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Abstract
Objective: To evaluate the potential of arterial spin labeling (ASL) as an alternative to FDG-PET in the
diagnosis of disorders of consciousness (DOC), we conducted a comparative study of the two
modalities.
Methods: A total of 36 DOC patients (11 female; mean age = 49.67 ± 14.54 years) and 17 healthy
control (HC) participants (9 female; mean age = 31.9 ± 9.6 years) underwent both FDG-PET scans that
measure metabolism via glucose uptake and ASL scans that measure cerebral blood flow (CBF). CBF
and metabolism in DOC and HC were compared, globally and for seven functional networks.
Comparability of the two modalities was estimated using Spearman partial correlation for both global
and network levels. Furthermore, a support vector machine (SVM) algorithm was used to train two
classifiers to distinguish DOC patients from HC with normalized CBF or metabolism values from the
seven networks. Performance of these classifiers was first evaluated through leave-one-subject-out
(LOSO) cross-validation within their respective modalities. Subsequently, cross-modal validation was
conducted: testing the ASL-trained classifier with PET data (ASL-to-PET validation) and vice versa
(PET-to-ASL validation). Performance of each classifier was assessed using receiver operating
characteristic (ROC) analysis, with area under the curve (AUC) as the metric.
Results: Both modalities showed agreement in decreased CBF and metabolism in DOC patients
compared to HC, at both global and network levels. The global brain and most networks showed
significant positive partial correlation between CBF and metabolism. SVM classifiers, utilizing activity
from seven networks as features, performed well in the both LOSO cross-validation (ASL-trained
classifier: accuracy = 83.02%, AUC = 0.95; PET-trained classifier: accuracy = 98.12%, AUC = 0.98)
and cross-modal validation (ASL-to-PET validation: accuracy = 84.90%, AUC =0.92; PET-to-ASL
validation: accuracy = 73.58%, AUC = 0.93).
Conclusion: Our results demonstrate that ASL provides information comparable to FDG-PET for DOC
patients; moreover, classifiers trained on ASL data perform comparably well to those trained on FDG-
PET data. Therefore, ASL could be a valuable alternative to FDG-PET in the clinical diagnosis of DOC,
especially in light of its advantages: ease of acquisition, avoidance of radiation exposure, brevity of
scanning time, and lower-cost.

GLOSSARY
ASL = arterial spin labeling; AUC = area under the curve; CBF = cerebral blood flow; CRS-R =
Coma Recovery Scale-Revised; CSF = cerebrospinal fluid; DOC = disorders of consciousness; DAN =
dorsal attention network; DMN = default mode network; FDG-PET = [18F]-fluorodeoxyglucose-
positron emission tomography; FPN = frontoparietal network; LN = limbic network; MCS =
minimally consciousness state; pCASL = Pseudo-Continuous Arterial Spin Labeling; ROC = receiver
operating characteristic; ROIs = regions of interest; SMN = somatomotor network; SVM = support
vector machine; UWS = unresponsive wakefulness syndrome; VAN = ventral attention network; VN =
visual network.
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INTRODUCTION

Disorders of consciousness (DOC) are characterized by a reduction in or absence of awareness of
oneself and the surrounding environment, typically caused by traumatic brain injury, cerebrovascular
accident, hypoxia or anoxia1. The Coma Recovery Scale—Revised (CRS-R)2 can be used to classify
these patients based on their behavioral features into either unresponsive wakefulness syndrome (UWS)
patients3, who suffer complete loss of consciousness, or minimally consciousness state (MCS) patients4,
who exhibit some, but often unstable, behavioral indications of awareness. Accurate diagnosis of DOC
is essential to determining appropriate treatment and prognosis, as well as improving quality of life for
patients. Despite the promising performance of 18F-fluorodeoxyglucose positron emission tomography
(FDG-PET) in diagnosing DOC patients by measuring cerebral glucose metabolism5–11, its high cost,
the need to administer a radioactive tracer, the speed of tracer decay, and other factors combine to limit
its clinical application.

