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Abstract

Nonrapid eye movement (NREM) sleep is associated with fading consciousness in

humans. Recent neuroimaging studies have demonstrated the spatiotemporal alter-

ations of the brain functional connectivity (FC) in NREM sleep, suggesting the

changes of information integration in the sleeping brain. However, the common

stationarity assumption in FC does not satisfactorily explain the dynamic process of

information integration during sleep. The dynamic FC (dFC) across brain networks is

speculated to better reflect the time-varying information propagation during sleep.

Accordingly, we conducted simultaneous EEG-fMRI recordings involving 12 healthy

men during sleep and observed dFC across sleep stages using the sliding-window

approach. We divided dFC into two aspects: mean dFC (dFCmean) and variance dFC

(dFCvar). A high dFCmean indicates stable brain network integrity, whereas a high

dFCvar indicates instability of information transfer within and between functional net-

works. For the network-based dFC, the dFCvar were negatively correlated with the

dFCmean across the waking and three NREM sleep stages. As sleep deepened, the

dFCmean decreased (N0~N1 > N2 > N3), whereas the dFCvar peaked during the N2

stage (N0~N1 < N3 < N2). The highest dFCvar during the N2 stage indicated the

unstable synchronizations across the entire brain. In the N3 stage, the overall

disrupted network integration was observed through the lowest dFCmean and ele-

vated dFCvar, compared with N0 and N1. Conclusively, when the network specificity

(dFCmean) breaks down, the consciousness dissipates with increasing variability of

information exchange (dFCvar).
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1 | INTRODUCTION

Sleep is associated with the fading of consciousness, with different

states of consciousness being experienced every night during the

various stages of sleep. Currently, sleep is classified into rapid eye

movement (REM) and nonrapid eye movement (NREM) sleep (Iber,

Ancoli-Israel, Chesson, & Quan, 2007). In contrast to the maintenance

of consciousness during REM sleep, the level and content of con-

sciousness in human is lost during NREM sleep (Hohwy, 2009;

Laureys, 2005). NREM sleep can be further categorized into light

sleep (i.e., the N1 and N2 sleep stages) and slow-wave sleep (SWS,

also known as the N3 sleep stage) (Berry et al., 2012; Iber et al.,

2007). With deepened NREM sleep stages, consciousness gradually

decreases (Nir et al., 2013). In analyses of changing consciousness in

NREM sleep, the breakdown and restoration of information integra-

tion are associated with the loss and recovery of consciousness

(Tononi, 2004). The integrated information theory (IIT) originated from

phenomenology, and has been used to identify consciousness and its

association with physical systems (Tononi, 2004; Tononi, Boly,

Massimini, & Koch, 2016). For example, when consciousness fades,

the cortical responses become local (i.e., there is a loss of integration)

or global but stereotypical (i.e., there is a loss of information)

(Tononi & Koch, 2015). According to the IIT, brain network integrity is

critical for information distribution and corresponding consciousness

alterations.

In line with the fading consciousness that occurs during NREM

sleep, neuroimaging studies have used brain functional connectivity

(FC), that is, the functional MRI (fMRI) temporal coactivation between

brain regions (Friston, 2011), to disclose the alterations in network

integrity across NREM sleep stages (Nofzinger, Maquet, & Thorpy,

2013). For example, the brain networks take on a more randomized level

of organization with decreased clustering values in the NREM sleep

stage (Spoormaker et al., 2010). During SWS, the brain network organi-

zations present as segregated network modules (Boly et al., 2012;

Tagliazucchi et al., 2013a), implying a reduced ability for functional inte-

gration (Larson-Prior et al., 2011). However, previous FC studies in sleep

neuroimaging were insufficient to support the IIT on the basis of the

stationarity assumption without dynamic considerations. Moreover, dur-

ing sleep, our brain connections consistently change in a spatiotemporal

dimension, with such change being known as dynamic FC (dFC)

