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Abstract 

There is a widely held view on measurement inferences, that goes back to Stevens’s ([1946]) 

theory of measurement scales and ‘permissible statistics’. This view defends the following 

prohibition: you should not make inferences from averages taken with ordinal scales (versus 

quantitative scales: interval or ratio). This prohibition is general—it applies to all ordinal 

scales—and it is sometimes endorsed without qualification. Adhering to it dramatically limits 

the research that the social and biomedical sciences can conduct. I provide a Bayesian analysis 

of this inferential problem, determining when measurements from ordinal scales can be used to 

confirm hypotheses about relative group averages. The prohibition, I conclude, cannot be 

upheld, even in a qualified sense. The beliefs needed to make average comparisons are less 

demanding than those appropriate for quantitative scales. I illustrate with the alleged paradigm 

ordinal scale, Mohs’ scale of mineral hardness, arguing that the literature has mischaracterized 

it. 
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1 Introduction 

What inferences follow from measurement results? When can we use our measurements 

to infer, say, that a group of people is on average happier than another? Methodologists 

answer by pointing to the different kinds of measurement scales. Depending on the 

information they provide, scales are classified as nominal, ordinal, interval, or ratio. 

And there are prescriptions regarding (in)appropriate measurement inferences which 

turn on this classification. This take on the question of measurement inferences goes 

back to Stevens’s ([1946]) theory of scales. Nowadays it is part and parcel of standard 

quantitative methodology.  

Among these prescriptions, the best-known is the prohibition against making inferences 

from averages taken with ordinal scales (versus quantitative scales). For example, if you 

measure happiness in an ordinal scale, and one group of people has a higher average on 

this scale than another group, the prohibition forbids inferring that the first group is 

happier than the second. Importantly, this prohibition is general—it doesn’t target this 

or that ordinal scale, but any such scale.  

Not many scales in the social and medical sciences are widely considered quantitative 

(interval or ratio). Thus, the prohibition bears tremendously on this research. To 

illustrate: a large share of these sciences’ research concerns causal relations in large 

populations. This involves taking averages of the measured outcomes among subjects 

in the treatment and control groups and comparing them to infer causal claims. But 

precisely this kind of inference is ruled out by the prohibition when the outcomes are 
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not measured with quantitative scales. No wonder that there is frequent discussion about 

the quantitative status of specific measurements.1 

The prohibition is patently flouted in social and medical research. To take averages from 

scales considered ordinal is common practice. Decades ago, economist Richard 

Easterlin ([1974]) made well-known average happiness comparisons between richer 

versus poorer individuals and countries. Nowadays all sorts of causal claims are made 

with such comparisons, from the effectiveness of unconditional cash-transfers 

(Haushofer and Shapiro [2016]) and housing vouchers (Ludwig et al. [2012]), to the 

impact of children on parents’ happiness (Cetre et al. [2016]). The same holds for 

attributes such as life-satisfaction, self-esteem, intelligence, functional independence, 

depression, among many other. 

Because the prohibition is widely endorsed by methodologists across disciplines, 

condemnation of this allegedly ‘illegitimate’ practice abounds. In medicine, Merbitz et 

al. ([1989], p. 309) worry about ‘the embarrassment to the profession of applying 

mathematical operations inappropriately’ (see also Tennant et al. [2004]). In the 

economics of happiness, Bond and Lang ([2019]) challenge almost all major results in 

the literature—including Easterlin’s famous paradox—because happiness scales aren’t 

quantitative. Most notorious is Joel Michell’s analogous criticism of psychological 

research ([1990], [1997]). Indeed, the tension between ordinary researchers’ tools and 

 
1 As Sherry ([2011], p. 509) puts it, ‘[p]sychologists debate whether mental attributes 

can be quantified or whether they admit only qualitative comparisons of more and less. 

Their disagreement is not merely terminological, for it bears upon the permissibility of 

various statistical techniques’. I forestall a possible misunderstanding: there is nothing 

specifically statistic about this issue. Sherry is using Stevens’s terminology. But the 

question of which inferences follow from measurements with different scales is not 

specific to statistical contexts. 
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aims—namely, using non-quantitative scales to make inferences about averages—

versus methodologists’ prescriptions grew strong right after Stevens’s articulation of 

the latter (Lord [1953]). This is ‘one of the longest standing debates in behavioural 

science methodology’ said Zumbo and Zimmerman ([1993], p. 390). One that is alive 

and kicking. 

The standard methodological advice about measurement inferences is grounded on 

Stevens’s theory of scales classification and their ‘permissible statistics’, later 

axiomatized by the Representational Theory of Measurement (Krantz et al. [1971]) 

(henceforth, RTM). RTM’s approach emphasizes the abstract, general mathematical 

foundations of measurement. Up until recently, this conceptual framework dominated 

the field. The current ‘epistemic turn’ in the philosophy of measurement has begun to 

challenge RTM’s dominance in the analysis of measurement practices. We now see 

philosophical analyses focused more on the background assumptions, and inference 

patterns behind specific measurement practices (Chang [2004]; Tal [2012]). But this 

recent focus on concrete measurement practices and inferences has not engaged with 

the tension between practice and methodology that besieges measurement scales in the 

human sciences. Here, I aim to contribute to this methodological debate drawing from 

Bayesian epistemology, the leading contender for a general framework of scientific 

inferences. Although it has been used to rationalize and/or justify a variety of scientific 

practices and inferences, as far as I am aware the specific issue of measurement 

inferences with different kinds of scales has not received a Bayesian treatment. 

This paper challenges the general prohibition against making inferences about relative 

averages unless one has a quantitative scale. I show that under some circumstances, such 

comparisons can be made with non-quantitative scales. I begin my critique in section 2, 

showing that the standard argument given for the general prohibition cannot justify it, 

at least in its commonly endorsed, unqualified form. In section 3, I challenge the 

qualified form of the prohibition. I use a Bayesian analysis to determine when 
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measurements from non-quantitative scales can be used to confirm hypotheses about 

relative group averages. The pivotal issue ends up being how different in magnitude 

specific intervals of the scale are. We don’t need to believe all intervals to be equal (as 

in the case of quantitative scales) to confirm hypotheses about relative averages. Section 

4 addresses objections regarding the applicability of this analysis. I show that some of 

these objections mischaracterize scales widely considered ordinal. I illustrate this point 

with the alleged paradigm ordinal scale, Mohs’ scale of mineral hardness.2  

A terminological note. Standard measurement methodology, as seen both in 

methodology textbooks and in everyday methodological disputes among practitioners, 

doesn’t draw distinctions within non-quantitative scales. It considers all non-

quantitative scales to fall under the class ordinal (locus classicus: Stevens [1946], Table 

1).3 Accordingly, the prohibition against average comparisons with ordinal scales in 

practice amounts to a prohibition against average comparisons with non-quantitative 

scales, which is the prohibition I’m challenging. Now, we’ll see along the way that it is 

possible to draw some distinctions within non-quantitative scales, thereby reducing the 

extension of the term ‘ordinal scales’. At that point, we’ll see that a narrower version of 

 
2 As one referee rightly noted, some statisticians also contest the prohibition (Abelson 

and Tukey [1959]; Labovitz [1967]; Velleman and Wilkinson [1993]; Zumbo and 

Zimmerman [1993]). Many criticize the standard scale classification and prescriptions 

in ways congenial to my argument (see subsection 4.1). But their specific arguments 

against the prohibition are distinct from mine: they are less principled and more results-

oriented. Most reject the prohibition with the claim (typically justified with statistical 

simulations or sensitivity analyses) that assuming one particular cardinalization (say, 

linearity) of the measurement outcomes doesn’t systematically change the statistical 

results. This argument is orthogonal to mine; I don’t address it here. 

