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1 | INTRODUCTION

One of the great challenges of modern science is to understand the immense creative powers of thought and
language—our abilities to produce, understand, and communicate a seemingly infinite variety of spontaneous thoughts
and plans, which can be arbitrarily unmoored from present concerns and circumstances. But impressive too is the
immense responsiveness of perception: its expansive ability to reconstruct the immediate conditions in which it finds
itself. Our perceptual systems are capable of representing endlessly varying and novel scenes, consisting of different
arrangements of objects of different shapes, sizes, and textures, changing and interacting over time. We are capable of
discriminating between these complex scenes while also being sensitive to elements that are common across them. The
creativity of thought and language is thought to be powered by the capacity for composition—roughly, the ability to rep-
resent something (that Ida loves Una) by combining more elementary representations (of Ida, Una, and loving). Are
the reconstructive capacities of perception also powered by compositionality?
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Many philosophers have thought that it is the compositional machinery of language or thought that makes possible
our abilities to construct representations of the world. Perhaps without thought, perception is a blooming, buzzing con-
fusion of information (Dretske, 1981, p. 153). Perceptual representations might be simple “templates,” or labels, each
tuned to a specific stimulus and sharing no structure or parts with representations of other stimuli (Gross, 2002). They
might be “blobs”: points in a multi-dimensional psychological similarity space that lacks privileged axes
(Lockhead, 1972). Or perceptual representations might be distributed over uninterpretable “units” in a network—they
might have parts that do not in themselves represent anything (Chalmers, 1992; Smolensky, 1988). Without thought or
language, perception might lack any kind of compositional structure. Another possibility is that insofar as there is
compositionality in perception, it will be similar in form to the type of compositionality that resides in language and
thought (McDowell, 1996). This might be the case, for example, if the role of compositionality in perception is to encode
perceptual content in a format that is readable by cognition (Cavanagh, 2021; Quilty-Dunn et al., 2022).

I will argue that much of perception is compositional in its own right. The compositionality of perception is implicit
in a wide variety of theories in perception science. David Marr once characterized perceptual representations as consti-
tuting a “formal scheme,” comprising a set of elementary representations and “rules for putting them together” (1982,
p- 21). Stephen Palmer argued that “perceptual representations are selectively organized data structures” (1977, p. 442).
More recently, Jacob Feldman has emphasized that “compositional representations are [...] useful and effective mecha-
nisms for representing complex probabilistic phenomena in the environment” (2023, p. 3). But compositionality can
come in a variety of forms. I argue that compositionality in perception is quite unlike the compositionality that is
thought to characterize language and thought. The claim that perception is compositional is best understood not as a
concrete hypothesis that makes specific predictions, but rather, like Bayesianism (Griffiths et al., 2012; Knill
et al., 1996) or neuroconnectionism (Doerig et al., 2023), as a productive theoretical framework for posing and answer-
ing empirical questions about perceptual representations. The question is not simply whether perception is composi-
tional, but how. Answering this latter question can provide fundamental insights into the nature of perception and its
place within the mind.

2 | WHATIS COMPOSITIONALITY?

When one asks about the “composition” of a photograph, a novel, or a mathematical function, one is asking how one
thing depends for certain of its properties on the way it is combined from some separate parts and certain of their prop-
erties. The relevant notions of “thing,” “part,” and “combination” can vary depending on the subject matter (e.g., a rock
song and the temporal arrangement of its musical phrases vs. a sample of rock and its physical aggregation of constitu-
ent minerals), as can the relevant properties (one can ask about a sculpture’s aesthetic composition or its chemical com-
position). Semantic compositionality is specific to representations—roughly, things (sentences, maps, pictures) or
psychological states (perceptions, memories, thoughts) that matter in large part because of what they are about.

A newspaper headline is a representation. Besides being written in letters that have certain shapes and sizes, it con-
veys content about some world event. Your visual state is also a representation. It does not merely involve a set of neu-
rons firing; critically, it also carries content about the shapes, orientations, and motions of the things around you. Some
representations, such as the newspaper headline, have other representations (words) as parts. Perceptual representa-
tions, I will argue, also have parts. Semantic compositionality concerns the relationship between what a whole repre-
sentation is about (its “content”) and what its parts are about. As I emphasize later, this relationship does not directly
concern how a representation is formed or how it is decoded downstream, although these are certainly not independent
of the compositionality of the representation. Semantic compositionality is first and foremost a property of representa-
tions, not of processes.

The concept of a semantically compositional representation has its roots in philosophy of language, logic, and linguis-
tics, and is commonly taken to have originated with the work of Gottlob Frege (b. 1848, d. 1925). It is standardly defined
as follows (Janssen, 2011; Partee, 2004):

Compositional representation: A representation is compositional if and only if its content depends wholly on the
contents of its constituent parts and the way those constituents are structurally combined.