(Tagliazucchi & van Someren, 2017). Although numerous dynamic

methods are available to reveal spatiotemporal brain activities, dFC

using the sliding-window approach (Allen et al., 2012) can be related

to EEG alterations (Chang, Liu, Chen, Liu, & Duyn, 2013) and associ-

ated with arousal (Chang et al., 2016), vigilance state (Thompson

et al., 2013; Wang, Ong, Patanaik, Zhou, & Chee, 2016), and NREM

sleep (Haimovici, Tagliazucchi, Balenzuela, & Laufs, 2017). In princi-

ple, the dFC across brain regions can better reflect the time-varying

signal propagation, or information transfer, during sleep, given that

the traveling spindle oscillations and slow waves between subcortex

and neocortex (i.e., cross-region connectivity) have been found to be

effective in the memory processing in NREM sleep (Czisch & Wehrle,

2009; Mulert & Lemieux, 2009; Steriade, 2003). Stemming from the

active system consolidation, the reactivated memory traces elicited

through hippocampal-cortical dialogs occur in a phase-locked man-

ner, implying a raised instability of cross-region connectivity in

NREM sleep (Buzsáki, 1996; Feld & Born, 2017; Rasch & Born,

2013). Recent studies have provided evidence that the dynamicity of

brain integration across NREM sleep stages is potentially linked with

the spontaneous processes of memory consolidation, emotion regu-

lation, and consciousness variation (Amico et al., 2014; Tagliazucchi,

Carhart-Harris, Leech, Nutt, & Chialvo, 2014). However, such

dynamic alterations of brain connectivity are uncommon in wakeful-

ness, and how dynamic information processing occurs across NREM

sleep stages remains unclear. Based on the literature regarding

NREM sleep, our working hypothesis is that the brain organizations

experience multiple altered scenarios of information processing

across wake–sleep stages and that these different scenarios can be

reflected by the dFC index. To reveal the dFC across wake–sleep

stages, we took a multivariate approach; that is, we took the mean

of dFC (dFCmean) as the measure of network integrity and the vari-

ance of dFC (dFCvar) as the measure of instability in network connec-

tivity. Accordingly, we expected that dFCmean would be decreased

with the disruption of within-network connectivity in NREM sleep,

while dFCvar would be increased with the increased instability of

between-network information processing as NREM sleep deepens.

Furthermore, both dFCmean and dFCvar can be divided into within-

and between-network components that better reflect the informa-

tion integration from network perspectives (Beharelle, Kova�cevi�c,

McIntosh, & Levine, 2012; Tononi, 2004).
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2 | MATERIALS AND METHODS

2.1 | Participants

We recruited a total of 44 healthy young men to sleep naturally in an

MRI scanner at National Yang-Ming University and collected data from

12 participants (age = 22.9 ± 2.5 years) with NREM sleep stages (see

sleep architecture in Table S1). All of the participants were instructed to

sleep for a regular duration of 7–8 hr per night, with consistent sleep

and wake times, for at least 4 days, and the consumption of alcohol or

caffeine-containing foods or drinks was prohibited on the day of the

experiment. The exclusion criteria for the selection of participants were

a habit of taking daytime naps, excessive daytime sleepiness, and a his-

tory of neurological or psychiatric disorders. Before scanning the partici-

pants, we collected their Pittsburgh Sleep Quality Index (PSQI) scores,

including sleep quality, duration, and efficiency, to assess their sleep

quality in the previous month. Before the experiment, each participant

gave informed consent in accordance with the protocol approved by the

National Yang-Ming University Institutional Review Board.

2.2 | Simultaneous EEG/fMRI recording

Simultaneous electroencephalography-functional magnetic resonance

imaging (EEG–fMRI) signals were recorded for each functional scan.

The EEGs were recorded using an MR-compatible system (Brain Prod-

ucts GmbH, Gilching, Germany) with 32-channels, which included

30 EEG channels, one electrooculography (EOG) channel, and one

electrocardiogram (ECG) channel, all of which were positioned

according to the international 10/20 system. The built-in impedance

in each electrode was 5 kΩ and abrasive electrode paste (ABRALYT

HiCl) was used to reduce the electrode-skin impedance to under

5 kΩ. The EEG signal was recorded synchronously with the MR trigger

using Brain Vision Recorder software (Brain Products) with a 5-kHz

sampling rate and a 0.5 μV voltage resolution. A low-pass and a high-

pass filter were set at 250 Hz and 0.0159 Hz, respectively, with an

additional 60-Hz notch filter.

MRI data were collected using a 3T Siemens Tim Trio system (Erlangen,

Germany) using a 12-channel head coil. High-resolution T1-weighted ana-

tomical images (3D-MPRAGE with 192 × 192 × 176 matrix size, 1 mm3

isotropic cube, flip angle (FA) = 9� repeat time (TR) = 1900 ms, echo time

(TE) = 2.28 ms, and inverse time (TI) = 900 ms) were acquired before the

functional scans for localization reference. Customized cushions were

used to minimize head motion during each scan. Functional scans

were subsequently acquired using a single-shot, gradient-recalled

echo planar imaging (EPI) sequence (TR/TE/FA = 2,500 ms/

30 ms/80� , field of view = 220 mm, matrix size = 64 × 64, 35 slices

with 3.4 mm thickness) aligned along the AC–PC line, thus allowing

whole-brain coverage.