3 Putting nominal scales to the side, of course.  
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the prohibition can be salvaged. Crucially, this version cannot vindicate the way the 

prohibition is actually deployed in methodological disputes. 

2 The Argument for the Prohibition4 

2.1 Kinds of scales 

Ordinal scales, methodology textbooks tell, provide rank orders. For instance, in an 

attitudinal question, people’s attitudes may be classified in {5=strongly agree, 4=agree, 

3=neutral, 2=disagree, 1=strongly disagree}. Quantitative measurement begins with 

interval scales. Here the intervals—the differences between subsequent levels of the 

scale—are equal in magnitude. So, the difference in temperature between 2ºC and 3ºC 

equals the difference between 4ºC and 5ºC. This equality among intervals distinguishes 

interval scales from ordinal ones—unlike the case of temperature, we don’t know if the 

distance between ‘strongly agree’ and ‘agree’ equals that between ‘agree’ and ‘neutral’. 

Finally, we distinguish ratio from interval scales because ratio scales have a non-

arbitrary zero.  

Stevens (and later RTM) formalized these scale types by reference to the ‘uniqueness’ 

of their numerical assignment. This uniqueness is, in turn, defined by the 

transformations to the numerical assignments that preserve the information the scale 

gives. RTM calls these transformations ‘permissible’ or ‘admissible’ (Krantz et al. 

[1971]; Roberts [1985]). For ordinal scales, any order-preserving transformation is 

admissible. This expresses formally the intuitive idea that ordinal scales inform only 

about the relative order of elements (Stevens [1946]). Thus, any order-preserving 

transformation gives us the same information we already had. A standard RTM textbook 

(Roberts [1985], p. 65) illustrates ordinal scales thus: 

 
4 This section draws from (Larroulet Philippi [2021b]).  
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Some scales are unique only up to order. For example, the scale of air quality 

being used in a number of cities is such a scale. It assigns a number 1 to 

unhealthy air, 2 to unsatisfactory air, 3 to acceptable air, 4 to good air, and 5 to 

excellent air. We could just as well use the numbers 1, 7, 8, 15, 23, or the 

numbers 1.2, 6.5, 8.7, 205.6, 750, or any numbers that preserve the order. 

The idea here is that this air quality scale is not informative about whether the intervals 

of the scale are of the same magnitude or not. As Merbitz et al. ([1989], pp. 308–9) put 

it, ‘[a]n ordinal scale, regardless of how it was developed, is defined as ordinal because 

the distance from [level to level] is not known. Thus, there is no real basis for choosing 

one number progression instead of another’. In sum, though the usage of {1, 2, 3, 4, 5} 

in the air quality scale might suggest equality between intervals, from the perspective 

of standard methodology this is incorrect. Another example mentioned by RTM 

researchers is the Beaufort Wind Force Scale (Suppes and Zinnes [1963]; Baccelli 

[2020]), which goes from 0=calm to 12=torment. But the paradigm example is Mohs’ 

scale for minerals’ hardness—almost every author illustrates ordinal scales with it, 

regardless of their affiliation to RTM (Stevens [1946]; Suppes and Zinnes [1963]; 

Roberts [1985]; Blackburn [1996], Sherry [2011]; Michell [2012]; Tal [2017]; Baccelli 

[2020]). 

For interval scales, any positive linear transformation (that is, a transformation from x 

to y that satisfies: 𝑦 = a + bx, b > 0) is admissible. Any such transformation may 

change the magnitude assigned to 0 (if a ≠ 0) and the value of the intervals (if b ≠ 1), 

but not the intervals’ equality. For example, you can translate temperature 

measurements from Fahrenheit to Celsius using the transformation a=-160/9, b=5/9. As 

well as having equal intervals, ratio scales have a natural (non-arbitrary) 0. Thus, only 

positive similarity transformations (𝑦 = bx, b > 0) are admissible. 

2.2 The prohibition’s justification 
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Sometimes the justification for the prohibition is just that taking averages from ordinal 

scales ‘does not make sense’ (which, as Suppes and Zinnes commented, amounts to ‘a 

phrase often used when no other argument is apparent’ [1963], p. 3]). The strongest 

argument for the prohibition, however, turns on two premises (see Michell [1990], pp. 

40-46 for a clear presentation): the set of admissible transformations that define ordinal 

scales and the following invariance principle. ‘When inferring claims from 

measurement results, only the conclusions that remain true under all admissible 

transformations are validly inferred’. This principle reflects the fact that scales are 

defined by what is common across their admissible transformations—all admissible 

transformations of a scale represent the phenomenon equally well. So, to infer a 

conclusion when derived only under some specific transformation would be premature: 

we need to verify whether it is derivable under every admissible transformation. If not, 

the conclusion doesn’t follow. Consider this: If we could infer a conclusion that is not 

invariant, we could arrive at contradictory conclusions starting from the same 

measurement results.5 

In the case of ordinal scales, the set of admissible transformations are the order-

preserving ones. Take Mohs’ scale. Its assignment of numbers to minerals involves the 

following procedure: if mineral a scratches mineral b, then a is harder than b. This scale 

assigns numbers from 1 to 10 in increasing levels of hardness to specific minerals. Here 

Sherry ([2011], p. 514; author’s emphasis) gives the argument for an inference 

prescription (other than our prohibition) regarding Mohs’ scale: 

 
5 Stevens conceived this issue as one of ‘permissible’ mathematical operations. RTM 

saw here a problem of ‘meaningfulness’: if a claim is not invariant to admissible 

transformations, it is not empirically ‘meaningful’ (Krantz et al. [1971]; Roberts 

[1985]). As Michell ([1990], pp. 40-46) argues, the issue is better understood as one of 

valid inferences (versus permissibility or meaningfulness). 
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The arbitrariness of Mohs’ scale lies in the freedom available to Mohs in 

assigning numerals to different levels of hardness. The only restriction on his 

assignments is that the numeral assigned to the harder mineral come after the 

numeral assigned to the softer mineral, given some procedure for determining 

which of the two minerals is harder than the other. That is, any monotonic 

transformation of Mohs’ scale would have served Mohs’ purpose—viz., 

ranking—equally well. Relative to Mohs’ scale the difference between the 

hardness of diamond (10) and the hardness of quartz (7) is 3, and likewise the 

difference between the hardness of quartz and the hardness of fluorite (4) is 3. 

But one may not infer that quartz is harder than fluorite by an amount equal to 

that by which diamond is harder than quartz unless any monotonic 

transformation of Mohs’ scale would dictate the same inference. Obviously, 

that condition fails to hold; the transformation f: n→2n, for instance, would not 

yield an equality. 

Focusing now on the prohibition: we should not infer that set of objects A is on average 

harder than set B from the fact that their hardness levels in Mohs’ scale are A={3,3,4} 

and B={1,3,5}. For if we apply the permissible transformation Sherry used (𝑦 = 2𝑥), as 

well as many others, A’s average becomes lower than B’s. In sum, a conclusion such as 

‘set A is on average harder than set B’ follows only if it is derivable independently of 

the order-preserving transformation used. 

