f(σ′), by ARn. Now, g1σn(σn−1) ∈ Rw

2n−1
[{σn}], so it fol-

lows that g1σn(σn−1)Rw
2n−1

f(σ′), as Rw
2n−1

is Euclidean. Also, g2σn−1,σn
(σn−2)

∈ Rw
2n−2

[g1σn(σn−1)]. So g2σn−1,σn
(σn−2)Rw

2n−1
f(σ′) by upward Euclideanity.

Analogously,

g3σn−2,σn−1,σn
(σn−3) ∈ Rw

2n−3
[g2σn−1,σn

(σn−2)].

So g3σn−2,σn−1,σn
(σn−3)Rw

2n−1
f(σ′), again by upward Euclideanity. By repeti-

tions of this argument, it follows that gn−2σ3,...,σn
(σ2)Rw

2n−1
f(σ′), by upward Eu-

clideanity. Since f(σ)Rw
21
gn−2σ3,...,σn

(σ2), by symmetry of Rw
21
, it follows that

f(σ)Rw
2n−1

f(σ′), by upward transitivity. Therefore, f(σ)Rw
@n
f(σ′), by A4n.

Conversely, suppose that f(σ)Rw
@n
z. Now consider the sequence σ′ ∈ (Ww)n

such that σ′ is n-diagonal and identical with σ beyond n − 1. Also σR′@n
σ′.

So

f(σ′) = gn−1σ′2,...,σ
′
n
(σ′1) = Rw

@n
(σ′n),

by Lemma 1.4(2), and f(σ) = gn−1σ2,...,σn
(σ1) ∈ Rw

21
[gn−2σ3,...,σn

(σ2)]. By the same
argument as in the forth direction, it follows that f(σ)Rw

@n
f(σ′). But since

f(σ)Rw
@n
z, it follows that f(σ′) = z, by F@n .

30



This concludes the back and forth cases. It remains to show that f is
surjective. Consider any u ∈ Ww. By Lemma 1.2(1),

u ∈ Rw
21

[Rw
22

[...[Rw
2i

[...[Rw
2n

[{w}]]]]]],

so there are elements vn, ..., v2 ∈ Ww, and a chain

wRw
2n
vnRw

2n−1
vn−1Rw

2n−2
vn−2...Rw

23
v3Rw

22
v2Rw

21
u.

Consider the mapping g1vn : Ww → Rw
2n−1

[{vn}]. As this is surjective, and
vn−1 ∈ Rw

2n−1
[{vn}], there is a zn−1 ∈ Ww such that g1vn(zn−1) = vn−1.

Now consider the mapping g2zn−1,vn
: Ww → Rw

2n−2
[g1vn(zn−1)]. As this is

surjective, and vn−2 ∈ Rw
2n−2

[g1vn(zn−1)], there is a zn−2 ∈ Ww such that
g2zn−1,vn

(zn−2) = vn−2. After multiple repetitions of this argument, consider
the mapping gn−1z2,...,zn−1,vn

: Ww → Rw
21

[gn−2z3,...,zn−1,w
(z2)]. By a previous iteration

of the argument, gn−2z3,...,zn−1,vn
(z2) = v2, and so u ∈ Rw

21
[gn−2z3,...,zn−1,vn

(z2)]. As
gn−1z2,...,zn−1,vn

is also surjective, there is a z1 ∈ Ww such that gn−1z2,...,zn−1,vn
(z1) = u.

Therefore, there is a sequence (z1, z2, ..., zn−1, vn) ∈ (Ww)n such that

f((z1, z2, ..., zn−1, vn)) = gn−1z2,...,vn
(z1) = u,

as desired.

This is sufficient to prove that S@n is the multidimensional logic of sequence
frames:
Theorem 1.2 (Soundness and completeness) S@n is sound and strongly com-
plete with respect to the class F of sequence frames.