The experiment was conducted between 11 p.m. and 4 a.m.

Before undergoing the MRI scans, the participants were tied with a

pneumatic belt and an oximeter to simultaneously record Physiologi-

cal Measurement Unit (PMU) data, which including respiration and

cardiac pulsations. A T1-weighted anatomical image and resting-state

fMRI data were obtained before the sleep session. Participants were

asked to attempt to fall asleep after the scan started. Termination

criteria for the sleep session were (a) a scan time that reached the

125-min limitation for maintaining hardware stability and (b) a partici-

pant being unable to fall asleep for an extended period and choosing

to terminate the session.

2.3 | Data preprocessing

Analyzer 2.0 (Brain Products, Germany) was used to preprocess the

recorded EEG data offline. The preprocessing included down-sampling

the EEG signal to 250 Hz and removing the gradient-induced artifact

(adaptive average subtraction) and the ballistocardiographic artifact

using the algorithm based on the R–R interval that was estimated by

the ECG electrode. The electrodes were re-referenced to the aver-

aged signal of all the EEG electrodes (Lei & Liao, 2017). The sleep

stages were determined by the data from only four electrodes (C3,

C4, O1, and O2). The resting-stage data acquired before each sleep

session was regarded as wakefulness (N0). A licensed sleep technician

from Kaohsiung Medical University Hospital visually scored the sleep

stages (N1, N2, and N3) from the EEG data for every 30-s epoch,

according to the criteria of the American Academy of Sleep Medicine

(AASM) (Iber et al., 2007). Based on the sleep scoring, we extracted

consecutive fMRI data for each of the four wake–sleep stages (includ-

ing N0) in each participant. Each sleep stage contained continuous

fMRI data lasting at least 4 min (96 frames).

All the fMRI data were preprocessed by AFNI, FSL, and SPM. The

data with excessive motion resulting in translation greater than 3 mm,

rotation greater than 3�, and a mean frame displacement (FD) exceeding

0.5 mm were excluded. In the preprocessing stage, all of the fMRI

datasets were subjected to motion correction with the Friston 24-

parameter model (Friston, Williams, Howard, Frackowiak, & Turner,

1996), skull-stripping, slice-timing, despiking, and detrending. For the

anatomical information, native fMRI images were registered to the

native T1-weighted image and segmented into white matter (WM), gray

matter (GM), and cerebrospinal fluid (CSF). The fMRI datasets were spa-

tially normalized to a standard Montreal Neurological Institute (MNI)

template and resampled to an isotropic resolution of 2 × 2 × 2 mm3.

Then, a linear detrend was applied to eliminate any signal drift induced

by system instability. Finally, the effects of nuisance regressors, includ-

ing the six motion parameters, respiration/cardiac pulsations, WM, and

CSF, were removed from the preprocessed datasets. The PMU data

points within each TR were averaged for the physiological denoising.

Since not all participants had intact PMU recordings during both the

awake and sleep sessions, we regressed out the nuisance regressors

whenever applicable (Table S2). The preprocessed data were temporally

bandpass filtered between 0.01 Hz and 0.1 Hz, and then smoothed with

a Gaussian kernel (FWHM = 6 mm) to improve the signal-to-noise ratio.

2.4 | Dynamic functional connectivity analysis

The ROI-based dFC was generated by using the DynamicBC toolbox

and applied separately to the fMRI sessions of each stage (Liao et al.,
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2014). The sliding-window approach (window size = 50 TRs, step

size = 10 TRs) was performed to disassemble the BOLD time course.

If the remaining frames for the sliding-window were less than the

window size, then the data would be discarded for the analysis.

Next, the region-to-region connectivity in each window was calcu-

lated, resulting in multiple time-varying connectivity strengths in

each session (i.e., dFC). Cortical regions were extracted from a 17-

network cortical parcellation estimated in 1000 young adults (Yeo

et al., 2011) and the subcortical regions were from ASEG (Fischl,

Salat, Busa, Albert, & Dieterich, 2002) with a total of 128 ROI nodes,

resulting in 8128 edges in total. The mean BOLD time series of each

ROI was extracted from the preprocessed fMRI data. The mean

BOLD time series of all voxels within each ROI was averaged, and

then the Pearson's correlation coefficients were calculated in a

pairwise manner between the mean time series of all ROI pairs.

These correlation coefficients, considered the dFC strength, were

transformed into Z-scores using Fisher's Z formula for statistical

analysis.

