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ABSTRACT. Strong nativist views about numerical concepts claim that human beings have at least some innate 
precise numerical representations. Weak nativist views claim only that humans, like other animals, possess an innate 
system for representing approximate numerical quantity. We present a new strong nativist model of the origins of 
numerical concepts and defend the strong nativist approach against recent cross-cultural studies that have been 
interpreted to show that precise numerical concepts are dependent on language and that they are restricted to 
speakers of languages with the right kind of structure. 
 
 
 
The ability to represent natural numbers is at the center of a lively controversy about the innate 
structure of the mind. As elsewhere in the study of cognition, there is a continuum of positions 
that implicate differing amounts of innate structure, but for our purposes it will be useful to 
distinguish three general approaches—what we will call empiricism, weak nativism, and strong 
nativism. Empiricist accounts maintain that there are no innate number-specific representations 
or number-specific cognitive systems of any kind and that the natural numbers are acquired on 
the basis of general cognitive resources that are responsible for the acquisition of a wide variety 
of concepts.  Weak nativist accounts implicate considerably more innate structure, including 
number-related cognitive systems and representations of approximate quantity, but these 
accounts draw the line at concepts for specific natural numbers.  They maintain that, even though 
concepts for the natural numbers have a good deal of innate support, they have to be learned all 
the same.  Finally, strong nativist accounts maintain that concepts for at least some specific 
natural numbers are innate and that these innate concepts are a crucial factor in the explanation 
of why the human mind is suited for mathematics. 

In one respect, weak and strong nativists are natural allies.  Both help themselves to 
domain-specific innate structure.  Yet in other respects, weak nativists are closer to empiricists, 
since weak nativists and empiricists tend to agree that concepts for the natural numbers are a 
cultural achievement, like writing and agriculture.  They view these concepts not as part of our 

 
1 This chapter was fully collaborative; the order of the authors' names is arbitrary. We would like to thank Peter 
Carruthers for helpful comments on an earlier version of this chapter. 
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innate endowment but as fundamentally owing to invention and discovery—a view we will refer 
to as the Cultural Construct Thesis.  Of course, there is no disputing that culture influences 
mathematical cognition. Culture affects the richness of our numerical knowledge, the techniques 
we rely upon for exploiting numerical quantity, and the conventional means we use for recording 
and communicating mathematical information.  But in adhering to the Cultural Construct Thesis, 
weak nativists and empiricists embrace the more interesting claim that our very concepts for 
natural numbers are themselves cultural products and that any given concept for a natural 
number—whether it is TWO or TWO THOUSAND—owes as much to culture and learning as any 
other. 

The emerging consensus in psychology is that weak nativists and empiricists are right to 
maintain the Cultural Construct Thesis and that strong nativism, because it stands in opposition 
to this thesis, is untenable.  No doubt there are many reasons why the consensus has shifted in 
this direction, but one study that might be taken to provide particularly powerful support this 
shift is Peter Gordon’s (2004a,b) high-profile cross-cultural study of number concepts among the 
Pirahã tribe in the Amazon. Gordon himself was primarily interested in testing the neo-Whorfian 
view that concepts for natural numbers are dependent on linguistic devices that not all languages 
share.  He has described his study as constituting “a rare and perhaps unique case for strong 
linguistic determinism” (Gordon 2004a, p. 498).  But proponents of the Cultural Construct 
Thesis would have a lot to gain if it could be shown that concepts for natural numbers are 
dependent on language in the way that Gordon supposes.  Strong nativism would no longer 
appear to be a live option. 

In this chapter, we take a careful look at Gordon’s study and its implications for theories 
of numerical concepts.  Other critical discussions of Gordon’s work have noted general 
difficulties when cross-cultural data are used to draw inferences about the relationship between 
language and thought (Gelman & Gallistel 2004; Gelman & Butterworth, 2005).  Though we 
share these concerns, we believe there are even more fundamental objections to Gordon’s 
experiments and that these objections are well worth exploring in the broader context that 
includes not just Gordon’s linguistic determinism but also the Cultural Construct Thesis.  We 
will argue that Gordon’s experiments don’t provide any support for either view and, 
consequently, that they don’t diminish the prospects for strong nativism.  Does this mean that we 
reject the use of cross-cultural research in the study of numerical concepts?  Absolutely not.  In 
fact, we hope that one of the benefits of our critical discussion will be a clearer picture of how 
cross-cultural research might be productively brought to bear on the psychology of number. 

Here is how the chapter is organized.  In section 1, we set the stage for our discussion by 
providing an overview of nativist approaches to numerical concepts.  This includes a brief sketch 
of our own approach, which provides an illustration of a contemporary form of strong nativism.  
In section 2, we review Gordon’s experiments and the prima facie case that his data support the 
type of linguistic determinism that he advocates as well as the Cultural Construct Thesis.  In 
section 3 we turn to our objections.  Finally, in section 4, we offer some thoughts on how future 
cross-cultural research might help to contribute to a better understanding of our most basic 
numerical capacities. 
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1 Nativism about Number 
 
We begin, in this section, with a brief overview of the recent history of nativist theorizing about 
number and a sketch of our own general approach, which falls squarely in the strong nativist 
camp. Once this background is in place, we’ll be in a position to turn to Gordon’s study in 
section 2. 
 
1.1 From strong to weak nativism 
 
Strong nativism can be traced back at least as far as Plato, but for contemporary theorists, the 
place to begin is with Rochel Gelman and C.R. Gallistel’s landmark book The Child’s 
Understanding of Number.  Gelman and Gallistel put strong nativism back on the map by 
drawing much needed attention to a wealth of data that proved troubling for the empiricist 
models that dominated developmental psychology in the 1970s.  To account for this data, 
Gelman and Gallistel posited an innate system of representation with much the same structure as 
a conventional counting system, including its own stock of ordered discrete symbols.  They 
referred to these symbols as numerons, but these were, in effect, innate natural number concepts.  
As Gelman and Gallistel saw it, the task of learning a conventional counting system isn’t a 
matter of constructing the concepts from experience.  It is primarily a matter of noting the 
correspondence between the public conventional system and the innate one and establishing an 
appropriate mapping between the two. 

Despite Gelman and Gallistel’s influence, contemporary theorizing about number is 
dominated by weak nativist accounts. One of the reasons Gelman and Gallistel’s numerons fell 
out of favor is owing to an observation made by Karen Wynn (1990, 1992a).  Wynn traced the 
developmental trajectory as children learn their public language counting system and noted that 
children generally take a long time to learn the meanings of individual count words even once 
they are familiar with the count sequence and with the procedures involved in counting (i.e., 
reciting count words in order while tagging one and only one item per word).  Children can be 
counting for up to a year before they understand that counting is a way of enumerating a 
collection and before they understand the numerical significance of each of their count words.  
For example, before the age of 3½, a child might be able to count as high as “six” and yet when 
asked to give three items, the same child will often just grab a random number.  Findings of this 
kind are problematic for Gelman and Gallistel’s numeron hypothesis, since it’s puzzling why it 
should take so long to interpret a conventional system in terms of a highly similar innate system.  
Wynn argued that the solution to the puzzle is that children don’t have access to an innate stock 
of numerons; the innate system for representing numerical quantity must take a different form.  
Her suggestion was that it amounts to a system known as the accumulator, which uses mental 
magnitudes to represent approximate numerical quantity—the bigger the magnitude, the bigger 
the quantity represented (Meck & Church 1983).2  Two characteristic features of the accumulator 

 
2 Gelman rejects Wynn’s critique on empirical grounds, citing data which she takes to show that children have more 
precocious counting skills than are revealed by Wynn’s give-a-number task (Gelman 1993).  At the same time, 
Gallistel and Gelman (1992; 2000; Gallistel, Gelman, & Cordes 2005) have followed Wynn in supposing that the 
preverbal system of numerical representation is the accumulator (though see Leslie, Gallistel, & Gelman this 
volume).  What allows Gelman to reject Wynn’s critique while simultaneously embracing Wynn’s suggestion about 
the accumulator is that Gelman views the accumulator as conforming to the counting principles.  In other words, for 
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are (i) that it has more difficulty distinguishing between numbers that are closer to one another 
than it does numbers that are further apart (the distance effect) and (ii) that its discriminative 
capacity degrades as numbers become larger (the magnitude effect).  So while the accumulator 
may represent numerical quantity, it lacks the precision that is integral to the natural numbers. As 
a result, though Wynn’s commitment to the accumulator wasn’t merely a throwback to prior 
empiricist models, it also wasn’t the strong nativist position that Gelman and Gallistel had 
defended.  In our terms, Wynn’s proposal amounted to a form of weak nativism.  It postulated a 
fair amount of innate structure without requiring specific natural number concepts to be innate.3 