Proof. Soundness is clear given the correspondence between the axioms of S@n

and the properties of n-dimensional sequence frames. For strong completeness,
by Theorem 1.1, S@n is strongly complete with respect to the class of S@n-
frames, that is, FS@n . So it suffices to prove that a set of formulas is satisfiable
in a sequence frame if and only if it is satisfiable in an S@n-frame. Suppose
that a set of formulas Γ is satisfiable in a sequence frame F ∈ F. Because
every sequence frame is an S@n-frame, it follows that Γ is also satisfiable in
an S@n-frame. Conversely, suppose that Γ is satisfiable in an S@n-frame,
say, F. Then Γ is satisfiable in a model M = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n, V )

based on F. So there is a point w in M such that M, w � Γ. Let
Mw = (Ww, (Rw

2i
)1≤i≤n, (Rw

@i
)1≤i≤n, V

w) be the submodel of M generated
by w. Since modal satisfaction is invariant under taking generated submod-
els, and w ∈ Ww, it follows that Mw, w � Γ, and so Γ is satisfiable in the
point-generated subframe Fw of F. But, by Lemma 1.5, Fw is a bounded
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morphic image of a sequence frame, say, F′ = (W ′, (R′2i
)1≤i≤n, (R′@i

)1≤i≤n).
Let f : F′ � Fw be a surjective bounded morphism from F′ onto Fw, and
M′ = (W ′, (R′2i

)1≤i≤n, (R′@i
)1≤i≤n, V

′) a model based on F′ such that for each
p ∈ PROP, V ′(p) = {σ ∈ W ′ | f(σ) ∈ V w(p)}. Because f is surjective, and
w ∈ Ww, let σ′ be a sequence inW ′ such that f(σ′) = w. Then Mw, f(σ′) � Γ.
But as Mw is a bounded morphic image of M′, this implies that M′, σ′ � Γ,
since modal satisfaction is invariant under bounded morphisms between mod-
els. Therefore, Γ is satisfiable in the sequence frame F′.

Recall that in Fritz (2014: 386) a class of frames with distinguished ele-
ments is derived from matrix frames—or, according to our nomenclature, two-
dimensional sequence frames (again, for a language without @1). The logic of
these frames is then derived syntactically from 2Dg, and a completeness proof
is presented in Fritz (2014: 394). Given the completeness result established
just above, we show that Fritz’s argument can once more be generalized for
the n-dimensional case. We say that an n-dimensional sequence frame with
distinguished elements is a quadruple,

FD = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n, D)

where (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n) is an n-dimensional sequence frame such
that W = Sn, and D = {s | s ∈ S}. Let FD be the class of n-dimensional
sequence frames with distinguished elements.

Models based on such frames with distinguished elements are defined in the
obvious way, and the logical notions of validity and consequence are now rela-
tivized to generalized diagonal points s, as expected. Even though, as pointed
out by Fritz (2014: 286), such logics characterizing frames with distinguished
elements are not, in general, normal, for they do not have to be closed under
the rule of generalization (or necessitation) for each Oi, they can be defined
syntactically from their normal counterparts, as it were, as follows:
Definition 1.9 `Dn ϕ iff `n @nϕ.

Let S@D
n be the logic characterizing n-dimensional sequence frames with

distinguished elements. Given the strong completeness of S@n relative to the
class of n-dimensional sequence frames, the argument for the strong complete-
ness of S@D

n relative to FD is then a simple adaptation of the argument in
Fritz (2014: 394), Theorem 2.11.
Theorem 1.3 (Soundness and completeness) S@D

n is sound and strongly com-
plete with respect to FD.
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2 n-dimensional tableaux
It is very natural, as will be seen below, to define indexed tableau systems
for S@n following the style of Melvin Fitting’s prefixed tableaux for modal
logics.16 In fact, generalizations of indexed tableau systems for a variety of
two-dimensional modal logics appear in Lampert (2018) as well as in Gilbert
(2016).

In order to define indices and index-sequences for the tableaux, we apply
similar conventions as found in Definition 1.2 for sequences of possible worlds.
A nice feature of these tableaux is their simplicity, for we only need, in effect, a
single rule for each modal operator in the language rather than multiple rules
corresponding to multiple properties of the accessibility relations, as is usually
the case. Next we define the notions of index-sequences, indexed formulas, and
root of an n-dimensional tableau. These will consist in slight modifications of
the notions appearing in Definition 1.2 for sequences of possible worlds.
Definition 2.1 (Index-sequence, formula, root) An index is a natural number
greater than 0. Let s = (x1, ..., xn) be an index-sequence, where each xi is an
index. We will often write si for xi. An indexed formula is an expression, [ϕ]s,
where s is an index-sequence and ϕ is a formula of L@

n . All indexed formulas
are enclosed within brackets. The root of an n-dimensional tableau always
contains the negation of the formula we are attempting to prove indexed by
(1, 2, ..., n), that is, an index-sequence with the natural numbers ordered from
1 to n.
Definition 2.2 (Notation) Let siz be that index-sequence t for which t1 =
t2 = ... = ti = z and for j > i, tj = sj. Additionally, for an index x, x is that
sequence s for which si = x for all i ∈ {1, ..., n}.