2.5 | Statistical comparison of dFC among sleep
stages

The mean and variance of dFC within every sliding-window for each

nonoverlapped sleep stage were calculated individually for each par-

ticipant. Subsequently, the mean–variance relationship for dFC in

each sleep stage was evaluated with all the connections averaged

over all of the participants. A high strength for the dFC indicated

rich network interaction (Friston et al., 2004), whereas a high vari-

ance in the dFC indicated network connection instability and

the underlying rich information transfer between regions (Peraki &

Servetto, 2004). The dFCvar was further divided into the dFCvar-

within and dFCvar-between, according to the intra-network and inter-

network nodes, respectively.

The changes of the Z-transformed dFC distributions were

described using skewness and kurtosis to estimate their statistical

properties across stages. Skewness is a measure of the asymmetry of

a probability distribution. The formula for skewness is as follows:

skewness=
PN

i=1
Yi − �Yð Þ3=N
s3 , where �Y is the mean, s is the standard devia-

tion, and N is the number of data points. Skewness for a normal distri-

bution is zero, and that for symmetric data is almost zero. Positive

values for skewness indicate data that are skewed right, and vice

versa, where “skewed right” means that the left tail is longer than

the right tail. Elevated skewness for an FC distribution indicates

decreased strong connections (Buzsáki & Mizuseki, 2014). Meanwhile,

kurtosis is a measure of whether data are heavy-tailed or light-tailed

relative to a normal distribution. Data sets with low kurtosis tend to

have light tails or lack outliers. The formula for kurtosis is as follows:

kurtosis =
PN

i=1
Yi − �Yð Þ4=N
s4 , where �Y is the mean, s is the standard devia-

tion, and N is the number of data points.

We used the paired t-test to evaluate the difference in every Fish-

er's Z-transformed dFC between sleep stages. The results were

displayed with family-wise error (FWE) correction using Network

Based Statistics (NBS) (Zalesky, Fornito, & Bullmore, 2010). To high-

light the changes in sleep compared to the N0 stage, we further calcu-

lated the differences in Fisher's Z-transformed dFC between the N0

stage and each sleep stage. We averaged the mean/variance of the

dFC that belonged to the same subnetwork as the within network

mean/variance. In the same way, we averaged the mean/variance of

the dFC for different subnetwork as the between network mea-

n/variance. The 18 subnetworks were defined as the combination of

17-network parcellation (Yeo et al., 2011) and the subcortical regions

(Figure 1).

3 | RESULTS

3.1 | Mean–variance relationship across sleep stages

The dFCmean and dFCvar were calculated for all the connections (8,128

edges). Figure 2a shows the global relationships between dFCmean and

dFCvar across the four wake–sleep stages. The relationship between

dFCmean and dFCvar presented a negative correlation in general, but

the quadratic fitting variables changed across the four stages. The

dFCmean gradually decreased along with the increasing depth of sleep

and reached the lowest level at the N3 stage (Figure 2b), whereas

dFCvar peaked at the N2 stage and reached its lowest level at

the N1 stage (Figure 2c). The distribution properties across the

sleep stages were quantified as the distribution parameters (skewness

and kurtosis) of dFCmean and dFCvar across the four sleep stages.

Compared with the near-zero skewness at the N0 and N1

stages, the skewness of the dFCmean distribution was significantly

increased at the N2 and N3 stages (Figure 2d,e; p < .05 with

Bonferroni correction). In contrast, the dFCvar distribution was signifi-

cantly decreased in skewness and kurtosis in the N2 stage compared

with in the N0 and N1 stages (Figure 2f,g; p < .05 with Bonferroni

correction).

3.2 | Stage-dependent disparity in dFC

Figure 3 illustrates the stage changes in dFCmean and dFCvar in con-

trast to the N0 stage. Significantly higher dFCvar and lower dFCmean

were prominent in deep sleep (i.e., the N2 and N3 stages) compared

with wakefulness. Among 8,218 edges in total, 480 and 1,490 edges

in the N2 stage showed significantly lower dFCmean (Figure 3b, red

dots) and higher dFCvar (Figure 3b, green dots), respectively, com-

pared with the N0 stage. However, for the N3 stage, 2,898 and

254 edges presented significantly lower dFCmean and higher dFCvar,

respectively, compared with the N0 stage (p < .05 with the FWE

correction). Moreover, compared with the N0 stage, 48 and 54 con-

nections in the N2 and N3 stages, respectively, showed both signifi-

cantly decreased dFCmean and significantly increased dFCvar

(Figure 3b yellow dots).
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3.3 | Network-based connectivity across sleep
stages

Figure 4 demonstrates the dynamicity of the within- and between-

network dFCmean and dFCvar across the four sleep stages. Here we

only presented the 17 cortical networks because combining all

subcortical structures into single network might not be representative

of multiverse subcortex functions. Instead, thalamocortical and hippo-

campal-cortical connectivity independently were shown in Figure S1.