Much of the evidence in favor of the accumulator has come from experiments with 
animals (Gallistel 1990).  Rats, pigeons, and many other species have been shown to be sensitive 
to approximate numerical quantity, and in a variety of tasks their behavior shows the telltale 
signs of the accumulator—increasingly variable discrimination both as the target numbers 
become larger and as they come closer together.  It’s important to bear in mind, however, that the 
animals are responding to numerical quantity and that experimentalists have gone to great 
lengths to control for the many non-numerical properties that tend to correlate with number (e.g., 
duration for sequentially presented items and surface area for static spatial displays).  One of the 
most elegant experiments along these lines is Elizabeth Brannon and Herbert Terrace’s (1998) 
study of rhesus monkeys.  Brannon and Terrace presented monkeys with four stimulus displays, 
each with one to four items, and trained the monkeys to touch the displays in ascending 
numerical order.  Following training, the monkeys were tested on pairs of novel stimuli with as 
many as nine items, where the task was to indicate their numerical order.  Both in the training 
period and in the test trials, Brannon and Terrance used stimuli that varied widely in terms of 
their shapes and sizes (see figure 1). This ensured that the monkeys couldn’t solve the task by 
focusing on such non-numerical features as total surface area, total circumference, or surface 
luminance.  Also, because all of the stimuli used for the test trials were novel, the monkeys 
couldn’t fall back on memorized patterns from the training sessions.  Despite these rigorous 
conditions, the monkeys did surprisingly well, responding far above chance levels (see figure 2).  
Much of the interest of Brannon and Terrace’s study lies in the fact that it shows that monkeys 
can appreciate the ordinal relations among sets of different sizes.  But success clearly depends on 
being able to discriminate the sets in terms of numerical quantity—in order to put them in 
ascending numerical order, the monkeys need to determine the numerical quantities of the 
different sets.  What’s more, the monkeys made more errors when the numerical comparisons 
involved finer distinctions.  This strongly suggests not only that the underlying system of 

 
Gelman, the accumulator’s mental magnitudes are supposed to serve much the same function as numerons (e.g., 
Gallistel & Gelman 1992).  See Laurence & Margolis (2005) for arguments that the accumulator should not be 
construed in this way. 
3 We should point out that Wynn may have thought of herself as a strong nativist, since she described the 
accumulator as delivering fairly precise representations for the first few numbers and only losing precision for 
numbers above three.  Wynn (1992c) also claimed that infants are able to appreciate the precise solutions to simple 
arithmetic problems using small numbers (see below).  Nonetheless, it pays to construe Wynn’s critique of the 
numeron hypothesis as opening the way for weak nativist theorizing, since the accumulator’s representations aren’t 
precise in the way that Wynn took them to be and since weak nativists now appreciate the ways in which the 
accumulator falls short of providing precise representations of the natural numbers (Carey 2001; Spelke 2003; 
Laurence & Margolis 2005).    
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representation lacks the precision of the natural numbers but that its representations are the 
mental magnitudes associated with the accumulator. 
 

 

 
 
Figure 1. Examples of the type of stimuli used by Brannon & Terrace (1998).  Non-numerical 
properties (e.g., surface area and total circumference) were carefully controlled for by varying the 
sizes and shapes of the elements with each trial.  

 
 

Work of this sort with animals has led to further experiments with humans and the 
discovery that humans of all ages—even infants—have access to the accumulator’s approximate 
representations (Whalen et al. 1999; Xu & Spelke 2000; Lipton & Spelke 2003).  Indeed, when 
Brannon and Terrace reran their experiment with human adults (instructing their participants to 
make their judgments as quickly as possible while being careful not to make errors), the results 
were nearly identical to the results for the monkeys (Brannon and Terrace 2002; see figure 2).  
The current consensus in psychology is that the accumulator is a ubiquitous cognitive system 
with an evolutionarily ancient history.  But to embrace the accumulator as part of the innate 
structure of the mind is to take a good step away from an empiricist model of numerical 
cognition.  This consideration, above all others, explains why so many theorists these days count 
as weak nativists.  They adopt the view that we need at least this much domain-specific structure 
but assume we needn’t go so far as to postulate representations of numerical quantity that are any 
more precise than the accumulator’s mental magnitudes.   
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Figure 2. Brannon & Terrace’s (1998) ordering task.  The x-axis represents the numerical 
difference between stimuli; the y-axis represents time in milliseconds (2a) and accuracy (2b).  
Overall monkeys and humans perform similarly.  Both are quicker and more accurate in 
responding to larger numerical differences, though humans take slightly longer with stimuli 
differing by a value of just 1 or 2 and are slightly more accurate for judgments in this range. 
(Based on Brannon & Terrace 2002, figure 26.5). 

 
 
Still, weak nativists typically help themselves to more cognitive machinery than just the 
accumulator.  Another system that is widely cited is the object-indexing system (also referred to 
as the object-file system).  The object-indexing system is a mechanism of visual attention that is 
able to keep track of a small number of objects (up to four) by employing a comparably small 
number of representations that act like pointing devices. These representations, or indexes, 
function in parallel and track their respective objects by responding primarily to spatial-temporal 
properties.  Object-based approaches to visual attention are well-motivated apart from any 
concerns about numerical cognition (Scholl 2001).  However, many psychologists have come to 
think that the object-indexing system explains a good amount of data that, at first glance, may 
have appeared to support the view that infants or animals can represent small precise quantities 
(see, e.g., Simon 1997; Leslie et al. 1998; Uller et al. 1999).  An example, though not an 
uncontroversial one, is the proper analysis of Wynn’s (1992c) classic addition/subtraction study 
with infants.  Wynn showed five-month-old infants simple arithmetic events and measured their 
looking time for correct and incorrect results. For instance, in a 1+1 scenario, infants saw a 
single doll placed on a stage, followed by a curtain rising and blocking the view of the stage.  A 
second doll was then visibly placed behind the curtain.  Finally, when the curtain fell, the infants 
saw either the correct outcome (two dolls) or an incorrect outcome (one or three dolls). Because 
infants looked significantly longer at the incorrect outcomes, Wynn concluded that they can do 
simple arithmetic.  Wynn’s results have been replicated many times, and variations on the same 
basic procedure have been successful with monkeys and dogs (Hauser et al. 1996; Uller et al. 
2001; West & Young 2002).  But many theorists have felt that her reading of the data is too 
extravagant and that there is no need to suppose that infants are representing numerical quantity 
or any arithmetic facts.  Perhaps instead a better explanation can be given directly in terms of the 
object-indexing system.  For example, in the unexpected outcome of 1+1=1, infants have an 
active index that is missing its object, and this may produce greater demands on attention, 
causing infants to look longer (Leslie et al. 1998).  For theorists who are skeptical of strong 
nativism but who aren’t necessarily empiricists, appeals to the object-indexing system have 
seemed quite attractive.  Like the accumulator, the object-indexing system involves a limited 
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amount of innate structure but no innate representations for specific natural numbers—in this 
case, no representations for the smallest natural numbers. 
 
1.2 Strong nativism reconsidered 
 
In our view, the retreat from strong nativism was too hasty.  Weak nativism faces a rather serious 
difficulty that only serves to highlight the explanatory power of strong nativism.  This is the 
challenge of explaining how precise numerical concepts are learned given the meager innate 
resources that weak nativists acknowledge. 