2.3 Qualifying the prohibition 

An unqualified prohibition against making inferences with averages from ordinal scales 

is commonly endorsed. Joel Michell ([1990], p. 46), to name a prominent 

methodologist, concludes his presentation of the very argument just given with the 

following claim: ‘So Stevens’ prohibition against calculating means of ordinal data does 

have something to recommend it: ordinal data alone entails nothing about means, so 
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following his prescription excludes no valid consequences of one’s data’.6 Merbitz et 

al. ([1989], p. 309), expressing their frustration with medical research, also state the 

prohibition in an unqualified way: ‘Often […] ordinal scores are manipulated 

mathematically […] or statistically […] The results of such operations are not logically 

valid’. 

These quotes exemplify the unqualified prohibition, which states: inferences about 

group averages with ordinal scales are never valid. The argument provided above 

(subsection 2.2), however, targeted only the inferences that don’t hold after permissible 

transformations. Thus, this unqualified prohibition is not justified by the argument—it 

overlooks the argument’s invariance clause. This is no hair-splitting: the invariance 

clause does hold sometimes regarding inferences about relative averages, leaving them 

unchallenged by the argument. 

When are conclusions about relative averages from ordinal scales invariant? The 

concept of stochastic dominance helps to state this condition precisely. Imagine there 

are two groups of people (A and B) measured by an ordinal scale of happiness that goes 

from 1 to 3 (‘Not very happy’, ‘Fairly happy’, and ‘Very happy’), and I want to compare 

the groups’ average happiness so as to conclude which is happier. Let GA and GB be the 

cumulative distributions of each group: GA(x) is the fraction of people in group A that 

are as happy or less happy than x, and similar for GB. A well-known result in statistics 

and economics says: The computed average of A will be higher than that of B for any 

order-preserving transformation iff GA(x) ≤ GB(x) for all x and with a strict inequality 

over some values of x. This condition is called First Order Stochastic Dominance (Hadar 

and Russell [1969]) (henceforth, FOSD). Figure 1 shows an example where FOSD 

holds. Note that GA and GB don’t cut across: GA lies on or below GB everywhere and 

strictly below over at least one interval, which is what FOSD requires. 

 
6 In fact, Stevens ([1946]) was more ambivalent than Michell about the prohibition. 
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Figure 1. Cumulative distributions of groups A and B. FOSD holds. 

 

The data in Figure 1 comes from Easterlin’s ([1974], Table 2) happiness comparisons 

by income groups in the US. A is the highest income the group, B is the lowest. As said, 

this comparison satisfies FOSD.7 So, no matter what order-preserving numbers we 

assign to the categories—e.g., {1, 2, 3}, {1, 3, 100}, etc.— A’s average happiness will 

always come out as higher than B’s. The conclusion that group A is on average happier 

than group B, then, is invariant to permissible transformations. Thus, we cannot say this 

inference is ‘not logically valid’. Pace Michel, prohibiting inferences from averages of 

ordinal scales does exclude valid consequences of the data in some cases. 

 
7 The probability of being ‘not very happy’ (1) is 4% for group A (versus 13% for B), 

of being ‘fairly happy’ (2) or less is 41% (versus 68%), and of being ‘very happy’ (3) 

or less is 97% (versus 97%). The frequencies don’t add up to 100 because of the no-

answer rate (3% for both groups). 
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Taking stock, the traditional view on ordinal scales provides prima facie grounds for 

questioning measurement inferences from ordinal scales. Because we don’t know that 

intervals are equal, inferences from averages with ordinal scales lack the epistemic 

security that quantitative scales provide. To this extent, the traditional view vindicates 

methodologists’ complaints mentioned in the introduction. However, as I have just 

shown, the argument here considered does not justify an unqualified prohibition against 

making deductive inferences with averages from ordinal scales. When the differences 

among groups are strong enough (so that FOSD holds), that argument does not block 

inferences about relative average comparisons. 

FOSD is a demanding condition—many group comparisons of interest don’t satisfy it. 

Are we forbidden to make these average comparisons, as the qualified (but still general) 

prohibition states? Fortunately not always, or so I will argue. To challenge the 

prohibition, however, we need a subtler epistemic framework; one that allows for belief 

states between knowing that all intervals of a scale are equal and knowing nothing about 

how they compare. 

3 Challenging the Prohibition 

I start with a concrete, simple example. A formal treatment of group comparisons in 

general then follows. 

3.1 An example 

Researcher M proposes to compare the hardness of two sets of minerals (A and B, each 

containing four minerals), so as to (dis)confirm hypothesis 𝐻: ‘A is on average harder 

than B’. Using Mohs’ scale, M obtains the following measurements A={1,2,3,8} and 

B={2,2,3,3}. Had M obtained those measurements with a quantitative scale, she would 

have inferred 𝐻, since A’s average hardness (3.5) is larger than B’s (2.5). But Mohs’ 

scale is considered the paradigm ordinal scale. So, the standard view on measurement 

tells this data cannot (dis)confirm 𝐻. Moreover, Figure 2 shows the cumulative 
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distributions of both sets of minerals (GA and GB): FOSD does not hold, the distributions 

cut across. Thus, nothing can be said about 𝐻. Or so the qualified prohibition says. 

 

 

Figure 2. Cumulative distribution of sets A and B. FOSD doesn’t hold. 

 

We may ask: What does M have to rationally believe about the scale so as to be justified 

in using this data to (dis)confirm hypothesis 𝐻? Under the standard view, M must 

believe her scale to be quantitative. But this is not strictly needed. Let us start by 

focusing on the areas in Figure 2 where the cumulative distributions don’t overlap. 

FOSD holds when there is no stretch along the horizontal axis where GA is over GB 

(GA>GB) and there is some stretch where GA is under GB (GB>GA). The former fails in 

our example. However, FOSD is a special case of a more general rule, which we may 

call ‘General-Rule-R’ (or ‘R’ for short): the total area where GA is over GB is smaller 

than the total area where GA is under GB. The sizes of these areas depend both on the 

relative sizes of the intervals and on the proportion of elements in the relevant categories 

(width times height).8 It is General-Rule-R that tells us whether hypothesis 𝐻 holds. 

 
8 Figure 2 depicts the intervals as being all equal, but this of course is not being assumed. 
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Thus, for inferring 𝐻, we don’t need to be certain that all intervals are of equal size. 

That is, we don’t need a quantitative scale. At most we need to know the relative sizes 

of the specific intervals where the groups differ. 

To see this, note that when comparing A={1,2,3,8} to B={2,2,3,3}, we can safely 

remove the two elements in the middle from the comparison, since their contribution to 

each group’s average hardness is the same. We now only need to compare {1,8} to 

{2,3}. That is, A is on average harder than B as long as {1} and {8} taken together are 

harder than {2} and {3} taken together. In terms of intervals’ differences: A is harder 

on average than B iff the degree to which {2} is harder than {1} is less than the degree 

to which {8} is harder than {3}. I will call this condition ‘Interval-Difference-𝐾’ (or 

‘𝐾’ for short): that relation between intervals’ differences that is necessary and sufficient 

in a given case for hypothesis H to hold. Inspecting Figure 2, we see that Interval-

Difference-𝐾 is precisely what the comparison of areas involved in General-Rule-R 

requires: the area where GA>GB is smaller than the area where GB>GA iff the difference 

in width (degree of hardness) of {2} vs. {1} is smaller than the difference of {8} vs. 

{3}. (We say ‘width’ and not ‘area’ because the height remains the same in this 

example.) So, 𝐾 iff R. 