For example, the phrase “red balloon” is a compositional expression. We can characterize the content, or meaning,
of the phrase by noting that it is true of anything that is both red and a balloon. It applies to just these things because
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(i) “red” is an adjective that is true of anything that is red and “balloon” is a noun that refers to the set of things that
are balloons, (ii) “red balloon” is a combination of the adjective “red” and the noun “balloon,” and (iii) in the standard
case, a combination of an adjective, A, and a noun, N, is true of anything that is a member of the set designated by N
and of which A is true (Heim & Kratzer, 1998, pp. 65-67).

More generally, if a representation is compositional, then one can exhaustively characterize its content (what it is
about) by answering what I will call the “Three Cs™:

The Three Cs:

1. What are the elementary, or primitive, constituents of the representation?

2. In what way are the constituents structurally combined?

3. How does the content of a representation depend on the contents of its constituents, given the manner in which they
are combined?

We can also pose the Three Cs for a system as a whole, which is tantamount to asking about the system's “lexicon,”
its “syntax,” and its “compositional semantics,” respectively. A set of representations is a compositional system insofar
as each complex representation in the system is compositional and, moreover, there are common principles—common
answers to the Three Cs—that determine the contents of multiple representations in the system. For example, “white
rabbit,” “square hat,” and “litigious pony” are all governed by the A-N principle.

Content, constituent part, and structural combination all are theoretical concepts. While theorists differ in how they
understand and even label these concepts, most agree on some core points. First, an essential feature of a representation
is that it has the function of being about something. The “content” of a representation—as with the content of a news-
paper headline—determines what it is about and what would be required for the representation to be a correct charac-
terization of the world (Burge, 2014). The content of the sentence “Ida loves Una” is about Ida loving Una, and the
sentence is true just in case Ida does love Una. The content of the monkey's current visual state is about (among other
things) the estimated orientation of the target Gabor patch, and that visual state is accurate insofar as the target Gabor
has that orientation.

Second, much as physical laws determine what molecules are structurally possible given a set of atomic elements,
so structural constraints or “combination rules” (Feldman, 2023) are psychological laws that determine what complex
representations are structurally possible given a set of elementary representations. “Ida loves Una” is a possible sen-
tence in my idiolect because it has the right kind of constituents, combined in the right kind of way. “Ida Una balloon
luft” does not, and so is not a possible sentence in my idiolect (though it is physically possible for me to pronounce and
perceive the physical string). A theory of representational structure (a theory of syntax or grammar) aims to explain
what representations are possible in a system—and therefore available for computing or inferring with—in terms of the
ways representations can, cannot, or must combine to be constituents of a composite representation. A theory of repre-
sentational content (a theory of semantics) aims to explain what those representations are about (Heim &
Kratzer, 1998; Larson & Segal, 1995). In a compositional system, the same principles that delimit which representations
are possible also delimit what those representations are about.

That a system is compositional is not a concrete hypothesis that makes specific empirical predictions. It is a theoreti-
cal framework for formulating such hypotheses. To hypothesize that a system is compositional is simply to say that
there is some way of filling in the Three Cs that explains the space of what can be represented in that system. Specific
predictions are obtained only when one hypothesizes specific values for those three parameters.

Still, it is an empirical question whether compositionality offers a feasible framework for studying a given system.
Filling in the Three Cs is no trivial task. As the formal semanticist Barbara Partee (2014) recounts, prior to the research
programs championed by Noam Chomsky and Richard Montague, many doubted that meaning in natural language
could be explained in terms of the Three Cs (see also Davidson, 1967). Many still doubt it (Pagin & Westerstéhl, 2010).
Beyond language, the claim that thinking and planning are compositional (Fodor, 1975; Quilty-Dunn et al., 2022) has
proven to be controversial. In cognitive science, discussions of compositionality have largely focused on language and
thought, occasionally touching on the possibility that “high-level perception”—perceptual capacities such as object rec-
ognition that sit at the interface with language and thought—might involve compositional representations. I will argue
that in fact a great deal of perception science operates under the working assumption that perceptual representations,
at virtually all levels of processing, are compositional. This assumption of compositionality is often implicit and
unacknowledged. We can better evaluate and design studies of perceptual representations by making explicit the com-
mitment to compositionality as a working framework. I focus here on vision.
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3 | COMPOSITIONALITY IN VISION

Much of vision is compositional. Vision science contains a host of hypotheses about how one type of stimulus feature is
represented or coded “in terms of” other features. These constitute hypotheses about how one representation is com-
posed of others (Figure 1). Here are some examples:

« A representation of a surface's orientation in depth is composed from representations of its slant and ftilt
(Nguyenkim & DeAngelis, 2003; Stevens, 1983).

» A representation of an element's motion is composed from a representation of the common motion that it shares
with other elements with which it is grouped and a representation of the element's residual motion (Gershman
et al., 2016; Johansson, 1973).

« A representation of visual texture is composed from representations of summary statistics of orientation and other
features (Balas et al., 2009; Portilla & Simoncelli, 2000).

« A representation of an object's orientation relative to an extrinsic object (e.g., the orientation of my pen on the note-
pad) is composed from representations of “(a) a correspondence between object axes and external axes, (b) the tilt of
the object axes relative to the external axes, and (c) the relationship between the polarity of the object axes and the
polarity of the external axes” (McCloskey et al., 2006, p. 685).