In general, there is something puzzling about how one can acquire a system of 
representation that is richer than the one in which its learning takes place (Fodor 1975, 1981; 
Niyogi & Snedeker forthcoming).  The very idea of learning fundamentally new concepts has an 
air of mystery about it.  Unlike Fodor, we don’t want to say that concept learning is simply 
impossible (Laurence & Margolis 2002, forthcoming).  However, it certainly is true that there is 
a substantial explanatory burden associated with proposals for learning new concepts, and 
number concepts are a case in point.  As Stanislas Dehaene has put the point, “[I]t seems 
impossible for an organism that ignores all about numbers to learn to recognize them.  It is as if 
one asked a black-and-white TV to learn about colors!” (Dehaene 1997, 61-2).  Weak nativists 
aren’t unaware of the difficulty.  They have debated the relative importance of the accumulator 
and the object-indexing system and have speculated about how these systems might support the 
acquisition of the natural numbers.  They have also suggested that natural language may play an 
important role, perhaps even an essential role (Dehaene 1997, Gallistel & Gelman 2000, Carey 
2004, Spelke 2003) in the acquisition process.  While this work has in many ways been 
extremely fruitful, weak nativist models have, by and large, been short on details at just the point 
where they are supposed to explain how concepts for the natural numbers emerge from prior 
systems of representation (Laurence & Margolis 2005, in prep.).  In contrast, strong nativist 
models are far better equipped to provide a fully explicit and satisfying account, precisely 
because such models help themselves to more innate structure than is permitted within a weak 
nativist framework.  

Of course, strong nativism comes in different varieties, just as weak nativism does, and 
some of these will be more plausible than others. The essential difference between strong and 
weak nativism is that strong nativism takes at least some natural number concepts to be innate. 
So one needn’t adopt all of the commitments of Gelman and Gallistel’s (1978) model to be a 
strong nativist; for example, one might suppose only a few natural number concepts are innate, 
or one might hold that the innate system of representation doesn’t embody the counting 
principles.  We will briefly sketch our own version of strong nativism as an alternative and (we 
believe) more plausible strong nativist position.  

On our model, one of the core systems supporting natural number concepts is an innate 
number module.4  The number module, as we construe it, contributes a small set of 
representations that correspond to the first few natural numbers—1, 2, 3 and perhaps 4.  These 
representations have precise numerical content but it’s fairly minimal.  They needn’t carry with 
them an understanding of the quantitative relations among small collections or knowledge of 

 
4 See Butterworth (1999) for a related view, though Butterworth motivates and develops the idea of a number 
module in a different way than we do. 
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mathematical facts and operations.  In fact, as far as our model is concerned, the number 
module’s representations needn’t even be understood to be ordered.  What makes them 
numerical representations is just that they serve to detect collections of specific sizes, for 
example, the representation corresponding to 2 is uniquely responsive to collections that have 
precisely two items, independent of whatever non-numerical properties the collections have.  
How might the number module be implemented?  One option is that the module takes the form 
of a neural network that receives input from the object-indexing system and from comparable 
systems in other modalities.  Such a network would have three or four output nodes, and its 
connections would be weighted so that each of these output nodes responds selectively to a 
particular numerical quantity.  One way to accomplish this would be for the input nodes to 
provide enough activation so that any one of them would suffice to activate the 1 output node, 
any two the 2 node, etc, while at the same time having inhibitory links so that each output node 
inhibits the activation of the output nodes corresponding to smaller numerical quantities. So the 2 
output node inhibits the 1 output node, and the 3 output node inhibits both the 1 and 2 output, 
etc.5  See figure 3. 
 
 

 
 
 
Figure 3. The Number Module. The network’s input comes from the object indexing system and 
from comparable non-visual systems.  The output nodes are selectively responsive to specific 
numerical quantities. 

 
 

For our purposes, what makes the number module’s representations numerical is that they 
are fully abstract (they aren’t tied to a single modality such as vision) and they function to 
correspond specifically to the number of things in a collection (as opposed to individual objects 
or non-numerical properties).  In addition, they are precise, unlike the accumulator’s mental 

 
5 One set of connection strengths that would accomplish this is as follows.  Each input node is connected with a 
strength of 1 to the 1 output node, with a strength of ½ to the 2 output node, with a strength of ⅓ to the 3 output 
node and a strength of ¼ to the 4 output node.  In addition, the 2 output node is connected to the 1 output node with 
a strength of -2.  The 3 output node is connected to the 1 output node with a strength of -1, and the to 2 input node 
with a strength of -1½.  The 4 output node is connected to the 1 output node with a strength of -1, and the to 2 input 
node with a strength of -½, and the 3 output node with a strength of -1 ⅓. 
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magnitudes.  This combination of features allows children to precisely represent the first few 
natural numbers, providing an effective starting point for acquiring the full system of natural 
numbers. 

How do children get beyond this fairly minimal base to acquire concepts of natural 
numbers beyond three or four? One possibility is that an external structured symbol system helps 
children to extend the innate system. The external symbol system might be a natural language 
counting system, though in principle it could just as well be a system based on body parts, 
written arithmetic symbols, marks, or other external symbols. To illustrate how the external 
system might help, imagine that children are able to detect the properties one, two, and three 
through the representations in the number module and that they map these directly to the words 
“one”, “two”, and “three”.  At this point, they needn’t see these words as being part of an ordered 
system.  They just hear the words used independently of one another and associate them with the 
properties that they correspond to just as they would in learning any other individually presented 
words or symbols.  Suppose as well that children learn the counting routine as a kind of game, 
only to discover that for the small count words the last word reached in a count happens to be the 
word that expresses the quantity of the collection.  This allows children to determine that 
counting is a way of enumerating and to interpret the first few count words in terms of their 
innate numerical representations.  Because of the newly acquired mapping between the innate 
numerical concepts and the first few words in the count sequence, children would then have a 
way of placing the concepts in order, even if they don’t yet fully understand the quantitative 
significance of that order.  What’s more, because they can represent one (again, via the number 
module), they are in a position to detect the single most significant fact about that order.  They 
can determine that the quantity associated with each subsequent term (for the first few terms) is 
exactly one more than the quantity associated with its predecessor.  Finally, they can inductively 
infer that every term in the sequence, not just the first few terms, participates in the same 
pattern—each expresses a quantity that is exactly one more than the preceding term. This, in 
barest outline, is how children might come to acquire concepts for natural numbers according to 
our own strong nativist account (see Laurence & Margolis, in prep. for more details). The 
cornerstone of the account is the innate number module, which allows children to represent small 
numbers with precision, especially one, giving them a foothold for acquiring further natural 
numbers.6 

The dispute about the cognitive development of numerical concepts isn’t about whether 
they have an innate basis but about how much innate structure is involved and whether, and to 
what extent, it is number-specific.  The attraction of strong nativism, we’ve been suggesting, is 
that by helping itself to more innate structure than weak nativism, it is able to give a far explicit 
account of their development.  But to maintain this advantage, strong nativists have to reject the 
Cultural Construct Thesis.  In the next section we’ll look at a body of recent cross-cultural data 
that would appear to support the Cultural Construct Thesis and hence provide a serious challenge 
to strong nativist models like our own. 

 
6 Leslie, Gallistel, & Gelman (this volume) present what we take to be another strong nativist alternative to weak 
nativism. This represents a radical reorientation from Gallistel and Gelman’s recent work (e.g., Gallistel & Gelman 
1992, 2000, Gallistel, Gelman, & Cordes 2005). Like us, Leslie, Gallistel, & Gelman (this volume) argue that an 
innate ability to represent a difference of one is essential for acquiring the integers; however, they employ a much 
higher standard for the conditions that must be met to possess numerical concepts (see their discussion of the 
computational compatibility constraint). 
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2 The Whorfian challenge of the Pirahã 
 
In a highly influential recent study, Peter Gordon investigated the numerical abilities of the 
Pirahã, a remote tribe in the Brazilian Amazon.  Gordon’s own interests in this group stem from 
his views about linguistic determinism.  As Gordon puts it, the issue here is whether the absence 
of relevant linguistic structures, such as words and grammatical devices, “precludes the speakers 
of one language from entertaining concepts that are encoded by the words or grammar of 
[another] language” (Gordon 2004a, 496).  Gordon sees the Pirahã as offering an ideal case study 
because they speak a language that differs from most familiar languages in that it has a paucity 
of words for expressing numerical quantity.  Moreover, the few numerical words that the Pirahã 
language does have fall short of expressing precise numerical quantities.  Gordon’s claims 
regarding the Pirahã language largely derive from work by the linguists Daniel and Keren 
Everett, who are among the foremost authorities on the Pirahã language and culture.   (The 
Everetts have lived and worked among the Pirahã for over twenty years and it was their research 
team that facilitated Gordon’s own studies with the Pirahã.)  Gordon notes that the primary 
candidates for number words in the Pirahã language are “hói”, “hoí”, and “baagi” (or “aibai”), 
corresponding to “roughly one”, “roughly two”, and “many”.  Crucial to Gordon’s analysis is 
that these terms lack the precision associated with natural number concepts   (Gordon 2004a, p. 
498):  

 
One particularly interesting finding is that “hói” appears to designate “roughly one”—or 
a small quantity whose prototype is one.  … In Pirahã “hói” can also mean “small”, 
which contrasts with “ogii” (= big), suggesting that the distinction between discrete and 
continuous quantification is quite fuzzy in the Pirahã language. 