As per usual, a branch of a tableau is closed if for some formula, ϕ, and
index-sequence s, both [ϕ]s and [¬ϕ]s occur on the branch. A tableau is closed
just in case all of its branches are closed. Otherwise, the tableau is open.
Finally, a tableau proof of a sentence, ϕ, is a closed tableau for [¬ϕ]s, where s
is the index-sequence (1, 2, ..., n). The tableau rules for S@n are displayed in
Figure 8 with some provisos for the modal rules explained below.

The rules (¬¬), (∧), and (∨) comprise the portion from the classical propo-
sitional calculus. The necessity rules, (νi), are applied to any index z already
occurring on the branch, and the possibility rules, (πi), may be used provided
the index z is new to the branch. These are just the usual restrictions on

16These can be found in several papers as well as in Fitting and Mendelsohn (1998).
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(¬¬) : [¬¬ϕ]s
[ϕ]s

(∧) : [ϕ ∧ ψ]s
[ϕ]s

[ψ]s

[¬(ϕ ∨ ψ)]s
[¬ϕ]s
[¬ψ]s

[¬(ϕ→ ψ)]s
[ϕ]s

[¬ψ]s

[ϕ↔ ψ]s
[ϕ→ ψ]s

[ψ → ϕ]s

(∨) : [ϕ ∨ ψ]s
[ϕ]s | [ψ]s

[¬(ϕ ∧ ψ)]s
[¬ϕ]s | [¬ψ]s

[ϕ→ ψ]s
[¬ϕ]s | [ψ]s

[¬(ϕ↔ ψ)]s
[¬(ϕ→ ψ)]s | [¬(ψ → ϕ)]s

(νi) :
[2iϕ]s
[ϕ]siz

[¬3iϕ]s
[¬ϕ]siz

(πi) :
[3iϕ]s
[ϕ]siz

[¬2iϕ]s
[¬ϕ]siz

(@i) :
[@iϕ]s
[ϕ]sisi

[¬@iϕ]s
[¬ϕ]sisi

Figure 8: n-Dimensional Tableau Rules.

indexed-tableau rules but generalized for n-dimensional modal logic. In the
case of (@i), the rule says to take the ith element of the sequence in question
and copy it (i − 1) times towards the very first element in the sequence. For
instance, the following is a proof of 33p→ 2221@333p in a four-dimensional
tableau:

1. [¬(33p→ 2221@333p)](1, 2, 3, 4)
2. [33p](1, 2, 3, 4)

3. [¬2221@333p](1, 2, 3, 4)
4. [p](5, 5, 5, 4)

5. [¬21@333p](6, 6, 3, 4)
6. [¬@333p](7, 6, 3, 4)
7. [¬33p](3, 3, 3, 4)
8. [¬p](5, 5, 5, 4)

×
Items 2 and 3 result from the rule (∧) applied to the negated conditional.

Item 4 results from applying the (π3) rule to item 2, and so the index-sequence
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(5, 5, 5, 4) appears on the tableau because the index 5 is new, that is, it had
no previous occurrences. Items 5 and 6 result from applications of (π2) and
(π1) to items 3 and 5, respectively. The index-sequence (6, 6, 3, 4) appears in 5
because we needed a new index for ¬22 from item 3, and the index-sequence
(7, 6, 3, 4) occurs because we needed a new index for ¬21 from item 5. Finally,
7 results from 6 by an application of (@3), and so the index 3 is copied down
in the index-sequence twice, and 8 results by applying (ν3), and so any index
could have been chosen to compose its index-sequence. The index-sequence
(5, 5, 5, 4), therefore, is chosen so that the tableau closes.

2.1 Soundness

Definition 2.3 (Satisfiability) Let F be a set of indexed formulas. We say F is
satisfiable in a model M = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n, V ), where W = Sn, if

there is a function f assigning to each single index si occurring in a sequence
s in F a possible world f(si) ∈ S, and, where g is a function such that
g(s) = (f(s1), ..., f(sn)),

• If [ϕ]s ∈ F , then ϕ is true at g(s), i.e. M, g(s) � ϕ.