Use of arterial spin labeling (ASL) to quantify cerebral blood flow (CBF)12,13 has shown promise as a
non-invasive alternative to FDG-PET in measuring neuronal activity in healthy individuals14–16. ASL
possesses several advantages, making it a viable option for clinical usage: it is nonradioactive and can
be carried out at relatively low cost, with a brief acquisition time, on MRI scanners that are widely
available, and it does not require fasting. Studies have also shown that ASL can identify brain
abnormalities that are also identified by FDG-PET; these include markers of neurodegenerative
diseases such as Alzheimer's disease and frontal-temporal dementia17–20. Of direct relevance to our
investigation, several brain regions with impaired CBF in DOC patients, such as the prefrontal and
posterior cortices, comport with FDG-PET findings for DOC patients5–11,21,22. However, direct evidence
for the conjecture that ASL can substitute for FDG-PET in the diagnosis of DOC patients is insufficient.
Accordingly, this study investigates the DOC diagnostic comparability of these two modalities.

To achieve this aim, we collected ASL and FDG-PET data from both DOC patients and healthy
controls (HC). At the global level, we compared average CBF to an FDG-PET metabolic index
between DOC and HC, and evaluated their partial correlation across all participants. Additionally, we
performed the same comparisons for seven functional networks23. To compare the clinical performance
of the two modalities, we used normalized metrics from the seven networks as features to train support
vector machine (SVM) classifiers. Leave-one-subject-out (LOSO) cross-validation and cross-modal
validation were used to evaluate classifier performance. Finally, receiver operating characteristic (ROC)
analysis was conducted to estimate the classification performance for each validation method. Fig.1
illustrates the overall processing procedure.

(Figure 1)

METHODS

Patient Recruitment
Eighty-one DOC patients were recruited. Of these, 36 completed the required combination of MRI and
FDG-PET scanning and had usable data (11 female; mean age = 49.7 ± 14.5 years). Of these 36
patients, 33 were classified as UWS and three as MCS. Clinical assessment was conducted by qualified
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physicians and others specifically trained in use of the CRS-R instrument. Assessments were repeated
multiple times at different times of day and under varied circumstances, with patients in a sitting
posture where possible. The etiologies of DOC included traumatic brain injury, cerebrovascular
accident, hypoxia, anoxia, and carbon monoxide poisoning. Further information regarding patient
diagnosis can be found in Table 1. Additionally, 17 healthy individuals (9 female; mean age = 31.9 ±
9.6 years) were recruited as a control group. None of the control participants had a history of
neurological or psychiatric disorders, nor were they taking medication at the time of the scan.

(Table 1)

This study was approved by the TMU-Joint Institutional Review Board (N202204087 and
N202109034). Informed, written consent was granted by HCs and by family members or legal
guardians of DOC patients. DOC patients were recruited from all parts of Taiwan, under the aegis of
Taipei Medical University—Shuang Ho Hospital’s Brain and Consciousness Research Centre.

Data acquisition.
FDG-PET data were acquired on a GE Discovery ST PET-CT scanner. HCs were asked to fast for eight
hours prior to the scan session. [18F]-fluorodeoxyglucose (mean dose = 11.8 mCi±1.2 SD) was
administered intravenously, after which participants rested in a darkened room for 40 min. They were
asked to lie with their eyes closed during this time. A 20-min scan was then conducted with the eyes
closed. The same general protocol was used for DOC patients. DOC scans were scheduled for early
morning to approximate an eight hour fast in a manner that did not interfere with their normal care.

ASL data were acquired on a GE MR750 3 Telsa scanner using a standard 8-channel head coil. A high-
resolution T1-weighted anatomical image was acquired first. Following this, CBF images were
acquired using a 3D pCASLASL sequence with a fast spin echo acquisition for vessel suppression (TR
= 5327 ms; TE = 10.5 ms; FoV = 220 mm; slice thickness = 4 mm; slice gap = 0 mm; 38 slices; NEX =
4; labeling duration = 1500 ms; post-labeling delay = 1525 ms; scan duration = 6.63 min). Participants
were instructed to lie still with eyes closed during the scan. Scans were conducted at the same time of
day for HCs but varied for DOC patients, in accordance with clinical and logistic factors. ASL and
FDG-PET data from the HC group were included in a previously published analysis24.