 
In addition, despite occasional trading relations with nearby Brazilians, the Pirahã don’t use 
money and haven’t adopted Portuguese counting words.  In part, this is because the Pirahã 
maintain a strong isolationist cultural identity.  According to Daniel Everett, “the Pirahã 
ultimately not only do not value Portuguese (or American) knowledge but oppose its coming into 
their lives” (Everett 2005, p. 626).  The interesting question, then, is whether the Pirahã, despite 
their lack of counting terms, have the cognitive capacity to represent and manipulate exact 
numerical quantities.  Gordon argues that they do not and that this fact provides direct support 
for a strong form of linguistic determinism.   

Not too long ago linguistic determinism had few supporters in cognitive science.  
Linguistic determinism has always been associated with Benjamin Lee Whorf’s rather naïve 
analysis of native American languages.  Once this analysis was discredited, linguistic 
determinism itself came into disrepute (see, e.g., Pinker 1994).  Recently, however, linguistic 
determinism has been making a comeback, and there has been a resurging interest in the kind of 
sustained cross-cultural work that would be needed to test it (Gumperz & Levinson 1996, 
Gentner & Goldin-Meadow 2003, Levinson 2003).  Gordon’s study has certainly contributed to 
the revitalization of linguistic determinism and is a particularly important case study given its 
prominence in the literature.  (Gordon reports his data in the prestigious journal Science, which is 
itself a good indication that linguistic determinism has regained a good deal of scientific 
respectability.) 

We share Gordon’s interests concerning both the status of linguistic determinism and the 
more specific claim that precise numerical concepts depend on language.  But for the purposes of 
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this chapter, we also want to place Gordon’s study in a larger context that asks about the innate 
basis of precise numerical concepts.  Undoubtedly, part of the reason why Gordon’s study has 
received so much attention is that it strongly suggests that precise numerical concepts are a 
cultural construct.  If precise numerical concepts are so dependent on contingent features of 
language, then there is no reason to suppose that they have a specific innate basis.  Rather, the 
supposition must be that they are learned by exposure to the cultural practices that only certain 
languages embody and, consequently, that the strongest viable form of nativism is weak 
nativism.  In the next section, we will take up both of these issues—the status of Gordon’s claims 
about linguistic determinism and the implications for the nativism dispute.  But before turning to 
our own assessment of what can be concluded from Gordon’s data, it will be helpful to review 
his experimental procedures and to briefly describe the results as Gordon himself sees them.      

Gordon reports data from eight experimental tasks, conducted on seven adult Pirahã 
subjects (6 male; 1 female) ranging in age from 18 to 55.7  The first six tasks all have a similar 
structure in that they ask subjects to produce an array of items that match the number of a target 
display.  The two remaining tasks involve keeping track of the number of items placed into an 
opaque container or using the number of symbols on the outside of a container to distinguish it 
from another container.  The tasks were designed to place varying demands on different 
cognitive skills that interact with numerical abilities.  For Gordon, the question is whether any 
patterns emerge across these variations.  Gordon reports that there is indeed a crucial pattern. 
While his subjects were relatively successful with small numbers of items (up to two or three), 
their performance significantly decreased with larger numbers.  Moreover, the variability in their 
estimates tended to increase as the quantities increased—a pattern that is suggestive of the use of 
mental magnitudes or accumulator-based representations.  From all of this, Gordon concludes 
that the Pirahã’s linguistic system confines them to analog representations of numerical quantity.  
“[T]hese studies show that the Pirahã’s impoverished counting system limits their ability to 
enumerate exact quantities when set sizes exceed two or three items” (Gordon, 2004a, p. 498).8 

Here, then, is a brief summary of Gordon’s experiments.   
 
One-to-one line match.  Let’s start with the group of tasks that require matching a target 
display’s number.  The first of these gives much of the flavor of whole group.  It’s called the 
one-to-one line match task.  Here’s how it works.  The experimenter and the subject sit on 
opposite sides of a table, and the experimenter lays down an array of batteries in a horizontal 

 
7 Most of Gordon’s experimental data is drawn from four of the seven participants. Gordon notes that these six adult 
males comprised all of the adult males in the two most accessible Pirahã villages and that children and women were 
generally inhibited from participating in experiments. 
8 Gordon sometimes talks as if the pertinent issue of linguistic determinism is whether the Pirahã can represent 
precise quantities greater than two, which suggests that he may think that they can, at least under some conditions, 
represent exact quantities of two or less.  However, when he talks about the ability to represent small exact 
quantities, he tends to align himself with work that identifies this ability with mechanisms of object-based attention, 
which do not employ specifically numerical representations (Gordon 2004a, p. 498).  And since he maintains that 
the Pirahã don’t have any words for precise numerical quanities (not even for one), Gordon’s linguistic determinism 
implies that the Pirahã shouldn’t have any concepts for exact numerical quantities.  For these reasons, we read 
Gordon as holding that the Pirahã aren’t capable of representing any precise numerical quantities, not even 
quantities as small as one and two.  But in the end it doesn’t matter whether Gordon himself goes this far, since it is 
clear that others opposed to strong nativism suppose that Gordon’s data make a powerful case against there being 
any innate integer concepts. 
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evenly spaced configuration.  The subject is then asked to place batteries on his side of the table 
to “make it the same” (see figure 4).  In effect, the task is to line up the batteries in one-to-one 
correspondence with the experimenter’s array. Once the subject is finished, he is asked whether 
it is the same before being tested on another number.  Regardless of the outcome, the 
experimenter always gives the cheerful response “aiyo!”, which is comparable to saying “OK!”, 
and then proceeds with the next trial. Gordon made sure to always start with small quantities but 
then tested larger numbers (up to 8 or 9) in random order, with each tested quantity appearing 
two or three times. 
 

 
 
 
Figure 4. The One-to-One Line Match Task.  The experimenter arranges a linear array of items on 
one side of the table, and the subject’s task is to place the same number of items on the other side. 

 
 
Cluster line match.  For this task the target group of items to be matched is a non-linear 
configuration of nuts.  As with the one-to-one line match task, the goal is to construct a linear 
horizontal array of batteries with the same number (“make it the same”).  But since the nuts are 
not the same size as the batteries, this task can’t be solved merely by attending to the amount of 
stuff to be matched.  Further, because of the non-linear arrangement of the nuts, the task can’t be 
solved simply by placing one battery directly in front of each nut. 
 
Orthogonal line match.  This time the array to be matched is a linear array, but it is positioned 
perpendicularly to the array that the subject is expected to create; the experimenter’s array is 
vertical, the subject’s horizontal.  As in the cluster line match, this configuration prohibits the 
simple strategy of placing a battery directly in front of each target item.  Moreover, were subjects 
to try to solve the task by using an estimate of overall length—another non-numerical strategy—
there would be a telltale sign.  Since vertical lines appear longer than same-sized horizontal lines, 
the reliance on mere length would cause subjects to overestimate the number of items needed to 
match the array, and they would end up placing too many batteries in their horizontal arrays. 
 
Uneven-line match.  This time the array to be matched is linear and horizontal but with different 
sized gaps between the batteries that compose the array.  In other words, the task is just like the 
original one-to-one line match task except that in the original task the batteries are evenly 
spaced. 
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Line copying.  This task differs from all of the previous ones in that a notepad is used.   On one 
side of the pad’s binding there is a horizontal array of lines.  Subjects are expected to match the 
number by drawing lines on the other side.  Visually, this looks as if you are extending the 
horizontal array.  Part of the reason for this variation is the novelty of drawing for the Pirahã; 
drawing isn’t a familiar activity for them.  Also, the arrangement of the pad offers another 
variation where the task can’t be solved by using the simplest non-numerical strategy—the new 
lines can’t be placed one-for-one directly in front of the lines being matched. 
 