• If the index-sequences s and siz are in F , then g(s)R2i
g(s)if(z). If, more-

over, z = si, then also g(s)R@i
g(s)if(z).

Definition 2.4 A tableau branch b is satisfiable if the set of indexed formulas
on it is satisfiable in some model, and a tableau is satisfiable if some branch
of it is satisfiable.

It follows immediately from the definitions that a closed tableau is not
satisfiable. Then the following lemma can be established by induction on
formulas:
Lemma 2.1 If one of the rules is applied to a tableau that is satisfiable in an
n-dimensional sequence model M = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n, V ), it results

in another tableau satisfiable in M.
Theorem 2.1 (Soundness) If ϕ has an n-dimensional tableau proof, then ϕ
is valid on the class of n-dimensional sequence frames F.

Proof. Suppose ϕ has a tableau proof, in which case there is a closed tableau,
T , beginning with [¬ϕ]s, where s is the sequence (1, 2, ..., n). For a con-
tradiction, assume that ϕ is not valid. Thus, there is an n-dimensional se-
quence model M = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n, V ), where W = Sn, for some
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non-empty set S, such that M, σ 2 ϕ for some sequence σ ∈ W . Define
a function f such that for each si ∈ s and σi ∈ σ, f(si) = σi, such that
g(s) = (f(s1), ..., f(sn)) = σ. Then {[¬ϕ]s} is satisfiable in M. Moreover,
since the one point tableau [¬ϕ]s is satisfiable in M, T is also satisfiable
in M, by Lemma 2.1. Therefore, T is both closed and satisfiable, which is
impossible, whence M, σ � ϕ, as desired.

2.2 Completeness

We establish completeness by constructing a systematic tableau proof proce-
dure in the style of Fitting (1983, ch. 8) producing a tableau proof in case
there is one, and directing us to a countermodel otherwise. As it is shown
below, this will also give us a decision procedure for the validities.

2.2.1 Systematic proof procedure

For the purposes of a systematic proof procedure, we do not want to apply
the rules for a single occurrence of an indexed formula more than one time,
so we need to make sure that each occurrence of an indexed formula is used
only once. This is not difficult to keep track of, as we can just introduce a
device to declare formulas used—a check mark, for instance, as in Smullyan
(1968). The procedure is defined by stages, and for stage n = 1, introduce
[¬ϕ]s at the tableau’s root, where s is the sequence (1, 2, ..., n). Next, suppose
n stages of the procedure have been completed. If the tableau is closed, or
every occurrence of an indexed formula is used, then stop. If, on the other
hand, the tableau remains open, then we proceed to stage n + 1 as follows:
take the highest occurrence of an indexed formula in the tree, say, [ψ]s, that
is not yet used.17 Now for each open branch b through the occurrence of [ψ]s,
do the following:

I If [ψ]s is atomic or a negation thereof, then declare it used. This ends
stage n+ 1.

II If [ψ]s is [¬¬χ]t, add [χ]t to the end of b.

III If [ψ]s is [(ζ ∧ χ)]t, add both [ζ]t and [χ]t to the end of b (analogously
for the other conjunctive cases).

17If there are multiple occurrences of unused formulas at the same level, chose the unused
formula occurring on the leftmost branch.
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IV If [ψ]s is [(ζ∨χ)]t, split the end of b into b1 and b2, adding [ζ]t and
[χ]t to the end of b1 and b2, respectively (analogously for the other
disjunctive cases).

V If [ψ]s is [3iχ]t, take the smallest integer, z, which is new to b, and add
[χ]tiz to the end of b (analogously for ¬2i).

VI If [ψ]s is [2iχ]t, for every index z occurring on the branch, add [χ]tiz to
the end of b (analogously for ¬3i), and then add a fresh occurrence of
[2iχ]t to the end of b. If, however, all possible [χ]tiz already occur on the
branch, do nothing (not even checking off the original boxed formula).

VII If [ψ]s is [@iχ]t, add [χ]titi to the end of b (analogously for ¬@i).

Once this procedure is completed for each open branch b through [ψ]s, mark
that formula as used. This completes stage n + 1. Now, either the system-
atic procedure resulted in a closed tableau, producing a proof; the procedure
terminated, producing an open branch; or it does not terminate, producing a
possibly infinite open branch.