For the 17 cortical networks, all of the edges for dFCmean and dFCvar

were averaged within each network (Figure 4a,c for dFCmean-within and

dFCvar-within, respectively). Similarly, between-network dFCmean

(dFCmean-between, Figure 4b) and dFCvar (dFCvar-between, Figure 4d)

were assessed through the node average across the networks. The

dFCmean-within gradually decreased with the increasing depth of

sleep in most of the networks (Figure 4a), including the somatosen-

sory network, dorsal attention network, ventral attention network,

and default mode network (DMN). In contrast, the dFCmean-between

drastically decreased with deepening sleep (Figure 4b). However,

the relationship between the N0 and N1 stages had different

trends across networks, without significant differences. In terms of

connectivity variations, the overall dFCvar-within reached the maximum

value at the N2 stage in most networks (Figure 4c), including the central

and peripheral visual network, sensorimotor network, dorsal and

ventral attention network, cognitive control network, and DMN.

For all of the networks, the dFCvar-between decreased from N0 to N1,

reached the maximum at N2, and then decreased at N3 (Figure 4d).

Compared to the dFCvar-within, the dFCvar-between presented a greater

disparity between the N2 stage and the other stages.

4 | DISCUSSION

In this study, we observed that the multivariate relationship between

the average magnitude of dFC (dFCmean) and the variability of dFC

(dFCvar) changed across sleep–wake states. Conceptually, in our study,

dFCmean represented the robustness of network integrity, and a grad-

ually decreasing dFCmean indicated the dissolution of network bound-

aries in sleep. Furthermore, dFCvar represented the instability of

network connections, and increased dFCvar indicated swift switches

in information propagation. Overall, we found that dFCmean was

slightly decreased with deepened sleep (N0~N1 > N2 > N3), whereas

dFCvar changed across wake–sleep stages in a nonlinear manner

(N0~N1 < N3 < N2). Decreased dFCmean during sleep was accompa-

nied by increased dFCvar. Elevated skewness for dFCmean distributions

in the N3 stage indicated that strong connections decreased along

with an increased amount of low dFCmean (Buzsáki & Mizuseki, 2014);

moreover, this phenomenon also implied relatively low stationarity of

FC during sleep (Thompson & Fransson, 2016). Our finding that the

lowest dFCmean occurred in the N3 stage was consistent with previous

FC findings in NREM sleep (Spoormaker et al., 2010; Uehara et al.,

2014), especially in terms of dFCmean-between (Larson-Prior et al., 2011;

F IGURE 1 Workflow for dFC analysis. dFC was generated from each sleep stage using the sliding-window analysis (window size was
50 frames with 80% overlap), and the template comprised 128 ROIs, which consisted of Yeo's 17 function-based networks template and the
ASEG subcortical atlas. The xi and n denotes the FC within each window and the number of sliding window, respectively, whereas dFCmean and
dFCvar were calculated at each stage for all of the participants [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3 The dFC of NREM sleep stages (N1, N2, and N3) in comparison with wakefulness (N0). All of the connections of N0 are in the
coordinates (0,0), and every dot presents the net differences at each sleep stages, compared with N0. The colored dots indicate significant
connection differences from N0 (FWE corrected): red and green dots represent significant changes in dFCmean and dFCvar, respectively, and
yellow dots represent mean significant differences in N0, for both dFCmean and dFCvar [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 (a) The relationship between dFCmean and dFCvar at each sleep stage. dFCmean and dFCvar over the time series were calculated for
all connections (8,128 edges) averaged across all of the participants. The data presented a negative correlation, we used quadratic fitting for
mean–variance relationship (r2N0 = 0.31, r2N1 = 0.32, r2N2 = 0.47, and r2N3 = 0.35). The shift of the probability distribution across stages is shown
in (b) dFCmean and (c) dFCvar. (d) Skewness and (e) kurtosis for Z-transformed dFCmean distributions across the four stages; (f) skewness and
(g) kurtosis for Z-transformed dFCvar distributions across the four stages. (*sig. change and **sig. represent meaningful changes with NBS FWE

corrected p < .05 and p < .01, respectively) [Color figure can be viewed at wileyonlinelibrary.com]
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Samann et al., 2011). As for dFCvar, we found that the highest instabil-

ity occurred in the N2 stage (compared with N0 and N1 stages) and

that this was associated with significant drops in both skewness and

kurtosis, which was the most prominent phenomenon indicating the

dynamic changes of brain integrity during NREM sleep.