Now we see clearly what makes FOSD special. When it holds, General-Rule-R (recall, 

the rule about areas’ relative sizes) is satisfied no matter what the relative magnitudes 

of the intervals are. This is so because there is no comparison of areas to be made: there 

is an area where GB>GA but there is no area where GA>GB. When FOSD holds, after 

netting out the objects that have the same values of hardness (in the way we did in the 

previous paragraph), what remain are objects in set A that are all harder than every 

object remaining in set B. That is why GA is never over GB. In contrast, in our example, 

set A has one object, {1}, with less hardness than those that remain in group B ({2,3}). 

Because for all we know, it is possible that Mohs’ scale has heterogenous enough 

intervals, such that the degree to which {2} is harder than {1} surpasses the degree to 
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which {8} is harder than {3}, it is possible that 𝐻 doesn’t hold. It is also straightforward 

to see what makes quantitative scales special. This last possibility—of a single interval 

being bigger than five other intervals combined—is ruled out. We know all intervals are 

equal.  

By making clear what’s special about FOSD, however, we also see why we may not 

need it. To make average comparisons, we need FOSD to hold only if we cannot rule 

out any possible difference between intervals. As long as we can rule out some 

possibilities, we may not need FOSD for inferring the hypothesis of interest (H). In our 

example, General-Rule-R holds if the magnitude of hardness between {8} and {3} is 

larger than that between {2} and {1}. Thus, what M has to rationally believe in order to 

deduce 𝐻 is merely that the size of the 1-2 interval is less than five times larger the 

average size of the intervals 3-4, 4-5, 5-6, 6-7, 7-8.  This is a very different—and much 

weaker claim—than that each interval of the scale is of equal size. Perhaps the evidence 

does not warrant believing this weaker claim. Perhaps it does. But the point is that 

neither the belief of having a quantitative scale nor of FOSD holding are needed, if the 

researcher rationally believes that the differences in intervals are such that General-

Rule-R holds. 

3.2 Formal Analysis 

Working out a formal representation of this inference problem helps drawing the general 

lessons. We can model the difficulty involved in working with non-quantitative scales 

as a case of ‘unreliable evidence’ (Howson and Franklin [1994]). In our context, the 

source of unreliability comes from the potential heterogeneity of the specific intervals 

that matter for the average comparison. This is captured by Interval-Difference-𝐾 

(recall, that relation between intervals’ differences that is necessary and sufficient in a 

given case for hypothesis H to hold).  
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Before going forward, however, let me acknowledge the somewhat idealized nature of 

the discussion that follows. My focus lies on the quantitative versus ordinal scales issue. 

Thus, the only source of uncertainty modelled below is that about the intervals’ 

differences. There are other sources of uncertainty (on measurement error, see Kyburg 

[1992]). These other sources, which no doubt should affect the firmness of our beliefs—

such that, for example, we plausibly never assign credence 1 to contingent 

propositions—are assumed away below. But those uncertainties apply equally to both 

kinds of scales, and don’t play any role in the prohibition’s justification. So we don’t 

need to consider them. (Thus, when I say below ‘we should assign credence 1’ to some 

proposition, this is meant as a claim relative to a background where the only uncertainty 

is that of intervals’ differences.)  

Imagine again researcher M using Mohs’ scale for (dis)confirming a relative average 

hypothesis 𝐻 (such as ‘set A is harder than set B’). She measures two sets of minerals, 

gathers the data, and then deduces the Interval-Difference-𝐾 of this specific comparison 

(that is, the condition about intervals’ differences that is necessary and sufficient for H 

to hold given the specific data observed). In the example above, 𝐾: ‘the 3-8 intervals 

combined are larger than the 1-2 interval’. In different group comparisons, 𝐾 would be 

a different condition. But in every group comparison, there is a 𝐾 such that H is true iff 

the specific 𝐾 of the case holds. Hence, when M observes her measurements, she learns 

a biconditional, 𝐸: 𝐻 ↔ 𝐾.  

We can assume that, prior to the measurement, 𝐻 and 𝐾 are probabilistically 

independent. The former is about the relative average hardness of two specific sets of 

minerals, the latter about the relative differences between some specific intervals of a 
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measurement scale. The likelihood is 𝑃(𝐸│𝐻) = 𝑃(𝐻 ↔ 𝐾│𝐻) = 𝑃(𝐾).9 And thus 

the researcher’s posterior is: 

𝑃(𝐻│𝐸) = 𝑃(𝐻) ∗ 𝑃(𝐾) 𝑃(𝐸)⁄ . 

This result is intuitive: H’s posterior probability depends proportionally on how likely 

𝐾 is to be true. Developing 𝑃(𝐸) via the law of total probability, we have that 

𝑃(𝐸) = 𝑃(𝐸│𝐻&𝐾) ∗ 𝑃(𝐻&𝐾) + 𝑃(𝐸│~𝐻&𝐾) ∗ 𝑃(~𝐻&𝐾) +

𝑃(𝐸│𝐻&~𝐾) ∗ 𝑃(𝐻&~𝐾) + 𝑃(𝐸│~𝐻&~𝐾) ∗ 𝑃(~𝐻&~𝐾).  

Because the two middle terms are 0, and both 𝑃(𝐸│𝐻&𝐾) and 𝑃(𝐸│~𝐻&~𝐾) equal 

1, 

𝑃(𝐸) = 𝑃(𝐻&𝐾) + 𝑃(~𝐻&~𝐾) = 𝑃(𝐻) ∗ 𝑃(𝐾) + 𝑃(~𝐻) 𝑃(~𝐾). 

The posterior is then a weighted average of M’s confidence about 𝐾: 

𝑃(𝐻│𝐸) = 𝑃(𝐻) ∗ 𝑃(𝐾) [𝑃(𝐻) ∗ 𝑃(𝐾) + 𝑃(~𝐻) 𝑃(~𝐾)]⁄ .  

The higher the priors of H and 𝐾, the higher the posterior. If M is certain that 𝐾 holds, 

then H’s posterior is 1, just like in the quantitative scale case. Moreover, it is 

straightforward to see that there is confirmation (𝑃(𝐻│𝐸) > 𝑃(𝐻)) whenever 

 
9 The steps are as follows. From the definition of the biconditional, we have: 

(1) 𝑃(𝐻 ↔ 𝐾|𝐻) = 𝑃((𝐻&𝐾) ∨ (~𝐻&~𝐾)|𝐻).  

Because 𝐻&𝐾 and ~𝐻&~𝐾 are mutually inconsistent, we have: 

(2) 𝑃(𝐻 ↔ 𝐾|𝐻) = 𝑃(𝐻&𝐾|𝐻) + 𝑃(~𝐻&~𝐾|𝐻).  

Because the second term is 0, and 𝐻 and 𝐾 are probabilistically independent: 

(3) 𝑃(𝐻 ↔ 𝐾|𝐻) = 𝑃(𝐾|𝐻) =  𝑃(𝐾). 
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𝑃(𝐾)>0.5.10 This, again, is rather intuitive. As long as the researcher is more confident 

than not that 𝐾, the evidence confirms (in a graded sense) H. 

Perhaps having an evidence-based prior on H is not always possible. Are we doomed? 

Likelihoodism would suggest focusing only on whether the evidence favors H over its 

competitor, which is ~H here. The evidence does so whenever 𝑃(𝐾)>0.5, so we arrive 

at the same result. In this sense, the “problem of priors” is no problem for our argument, 

and our lesson holds beyond Bayesianism. 