Definition of regions of interest. Identifying small regions within the impaired brains of DOC patients
presents significant challenges. To address this, we targeted a set of specific regions of interest (ROIs),
namely: the total cortical gray matter; seven predefined networks23; and 100 cortical areas allocated to
these networks25. We utilized FSL tools (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) to create individual
ROIs for each participant by wrapping the ROIs from MNI standard space into individual space. The
processing procedures were as follows: First, we extracted the ROIs from the MNI standard brain to
obtain the ROI templates. Next, we registered the FDG and CBF images of each participant to the
individual structural images to obtain the spatial transformation matrix of FDG-to-structure and CBF-
to-structure. We then normalized the individual structural image to MNI standard space to obtain a
structure-to-MNI transformation matrix. The transformation matrices were then inverted and combined
to produce MNI-to-FDG and MNI-to-CBF transforms. These were then applied to align the different
ROI templates to the individual FDG and CBF images.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.07.24311648doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311648
http://creativecommons.org/licenses/by-nc-nd/4.0/


To diminish the influence from cerebrospinal fluid (CSF) and seriously damaged brain tissue on our
results, we excluded these regions from the aligned ROIs. To achieve this, we first utilized the MNI-to-
FDG or MNI-to-CBF transformations to warp the MNI standard CSF template into individual image
spaces. Areas of seriously damaged brain tissue were then manually identified in individual structural
images and warped to the individual FDG or CBF spaces using the structure-to-FDG or structure-to-
CBF transformations, respectively. Finally, areas of CSF and damaged brain tissue were removed from
the ROIs in individual space.

Image quantification and data extraction. To reduce the influence of brain injury on the FDG-PET
images in DOC patients, we adopted a pseudo-quantitative method that involved normalizing cerebral
FDG values to the intensity of the extra-cerebral tissue9. Specifically, cerebral FDG-PET values were
divided by those averaged across extra-cerebral tissue, where the intensity ranged from the 5th to 95th
percentile, to generate a metabolic index image for each participant. The metabolic index within each
aligned ROI was then averaged. For ASL data extraction, the CBF within each aligned ROI was
averaged to obtain CBF for each participant.

Global- and network-level modality comparison. To investigate the relationship between CBF and
FDG metabolism, we contrasted these two modalities between participant groups (HC and DOC) and
calculated correlations at both global and network levels. At the global level, unpaired t-tests were
performed to compare grey matter CBF and the metabolic index between HC and DOC patients.
Spearman partial correlation was then calculated between grey matter CBF and metabolic index across
all subjects A group factor (viz. DOC and HC) was included as a covariate in these correlations so that
outcomes were not driven by the overall between-group differences in CBF and metabolic index. At the
network level, the same unpaired t-test and Spearman partial correlation analyses were conducted for
each network. False discovery rate (FDR) correction was performed for a total of eight unpaired t-tests
and for eight partial correlations.

Classification analysis To explore the potential of ASL as a reliable alternative to FDG-PET in clinical
diagnosis of DOC, we constructed two SVM classifiers with the ASL and PET data and evaluated their
classification performance. Each classifier comprised the CBF or metabolic index values from the
seven networks, giving seven features per individual in each classifier. Since CBF measured by ASL
and metabolism measured by PET have different reference baselines, the SVM classifier trained on
ASL data or PET data could not be directly tested with data from the other modality, making it difficult
to validate ASL as a replacement for PET. Therefore, we normalized the features for each participant by
subtracting the mean and dividing by standard deviation across all features. This normalization enabled
the training of the ASL-based classifier with adjusted CBF features and the PET-based classifier with
adjusted metabolic features. The classifier was initially assessed via LOSO cross-validation within their
respective modalities. Subsequent cross-modal validation involved testing the ASL-trained classifier
with normalized PET data (ASL-to-PET validation) and the PET-trained classifier with normalized
ASL data (PET-to-ASL validation). To further evaluate robustness, classifiers were also trained using
another set of 100 features derived from 100 cortical areas for both CBF (ASL) and metabolic index
(PET). These classifiers underwent the same LOSO cross-validation and cross-modal validation
procedures.
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Performance of all SVM classifiers was analyzed quantitatively using confusion matrices and ROC
analysis to assess their classification accuracy and discriminative ability between DOC patients and
HCs. Specifically, classification accuracy was calculated by adding true positive rates and true negative
rates in a confusion matrix; the area-under-the-curve (AUC) was computed by ROC analysis to
estimate classification performance.

Data Availability. The source data for figures will be publicly available at Zenodo as of the date of
publication.