Let b be a complete open branch of a tableau T if any application of a rule
to an indexed formula occurring on the branch would only introduce indexed
formulas already occurring on it. In order to prove completeness we show
that if b is any complete open branch of a tableau, then b is satisfiable in
an n-dimensional sequence model constructed out of the formulas and index-
sequences occurring on b. Once completeness is established we come back to
the case where the systematic procedure does not terminate.
Definition 2.5 We define a frame Fb = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) induced

by b as follows. Let the set of indices in b be S = {x | for some s ∈
b and some i, x = si}, and let W = Sn. For every s, siz ∈ W , set sR2i

siz, and
when z = si, set sR@i

siz, too. A model Mb = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n, V ),
based on Fb, is defined as follows: for each p ∈ PROP, let s ∈ V (p) provided
that [p]s occurs on b; otherwise set s /∈ V (p).

It is simple to verify that the frames defined above are in fact n-dimensional
sequence frames. The following lemma is then established by induction on
formulas:
Lemma 2.2 (Truth lemma) Let b be a complete open branch of a tableau.
Then, let Fb = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n) be a frame induced by b, and

Mb = (W, (R2i
)1≤i≤n, (R@i

)1≤i≤n, V ) a model based on Fb. For every indexed
formula, [ϕ]s,
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[ϕ]s occurs on b⇔Mb, s � ϕ.

Theorem 2.2 (Completeness) If ϕ is valid on the class of n-dimensional se-
quence frames F, then ϕ has an n-dimensional tableau proof.

Proof. We prove the contrapositive. Suppose ϕ does not have a tableau proof,
in which case any tableau T beginning with [¬ϕ]s remains open. Let b be a
complete open branch of T such that [¬ϕ]s occurs on b. By Lemma 2.2, there
is an n-dimensional sequence frame Fb = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n), induced

by b, and index-sequence s ∈ W , such that for an n-dimensional sequence
model, Mb = (W, (R2i

)1≤i≤n, (R@i
)1≤i≤n, V ), based on Fb, we have Mb, s 2 ϕ.

Consequently, ϕ is not valid on the class of n-dimensional sequence frames
F.

n-dimensional tableaux can be easily adapted for n-dimensional sequence
frames with distinguished elements. For an index x, let x be that index-
sequence s = (x1, ..., xn) for which xi = x for all 1 ≤ i ≤ n. Then a tableau
proof in this case for a sentence ϕ is a closed tableau for [¬ϕ]x. The soundness
and completeness results above (as well as the decidability argument below)
are also straightforward to adapt.

2.3 Decidability

In this section we prove decidability for S@n by showing that the systematic
tableau procedure used to prove completeness is in fact a decision procedure.
For this purpose we can adapt the argument in Fitting (1983: 410-413). Say
we are attempting a proof by way of the systematic procedure described above.
However, we now modify the procedure so that no branch contains multiple
occurrences of the same indexed formulas: if the procedure says we should add
an indexed formula to the end of a branch that already contains an occurrence
of it, refrain from adding the repeated occurrence of that indexed formula.
This involves a simple modification to our step VI above—which is completely
analogous to Fitting’s (1983: 411). Now, we prove that the (modified) sys-
tematic procedure we have described guarantees termination for n-dimensional
tableaux, whereby they either deliver a proof or a countermodel.
Proposition 2.1 (Termination) Let ϕ be an L@

n -formula. A systematic at-
tempt to prove ϕ terminates.
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Proof. For a contradiction, suppose a systematic attempt at proving ϕ never
terminates. Then there is a sequence T0, T1, ... of tableaux which successively
properly extend each other. Let T be their limit, i.e.

T =
⋃
n≥0 Tn.

Then T is a finitely branching infinite labeled tree. Hence, it follows by König’s
lemma that T has an infinite branch, say, b. Consider the set Σ = {s | [ψ]s ∈
b for some formula ψ}. Because b is infinite, the set Σ must be infinite, too.
Otherwise, the set of indexed formulas, say, Φ, occurring on b would be finite,
since Φ ⊆ sb(ϕ) × Σ, where sb(ϕ) is the set of subformulas of ϕ, which is
itself finite. Moreover, because no multiple occurrences of the same indexed
formulas are allowed, it is not possible for some index-sequence in Σ to occur
infinitely many times postfixing a formula on b.