3.3 Discussion 

From a Bayesian perspective, hypothesis H is confirmed (in a graded sense) whenever 

𝑃𝑟(𝐻│𝐸) > 𝑃(𝐻). One case where confirmation happens is when the researcher 

believes that the intervals are such that Interval-Difference-𝐾 holds. This indeed occur 

when the researcher believes her scale is quantitative. But our main lesson is that this 

latter belief is not needed for rationally believing that 𝐾 holds. Beliefs less demanding 

than equality among all intervals— which may be plausible in some cases, not in others 

—can be sufficient for believing 𝐾. Hence, the general prohibition should be rejected: 

by requiring quantitative scales for average comparisons, the prohibition requires more 

than what is needed for deducing H from measurement results.  

Moreover, the argument for the prohibition tacitly assumes that measurement inferences 

are restricted to deductive inferences. Our Bayesian framework helps us see this is too 

restrictive—we don’t need certainty about 𝐾 to make evidence bear on hypothesis H. 

Researchers need to be more confident than not about 𝐾 for confirming H. This is a 

second sense in which the prohibition should be rejected, since it requires more than is 

needed for making measurement results bear on H. Thus, our major lesson is that a 

general prohibition, even a qualified one, is not justified. Inferences with averages from 

 
10 By replacing 𝑃(~𝐻) = 1 − 𝑃(𝐻) and 𝑃(~𝐾) = 1 − 𝑃(𝐾) we arrive at this result. 
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non-quantitative scales may be valid, and the analysis presented here shows exactly 

when this is so. 

A further lesson to draw is that the epistemology that grounds the general, blanket 

prohibition is too blunt, and it contrasts substantially with the approach to measurement 

inferences here considered. To see this, think that not all comparisons of average 

hardness in ordinal scales where FOSD doesn’t hold are on a par. If in our example, the 

fourth element of group A had a hardness of 10 (instead of 8), we would know that A is 

in a better position to have a higher average of hardness than B (after all, now A is 

strictly harder than before using the FOSD criterion.). The converse is true if the fourth 

element had a hardness of 4. But these variations are not captured in an epistemology 

that says ‘we can only (dis)confirm 𝐻 if FOSD holds, or if we have a quantitative scale.’ 

Such epistemology cannot distinguish many cases of stronger versus weaker evidence. 

To explore this further, let’s try to translate the prohibition to the Bayesian framework 

here entertained. One way is this: ‘anytime a researcher faces an example like that of 

M, her prior on Interval-Difference-𝐾 is such that there is no (dis)confirmation.’ In this 

way, it might seem that endorsing the prohibition doesn’t go against our  approach. How 

could this strategy work? The result of ‘no (dis)confirmation, always’ happens if 

researchers’ priors are 𝑃(𝐾)=0.5 in all cases. If researchers are never more confident 

than not in 𝐾, no H is (dis)confirmed.  

The problem: this tactic violates coherence. Imagine M obtaining measurements for sets 

of minerals A={1,2,3,8} and B={2,2,3,3}, just as before, but now also for C={1,2,3,7}. 

To be unable to (dis)confirm the hypothesis HAB that A is on average harder than B, as 

we saw, M has to believe that 𝑃(𝐾𝐴𝐵) = 0.5, where 𝐾𝐴𝐵: ‘the 3-8 intervals combined 

are larger than the 1-2 interval’. Now, to be unable to (dis)confirm the hypothesis HCB 

that C is on average harder than B, M has to believe that 𝑃(𝐾𝐶𝐵) = 0.5, where 𝐾𝐶𝐵: ‘the 

3-7 intervals combined are larger than the 1-2 interval’. But 𝑃(𝐾𝐴𝐵) = 0.5 = 𝑃(𝐾𝐶𝐵) is 

incoherent. In Mohs’ scale, every interval is believed to have positive value, so does the 
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7-8 interval. Therefore, M cannot be equally on the fence regarding conditions 𝐾𝐴𝐵 and 

𝐾𝐶𝐵. Her credences must be 𝑃(𝐾𝐴𝐵) > 𝑃(𝐾𝐶𝐵). Thus M cannot (have beliefs that) 

uphold the prohibition and satisfy coherence. This much is the prohibition at odds with 

our Bayesian framework. 

* 

Our analysis shows when average comparisons are justified. If we plot the cumulative 

distribution of both groups, General-Rule-R tells us which areas to compare (and thus, 

which beliefs about intervals are needed, which is what condition Interval-Difference-

𝐾 expresses). Admittedly, I illustrated this logic with a somewhat simple case, where 

we needed to compare only two intervals (or combined adjacent intervals). How 

common are such cases in everyday research practice, and how different are they from 

more complex ones?11 

Our imagined example can be considered simple in the sense that the comparison 

involves an area composed of one interval and an area composed of a combination of 

adjacent intervals. More complex cases involve comparing areas composed of non-

adjacent intervals. The complexity of comparisons increases as the number of times the 

cumulative distributions of the groups under comparison cut across each other. Thus, 

complex cases arise only when scales have many levels (otherwise the distributions 

cannot cut across several times) and cumulative distributions are very heterogeneous 

(so that they actually cut across). In our example, the scale does have many levels (ten), 

but the distributions cut across only once.  

 
11 Thanks to a referee for this question. By calling this case ‘simple’ I’m not suggesting 

that all researchers will always be in a position to make such comparisons—if they lack 

substantial understanding of the attribute being measured and the measuring instrument 

being used, they just may not know how the intervals compare.  
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Simple cases are widespread: First, it is not uncommon for cumulative distributions to 

cut across only one or two times, even in scales with many levels. To give one example, 

the recent Handbook for Wellbeing Policy-Making (Frijters and Krekel [2021], Figure 

2.3) motivates the usage of the life satisfaction scale (which has eleven levels) for policy 

evaluation with a comparison between the UK, Denmark, and France. If you plot these 

cumulative distributions (available upon request), you see the distributions either don’t 

cut across or cut only once.12 

Second, when scales have few levels (three or four), the comparisons are necessarily 

simple. Indeed, all comparisons with three levels are simpler than our example since 

there are only two intervals in play. In scales with four levels, the comparison can be at 

most as complicated as something like this: ‘H holds iff the 2-3 interval is not (say) four 

times bigger than the 1-2 and 3-4 intervals combined.’ Crucially, scales with few levels 

are quite common in social psychology, political science (Krosnick and Presser [2010]), 

and development economics (examples: Easterlin [1974]; Ludwig et al. [2012]; 

Acemoglu et al. [2020]).  

Of course, more complicated cases than our imagined example also exist. Now, even 

when the comparison is a complex one (because the distributions cut across several 

times), the inferential logic remains the same: we need to compare the two (combined) 

areas as indicated by General-Rule-R. It is only that more non-adjacent intervals need 

to be combined to compare such areas. All said, the kind of simple comparisons with 

which we illustrated the solution do generalize.13 

 

12 I thank Kelsey O’Connor for sharing this data.  

13 A thorny issue to consider, as suggested by one referee, is the possibility that the sizes 

of the intervals vary across individuals. This is a distinct problem than that of ordinality 

in itself; it is about interpersonal comparability. But it bears on the average comparisons 
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4 Objections 

4.1 Can we have such beliefs? 

An objector might grant what I claimed about the validity of inferences, namely that if 

researcher M holds rational beliefs about intervals’ differences she may deductively 

infer (or probabilistically confirm) hypothesis H. But the objector may dispute the 

antecedent of this claim. Nobody can have such beliefs, because that’s precisely what it 

means to have an ordinal (versus quantitative) scale: we just don’t know how the 

different intervals compare among each other. 