4.1 | Resource reallocation for brain communication
in sleep

A brain never rests, irrespective of whether it is in a waking or

sleeping state, nor do neural communications ever cease. On the basis

of this concept, researchers have proved that FC in sleep varies

dynamically rather than remaining static (Haimovici et al., 2017;

Spoormaker et al., 2010; Tagliazucchi, Crossley, Bullmore, & Laufs,

2016). Thus, dFC changes may indicate the subjective perceptions of

consciousness, but this has rarely been studied in terms of dFC in

sleep. Thompson et al. reported that, in the resting wakefulness condi-

tion, dFCmean had a negative correlation with dFCvar according to

sliding-window dynamic analysis (Thompson & Fransson, 2015), and

similar observations in sleep were noted in our study. Thus, it is

suggested that the dFCmean–dFCvar relationship is constant across

sleep–wake states. In other words, the trade-off between dFCmean

and dFCvar is evident in healthy human beings throughout the differ-

ent stages of wakefulness and sleep: high dFCmean has persistent

long-distance connections with low instability (low dFCvar), and low

dFCmean corresponds to high dynamic variations in wakefulness. In

the literature, dFCmean in sleep has been reported to be decreased

with increasing depths of sleep (Haimovici et al., 2017; Spoormaker

et al., 2010; Tagliazucchi et al., 2016), but dFCvar across the NREM

sleep stages has not been revealed. In both states of staying awake

(N0) and being asleep (N1), the low variance of dynamic connectivity

implied a stationary integrity within functional networks, that is, tem-

poral synchronization was robust within networks with high spatial

specificity. For the N2 stage, the highest dFCvar and low dFCmean

demonstrate an alternative scenario in which specific within-network

connectivity boundaries broke down and intrinsic information was dis-

tributed globally to inter-network brain regions, which agrees with

the findings of increased unspecific connections in NREM sleep

(Spoormaker et al., 2010). In contrast, during the N3 stage, the active

long-distance communications were diminished and a relatively inac-

tive condition persisted with residual local interactions. These macro-

scale results might be linked to synaptic down-regulation in overall

brain status during SWS (Tononi & Cirelli, 2006), a speculation

supported by an earlier PET study that suggests a decrease in regional

cerebral blood flow (rCBF) in most of the brain areas with deepening

sleep (Braun et al., 1997; Maquet, 2000).

With respect to complexity, most studies have demonstrated that

higher signal heterogeneity corresponds to richer information in the

state of wakefulness compared to the low signal variability in SWS

(Preti, Bolton, & Van De Ville, 2017). However, in this study, we

focused on the variance of dFC, that is, the variability of temporal syn-

chronizations, rather than the variability of signal itself. Our findings

corresponded with those of previous studies (Tagliazucchi et al.,

2014) in that we found that dFCvar was increased with the loss of

consciousness. The disparity between signal complexity and dFCvar

might reflect different definitions of the functional measurements, but

F IGURE 4 The cross-stage trend of 17 cortical networks in within- and between-network of (a, b) dFCmean and (c, d) dFCvar. These networks
were defined using Yeo's function-based cortical parcellation [Color figure can be viewed at wileyonlinelibrary.com]
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this is beyond the scope of the current study. Future studies are

required to clarify this point.

4.2 | Between- and within-network connectivity

We segregated the results into between- and within-network values

(Figure 4) in order to assess dFC in terms of global or network-specific

properties. The high consistency in dFCvar-between across wake–sleep

stages indicated the global disruption of network integrity at the N2

stage. With respect to within-network connectivity, the temporal–

parietal and limbic networks presented distinct dFCvar-within patterns.

The temporal–parietal network presented the lowest variance at N0,

higher variance at N1, and a gradual decrease in variance as

sleep deepened. As for the limbic network in Yeo's 17-network

cortical parcellation, the temporal pole (network 9) and orbitofrontal

network (network 10) exhibited the lowest dFCvar-within and highest

dFCmean-within during the N2 stage, implying the highest information

integration for emotional (Rempel-Clower, 2007) and sensoriomotor

associations at this stage (Rolls, 2004). The unimodal association

area showed preserved rCBF during the N2 stage in previous PET

studies (Braun et al., 1997; Maquet, 2000). Furthermore, the

orbitofrontal cortex was related to sleep quality (Chao, Mohlenhoff,

Weiner, & Neylan, 2014), sleep disorders (Joo, Tae, Kim, & Hong,

2009; Joo et al., 2010; Joo et al., 2011), and daytime sleepiness

(Killgore, Schwab, Kipman, DelDonno, & Weber, 2012; Stoffers

et al., 2012).