RESULTS

Global-level modality comparison. Grey matter CBF and metabolic index values for each group are
presented in Table 2. An unpaired t-test showed a decrease in both the metabolic index and CBF for
global grey matter in DOC patients, compared to HC (tPET = 14.88, p < 0.001, FDR corrected; tASL =
12.55, p < 0.001, FDR corrected) (Fig.2A). While controlling for overall group differences, Spearman
partial correlation showed a positive correlation of 0.41 between the mean CBF and mean metabolic
index within grey matter across all participants (two-tailed test, p < 0.05, FDR corrected) (Fig.2B).

(Figure 2)
(Table 2)

Network-level modality comparison. CBF and metabolic index values are shown for each network in
Table 2. Unpaired t-tests showed decreases in CBF and metabolic index in DOC patients, compared to
HC, in all networks (PET: tVN = 14.87, tSMN = 11.89, tDAN = 13.81, tVAN = 13.79, tLN = 14.14, tFPN =
14.78, tDMN = 15.10, p < 0.001, FDR corrected; ASL: tVN = 12.11, tSMN = 11.54, tDAN = 12.22, tVAN =
12.23, tLN = 10.56, tFPN= 12.98, tDMN = 12.71, p < 0.001, FDR corrected) (Fig.3A,B).

(Figure 3)

As shown in Fig.4, most networks showed positive partial correlations between CBF and metabolic
index across all participants (rhoSMN = 0.36, rhoDAN = 0.35, rhoVAN = 0.42, rhoLN = 0.46, rhoFPN = 0.42,
rhoDMN = 0.44; two-tailed tests, all p < 0.05, FDR corrected). The exception was the VN, where no
correlation was found (two-tailed tests, p > 0.05, FDR corrected).

(Figure 4)

DOC and HC classifier performance. Separate SVM classifiers were trained on seven network
features from both the ASL and the FDG-PET data to discriminate between DOC patients and HC.
Performance was tested using LOSO cross-validation and cross-modal validation. The ASL-trained
classifier proved effective at discriminating between the two groups (accuracy = 83.02%; AUC = 0.95;
Fig.5A); likewise the classifier trained on the PET data (accuracy = 98.12%; AUC = 0.98; Fig.5B).
Notably, the ASL-trained classifier also performed well in differentiating between the groups using
ASL-to-PET validation (accuracy = 84.90%; AUC = 0.92; Fig.5C), while the PET-trained classifier
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displayed robust discrimination in PET-to-ASL validation (accuracy = 73.58%; AUC = 0.93; Fig.5D).
The distance from the decision boundary for each individual, reflecting the individual classification
results for each cross-validation approach, is illustrated in the middle column of Fig.5A-D.

(Figure 5)

To further explore classifier performance, we trained classifiers using data from each modality,
extracting 100 features from 100 cortical regions, and conducted both LOSO cross-validation and
cross-modal validation for each classifier. Both ASL-trained and PET-trained classifiers performed well
when differentiating participant groups, as measured through LOSO cross-validation (ASL: accuracy =
98.12%, AUC = 1; PET: accuracy = 100%, AUC = 1) (Fig.6A-B). Moreover, both classifiers exhibited
strong generalizability in cross-modal validation (ASL-to-PET: accuracy = 92.46%, AUC = 1; PET-to-
ASL: accuracy = 77.35%, AUC = 0.99) (Fig.6C-D). These findings suggest that both classifiers evince
robust performance in diagnosing DOC, and that an SVM classifier trained on one modality can
provide classifications comparable to the other modality. Individual classification performance is
shown in the middle column of Fig.6A-D.

(Figure 6)

DISCUSSION

The study reported here investigated whether MRI measures of CBF could be used as a valid proxy for
metabolism in the diagnosis of DOC patients. Decreased CBF and metabolic indices in DOC patients
compared to HCs were observed, both globally and for each of seven networks. Furthermore, positive
correlations between CBF and metabolic indices were observed, both globally and in most functional
networks. Importantly, SVM classifiers performed well when discriminating between DOC patients
and HCs, as shown by the high accuracy rates and AUC values. The ASL-to-PET validation yielded an
accuracy rate of 92.73% and an AUC of 0.94, while the PET-to-ASL validation yielded an accuracy
rate of 87.27% and an AUC of 0.96.