We should distinguish two versions of this objection. First, the more ambitious claim: 

‘Researcher M cannot hold rational beliefs about the intervals’ differences of ordinal 

scales. Thus, M cannot infer hypothesis H from ordinal scale measurements (unless 

FOSD holds). Therefore, the general (qualified) prohibition survives’.  

 

we are entertaining. As the literature testifies, this variability is likely present (in various 

degrees) in self-reporting scales, such as happiness or life satisfaction scales (though 

not necessarily for all other kinds of scales). And it is probably present to a larger extent 

when the comparisons intended are cross-cultural, since people’s understandings of the 

categories might differ cross-culturally. Note, however, that this issue need not affect 

substantially all average comparisons. First, the extent to which this variability is present 

is likely to depend on whether the comparison is made within culturally homogeneous 

groups. (This supports judging the validity of measurements context-dependently, as 

argued in Larroulet Philippi [2021a]) Moreover, strictly speaking, to bias our average 

comparison conclusions, variability of intervals’ sizes across individuals is not 

sufficient: intervals’ sizes must differ systematically across the groups in comparison. 

(See Ravallion et al. [2016] for discussion and empirical evidence both about the degree 

of variability and about how much it affects comparisons.) 
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This first version amounts to scepticism about intervals’ differences of ordinal scales. 

Yet what could ground this scepticism? Perhaps the idea is that, whenever we are able 

to form rational beliefs about intervals’ differences, it is because we are also able to go 

all the way and construct a quantitative scale. Thus, the objection says, we never find 

ourselves only with an ordinal scale and with rational beliefs about intervals’ 

differences. 

Arguably, the predominance of RTM in the philosophy of measurement—especially 

when it is seen as providing an account of how measurement happens in practice—

might have made this idea more plausible than it is. In that framework, either one is able 

to establish a quantitative scale (say, interval) or one is not able to do so, but has only 

established an ordinal scale. There are no types of scales in between, because there are 

no axiomatizations in between. However, this doesn’t speak to researchers’ epistemic 

situation, that is, to their confidence in their measurements and the inferences they 

afford (Kyburg [1984]; Tal [2012], pp. 73-78).14  

From an epistemic perspective, this objection assumes a dichotomy between, on the one 

hand, knowing nothing about intervals’ differences and, on the other, knowing 

everything (so as to have a quantitative scale). Yet this seems implausible as a 

description of the situation of researchers at all the stages of measurement development 

(Larroulet Philippi [2021b]). As statisticians Abelson and Tukey ([1959], p. 226) put it, 

“the typical state of knowledge short of metric information is not rank-order 

information; ordinarily, one possesses something more than rank-order information.” 

Other authors have also emphasized that several social science scales may well be more 

 
14 That RTM isn’t a plausible epistemology of measurement is persuasively argued by 

Sherry ([2011]), Tal ([2012]), among others. Contemporary scholars doubt that RTM is 

meant to be one (Baccelli [2020]). 
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informative than ordinal without being quantitative (Labovitz [1967]; Velleman and 

Wilkinson [1993]; Zumbo and Zimmerman [1993]). 

Think of rough measurement procedures, and of unsettled background theoretical 

knowledge. They may well provide some justification for claims about intervals’ 

differences, one that may allow us to rule out only some (perhaps extreme) intervals’ 

differences—say, that the increase in intelligence between two specific subsequent 

levels is not ten times larger than the increase in intelligence between other two 

subsequent levels—while not being enough to allow us to be certain of the intervals’ 

exact sizes. Indeed, this dichotomic assumption is at odds with the gradual accumulation 

of evidence and development of theory required for justifying the quantitative status of 

our measurements (Chang [2004]; Sherry [2011]). Well-established quantitative 

measurement is a hard-won achievement. Thus, there is plenty of space for being on the 

way to achieve it without already having achieved it. 

This dichotomic assumption is also revealed untenable when one considers how 

measurement claims get their justification from their coherence with background 

knowledge. To see this, picture the following scenario. Sometimes we may know that a 

hypothesis such as H holds. For instance, I may know that a group of people under some 

circumstances are happier on average than another group. Indeed, plausibly, I know that 

a specific group of people who are struggling to survive in a context of violent civil 

wars is less happy than another group of people who are living a rewarding life in areas 

with sustained peace. If we measure the happiness of these two groups, and FOSD is 

not satisfied, then it follows that the Interval-Difference-𝐾 particular to this 

comparison—whichever it is—holds. By looking at the measurement results I can know 

which is the 𝐾 at stake. Since I would know that this particular 𝐾 holds, I would have 

rational beliefs about intervals’ differences. Yet these beliefs fall short of those involved 

in a quantitative scale. 
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All said, the first epistemic objection appears implausible. Perhaps there are many cases 

in which we cannot have rational beliefs about intervals’ differences. But this need not 

be always the case. So the general prohibition doesn’t survive. 

4.2 Confining the prohibition 

A second objection is less ambitious. It grants that researchers can hold rational beliefs 

about intervals’ differences. But it stresses that ordinal scales are defined as those that 

inform of rank-order, nothing more (Stevens [1946]). Thus, by definition, beliefs about 

intervals’ differences cannot be grounded on (or represented in) such scales. So the 

prohibition survives if understood more stringently: as prohibiting making inferences 

from averages taken with ordinal scales when all information we have comes from the 

scale. Conclusions about relative averages don’t follow from ordinal scale 

measurements alone (when FOSD doesn’t hold), the objection concludes. They follow, 

when they do, from ordinal scale measurements plus further sources of evidence. Those 

further sources of evidence account for the beliefs about intervals’ differences. 

This objection reveals a core aspect of the traditional understanding of measurement 

scales, as presented by Stevens first, and then by RTM. In this approach, the numerical 

assignments involved in measurement are meant to only represent a relation (e.g., 

longer-or-equal-than, at-least-as-happy-as, etc.) that is verified by a straightforward 

procedure (comparing rods, answering a closed survey question).15 They do not aim at 

representing researchers’ best estimates—based on theoretical, modelling, and 

empirical considerations—about the differences in magnitudes between the different 

objects. This is why from this perspective, the permissible transformations for ordinal 

 
15 More precisely, under RTM’s axiomatization, the numerical assignments are said to 

represent—by being iso/homomorphic to—an empirical relational system, which 

consists on the set of objects measured (say, rigid rods, research subjects) and the 

relation that holds among them (Suppes and Zinnes [1963]). 
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scales are all the order-preserving ones. Not because every such transformation is 

(necessarily) compatible with researchers’ best judgments about the relative sizes of the 

intervals all things considered. But because the scale is not meant to capture such 

judgments; it is only meant to capture the ordering relation directly verified by the 

procedure. 

This understanding of measurement scales (and the coarse-grained classification it gives 

rise to) faces a problem. This strict definition of ordinal scales—scales that inform of 

rank-order only—does not characterize well many of the actual scales developed by 

researchers and that are typically considered ordinal. The term ‘ordinal’ is used more 

capaciously than in this strict sense. And this is the case not only when it comes to 

practitioners. As I argue in subsection 4.3, the concrete examples of ordinal scales given 

by RTM scholars themselves don’t fit the strict definition: these scales aim at being, and 

arguably are, more informative than rank-orders, despite not being quantitative. The 

traditional approach to measurement overlooks this because it doesn’t even conceive of 

scales that inform of more than order yet are not quantitative. 