» A representation of an object in vision and visual memory (an “object file”) is composed from representations of
features—including its orientation, motion, texture, and so on—perhaps with a separate “index” for the object that is
invariant across feature changes (Green & Quilty-Dunn, 2017; Kahneman et al., 1992; Pylyshyn, 1989;
Treisman, 1986).

« A representation of a scene is composed from representations of objects and their relations (Biederman et al., 1982;
Hafri & Firestone, 2021; V0, 2021; Zhu & Mumford, 2006), or from representations of summary statistics of features
such as the mean depths of surfaces within the scene (Greene & Oliva, 2009).

Even if, as is very likely, none of these hypotheses is exactly right, that they all presuppose compositionality suggests
that this is a productive framework for honing in on the truth. In the rest of this section, I look at how compositionality

FIGURE 1 Vision is compositional. A spinning object moving through the scene is represented in terms of (among other things) its
shape, 3D orientation, and motion, which themselves may be represented, respectively, in terms of configurations of shape parts, slant and
tilt, and common and residual motion vectors.
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structures the way many researchers have investigated one of the fundamental problems in vision science: how humans
and primates represent shape.

3.1 | Compositionality in shape perception

Standard approaches to shape perception assume compositionality as a working principle. Here, I survey some different
hypotheses concerning the Three Cs of visual shape representation (Figure 2; Table 1). I do not mean to imply that
these accounts are all equally likely to be true, only that they all fall under the broad church of compositionality. Should
one hypothesis be more well-supported than the others, it would reflect something about how shape representations are
compositional and not just that they are. For the sake both of simplicity and of looking beyond high-level perception, I
focus on accounts of how the two-dimensional outlines of things are represented in “mid-level” vision, which is con-
cerned with representing cohesive figures and groups within a scene (Elder, 2018; Todd & Petrov, 2022; see also
Lande, 2023).

“Part-based” accounts of shape perception hold that the perceptual representation of a shape is composed from con-
stituent representations of parts of that shape and that structural relationships between constituents reflect configural
relationships between the corresponding parts. For example, according to “contour-based” part theories (Figure 2a—c;
Table 1a-c), the relevant shape-parts are segments along the object’s outline, or bounding contour. Some models take
the constituents to be representations of local oriented edges (Elder & Goldberg, 2002; Geisler et al., 2001). Most
take the constituents to be representations of curved segments, whether just the convex segments or bumps
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FIGURE 2 Schematic illustrations of different compositional models of two-dimensional shape representations. Dashed lines indicate
constituency. Solid lines indicate structural relationships between co-constituents—for example, that one representation precedes another
within an ordered sequence. Some constituents decompose further into representations of orientation, location, size, and so forth. See
Table 1 for corresponding combinatorial constraints and their semantic import. (a) An edge code, in which shape representations are
composed from an ordered sequence of representations of oriented line segments (Elder & Goldberg, 2002; Geisler & Super, 2000). (b) A
minima or convexity code, in which shapes are represented in terms of convex segments that are segmented at curvature minima, that is,
dents or points of extreme concavity (Cohen & Singh, 2007; Hoffman & Richards, 1984; Richards & Hoffman, 1985; see also Bertamini &
Wagemans, 2013; Haushofer et al., 2008; Liu et al., 2010; Schmidtmann et al., 2015). (c) A constant curvature code, in which shapes are
represented in terms of segments of constant curvature (Baker et al., 2020; Kellman et al., 2013; Pasupathy & Connor, 2001). (d) A medial
axis code, in which a shape is represented in terms of branching axes of symmetry (Blum & Nagel, 1978; Feldman et al., 2013; Feldman &
Singh, 2006; Green, 2023; Kimia, 2003). (e) A Fourier descriptor code, which represents shape in terms of the amplitude of the shape's
curvature at different frequencies (Cortese & Dyre, 1996; see Elder, 2018). (f) A formlet scheme in which shapes are coded in terms of
sequences of warping transformations applied to an embryonic template shape (Elder et al., 2013; see also Leyton, 1988, 1992) (f is adapted
from Elder et al., 2013, p. 5 with kind permission from Elsevier).
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Compositional schemes for representing shape differ in (1) what they take to be the constituents of shape representations, (2)

how those constituents can be combined (including the type of structural relations they can stand in when combined—their “form”—and

the constraints they must satisfy to stand in those relations), and (3) how the content of the whole shape representation is derived from the

contents of its constituents and their manner of combination.

System
(a) Edge code

(b) Minima/
convexity
code

(c) Constant
curvature
code

(d) Medial
axis code

(e) Fourier
code

(f) Formlet
code

(1) Constituents

Representations of oriented edges,
composed from representations of
+ Orientation

» Location

« Size

Representations of convex contour
segments, bounded at extreme points
of concavity, composed from
representations of, for example,

» Curvature

+ Skew

» Size

Representations of constant
curvature segments, composed from
representations of

« Turning angle

« Extent

« Scale

Representations of local axes of
symmetry, composed from, for
example, representations of points
along the axis

Representations of amplitude and
phase at particular frequencies

« Embryos: representations of basic
template shapes

« Formlets: representations of
warping transformations with a
specific location, magnitude, and
scale

Note: See Figure 2 for illustrations of these different schemes.