Brief presentation.  The final experiment of the group is just like the cluster line match except 
that the array to be matched is visible for only a brief period—approximately one second.  As a 
result, the matching procedure has to be done from memory.  Gordon doesn’t explain why he 
included this variation, but presumably the memory limitation further discourages the sorts of 
non-numerical strategies that motivated the cluster match task in the first place.  Gordon reports 
that several subjects probably approached the cluster match task by positioning each battery to 
point to an individual nut.  “Such a targeting strategy would be very familiar from their everyday 
use of bows and arrows for hunting and fishing” (Gordon, 2004b, p. 4).  This strategy would be 
far less effective, however, once the nut cluster is out of sight.   One would have to remember the 
position of each nut, and that is not easy for larger arrays.  Gordon also sees some value in 
manipulating requirements on memory as a way of testing numerical competence under varying 
task demands.  “Any estimation of a person’s numerical competence will always be confounded 
with performance factors of the task.  Because this is unavoidable, it makes sense to explore how 
performance is affected by a range of increasingly demanding tasks” (Gordon, 2004a, p. 497). 
 
Of all the matching tasks, the results for the one-to-one line match were the best. Pirahã subjects 
created perfect matches for numbers in the 1-3 range and were successful about 75% of the time 
for numbers from 4-8. The overall trend for the other matching tasks was similar in that their 
performance deteriorated as the numbers grew larger, but with some of the other matching tasks, 
their performance deteriorated even before getting to 3 and dropped well below the 75% success 
rate.  For example, in the orthogonal line match they were at 100% for 1 and 2 but dropped to 
about 60% for 3-8 and didn’t succeed at all for 9.  In the brief presentation task, they were also at 
100% for 1 and 2 but dropped to 75% for 3 and then below 50% for 5-9.  The one exception to 
the general trend was the uneven line match task (the one where they were supposed to match a 
horizontal array of batteries that were unevenly spaced).  In this case, though performance 
dropped for 5 and 6, it rebounded for 7 and 8.  Gordon notes that the reason for this exception is 
probably that the subjects were able to chunk the items in the larger arrays and then exploit their 
superior ability for matching small arrays.9 

All of the tasks we’ve reviewed so far are variations on a theme.  The goal is to create an 
array that matches the number of items in the experimenter’s array.  Gordon’s two other tasks 
employ significantly different strategies for gauging numerical competence. 
 

 
9 The other results were as follows:  For the cluster line match, 100% for 2 and 3, 75% for 4-8, and 0% for 9 and 10; 
for the line copying, 100% for 1 and a precipitous drop from 75% to 0% for 2-7. 
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Nuts-in-can.  The first of these begins with a cluster of nuts laid in front of the subject for eight 
seconds.  Then the nuts are placed in an opaque container (an oatmeal can).  One by one the nuts 
are removed from the container and each time the subject is asked whether there are any nuts 
left.  The inside of the container is revealed when the subject declares that the container is empty 
or once all of the nuts have been removed. (See figure 5.)  The results for this task were similar 
to the various matching tasks in that set size was a major determinant of success. Pirahã subjects 
did poorly with larger numbers, but in this case they also had considerable difficulty with small 
numbers, achieving less than 100% success even for two nuts (the smallest number tested) and 
less than 75% success for three. For 5-9, their performance dropped even further, to below 50%. 
 

 
 

 
Figure 5. The Nuts-in-Can Task.  A group of nuts is shown for eight seconds and then placed into 
a can.  As each nut is removed, one at a time, the task is to say whether any nuts are left. 
 

 
Candy-in-box. The last of Gordon’s experiments also uses containers, this time cassette cases, 
each of which is covered by a picture depicting from one to six fish.  The subject sees a candy 
being placed in a case that is subsequently hidden behind the experimenter’s back.  Then the 
experimenter brings his hands forward holding two cassette cases—the original and a second 
case whose picture has precisely one more, or precisely one less, fish on it.  The goal is to pick 
the case with the candy, and the candy is given as a reward for choosing correctly. Pirahã 
subjects did poorly on this task as well, falling below chance for some comparisons and never 
achieving much above 75% accuracy even for the smallest number comparisons—1 vs. 2 and 2 
vs. 3. 
 
For Gordon, the results of these eight tasks all point in same direction. “The present experiments 
allow us to ask whether humans who are not exposed to a [linguistic] number system can 
represent exact quantities for medium sized sets … . The answer appears to be negative” 
(Gordon 2004a, p. 498). And while the Pirahã may appear to have some limited ability to 
discriminate between sets with two or fewer items, Gordon takes this to be a reflection of the 
object-indexing system, not a truly numerical ability.  As a result, Gordon’s position amounts to 
the claim that the Pirahã’s only numerical abilities are the approximate ones that are grounded in 
the accumulator and that humans share with many other animals. If Gordon is right, then 
concepts for precise numerical quantities would appear to be a cultural achievement, just as the 
Cultural Construct Thesis says.  What’s more, it’s a cultural achievement that is only possible 
given the right sort of language.  The reason why the Pirahã have no access to the precise 
numerical concepts that most of us take for granted is because their language doesn’t allow them 
to entertain these concepts. 
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3 Critique of Gordon’s Study 
 
It’s easy to see why Gordon’s study of the Pirahã has attracted so much interest.  Our facility 
with numbers appears to be a distinctively human characteristic and one that underlies many 
significant features of human life.  If it turned out that a group of otherwise normal, intelligent 
human beings were incapable of entertaining precise numerical thoughts, and if it turned out this 
was because of contingent features of the language they speak, it would be big news.  Both the 
Cultural Construct Thesis and the thesis of linguistic determinism, if true, would have deep 
implications for our understanding of the mind.  Unfortunately, the experiments that Gordon has 
carried out aren’t helpful for settling any of these important issues.  The experiments suffer from 
a number of flaws that make it impossible to draw any meaningful conclusions about the 
Pirahã’s numerical abilities, much less the relation between language and thought.  In this 
section, we explain why. We begin with some general objections to Gordon’s argument for 
linguistic determinism.  We then take a close look at the details of his experiments, registering a 
series of objections that bear on both the status of linguistic determinism and the case against 
strong nativism. 
 
3.1 Correlation vs. Explanation  
 
For the moment, let’s put aside the issue of strong nativism and focus just on the question of 
whether Gordon’s study supports linguistic determinism.  For the sake of argument, we will 
assume that Gordon’s analysis of the Pirahã language is accurate and that the Pirahã have a 
significant linguistic deficit—in particular, that they have no linguistic expressions for precise 
numerical quantities.  We will also assume that Gordon’s study shows that the Pirahã have a 
significant cognitive deficit—namely, that they are unable to conceptualize precise numerical 
quantities.  (Later, starting in section 3.3, we’ll challenge the second of these assumptions, but 
for the time being we don’t want to get embroiled in the details of Gordon’s experiments.)   