So, what shall we say about this second objection? We should grant it: when we are 

working with strictly defined ‘ordinal scales’ (that is, those that inform of rank-order 

only), unless we have some further knowledge about intervals’ relative sizes, we cannot 

make the average comparisons at stake. Indeed, if we interpret ‘further knowledge’ in 

the previous sentence undemandingly (say, as being able to rule out at least some 

intervals’ differences), this second objection is just a corollary of my argument in 

section 3—we are justified in making average comparisons (when FOSD doesn’t hold) 

only if we are justified in believing that the particular Interval-Difference-𝐾 at stake 

holds. (Recall, 𝐾 is that relation between intervals’ differences that is necessary and 

sufficient in a given case for the hypothesis about relative averages to hold.) Whenever 

we are not justified in believing that 𝐾 holds, it just follows from my argument that we 

cannot infer average comparisons. 
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Where does this leave us? Recall that the target of my argument (as outlined in the 

introduction) is the general prohibition against average comparisons using non-

quantitative scales. The one that says: ‘unless you have a quantitative scale, you cannot 

make average inferences.’ This prohibition I have successfully challenged in section 3, 

and the second objection does not refute my argument there (rather, it is a corollary of 

my argument). But the point is not merely academic. Indeed, we might call the 

prohibition targeted here the ‘actual prohibition’. After all, it is the actual prohibition 

the one that matters for research practice, the one that actually gets deployed in 

methodological disputes, since there the adjective ‘ordinal’ is used capaciously (for non-

quantitative scales in general). Methodologists find doubting the quantitative status of 

a measurement enough for invoking the prohibition, that is, they don’t feel the need to 

argue that the scale is strictly ordinal (for example, Bond and Lang [2019], p. 1631).  

Hence, as a matter of logic, the actual prohibition is not vindicated by the second 

objection—since there can be scales that inform of more than order yet are not strictly 

speaking quantitative. Indeed, that some scales typically labelled ‘ordinal’ are more 

informative than order I argue below. I focus on the paradigm example, Mohs’ scale. 

Yet looking briefly at other examples given by RTM scholars of ordinal scales, I’ll 

suggest that the case of Mohs’ scale is not an exception.  

4.3 Mohs’ scale: beyond order 

The German mineralogist Friedrich Mohs (1773-1839) worried about the state of his 

discipline. He had quantitative aspirations for it, and his work on measuring hardness 

was part of his project to set mineralogy on solid grounds.16 Mohs ([1825], p. 300) 

understood hardness-of-minerals as ‘the resistance of solid minerals to the displacement 

 
16 He also tried to develop a precise mathematical description of how different crystal 

forms of minerals relate to some basic crystal forms. I thank Steven Irish for sharing his 

knowledge about Mohs’ program. 
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of their particles’. In stark contrast with the prevalent view that his ‘is the cleanest 

example of an ordinal scale’ (Davis [2018], p. 49), Mohs himself believed his scale to 

be more informative than rank-orders. Indeed, he believed he had a good sense of how 

different the intervals were: except for the last (9-10), the intervals are ‘proportionate’ 

enough so as to render the scale suitable for the needs of mineralogy ([1825], p. 301). 

Please pause to note the contrast. We saw above Sherry’s remark about Mohs’ 

‘purpose’: it was merely to rank-order minerals. Not at all. Mohs ([1825], p. 301) aimed 

to develop a scale ‘capable of ascertaining and indicating [the] differences [in degrees 

of hardness among minerals], at least with a degree of accuracy and certainty sufficient 

for the wants of the Natural History of the Mineral Kingdom’. That is why he placed 

much emphasis on the issue of whether the intervals of his scale were similar enough. 

Several studies (summarized by Cambridge physicist David Tabor [1954], [1970]) 

arguably proved Mohs correct—except for the last interval that is much bigger than the 

rest, the intervals are not wildly different. These studies employed contemporary 

techniques for measuring hardness, which use indentation procedures, quantifying the 

indentation’s depth (given some force). The result? If we remove the (correctly 

diagnosed as) much bigger 9-10 interval, the numbers in Mohs’ scale roughly obey the 

relation log(Hardness)=1.6 Mohs. So, although clearly not equal (each interval is 

roughly 60% larger than the previous), the intervals of Mohs’ scale are not wildly 

heterogeneous.17 Think that, in the fictitious case discussed in subsection 3.1, Mohs 

 
17 Are scratching and indenting procedures measuring the same attribute, hardness-of-

minerals? Note Mohs’ definition of hardness—it is wide enough to be captured by both 

procedures. Moreover, as Tabor explains, under suitable conditions both scratching and 

indenting measure the ‘plastic’ properties of solids such as minerals and metals. This 

explains the uniform relation found between scratching and indenting in both metals 

and minerals ([1954], [1970]). 
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surely would have deduced hypothesis H. And he would have got it right, according to 

contemporary measurements of hardness (Whitney et al. [2007]). 

Thus, Mohs believed his scale provided more information than merely order, and he 

was right. But how was this possible, if all he had is a scratching procedure that, it 

seems, only produces orderings? This question betrays a misunderstanding of Mohs’ 

scale, one that is arguably made more likely by the widespread endorsement of the 

traditional view of measurement scales discussed above. Mohs’ scale is usually 

described as the numerical assignment that is consistent with the ordering provided by 

the scratching procedure (recall Sherry’s long quotation). But Mohs’ scale does not 

merely aim at representing the results of a scratching procedure. 

For starters, it also involves singling out ten specific minerals (or ‘standards’) which are 

assigned specific numbers. Thus, besides the (usually only mentioned) scratching, there 

is the task of choosing which mineral exemplifies a 1, which one a 2, etc. There is space 

to consider evidence beyond order here: one needs to choose which mineral, among the 

potentially many that scratches a 1 and are scratched by a 3, lies roughly in between the 

1 and the 3 along the hardness dimension. Mohs ([1825], p. 301) made it clear that we 

achieve a good (enough) scale by ‘choosing a certain number of suitable minerals […] 

taking care always that the intervals between every two members of the scale be not so 

disproportionate, as either to render its employment more difficult, or to hinder it 

altogether’. In other words, the task is to choose minerals that are similarly spaced out 

along the hardness dimension, so that the scale is useful (that is, more informative than 

order). Tabor took this judicious selection of minerals as the crucial ingredient in 

explaining why Mohs did better than merely ordering (as reported above). Tabor 

([1954], p. 256) said: ‘This regularity in behaviour suggests that Mohs did not simply 

choose “ten common minerals arranged in order of increasing hardness” ([reference 

omitted]): it would seem that he experimented with a much larger variety until he had 

satisfied himself that he had obtained “equality of the intervals”’. 
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That Mohs experimented much, and with many different minerals, is evident from his 

description of the scale’s construction ([1825], pp. 300-07). For example, he mentions 

not one but several varieties of the minerals that appear in the scale, making clear which 

varieties are(n’t) of equal hardness;18 and he mentions several other minerals with the 

same degree of hardness than those of the scale but that were not chosen because they 

are less available. But why would this latitude to choose the minerals that go in the scale, 

coupled with vast experimentation, matter for justifying the claim that Mohs’ scale 

informs more than order? If all what Mohs had was the scratching test, how could he 

make use of his vast experimentation to infer something beyond order? Tabor ([1954], 

p. 257) suggests Mohs used a ‘tactile criterion’ for estimating the differences in 

hardness, but he doesn’t elaborate on the proposal. Perhaps he meant Mohs noted how 

deep the scratches went, or how easy to scratch was, for different pairs of minerals. All 

this is possible, and points towards reasonable ways of forming beliefs about intervals’ 

differences. What is clear from Mohs’ ([1825], p. 304) account, however, is that he saw 

the need to rely on more than the ‘mere scratching’ procedure: ‘Numerous experiments 

of determining the degree of hardness, by the mere scratching of one substance with the 

other, have completely established, that this process alone is not sufficient’. Besides the 

scratching procedure, he used a file to gauge how much the minerals resisted and how 

much noise they made. He experimented until he was satisfied that all the specimens of 

a given mineral reacted similarly to the file. His extensive experimentation with the file 

made him confident in the selection of minerals for establishing approximately equal 

intervals. 