(2) Combination

« Form: Ordered sequence (or cycle)
« Constraint: Good continuation

» Form: Ordered sequence (or cycle)
» Constraint: Good continuation

« Form: Ordered sequence (or cycle)
« Constraint: Good continuation

« Form: Hierarchical tree in which
each constituent may be adjoined
by a set of secondary constituents
that represent protruding axes

» Constraints:

o Smoothness
o Simplicity

» Form: Ordered sequence

« Constraint: Constituents are
ordered from coarsest to finest
frequencies

» Form: Ordered sequence

« Constraint: Initial constituent is
an embryo shape; subsequent
constituents are formlets

(3) Content

A shape that has each represented
edge as a part, such that adjacent
constituents represent neighboring
edges

A shape that has each represented
segment as a part, such that adjacent
constituents represent neighboring
convex parts

A shape that has each represented
segment as a part, such that adjacent
constituents represent neighboring
parts

A shape each part of which is roughly
symmetrical about a represented axis
and where the arrangement of axes
reflects the hierarchical organization
of constituents

A shape that results from the
superposition of the different
frequency components

A shape that results from the
sequential application of warping
transformations to the embryonic
shape

(Hoffman & Richards, 1984; Richards & Hoffman, 1985; De Winter & Wagemans, 2006; Schmidtmann et al., 2015;
Figure 2b), or segments of constant curvature that approximate parts of the object's contour (Baker et al., 2020; Kellman
et al., 2013; Pasupathy & Connor, 2001; Figure 2c). These part-representations themselves decompose further into rep-
resentations of features such as curvature, size, and so on.

Many contour-based schemes assume that shape representations have the form of ordered sequences or strings
(in the case of closed figures, cycles) in which one part-representation is structurally adjacent to another (e.g., Elder &
Goldberg, 2002; Figure 2a-c; Table 1a-c). Standardly, whether two representations can combine as adjacent constitu-
ents is a function of whether they represent segments as having positions and orientations that are relatively collinear
and nearby (Boucart et al., 1994; Elder, 2018; Field et al., 1993; Kellman & Fuchser, 2023; Khuu et al., 2016). This com-
bination rule reflects the traditional Gestalt principle of “good continuation” (Lande, 2021). Given this rule, if two part-
representations are structurally adjacent, this signifies that the represented parts are topologically adjacent and more or
less well-aligned. So, the constituents contribute content about the parts of the shape (their curvature, size, and so on),
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and the structural relationship between the constituents (the manner in which they are combined) contributes content
about the relative positions and alignment of those parts (Lande, 2023).

Rather than representing an object's shape in terms of segments of its boundary, “region-based” representations
code shape in terms of features of the bounded regions, such as their axes of symmetry. For example, your palm and
your fingers are each roughly symmetric about their own axes. A “medial axis representation” codes the shape of your
whole hand in terms of these different local axes of symmetry (Blum, 1973; Feldman et al.,, 2013; Feldman &
Singh, 2006; Kimia, 2003; Figure 2d; Table 1d). As Green (2023) and Hafri et al. (2023) emphasize, medial axis represen-
tations are compositional. A medial axis representation of a shape has a tree-like structure. The main body of a shape
(e.g., the palm of a hand) is represented in terms of a main axis. The representation of this main axis is adjoined by a
set of constituents that represent the axes of protruding parts (e.g., the fingers). Each of these may in turn be adjoined
by sets of constituents that represent further offshoots. Each axis is itself coded, for example, as a sequence of points
(Feldman et al., 2013, p. 57). A smoothness constraint entails that an axis representation is more likely to decompose
into a collinear set of points (related by shallower turning angles) than a ragged or twisty set of points, and a simplicity
constraint entails that there is a fixed cost to adjoining axes to a shape representation. While the constituents of a
medial axis representation carry content about the local axes around which parts of the shape are symmetrical, the spe-
cific way the axis representations are combined contributes content about how the represented shape-parts are related,
for example, which regions protrude from which others. So, as Green writes, “The syntactic structure of a [medial axis]
representation mirrors [...] relations among parts of the shape it represents” (2023, pp. 10-11).

As Green notes, compositional theories of shape representation are not all part-based (2023, pp. 40-41). For exam-
ple, work in computer vision as well as some studies in biological vision appeal to Fourier descriptors (Figure 2e;
Table 1e), which are a global contour-based scheme for representing shapes (Cortese & Dyre, 1996; Elder, 2018,
pp. 436-437). Rather than representing a shape piecewise in terms of features of its distinct segments, a Fourier code
consists of constituents that represent the phase and amplitude of a whole outline's curvature at different frequencies,
from coarsest to finest. The represented shape is the superposition of all these frequency components.