Given these assumptions, does Gordon’s thesis of linguistic determinism follow?  
Unfortunately, no.  The problem is that the most that can be concluded is that the linguistic and 
cognitive deficits are correlated in the Pirahã.  However, as a number of critics of linguistic 
determinism have noted in other contexts, it’s one thing to establish that linguistic and cognitive 
deficits are correlated, but quite another to show that the linguistic deficit is responsible for the 
cognitive one (Bloom & Keil 2001; Gleitman & Papafragou 2005; Pinker 1994).  To establish 
the responsibility claim a lot more would have to be done.  Gordon would have to rule out the 
possibility that the determination relation goes in exactly the opposite direction.  After all, it 
could be that the reason the Pirahã lack words for precise numerical quantities is because they 
lack concepts for precise numerical quantities, not the other way around.  Similarly, Gordon 
would have to rule out the possibility that the conceptual deficit traces back to some other factor 
that has nothing to do with language.  Reasonable alternatives of these sorts clearly need to be 
considered and yet Gordon’s study fails to do so.  Indeed, it’s hard to see how the measures he 
employs could even begin to locate the source of the Pirahã’s difficulties with numerical 
quantity, since Gordon’s tests only presume to examine the numerical abilities themselves.  The 
most they could tell us is whether a subject is capable of precisely enumerating a collection, not 
what prevents him from enumerating it if he can’t.   
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To see the burden that Gordon faces, it might be helpful to say a little bit more about 
some of the competing explanations of why the Pirahã lack concepts for precise numerical 
quantities.  One type of explanation appeals to cultural factors (i.e., cultural factors apart from 
language).   We have already noted that the Pirahã have a strong identity as a people and are 
highly resistant to outside cultural influences.  Everett (2005) characterizes their culture as one 
that places special significance on personal experience of the here-and-now and that has a 
corresponding indifference to abstractions.  Everett speculates that this culturally-based belief 
system ends up constraining how the Pirahã think and communicate and that this in turn is 
reflected in their language.  If Everett is right, then the Pirahã should be expected to have 
difficulties with all sorts of abstractions, including numerical quantity, but the difficulty would 
trace back to their cultural outlook, not to an inherent limitation of their language.  Though we 
ourselves are somewhat skeptical about the claim that the Pirahã are fixated on the concrete 
present, the general strategy of locating a cultural source of their difficulties with number isn’t 
implausible.  For example, one can easily imagine that a latent ability to represent precise 
quantities might be lost owing to lack of use.  If the Pirahã simply fail to nurture and exercise 
this ability, then perhaps that is why they do so poorly on Gordon’s numerical tasks.  It’s also not 
that hard to imagine other cultural factors that might be responsible. For example, the problem 
could be that the Pirahã aren’t trained in a counting procedure and that learning concepts for 
natural numbers, especially larger ones, is inordinately difficulty without such a procedure.  
Note, however, that this explanation needn’t invoke natural language, since counting itself 
needn’t involve words; as we noted earlier, it can be based instead on body parts, tallies, or other 
types of external symbols.10  

Because these alternative explanations invoke cultural practices, they might be thought to 
challenge Gordon’s linguistic determinism at the cost of leaving the Cultural Construct Thesis 
perfectly in tact.  Of course, at this point we are simply accepting for the sake of argument that 
the Pirahã really do have the cognitive deficits Gordon claims they have, something we will be 
challenging shortly.  But even if we grant that the deficits are real, there are further possibilities 
that have nothing to do with cultural practices.  One of these is that the Pirahã, or the few 
subjects Gordon tested, suffer from a genetic anomaly. Gordon reports that there is no reason to 
suppose that his subjects were psychologically impaired, and Everett, who has lived among the 
Pirahã, flatly rejects the suggestion that the Pirahã have genetic defects, noting that they 
intermarry with outsiders (Everett 2005, 634).  But the claim regarding intermarriage has to be 
taken with a grain of salt.  First, despite having some contact with outsiders, the Pirahã remain a 
very small community, largely isolated from neighboring groups.  Second, as Everett himself 
points out, the Pirahã’s marriage system is “relatively unconstrained” in that it isn’t unusual for 
Pirahã couples to share at least one biological parent (Everett 2005, 632).  So while we wouldn’t 
want to just jump to a genetic explanation, this possibility should not be ruled out a priori either. 
Clearly, a genetic explanation would have to be considered if the population in question were 
located in Boston or Chicago.  We see no reason to think that things ought to be different for the 
Pirahã just because they are located in a more remote part of the world.11 

 
10 As it turns out, Everett did try to teach the Pirahã how to count using a linguistic counting system.  His efforts 
were unsuccessful.  See section 3.7 (below) for discussion of the significance of this outcome.       
11 None of this implies that Pirahã (or any other traditional people) are generally intellectually inferior.  Genetic 
deficits can be quite focused and needn’t involve general cognitive impairments.  Exploring the possibility of a 
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The upshot of these considerations is that, even if we take all of his results at fact value, 
Gordon’s experiments provide little or no support for linguistic determinism.  On the face of it, 
there are any number of equally plausible hypotheses for why the linguistic and cognitive deficits 
might be correlated in the Pirahã.  And since the most that Gordon’s study could establish is that 
these deficits are correlated, it cannot even begin to rule out any of these alternatives. 
 
3.2 A Very Weak Correlation 
 
So far we have been supposing that Gordon’s study shows that a conceptual deficit (the inability 
to think in terms of the natural numbers) is at least correlated with a linguistic deficit (a paucity 
of number words).  We have only claimed that Gordon’s study can’t elucidate why the 
correlation obtains.  In this section we want to go one step further by challenging the claim that 
there really is a meaningful correlation. 

Gordon’s study, as it turns out, offers little evidence that there is.  All he gives us is a 
single case study involving just one population—one data point, as it were—and this single case 
study is almost entirely based on just four subjects (see footnote 7)! Of course, sometimes a 
conclusion can be warranted on the basis of a single case study, even of a small population, but 
not when the issue is a sweeping claim like Gordon’s thesis of linguistic determinism.  It’s one 
thing to say that the Pirahã, who happen to lack number words, are unable to solve certain tasks 
that require the use of precise numerical concepts.  It’s quite another to say that in general the 
representation of precise numerical quantities requires the linguistic means to express them and 
that numerical concepts are essentially dependent on number words.  In order to justify these 
broader claims, additional case studies are absolutely essential. We need to look at other 
populations who also have a paucity of number words.  The pressure to look in this direction 
increases all the more so when we recognize that Gordon’s linguistic determinism is built around 
the finding that the Pirahã don’t succeed on his numerical tasks—a negative result. What if other 
similar populations, or even just a single one, were to demonstrate precise numerical abilities 
despite a lack of number words?  This in itself would overturn Gordon’s negative finding, 
showing that precise numerical cognition isn’t dependent on language after all.  For this reason, 
it’s extremely important to look beyond the Pirahã for futher data points before drawing any 
conclusions about linguistic determinism. 

Although Gordon doesn’t discuss any other cross-cultural work, there is a body of earlier 
research that bears on the topic. As Gelman & Butterworth (2005) point out, much of this earlier 
research suggests that the link between language and number is nowhere near as tight as Gordon 
claims.  For example, Australian Aborigine speakers of Warlpiri (a language similar to Pirahã in 
its paucity of number words) show no evidence of lacking numerical concepts.  The linguist 
Robert Dixon offers this summary of what has been observed of Warlpiri speakers and other 
Aborigines (Dixon 1989, p. 108):  

 
[N]o special significance attaches to the absence of numeral systems in Australian 
languages; it is simply a reflection of the absence of any need for them in traditional 
culture.  Aboriginal Australians have no difficulties in learning to use English numerals; 

 
genetic anomaly would be no more presumptuous in this case than in other cases where a circumscribed cognitive 
deficit has been discovered (e.g., familial Specific Language Impairment).  
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Kenneth Hale has commented that ‘the English counting system is almost instantaneously 
mastered by Warlpiris who enter into situations where the use of money is important…’  

 
Likewise, Everett has observed that other Amazonian tribes freely borrow number words from 
their Brazilian neighbors when the need arises (Everett 2005, p. 634). Susan Schaller discusses a 
similar sort of case, involving a deaf adult who managed to function without having acquired a 
natural language by miming to communicate.  According to Schaller, he readily learned the 
Arabic numerals for one to twenty, matching these to corresponding sets of crayons.  “He found 
the symbols for numbers easy compared to signs or words.  Apparently, arithmetic already 
resided in his brain” (Schaller 1991, p. 61). 

Admittedly, all of these claims are based on unsystematic observations, not carefully 
designed experiments, so it’s fair to wonder exactly how precise and accurate the stated 
numerical competences are. It’s also possible for Gordon to respond that in most cases the 
numerical ability comes only with the linguistic ability and that this is consistent with the 
numerical ability still being dependent on the linguistic one.  However, the plausibility of such a 
response would depend on just how readily the numerical ability takes hold.  If it is truly 
acquired “almost instantaneously”, then it seems far more plausible to suppose the numerical 
ability doesn’t depend on language and that any newly acquired linguistic counting system 
simply provides evidence for the prior possession of numerical concepts. 