Let the height of an index-sequence s, written height(s), be the greatest
natural number occurring in s, and for every k ∈ N, define Σk = {s | s ∈
Σ and height(s) = k}. Then we let the set Σ of all index-sequences on b be
the union of all sets Σk. There are two cases that could allow Σ to be infinite:

(1) For some height j, card(Σj) = ℵ0. But this is impossible. Consider the
set Sj = {s | height(s) = j} of all possible sequences (with length n) of height
j. Note that card(Sj) = jn − (j − 1)n. Since card(Sj) is finite, and Σj ⊆ Sj,
there is no height j such that card(Σj) = ℵ0.18

(2) For each height j, card(Σj) < ℵ0. Because Σ is infinite, and Σ is the
union of all Σk, each of which is of finite cardinality, there must be infinitely
many heights j such that Σj 6= ∅. Let the modal degree of a formula occurring
on b be the number of modal operators occurring in that formula. Because
the modal degree of formulas gets smaller as the index-sequences increase in
height, there is a height k such that any formula on the branch b postfixed
by an index-sequence of that height has modal degree 0. And since the modal
rules do not apply in this case, there cannot be further index-sequences on b
with height > k, in which case there are not infinitely many heights j such
that Σj 6= ∅, a contradiction.

Corollary 2.1 (Decidability) S@n is decidable.

Proof. Immediately from the fact that systematic tableau constructions always
terminate in a finite number of steps.

18The original argument for (1) was much more complicated and, in fact, unnecessary, in
light of card(Sj) being finite, as a referee very helpfully pointed out.
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Conclusion
We have developed and proved several results about n-dimensional sequence
modal logics with actuality operators. These are natural generalizations of
two-dimensional modal logics known in the philosophical literature as logics
for a priori knowledge, necessity, and actuality. In particular, the structures
investigated here were shown to be extensions to any finite dimension of the
structures studied in Fritz (2014) for the system 2Dg. The completeness
argument from Fritz was also generalized to any finite dimension, and it can
now be seen as a special case of the completeness proof presented in §1.3 by
just setting n = 2 (given that @1 is directly eliminable from the language).
Additionally, we have developed sound and complete tableau calculi for the
logics herein considered, and used these to show decidability by means of a
systematic tableau construction. There are, of course, many questions left
open by the present paper which can be settled by future research, namely,
questions in proof-theory, model-theory, and even in complexity theory. Some
examples of these include the following:

• Fritz’s axiom system 2Dg was naturally generalized for any arbitrary
dimension, and the tableau calculi presented here also involved a natu-
ral generalization of tableaux for basic modal logic. Is there a natural
generalization for n dimensions of the hypersequents developed in Re-
stall (2012) for two-dimensional modal logic? What about different proof
systems for modal logic such as natural deduction systems?

• What are the n-dimensional modal logics generated with multiple actu-
ality operators such as A and D? There are many possibilities here, in-
cluding classes of frames defined with a single distinguished point z ∈ S,
and so formulas in the scope of D@n would be evaluated relative to the
generalized diagonal point (z, ..., z); or even frames with a distinguished
point (z, ..., z) for a language containing A, and so any formula in the
scope of A would be evaluated relative to that point. It is expected that
the main theorems proved here, such as completeness and decidability,
would transfer to these cases, although it would be interesting to com-
pare the expressive power of such languages relative to distinct notions
of validity. One relevant question would be under which circumstances
these actuality operators are eliminable from their respective languages,
that is, whether the eliminability of the actuality operator, for instance,
from the basic (one-dimensional) modal language when real-world valid-
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ity is assumed (see, for example, Hazen et al. (2013)) carries over to
n-dimensions.

• Antonelli and Thomason (2002) proved that adding propositional quan-
tifiers to a modal logic with two S5 modalities results in a system that is
(recursively) intertranslatable with full second-order logic. What about
in this framework? Even though 21 is an equivalence relation, any 2i,
for i > 2, is not. So, in case there is a translation, it has to be modi-
fied accordingly, for the procedure described by Antonelli and Thomason
does not seem to generalize for S@2 (or S@n) with propositional quan-
tification. Still, is there any recursive translation with full second-order
logic, such as in Antonelli and Thomason’s case, that shows second-order
S@2 and hence S@n (1 < n) to be undecidable?

• Even though the validity problem for n-dimensional sequence modal log-
ics was shown to be decidable, what is its complexity?

• Is the sequence modal logic of ω-dimensions complete or decidable?

• Standefer (forthcoming) investigates relevant logics with the actuality
operator. It would be interesting to see the relevant counterparts of
multidimensional modal logics with, possibly, many actuality operators.
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