In contrast to the above “static” models of shape perception, “process-historical” schemes represent shape in terms
of the process, or series of transformations, from which the shape could be generated (Leyton, 1988, 1992; Sprite
et al., 2016). For example, in a “formlet” scheme (Elder et al., 2013; Figure 2f; Table 1f), a shape representation has the
form of an ordered sequence, where an initial constituent represents an embryonic shape such as an ellipse and other
constituents represent localized warping transformations or distortions to the shape. On some process-historical
schemes, each spatial “part” of a shape corresponds to a specific sequence of transformations. These schemes are “part-
based” only in a loose sense, for the shape's parts are neither represented as contour segments nor as regions—rather,
“A part is a process!” (Leyton, 1992, p. 31).

This brief survey is not meant to suggest that each of the schemes mentioned above is equally plausible or well-
supported. But it is striking that they all presuppose the compositionality of shape representations. Where they differ is
in what they take to be the constituents, combination rules, and content rules of those representations—that is, how
they answer the Three Cs. Compositionality offers a framework for articulating these schemes and their differences. It
also provides a framework for evaluating them.

3.2 | Diagnosing structure

Though a great deal of experimental ingenuity may be required to tease apart alternative answers to the Three Cs, there
is tacit consensus about what kinds of tests would in principle help to evaluate those alternatives. The experimental
logic for tests of constituency and combinability (I set aside tests of content) rest on a few defeasible principles
(Lande, 2021; Schwartz & Sanchez Giraldo, 2017). Making these principles explicit can encourage more systematic
research on the Three Cs of shape perception, not to mention the perception of other features such as texture and
motion.

1. The occurrence of a representation requires the occurrence of its constituents.
Without the parts, you cannot have the whole (Fodor & McLaughlin, 1990, p. 198; Schwartz & Sanchez

Giraldo, 2017, p. 6). For example, if a shape representation is “made out of” certain edge representations (Figure 2a),
then if those edge representations are unavailable the shape representation that they compose will be unavailable too.
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Introducing noise to a shape's edge elements should therefore diminish the sensitivity with which a perceiver detects
and discriminates the overall shape. So, the hypothesis that shape is coded in terms of oriented edges predicts that sub-
stantial perturbations to local edge information should reduce sensitivity to the overall shape. This prediction is dis-
confirmed by experiments showing that shape discrimination can be quite resilient to variations in local edge
information so long as overall curvature information is preserved (Baker & Kellman, 2018; Boucart et al., 1994).

By contrast, curvature-based codes predict that masking curvature information would substantially impact shape
representation. If shapes are represented in terms of curvature, then noisy curvature representations would mean noisy
shape representations. This prediction has been borne out with multiple stimuli and paradigms (De Winter &
Wagemans, 2006; Gheorghiu & Kingdom, 2007; Habak et al., 2004; Schmidtmann et al., 2015), suggesting that even if
local edge orientations can be cues to shape, at some processing stage shape is coded in terms of curvature.

Suppose that the shape of a hand is coded in terms of the curvature of the hand's outline. Does each finger get its
own constituent in the representation of the hand? What about different parts of each finger? To answer this sort of
question, we turn to a second principle:

2. Distinct constituents are conditionally independent of each other, given that they belong to the same representation.

Put another way, a constituent can be preserved (“reused”) through variation or substitution of the other constitu-
ents with which it is combined. So, to test whether different features or parts of a stimulus receive separate constituents
in the stimulus' representation, one can look at how variability in the representation of one part or feature corresponds
to variability in the representation of another (Garner, 1974; Schwartz & Sanchez Giraldo, 2017, pp. 6-10). If subjects
represent the thumb in the same way no matter the shape, size, or presence of other fingers, then this suggests that the
thumb has its own, dedicated unit in the representation of the hand. For example, selectively masking or adapting sub-
jects to different curved segments of a contour, or to different amplitudes of curvature, reveals both that distinct fre-
quencies and amplitudes of curvature are encoded separately, but also that these properties are encoded separately for
distinct parts (Gheorghiu & Kingdom, 2007; Habak et al., 2004). Likewise, Cohen and Singh (2007) found that subjects
were systematically more sensitive to variation in bumps of a shape's contour (i.e., segments bounded at points of high
concavity) than to variation in other segments along the contour. On the assumption that responses that are based on
one cohesive constituent or “unit” in a representation will be more sensitive than responses based on multiple indepen-
dent constituents (Palmer, 1977), these data speak to a part-based scheme in which distinct segments of a shape receive
distinct constituents in the shape's representation rather than a global scheme such as a Fourier code.

To be clear, one shouldn't expect perfect or absolute independence between separate constituents. One of the
strengths of the compositional framework is that one can express interdependencies, or “co-determination,” among con-
stituents (Lande, 2021; Schwartz & Sanchez Giraldo, 2017; Zhu & Mumford, 2006). The rule of good continuation
reflects the fact that the orientation of one segment along a contour is not completely independent of the orientation of
a neighboring segment—the latter is unlikely to be perpendicular to the former, for example. As a result, if the visual
system is biased to combine representations of two shape segments into a representation of a cohesive shape, then the
orientations of the segments might be represented as more collinear than if the visual system were to treat the segments
as separate (Keemink & van Rossum, 2016; Schwartz et al., 2009). Nevertheless, there are multiple ways in which one
segment could be a good continuation of another and, within that range of alternatives, the represented orientations of
the two segments are approximately independent of each other.