There are also other relevant data to take into account (Gelman & Butterworth 2005).  
For example, Dixon reports an Aboriginal practice of using different parts of the palm to indicate 
the number of days until a planned event occurs, a system that apparently doesn’t require 
possession of number words.  And clinical studies have shown that precise numerical abilities 
can be preserved despite severe linguistic deficits and, in some cases, may develop without them 
as well.  Hermelin and O’Connor (1990) describe a particularly impressive case of a speechless 
autistic man who can identify five figure prime numbers and factorize numbers of the same 
magnitude, all based on exposure to a few examples expressed in standard Arabic notation (i.e., 
as opposed to natural language).  (For work on aphasiac patients see, e.g., Rossor et al. 1995 and 
Varley et al. 2005.) 

In sum, it shouldn’t be granted that Gordon’s study of the Pirahã establishes a genuine 
correlation between linguistic and numerical abilities.  While he may have identified one 
instance where a population lacking number words also happens to lack precise numerical 
concepts, it is only one instance.12  A broader examination of the evidence suggests that the 

 
12 A related study by Pica et al. (2004) was published in the same issue of Science as Gordon’s article.  This study 
examined the numerical abilities of the Mundurukú, another Amazonian tribe whose language has a highly 
impoverished vocabulary for numerical quantities (the Mundurukú language only has fixed terms for quantities up to 
5 and none of these expresses a single precise numerical quantity).  Pica et al. don’t make the same strong claims 
concerning linguistic determinism as Gordon does.  Nonetheless, they argue that the Mundurukú are incapable of 
precise numerical thought. Pica et al.’s test for precise numerical thought involved showing subjects a video of a 
certain number of dots (1 to 8) going into an opaque container that was previously shown to be empty.  After a 
pause, some of the dots would exit the container.  Subjects were then asked to say how many dots remained or to 
choose which of three images of a container (with zero, one, or two dots inside) depicted the correct result.  There is 
much to admire about Pica et al.’s research, including their attention to non-numerical confounds and their use of 
French speaking controls who were given the very same tasks as the Mundurukú.  But in spite of these virtues, Pica 
et al.’s study is subject to a number of the same criticisms that we will raise for Gordon’s study—see notes 14, 16, 
and 20 below. 
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pattern may not hold up elsewhere and certainly raises questions about whether we should expect 
it to.  Taken together these points considerably weaken Gordon’s case for his linguistic 
determinism.  What they show is that, even if we take him to have demonstrated that the Pirahã 
lack precise numerical concepts, Gordon provides little or no evidence that such concepts are 
dependent on language.  
 
3.3 A Null Effect 
 
We’ve seen that Gordon’s results with the Pirahã don’t suffice to establish his thesis of linguistic 
determinism.  Even if we take him to have shown that the Pirahã can’t represent precise 
numerical quantities, this may not be the result of the language they speak, and it doesn’t tell us 
anything about the general class of cases where people speak a language that lacks words for 
precise numerical quantities. Still, Gordon’s study might be thought to be somewhat suggestive.  
After all, he does seem to locate a population where a paucity of number words is associated 
with a conceptual system that doesn’t register precise numerical quantities.  And while it remains 
to be seen whether the same association holds up elsewhere—and, if so, why it does—Gordon’s 
experiments might be thought to provide the first steps in a more encompassing research 
program as well as an experimental framework for investigating these questions.  In much of the 
rest of this section (3.3 – 3.6), we will argue that this would be a mistaken view of the situation.  
Quite surprisingly, Gordon’s experiments do not license any substantive conclusions about 
whether the Pirahã’s are capable of precise numerical thought; his experiments turn out to be a 
poor tool for gauging whether they have precise numerical concepts.  If we are right about this, 
then Gordon’s results with the Pirahã don’t provide any support for either linguistic determinism 
or the Cultural Construct Thesis.   

We’ll begin with one of the most significant problems that we see with Gordon’s 
experiments, a feature of his experimental procedures that affects nearly all of his tasks.  This is 
that they are designed to elicit spontaneous responses and only spontaneous responses.  In 
general there is nothing wrong with looking at spontaneous responses.  If a group is given a 
numerical task and happens to respond correctly without any training or guidance, this would be 
an excellent sign that they have the mathematical concepts in question.  The problem only occurs 
when their spontaneous responses are incorrect, when the result amounts to a null effect.  What 
can be concluded then?  Very little. The reason is that the negative outcome would be expected 
not only if they lack the relevant mathematical concepts but also if they have such concepts but 
don’t habitually think in terms of them or if they simply fail to understand the task. To make 
matters worse, Gordon’s procedures compound the problem by reinforcing incorrect spontaneous 
responses rather than helping his subjects to appreciate what a correct response would entail.   

One way to get a feel for this objection is to consider how Gordon’s experiments look on 
the assumption that the Pirahã are capable of precise numerical cognition but that precise 
numerical quantities aren’t salient in their culture.  In that case, how would we expect Pirahã 
subjects to perform on Gordon’s tests?  Consider the various matching tasks.  In these tasks, 
subjects are shown an array of batteries or nuts and told to make it the same.  But what would 
“making it the same” mean to them?  Presumably, if precise numerical quantities aren’t salient 
for them, then their initial interpretation of the instructions wouldn’t be to match the precise 
numerical value of the target array.  Perhaps, instead, they’d suppose that they are meant to 
match the approximate numerical value, or match the total amount of stuff, or create a similar-
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looking visual pattern.  Regardless of which it is, there would be nothing during the course of the 
experiment to cause them to revise their initial view of how to proceed.  After all, whatever they 
do, Gordon replies with a cheerful “aiyo!” (“OK!”).  The result is that no matter what 
interpretation they start out with, and no matter how misguided it may be, they are met with 
encouragement that tells them to continue in the same way.  Under these conditions, we should 
certainly expect to see just the sort of poor results Gordon obtained.  But if the Pirahã should fail 
Gordon’s tests even when it’s assumed that they are capable of precise numerical thought, the 
failure that Gordon documents cannot establish that such thought is beyond them.13  

An analogy may help to clarify the situation.  Suppose we were dealing with entirely non-
linguistic subjects—for example, chimpanzees—and we wanted to see if they are capable of 
enumerating precise numerical quantities.  The challenge, of course, is to convey to an animal 
how to approach a task that measures this ability without having the luxury of being able to 
verbally state the instructions.  Now imagine a scientist, like Gordon, starting with a small 
collection and then rewarding a chimpanzee for its spontaneous response no matter what it does.  
To keep things simple, we can suppose that the chimpanzee behaves appropriately—the 
experimenter places one item down, and the chimpanzee places one item down as well, or the 
experimenter places two down, and the chimpanzee responds with two.  From here, the 
experimenter then goes on to larger sets in random order, and the chimpanzee fails in one way or 
another to match the target number.  It should go without saying that it would be irresponsible on 
the basis of this outcome to conclude that chimpanzees are incapable of enumerating precise 
quantities. In fact, a null effect under these conditions wouldn’t be considered a publishable 
result.  The experimenter simply hasn’t done the necessary legwork to draw such a strong 
conclusion from a null effect. With animals it’s plainly obvious that we need to train them on a 
task to see what they are capable of and that such training can sometimes take a substantial 
amount of time and effort. The true test of their abilities is not their spontaneous response on a 
task that they initially may not understand, but their behavior towards novel stimuli that are 
relevantly similar to the ones they have been trained on.  Although the Pirahã aren’t themselves 
non-linguistic subjects, their situation is similar to the chimpanzee’s in that the nature of 
Gordon’s tasks can’t be easily and directly conveyed to them verbally (by hypothesis, the Pirahã 
lack the needed vocabulary).  But then just as with the chimpanzee there is no point in testing the 
Pirahã subjects until a serious effort has been made to fully convey what they are supposed to do.  
One obvious way to address this objection would be to adapt the standard procedures that are 
employed in comparative psychology, including the use of a battery of pretest trials and a system 
of rewards and penalties that are enforced until a criterion of success is reached.  Gordon, 
however, did none of this.  He simply recorded his subjects’ spontaneous responses and left it at 