The physiological state of arousal is caused by the bottom-up

regulation of cortical activation from the reticular activation system,

which is derived from the brainstem, which, in turn, includes the

thalamus and hypothalamus (Magoun, 1952). Our data presented

the highest dFCmean in the N1 stage and then gradually decreased

with the increasing sleep depth in terms of thalamocortical connec-

tivity (Figure S1). The altered thalamocortical FC during the N2

stage might associated with K-complexes that inhibit arousal by

suppressing the cortical activations of sensory inputs (Jahnke

et al., 2012).

Awareness of the environment and the self was decreased with

deepening NREM sleep (James, 1890; Laureys, 2005). Therefore, we

evaluated the canonical functional networks associated with the

awareness domain of consciousness. The DMN, comprising the

PCC/precuneus, MPFC, and bilateral inferior parietal cortex (networks

15, 16, and 17), is related to self-awareness and conscious self-

representation (Gusnard, Akbudak, Shulman, & Raichle, 2001). The

DMN had the strongest FC at wakefulness, and the average dFCmean-

within and dFCmean-between decreased with increasing depths of sleep.

The PCC-MPFC connection decoupled and decreased during the N2

stage and troughed in the N3 stage, but the linkage between the bilat-

eral parietal node in the DMN was strengthened at the N3 stage

(Horovitz et al., 2008; Larson-Prior et al., 2009; Samann et al., 2011;

Wu et al., 2012). Moreover, the dorsal attention network supports

awareness of the environment and presented the same trend as the

DMN. These results correspond with those of a previous study that

observed that the DMN and attentional networks presented long-

range temporal correlations during wakefulness that were drastically

diminished during the N3 stage (Tagliazucchi et al., 2013b). Other

attention-related networks like the executive control network (ECN),

ventral attention salience network, and cingulo-opercular network

showed the same trend as the DMN as well. However, the ECN pres-

ented increased dFCmean-within in the N2 stage. During the N2 stage,

the increased dFCmean and dFCvar indicated increased but unstable

temporal synchronizations in ECN, which was beyond our expectation

and further analysis is warranted to provide explanations on the spe-

cific phenomenon.

Moreover, the peripheral and central visual network presented a

distinct pattern in terms of dFCmean, one that deviated from our main

findings. As for the central visual network, both the dFCmean-between

and dFCmean-within patterns were found to be increased in N1 sleep

and then maintained at the same levels in the deep sleep stages, while

the peripheral visual network drastically increased its dFCmean-within

during N2 and N3 sleep. Such increased dFCmean-within in NREM sleep

may play a role in NREM dreaming (Siclari, Larocque, Postle, & Tononi,

2013). Further studies are warranted to provide plausible explanations

for the dynamic connectivity changes in the visual network.

4.3 | The IIT for consciousness in sleep

The capacity of information integration is critical for sleep function-

ality and consciousness according to the IIT. Our findings regarding

dFC supported the notions of the IIT, similar to previous studies

regarding SWS. First, a large-scale graph analysis indicates that the

N2 stage presents a random network of organizations (Spoormaker

et al., 2010) that limits its capacity to integrate information (Tononi,

2004). In contrast to the N2 stage, the large-scale functional brain

network in SWS demonstrates both high local clustering and few

long-range connections (Spoormaker et al., 2010; Uehara et al.,

2014), which indicate the shrinkage of dFCvar toward a local con-

nection that we observed in our results. Second, consciousness loss

in SWS is associated with decreased integration ability

corresponding to the IIT. Similarly, Deco et al. reported that stable

but low signal integration occurred in SWS (Deco, Tagliazucchi,

Laufs, Sanjuán, & Kringelbach, 2017). Third, Jobst et al. found that

decreased effective connectivity indicates decreases in integration

among brain regions in SWS (Jobst et al., 2017). These findings of

dynamic analysis regarding the notion of information integration

were compatible with the IIT of consciousness and were in agree-

ment with our findings. In other words, high dFCmean indicated sta-

ble brain network integrity as well as rich integration (Friston et al.,

2004), whereas high dFCvar indicated the instability of functional syn-

chronizations and information transfer. Furthermore, according to the

information theory, higher instability corresponds with richer informa-

tion (Peraki & Servetto, 2004). The underlying instability of informa-

tion should be evaluated based on both dFCvar-within and dFCvar-

between because dFCvar is more sensitive to the information trans-

ferred between networks (Thompson & Fransson, 2015). The fact

that higher dFCvar-within and the highest dFCvar-between were observed

in the N2 stage indicated the unstable transfer of information beyond
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the predefined canonical networks along with a degraded information

integration. Compared with the wakefulness (N0), dFCmean decreased

drastically but dFCvar increased slightly in SWS, indicating disrupted

network organizations. We thus speculate that the stable within-

network information integration is decreased in both the N2 and N3

sleep stages and replaced with unstable between-network informa-

tion propagations.