There has been somewhat more focus in vision science on employing the above two principles to identify the sepa-
rate constituents of a representation (the first C) than on specifying the constraints on how those constituents can com-
bine (the second C). An important principle in investigating combinatorial constraints is:

3. Combinatorial constraints determine which representations are possible in the system as a function of how those
constituents are related.

The posited combinatorial constraints should not “under-generate” representations: they should not count as impos-
sible representations that seem to be psychologically possible. Nor should they “over-generate,” counting as possible
certain representations that seem to be psychologically impossible. For example, a prediction of the hypothesis that
good continuation is a constraint on combining contour representations is that without any good continuation at any
spatial scale, you won't be able to represent an integrated contour (Field et al., 1993). This implies that, as Brian Keane
(2018) writes, “for certain element layouts, there is no amount of learning or top-down strategy that will get the
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elements to link together in a spatially precise way” (p. 13). Indeed, while task set can influence which contour seg-
ments in a crowded scene are more likely to be integrated on a given occasion, the represented contours always fall
near or within the range of good continuation (McManus et al., 2011). This is evidence that good continuation is a com-
binatorial constraint on contour representations—that it dictates whether a contour representation is possible as a func-
tion of what its constituents are and how they are related (Lande, 2021).

It is likely that perception employs multiple representational schemes to encode a given property such as shape
(Todd & Petrov, 2022). Systematically applying the above three principles can help not just to confirm or disconfirm
competing hypotheses about the Three Cs, but also to reveal different families of compositional representations, each of
which is explained in terms of its own proprietary set of primitives and combination rules.

Compositionality provides an effective and tractable framework for formulating and testing hypotheses about the
way stimuli are encoded in perception. I have given the study of shape perception as an example, but I also alluded
above to examples in the visual perception of texture, motion, orientation, and so on. A great deal of vision science
works within the framework of compositionality, and this work has been, and will likely continue to be, fruitful. This is
good reason to think that much of vision is in fact compositional. Still, the framework and its experimental logic often
are only implicit in perception research. Making these explicit can encourage more systematic and consistent develop-
ment, testing, and comparison of models, allowing us to better understand how vision is compositional.

4 | DOES VISION HAVE A LANGUAGE?

Some hold that insofar as perceptual representations are compositional, they have a similar form as representations in
cognition and language. It has been suggested that perceptual representations have a “grammar” (Gregory, 1970) or
“logic” (Rock, 1985), that they are like “descriptions” (Hummel, 2013) with “logical predicates” (Feldman, 1997), and
that there is a “language of vision” (Cavanagh, 2021). On a modest interpretation, these claims simply imply that per-
ceptual representations, much like language (according to the standard view in linguistics), are compositional. But, to
reiterate a distinction emphasized by Elisabeth Camp (2007), the claim that perception and language are both composi-
tional does not imply the much stronger conclusion that perception and language are both compositional in the same
ways. By and large, the primitives and combination rules of perception are not very language-like.

Perception lacks much of the expressive power of language, logic, and conceptual thought. Consider, first, the “lexi-
con” of constituents available in perception. There is no evidence for explicit representations of logical relations (not,
or, if ... then ...) in perception (Block, 2023, chapter 3). Moreover, many categories of words and concepts are open
class—you can endlessly expand your stock of nouns and verbs, thing-concepts and property-concepts. Correspond-
ingly, there are few constraints on what a noun (or thing-concept) can represent: a person, a transfinite cardinal, or a
weather event. By contrast, the primitive dimensions along which we can perceptually represent things (orientation,
size, and so on) are arguably quite fixed (Green, 2020). Perception plausibly lacks the open-class types of primitives that
characterize the elements of natural language and conceptual thought.

The expressive power of perception is limited not just by the types of primitives available in perception but also by
the available combination rules (Lande, 2021, 2023). Nouns with quite different meanings can be interchanged within a
sentence without threatening its grammaticality (“Ida loves [Una / aleph-null / the weather]”). In fact, this pattern of
intersubstitutability defines a noun as a syntactic type. There is much less freedom for substitution between perceptual
representations. For example, Green and Quilty-Dunn (2017) argue that visual object files have “feature-specific slots.”
Roughly speaking, an object file can be composed from one shape representation, one orientation representation, one
size representation, and so on. Shapes can be swapped for shapes and orientations for orientations; but shapes cannot
enter into the orientation slot or vice versa (see also Ashby, 2020). In language and thought, though “rectangular” and
“upright” are semantically different, they have the same syntactic role. In perception, “rectangular” and “upright” differ
both in their semantic and syntactic roles. The combination rule of good continuation provides another example. In
language, words can combine only if they agree in relatively abstract features such as person, number, and case. In
vision, contour representations can combine only if they “agree” in spatial configuration, by representing contours with
sufficiently aligned positions and orientations. The compositional roles of perceptual representations are much finer-
grained and domain-specific than those that of nouns and adjectives, say.