 
18 For example, after stating which mineral is assigned a 3, Mohs ([1825], p. 302) makes 

clear that two other varieties of the same family ‘cannot be employed in its place, the 

hardness of these being considerably higher’. Talk of ‘considerably’ makes clear he 

thought able to judge differences in degrees beyond order. 
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Thus, close attention to Mohs’ case reveals that his scale doesn’t reduce to the ‘harder-

or-equal-than’ relation verified by the scratching procedure. Unfortunately, that is the 

view most (if not all) methodologists and philosophers have of it, one that fits nicely the 

traditional understanding of measurement scales, where numerical assignments 

represent specific relations verified by straightforward procedures. But Mohs’ scale 

combines information from the scratching procedure with other (perhaps less definite) 

procedures, such as using the file (or tactile criteria) for gauging resistance. And the 

selection of minerals, which fixes the intervals of the scale, is based on extensive 

experimentation with these procedures, and draws on background knowledge of the 

minerals. This is what allows Mohs to justifiably be confident that his scale informs of 

more than order, without thereby being quantitative. All said, the extant literature 

misinterprets Mohs’ work, and underestimates the epistemic status of his scale. 

Let us take a step back. On the face of it, there is nothing special about Mohs’ efforts to 

make his scale more informative than order. Extensive experimentation and drawing 

upon background knowledge—versus drawing only on a single definite procedure that 

merely orders—may well characterize the process that goes in the construction of 

several scales that are typically deemed ‘ordinal’. Would it be surprising that much 

effort is put into achieving scales more informative than order? Psychologists 

developing self-reporting scales of, say, happiness, might aim at picking answer 

categories that are roughly equally spaced along (their understanding of) the happiness 

dimension. They may not all succeed, but it requires much argumentation (yet to be 

seen) to claim that all necessarily fail. In general, the same procedures that allow 

researchers to rank elements in terms of an attribute may also allow them to have some 

sense of the differences between levels, even if they aren’t definite enough to afford a 

strictly quantitative scale. One can think here of academic assessments (or intelligence 

tests), where the understanding of the subject matter that enables test experts to rank 

questions in terms of their difficulty may also enable them to have some coarse-grained 
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sense of intervals’ differences. In other cases, complementary procedures might come 

up to play that role (such as using a file, in the case of Mohs, or calibrating happiness 

self-reporting scales with independent evidence of happiness as was illustrated above). 

I briefly comment on two other examples given by RTM scholars. We saw Roberts 

([1985]) considering air quality scales as ordinal. He gave no argument for this, nor 

details of the specific scale. So we cannot fully assess the case. But air quality indices 

are constructed using the amount of particulate material in the air, averaging (or taking 

the maximum value of) different quantitative indicators. The total scores are then 

classified in terms of their danger to our health in few categories. Given that those 

categories are based on quantitative indicators (about the amount of different particulate 

material), the scale constructors may have some sense of the distances between the 

categories. Or, at the very least, they are not totally ignorant about intervals’ differences. 

Another example mentioned is the Beaufort Wind Force Scale (Suppes and Zinnes 

[1963]; Baccelli [2020]). There is no ‘one’ Beaufort scale, but rather an evolution of 

scales. Nevertheless, here again the claim that the scale is strictly speaking ordinal is 

untenable. The differences in average wind speed of each pair of subsequent categories, 

as were measured long ago, are not exactly equal. But they are far from being wildly 

heterogeneous.19 Again, though the scale is not quantitative, it doesn’t leave its users 

totally at loss about intervals’ differences.  

Summing up, classical examples given of ordinal scales by RTM scholars don’t fit the 

strict definition of an ordinal scale. These scales are more informative than order, 

without being quantitative. This is what makes rejecting the actual prohibition an 

important step forward in the methodological disputes around measurement scales. 

 
19 For the historical evolution of the scale and the actual wind velocities see Met Office 

(n.d.). 
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Before concluding, I consider a pragmatic objection: it is better to have a clear (though 

admittedly too strict) rule than to have no rule, leaving the judgment of whether a non-

quantitative scale may be used for an average comparison in any given case to 

researchers themselves.20 As an analogy to motivate this objection, think that you don’t 

need to fully endorse frequentist statistics to defend a clear and fixed convention for 

reporting results (say, a p-value of 0.05). You may think that such rule is less than 

epistemically optimal in principle, but better in practice. Scientists, after all, are not the 

ideal agents modelled by Bayesians.21 

Although an important point, and one which calls for detailed analysis using tools from 

social epistemology, I’ll note the following (without pretending to settle the issue). 

Sticking blindly to the prohibition is not analogous to taking a fixed middle position that 

avoids arbitrariness at the cost of being too conservative sometimes and too risky others, 

as (arguably) in the case of the fixed-p-value rule. Rather, it amounts to being as 

conservative as possible in all circumstances, no matter how close to being quantitative 

some scales typically deemed ordinal may be. Second, recall that adhering to the 

prohibition dramatically limits the research that the social and medical sciences can do. 

Taking these two points together, I think it is doubtful that this rule would be ‘better in 

practice’.  

5 Conclusion 

I have challenged the general prohibition against making inferences from averages taken 

with non-quantitative scales. Average comparisons don’t require quantitative scales: the 

beliefs needed to justify these inferences are less demanding. These beliefs, which 

concern the relative differences of specific (versus all) intervals, may well be held by 

researchers working with scales usually considered ordinal. This is arguably the case 

 
20 I thank Anna Alexandrova for raising this objection. 

21 The analogy is inspired by (Steele [2012]). 
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for the purported paradigm ordinal scale, Mohs’ scale of hardness of minerals, but this 

may also hold for other cases. 

It doesn’t follow that all scales considered ordinal are suitable for inferences using 

averages. As bad as a general prohibition that assumes that all non-quantitative scales 

inform only about order is to assume that the warrant for beliefs about intervals’ 

differences is the same across all these scales. There may well be cases for which talk 

of intervals’ differences indeed does not make much sense. Cases, that is, where scale 

developers don’t even aim at anything more than ordering. (House numbering or lists 

ordered alphabetically come to mind; but compare the ordering of students induced by 

their names with the one induced by their numerical grades. Most teachers that I know 

of are confident in that some grades inform of more than order.) And there may well be 

cases for which our total evidence is extremely thin, so that little (if any) confidence 

should be placed in average comparisons. However, these need not be true of all cases. 

In short, scales typically considered ordinal need not be all on a par with regard to their 

informativeness beyond order. Thus, the justification for using averages needs a case-

by-case assessment. Neither a general prohibition nor anything goes are defensible 

positions. 
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