Moreover, similar phenomena of dFC changes and conscious-

ness loss have been noted in previous anesthesia studies. A

decrease in prefrontal or subcortical connectivity was observed in

PCC-centered coactivation patterns (Amico et al., 2014), with a

decrease in dynamic complexity with consciousness loss. However,

a contradictory finding following psylocibin intake revealed that the

variability of FC between the left and right hippocampi was

increased, with a larger space range being observed in each state

over time (Tagliazucchi et al., 2014). Collectively, the consensus

among various studies is that consciousness does not exist within

specific brain networks, but emerges based on the persistence of

FC (Horovitz et al., 2009; Samann et al., 2011; Spoormaker et al.,

2010; Wu et al., 2012). As such, when the network specificity

(dFCmean) breaks down, the consciousness dissipates with increasing

variability of information exchange (dFCvar).

4.4 | Limitations

In this study, we used the sliding-window approach to explore dFC in

NREM sleep, which led to a study of brain dynamicity in human sleep.

However, three confounding factors are worth noting for future

investigations. First, for sleep evaluation, we employed the PSQI for

sleep-quality assessments, but subjective ratings for conscious aware-

ness were lacking. However, at the current stage, it is almost impossi-

ble to evaluate subjective consciousness levels at different sleep

stages without interrupting participants' sleep. Second, the dFC analy-

sis was based on the sliding-window cross-correlation method, with-

out regarding effective causality in sleep. Former study has suggested

that the causal relationship of cross-frequency signals between the

cortex, thalamus, and hippocampus could be the key to refining long-

term memory based on regional integrity (Staudigl et al., 2012). How-

ever, due to its invasiveness, this type of intracranial recording has

never been conducted in normal human sleep. Future studies using

refined and comprehensive experimental designs are thus warranted

to elucidate memory consolidation in sleep. Third, the width of the

sliding-window is critical for assessing dFC, and the window size of

125 s in 50 frames was chosen in the sliding-window analysis. Wilson

et al. have investigated the epoch length in relation to FC in sleep

(Wilson et al., 2015); however, sliding-window analysis has its limita-

tions. It follows the criterion that the window size must have a greater

amount of samples than the reciprocal of the underlying frequency

component (Leonardi & Van De Ville, 2015). In other words, when

using a short window size could lead to unstable and unreliable

results, but using a long window size could result in any quick changes

being missed. However, the dFCmean–dFCvar relationships across the

wake–sleep states in this study did not change drastically with

different window sizes (62.5 s in 25 frames and 187.5 s in 75 frames).

Related information has been included in Figure S2. At last, the simul-

taneously recorded PMU signal during the MR scans was not stable

for every sleeping session. In this study, only one-third of the partici-

pants were with intact PMU recordings during both awake and sleep

sessions that allowing remove respiration/cardiac pulsation noise for

dFC analysis (Table S2). The number of connections, which signifi-

cantly different from N0, changes with varying denoising approaches

(Table S3). However, dFC persistently increased in variability (dFCvar)

during N2 stage and mostly decreased in magnitude (dFCmean) during

N3 stage, showing that the main finding holds across different noise-

removal methods. In summary, removal of physiological noise based

on external recordings did not significantly impact the findings in the

datasets.

5 | CONCLUSION

The current study provided a novel multivariate perspective to study

the dynamic alterations of brain functions across wake–sleep stages.

Rather than estimating decreases in the connectivity strengths of

FC (dFCmean), we evaluated the variations of FC (dFCvar) across the

wake–sleep stages. The relative changes in dFCmean and dFCvar

reflect multivariate aspects of dynamic brain integrity in NREM

sleep, implying distinct scenarios of consciousness dissipations. The

results of the highest dFCvar and low dFCmean in the N2 stage demon-

strated that within-network boundaries were dissolved and intrinsic

information was distributed globally with unstable synchronizations.

Meanwhile, the observation of the lowest dFCmean and low dFCvar in

the N3 stage indicated a relatively inactive condition with residual local

integration. These findings of dFC provide new insights for investigat-

ing brain integrity during NREM sleep.
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