Clinical application of FDG-PET for aiding in diagnosis of DOC patients has been well established.
Previous studies comparing DOC patients to HCs have reported decreased metabolic activity globally
as well as in the DMN, findings that are consistent with this investigation 7–9,26,27. However, the clinical
utility of FDG-PET is limited, because it incurs several costs and risks: exposure to radiation,
complexities pertaining to synthesis and administration of the radioactive FDG tracer, lengthy
preparation (e.g. six to eight hours of fasting) and scanning times, and high cost. ASL, on the other
hand, offers several advantages over FDG-PET: it is non-radioactive, non-invasive, more accessible,
less costly, less time-consuming (approximately six minutes), and doesn’t require a preparatory fast.
Furthermore, evidence suggests that CBF and metabolism are related, at the level of function14–16,28.
Indeed, ASL and FDG-PET investigations of Alzheimer’s Disease have identified similar patterns of
cerebral deficit17–19,28,29, and ASL has proven to be of clinical value in the assessment of several other
brain disorders, such as stroke, post-traumatic stress disorder, and epilepsy29. To the best of our
knowledge, the present study is the first to adduce evidence showing that ASL compares favorably to
FDG-PET in the diagnosis of DOC. In a word, ASL could serve as a viable alternative to FDG-PET to
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aid in diagnosis of DOC.

This study also presents a novel use of the SVM algorithm for classification, when comparing
measurements derived from two distinct modalities (ASL and FDG-PET in this case). Because CBF is
measured by ASL, an MRI technique that involves magnetic labeling of water molecules13, while
glucose metabolism is measured by FDG-PET which involves use of a radio-labelled tracer analogous
to glucose, the two methods are not commensurable. Therefore, it is not possible to validate directly the
SVM classifier trained on one modality dataset to a classifier trained on a distinct modality dataset. To
address this problem and adduce more evidence for the reliability of ASL as a substitute for FDG-PET
in clinical settings, we proceeded as follows: calculate the normalized activity of seven networks for
datasets in both modalities; characterize the contribution rate of each network to the mean activity
across all networks; and unify the baseline activity of all networks across both modalities. By
proceeding in this way, the SVM classifier trained on the normalized network activity in ASL data
could be validated by PET data, and in like manner the SVM classifier trained on PET data could be
used to validate the ASL data. Results derived from using this method provide compelling evidence
that ASL can substitute for FDG-PET in the diagnosis of DOC patients. What is more, we believe this
method could be applied generally, to other investigations that involve classification performance of
incommensurate modalities.

In previous ASL studies of DOC patients, reduced CBF was detected in several regions: the medial
frontal and mid-frontal regions in MCS compared to HC22, as well as the putamen, anterior cingulate
gyrus, and medial frontal regions in UWS compared to MCS21. However, little is known about the
alteration patterns of CBF across multiple networks in DOC patients. In this study, we detected hypo-
perfusion of cerebral blood flow in seven large-scale networks, reflecting an apparent global reduction
of cortical activity that is consistent with the FDG-PET results. Our findings suggest a global reduction
in CBF and metabolism in DOC patients, rather than reduction limited to a single region or network,
such as the DMN, which has been postulated to be a neural substrate for consciousness as well as an
indicator of the likelihood of recovery of a capacity for consciousness30,31.

In short, when comparing DOC patients to HCs, our findings reveal a significant decrease in CBF and
metabolism, both globally and in seven networks. Moreover, machine learning analyses demonstrated
that classifiers trained on either ASL or on FDG-PET data exhibited comparable diagnostic
performance in distinguishing between DOC patients and HCs. These findings suggest a high degree of
similarity between ASL and FDG-PET in diagnostic accuracy. When considering the relative
advantages of ASL over FDG-PET, we propose that ASL may be a viable alternative to FDG-PET for
clinical diagnosis of DOC. The results also highlight the potential utility of this method in the context
of other neurological disorders.
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Table.1 Clinical information for patients with disorders of consciousness.