The domain-specific form of the perceptual “grammar” endows perceptual representations with an epistemic char-
acter that most linguistic expressions lack. The grammar of language permits us to express unexpected and even contra-
dictory claims. This incurs the risk of saying and thinking highly inaccurate things, but it also enables us to state and
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argue for deep and surprising insights—that the apple and the moon are governed by the same laws of motion, or that
there are infinitely many prime numbers. Perception is notably more conservative. It is unlikely that the motion of the
moon across the sky and the motion of the apple falling to the ground would ever be grouped together visually, while
the sorts of contours that can be represented given the combinatorial constraint of good continuation are just the sorts
of contours that tend to arise in natural scenes (Elder & Goldberg, 2002; Geisler et al., 2001). In language, well-
formedness guarantees neither plausibility nor even meaningfulness (“Colourless green tomatoes sleep furiously”). In
perception, the combinability of representations tends to track more closely the likelihood that the compound represen-
tation would be accurate.

It is often said that the symbols of language have an “arbitrary” connection to their subject matter and can be
understood “according to certain purely syntactic rules” that make no reference to what they mean (Newell &
Simon, 1976, p. 117; see also Fodor, 1983). Rather than signifying round bags of air, the word “balloon” could have
meant transfinite cardinal, and this difference in meaning would not entail any difference in the syntactic form or logi-
cal role of the phrase “red balloon.” The above comments suggest that the grammar of perception, such as it is, has a
much less arbitrary connection to its subject matter than is often claimed for the grammar of a language. An adequate
account of the specific rules by which perceptual representations can be put together may well require understanding
what features of the world those representations are about and the ways in which those features tend to mix together in
the perceiver's environment (for different aspects of this point, see Burge, 2010, pp. 19-25; Neander, 2017, Chapter 8).

One motivation for thinking that compositionality in perception would be like compositionality in cognition stems
from the idea that compositional representations are a way of packaging perceptual content into a format that is read-
able by language and thought (Cavanagh, 2021; Quilty-Dunn et al., 2022). But we have seen that compositionality is
posited throughout vision, including in the mid-level processing of outline shapes, and not just at the high-level inter-
face with cognition. The constituents of orientation, texture, motion, and shape representations may be far removed
from the kinds of features we tend to talk and think about when describing our visual world. Moreover, the composi-
tional principles of perception seem to subserve a central function of perception itself: to accurately represent the distal
causes of sensory stimulations (Graham, 2014; Knill et al., 1996; von Helmholtz, 1925). The perceptual code ensures
that the hypothesis space of perception is well-fitted to its ecological niche, containing representations that are plausible
given the laws and regularities of the perceiver's normal environment and that have constituents that glom onto mean-
ingfully separate sources of variability in the world. By contrast, while constraints of plausibility may guide conceptual
inference, they do not dictate which thoughts are thinkable. The compositional principles governing perception may in
some cases serve to facilitate the interface with language and thought; but in many cases they may be better understood
as subserving endogenous functions of perception itself.

5 | WHAT COMPOSITIONALITY IS NOT

I now want to highlight some claims that are not consequences of semantic compositionality. In perceptual psychology
and computer vision, the term “compositional representation” is often taken as synonymous with “part-based
representation,” whereby something is represented in terms of its parts and their relationships. But semantically com-
positional representations need not strictly be part-based. Visual representations of texture are semantically composi-
tional, but according to one account their constituents represent the statistics of a texture rather than its individual
parts (Balas et al., 2009). Global models of shape perception, such as Fourier descriptors, represent shapes in terms of
features of the whole shape. Language, which is widely thought to be compositional, is rarely part-based. The phrase,
“The 16th President of the United States,” is a compositional representation that is about Abraham Lincoln; but the
constituent, “the United States,” does not represent a literal part of Abraham Lincoln (Block, 1983). If some perceptual
representations are in fact part-based, then that is a substantive fact about the way they are compositional.

Semantic compositionality is a feature of representations, not processes; it is consistent with different ways in which
those representations might be formed and used (Lande, 2021). Talk of “combination” and “composition” might
encourage a picture of processing, according to which the constituents are formed first and then “put together”
(Treisman & Gelade, 1980). But semantic compositionality does not entail an assembly line. By analogy, that the human
body is composed of limbs and other body parts does not mean that it was assembled from those parts, as if the parts
were first individually fabricated and then put joined together on a factory line. Compositional representations may be
susceptible to configural effects, top-down influences, and recurrent processing. Some compositional theories of vision
posit an ‘“analysis-by-synthesis” architecture in which compositional representations are refined through the
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convergence of bottom-up cues and prior expectations and constraints (Yuille & Kersten, 2006). More generally, when
confronted with a particular stimulus, multiple structural representations may be activated and compete with each
other for priority (e.g., Dakin & Baruch, 2009; Li, 1998). Configural factors such as what other stimulus elements are
perceived (Kovacs & Julesz, 1993; Palmer, 1977) as well as “top-down” factors such as familiarity or expectation might
bias one structured representation over the other (McManus et al., 2011; Sassi et al., 2014). Similar points apply to other
compositional systems, such as language. How one parses one part of a sentence can be influenced by the rest of the
sentence as well as by cognitive context (Bever & Poeppel, 2010). In a compositional system, contextual information
can bias which possible combination wins out without violating compositionality.