Subject Number CRS-R Cause Diagnosis

DOC1 5 Anox/Hypox UWS

DOC2 8 CVA UWS

DOC3 9 CMP MCS

DOC4 6 TBI UWS

DOC5 3 CVA UWS

DOC6 6 CVA UWS

DOC7 3 TBI UWS

DOC8 4 TBI UWS

DOC9 5 Anox/Hypox UWS

DOC10 3 TBI UWS

DOC11 4 Anox/Hypox UWS

DOC12 3 TBI UWS

DOC13 5 Anox/Hypox UWS

DOC14 6 Anox/Hypox UWS

DOC15 1 CVA UWS

DOC16 6 CVA UWS

DOC17 3 Anox/Hypox UWS

DOC18 6 TBI UWS

DOC19 5 Anox/Hypox UWS

DOC20 4 TBI UWS

DOC21 5 Anox/Hypox UWS

DOC22 5 CVA UWS

DOC23 21 Anox/Hypox MCS

DOC24 3 TBI UWS

DOC25 6 Anox/Hypox UWS

DOC26 12 TBI MCS

DOC27 6 TBI UWS

DOC28 4 Anox/Hypox UWS

DOC29 1 CVA UWS

DOC30 5 unknown UWS

DOC31 5 TBI UWS

DOC32 5 TBI UWS

DOC33 6 TBI UWS

DOC34 4 TBI UWS

DOC35 5 TBI UWS

DOC36 6 Coma UWS
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UWS = unresponsive wakefulness syndrome, MCS = minimally conscious state. CRS-R = coma
recovery scale - revised. Anox/Hypox=Anoxia/Hypoxia. CVA = cerebrovascular accident. CMP =
carbon monoxide poisoning. TBI = traumatic brain injury.
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Table.2 Mean CBF and metabolic index of ROIs in different group

ROI
CBF (mean  S.D) Metabolic index (mean  S.D)

HC DOC HC DOC

Global gray matter 52.05  10.25 17.70  8.83 9.07  1.25 4.23  1.03

VN 45.10  9.68 14.56  8.00 9.11  1.37 4.11  1.03

SMN 50.45  9.90 18.87  9.01 8.70  1.31 4.47  1.16

DAN 48.06  11.16 15.02  8.13 9.10  1.40 4.27  1.07

VAN 55.64  10.32 19.64  9.85 8.99  1.27 4.27  1.11

LN 48.76  9.71 19.64  9.21 7.39  0.90 3.55  0.93

FPN 58.15  12.04 17.99  9.73 9.68  1.38 4.24  1.19

DMN 56.70  11.19 19.05  9.52 9.15  1.28 4.14  1.05
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Fig.1 Flowchart of data processing procedure. Step 1 involves quantifying the images in both ASL and
FDG-PET data. Step 2 involves comparing the cerebral blood flow (CBF) or metabolic index between
HC and DOC groups at the global level, and performing Spearman’s partial correlation between the
two modalities at the global level. Step 3 involves comparing the CBF or metabolic index between HC
and DOC at the network level, and performing Spearman’s partial correlation between the two
modalities at the network level. Step 4 involves model training and cross-validation for SVM classifiers.
DMN = default mode network, FPN = frontoparietal network, LN = limbic network, VAN = ventral
attention network, DAN = dorsal attention network, SMN = somatomotor network, VN = visual
network.
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Fig.2A) Unpaired t-test of CBF and metaboloc index between HC and DOC in global gray matter
(FDR corrected, *** indicates p < 0.001). B) Spearman’s partial correlation between CBF and
metabolic index across all participants in global gray matter (two-tailed test, FDR corrected, * indicates
p < 0.05).
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Fig.3A) Unpaired t-test of CBF between HC and DOC in seven networks (FDR corrected, ***
indicates p < 0.001). B) Unpaired t-test of metabolic index between HC and DOC in seven networks
(FDR corrected, *** indicates p<0.001).
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Fig.4 Spearman partial correlation between CBF and metabolic index across all participants in seven
networks (two-tailed test, FDR corrected, * indicates p<0.05).
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Fig.5 Performance of SVM classifiers trained with seven network features. A) The ASL-trained and B)
PET-trained classifiers were validated using leave-one-subject-out cross-validation. C) The ASL-
trained classifier was validated with the normalized metabolic index of seven networks in PET data. D)
The PET-trained classifier was validated with the normalized CBF of seven networks in ASL data.
Confusion matrices, individual classification result and ROC curve are displayed for each validation.
ROC = receiver operating characteristic; AUC = area under curve. TPR = true positive rate; FPR =
false positive rate.
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Fig.6 Performance of SVM classifiers trained with 100 features from 100 cortical regions. A) The
ASL-trained and B) PET-trained classifiers were validated using leave-one-subject-out cross-validation.
C) The ASL-trained classifier was validated with the normalized metabolic index from 100 regions in
PET data. D) The PET-trained classifier was validated with the normalized CBF from 100 regions in
ASL data. Confusion matrices, individual classification result and ROC curve are displayed for each
validation. ROC = receiver operating characteristic; AUC = area under curve. TPR = true positive rate;
FPR = false positive rate.
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