Moreover, while we can expect attention and memory to be able to operate on any of the constituents of a composi-
tional representation, there is no requirement that they must always make use of all of the structure in a representation
(see Barenholtz & Tarr, 2006). Recognition may succeed (or fail) before each and every constituent of a visual represen-
tation has been matched to representations in memory. For success on some perceptual tasks, such as visual search or
classification, it might suffice for downstream processes to decode the presence of a single task-relevant constituent in a
complex representation while ignoring task-irrelevant constituents, or to decode the structural form of a representation
(e.g., that it is a cyclical ordering of constituents, signaling a closed contour) abstracting from what its specific constitu-
ents are. To probe what the constituents of a representation are, one would ideally use a variety of tasks or employ para-
digms that minimize the fingerprints of specific downstream processes.

Finally, it is helpful to distinguish psychological (or cognitive) representation from neural representation. Psychologi-
cal representations are typically posited as elements of models that explain psychophysical patterns in how individuals
experience and behaviorally respond to stimuli (Burge, 2014; Palmer, 1978). Neural representations are patterns of neu-
ral activity that are investigated through various neuroscientific probes, such as neuroimaging and extracellular record-
ings (Cao, 2022). A central task of cognitive neuroscience is to test “linking hypotheses” that relate the sorts of
representations posited in psychological models to the sorts of representations probed in neuroscience (Baker
et al., 2022; Shea, 2018; Teller, 1984). Instead of presupposing that a compositional psychological representation should
look a certain way in the brain, these linking hypotheses are empirical conjectures that are subject to theoretical evalua-
tion and experimental dis(confirmation). In the case of compositionality, some linking hypotheses are
straightforward—for example, that distinct psychological constituents correspond to distinct cells or neural ensembles
(Vagziri et al., 2009), or that one compositional model of stimuli can jointly predict both neural responses and behavioral
responses (Arun, 2022). But there is no guarantee that the link between psychological compositionality and neural
function will be so neat.

Likewise, while many deep neural network (DNN) models of vision seem to eschew compositionality, DNNs are not
inherently non-compositional. Ongoing work seeks to identify what properties of these networks and their training
regimes might give rise to compositional representations as well as the advantages and challenges of incorporating
structured representations into those networks (Lake et al., 2016; Peters & Kriegeskorte, 2021). Since it is often not
transparent whether a DNN has come to learn representations that are compositionally structured, diagnostics of the
sort canvassed Section 3.2 can be applied to networks, possibly providing evidence of representations with composi-
tional structure like that diagnosed in biological vision (Hupkes et al., 2020; Lepori et al., 2023; Zerroug et al., 2022). In
any case, uncertainty about either biological or computational linking hypotheses does not invalidate the existing psy-
chophysical methods for evaluating hypotheses about the structures of psychological representations. Indeed, such
methods are critical for validating candidate linking hypotheses.

6 | CONCLUSION

Perception involves encoding content or information about the world. In what form is this content represented? I have
argued that perception is compositional: in many cases, the content of a perceptual representation depends wholly on
the contents of its constituents and the manner in which they are combined. Vision science contains manifold models
of how shape, orientation, motion, and other aspects of a scene are “coded in terms of” various features. These models
explain the space of possible representations in a system by answering the Three Cs: what are the constituents, how
can they combine, and what is the semantic import of combining them that way? Compositionality provides a produc-
tive framework for understanding perceptual representation.

There are no guarantees, to be sure, I have not been able to cover non-visual perceptual modalities or cases of
multi-modal perception. Perhaps some perceptual representations are best thought of as atomic templates
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(Gross, 2002), holistic “blobs” (Lockhead, 1972; cf. Kemler Nelson, 1993; Jones & Goldstone, 2013), or ensembles dis-
tributed over “parts” that in themselves “carry no semantic burden” (Chalmers, 1992; Smolensky, 1988). It is an empiri-
cal question how many perceptual capacities are compositional and, for any given capacity, how it is compositional.

I close by highlighting three principal conclusions. First, the view that there is no compositionality in perception
does not sit well with much of contemporary perception science. Second, compositional representations in
perception are markedly different from those in cognition. Structured representations in perception do not simply sit at
the interface with cognition, serving to relay messages in a format readable to it. The form in which perceptual content
is represented supports perception’'s own proprietary ends. Finally, I have stressed that the thesis that perception is com-
positional does not constitute a concrete hypothesis with specific empirical predictions. It instead offers a productive
theoretical framework for posing and answering empirical questions about the nature of representations in a system.
Fundamental insights arise within that framework when one asks not just whether perception is compositional,
but how.
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