 
13 The situation is slightly more complicated when we turn to Gordon’s nuts-in-can and candy-in-box tasks—the two 
that aren’t simply variations on the one-to-one matching task.  While there are a number of alternative 
interpretations of these tasks as well—e.g., the Piraha might simply have seen them as guessing games—subjects did 
receive a certain amount of feedback on these tests.  In the nuts-in-can task, subjects were shown whether or not 
they were right when they said that all the nuts had been removed from the opaque container.  And in the candy-in-
box task, a reward was built into the task in that they were given the candy when they correctly selected the box that 
contained it.  None of this really helps, however, because there are serious questions about whether Gordon’s Pirahã 
subjects understood what was expected of them despite the additional information that they received (see sections 
3.5 and 3.6, below).  This concern could have been obviated if Gordon had trained his subjects using a series of 
pretest trials and more explicit feedback about whether they were answering correctly. 
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that.14 
We should emphasize that our objection here is not that substantive conclusions can’t be 

drawn on the basis of spontaneous judgements.  Positive results on tasks involving spontaneous 
judgements can provide excellent evidence for the possession of cognitive capacities.  Nor are 
we making the indiscriminate claim that null effects in psychology are always uninformative. We 
don’t think that.  It can often be useful to discover that a population fails a test for a given ability.  
But the test has to be implemented judiciously, otherwise the failure reflects more upon the 
method of investigation than upon the participants in the experiments.  With Gordon’s 
experiments, we see no reason to suppose that the results do reflect upon the participants—the 
Pirahã.  What Gordon needs, and what he doesn’t have, are credible procedures for conveying to 
his subjects what counts as success on his tasks.  For this reason alone, Gordon’s study does not 
support any conclusions about the numerical abilities of the Pirahã.15   
 
3.4 Non-Numerical Performance Variables 
 
We’ve argued that a null effect on Gordon’s tasks tells us little or nothing about numerical 
abilities of the Pirahã.  This problem is exacerbated by the fact that several of Gordon’s tasks 
incorporate irrelevant performance variables that have nothing to do with numerical cognition 
per se.  So even if Gordon did manage, in some cases, to convey to his Pirahã subjects what 
counts as success, they might still fail for reasons that have nothing to do with a lack of 
numerical concepts.  They might fail simply because the task designs make things unnecessarily 
difficult.  

Take, for example, the matching task where the target array is presented for only one 
second before being covered up (the brief presentation task).  Clearly, the time constraint 
requires that one memorize the array and then access this memory while constructing the match. 
But imposing these greater demands on memory doesn’t help to clarify the numerical abilities 
under investigation; quite the opposite, it makes it harder to credit failure on this task to deficient 
numerical abilities. If the goal is to learn more about whether someone is capable of precise 
enumeration, then non-numerical factors, like memory load, should be reduced, not increased. 
The whole point of studying the Pirahã is to see if they are capable of going beyond the 
estimation of approximate quantity and whether they can make exact numerical comparisons.  
But by introducing a task that forces them to process the numerical information so quickly, 
Gordon is clearly encouraging estimation.  Even people who do have a conventional counting 
system would be hard pressed to count out the number of items so quickly, particularly for larger 
numbers; failure to do so would hardly indicate that they can’t represent these numbers.16 

 
14 Pica et al.’s (2004) test of precise numerical ability among the Mundurukú (see note 12 above) is subject to much 
the same worry.  As in Gordon’s study, there seems to have been no systematic attempt to convey what counts as 
success on the task, no training, and no feedback. 
15 Given that it would be wrong to conclude that the Pirahã are unable to form concepts for precise numerical 
quantities, it would also be wrong to conclude that they are unable to form concepts for precise numerical quantities 
because of their language.  Moreover, the logic of the objection suggests that the proper test of Gordon’s linguistic 
determinism is one that allows for, and may depend upon, a considerable amount of training.  The only constraint is 
that the training shouldn’t be on a linguistic system, particularly one that expresses precise numerical quantities. 
16 A similar problem affects the Pica et al. (2004) study mentioned in note 12 above.  In this case, the behavior of 
the French controls is illuminating, as they were at ceiling for only two of the eight subtractions.  For the other six, 
they performed below 100%, typically between 80 and 90%.  While it is unclear exactly why the French controls 
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Another example of a task made unnecessarily difficult is the one where a successful 
numerical match requires drawing (the line copying task).  Most of us take pencils and paper for 
granted and are perfectly comfortable drawing conventional representations of such things as 
people, houses, trees, snowmen, etc.  But none of this is true of the Pirahã.  As Gordon himself 
remarks, drawing is completely alien to them.  When asked to draw familiar items—animals, 
trees, etc.—the best they can do is to produce “simple lines without form” (Gordon 2004b, p. 5).  
Gordon also notes the difficult nature of drawing tasks for the Pirahã.  “Producing simple straight 
lines was accomplished only with great effort and concentration, accompanied by heavy sighs 
and groans” (Gordon 2004a, p. 306).  But if drawing itself is that difficult for the Pirahã, why 
suppose that their poor results on this task tell us anything about their numerical abilities?  If a 
six-year-old child, with considerably more familiarity with drawing, misrepresents the number of 
fingers on a normal human hand in a drawing, we don’t suppose that this shows that they lack 
the concept FIVE.  Good tests of numerical ability should minimize such irrelevant task demands. 
 
 
 
 
3.5 Non-Numerical Confounds 
 
We’ve seen that there are a number of reasons to be skeptical about Gordon’s conclusions 
regarding the Pirahã’s numerical abilities.  Just because his Pirahã subjects failed his tasks 
doesn’t mean that they are unable to represent precise numbers.  Gordon’s tests simply aren’t 
sensitive enough to allow us to draw that conclusion.  Interestingly, though, many of Gordon’s 
tests wouldn’t allow us to draw any conclusion about the Pirahã’s numerical abilities even if he 
had got the opposite result:  that is, even if the Pirahã had passed his tests with flying colors, we 
wouldn’t be able to conclude that they have precise numerical concepts.  This is because the tests 
don’t sufficiently control for the non-numerical properties that reliably correlate with number 
(e.g., the total volume, surface area, and circumference of the stimuli) and because many of the 
tests can be passed using relatively simple non-numerical strategies. 

As we noted earlier, the concern about non-numerical confounds is a familiar one 
whenever there is a question about whether a given population has numerical concepts.  
Psychologists who study infants and animals take great care to isolate the many non-numerical 
variables to which their subjects might respond.  For this reason, it’s somewhat surprising that 
Gordon didn’t at least take the precaution of varying his stimuli.  Within any given tasks, he 
standardly used items of the same basic shape and size, thereby ensuring that number correlated 
with the total volume of material (among other things).  The worry is that subjects might achieve 
a considerable amount of success on tasks intended to test numerical abilities simply by tracking 

 
had difficulty with these mathematical tasks—simple problems involving quantities no larger than 8—some non-
numerical features must have made the task challenging.  After all, we know that the French controls are capable of 
precise numerical thought!   One possible explanation is the rapid movement of the dots in the displays (see 
www.sciencemag.org/content/vol306/issue5695/images/data/499/DC1/1102085s1.mov for a video demonstration of 
the task). However, if the presentation speed made the task more difficult, this would obscure whether the 
Mundurukú are capable of using precise numerical concepts.  Assuming they don’t habitually think in terms of 
precise numerical quantities, increasing the performance demands in this way would only encourage them to fall 
back on approximate solutions. 
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a non-numerical property like volume.  In fact, it’s not hard to see how, in some cases, one could 
even achieve 100% accuracy on Gordon’s tests without representing numerical quantity at all, 
much less precise numerical quantity.  For example, with the basic one-to-one line match task, 
all you need to succeed on the task is the strategy of placing a new battery in front of each item 
in the target array.  Following this strategy on this task allows subjects to perform exactly as if 
they were precisely representing the number of batteries in the array.  And to employ this 
strategy requires little more than the ability to identify and track the individual objects that are 
used in the task, something that the object-indexing system can support without the need for any 
numerical concepts at all.  A similar strategy would allow subjects to perform perfectly on all of 
the other matching tasks, with the exception perhaps of the brief presentation task.17  In the 
candy-in-box task, which is ostensibly a more difficult numerical task, the number of fish 
depicted on two boxes is supposed to allow subjects to determine which holds the candy.  But 
solving the task only requires keeping track of the configurations of the fish symbols, since each 
number is perfectly correlated with a simple pattern.  For smaller numbers, it’s just a matter of 
noting the difference between a point and a line, or a line and a triangle.  For larger numbers the 
patterns are more complex, but the same general strategy would work since the pattern for a 
given number was never varied.  All you need to do is recall, after a brief occlusion, the pattern 
that was associated with the candy.18 

So even complete success on the majority of Gordon’s tasks wouldn’t in itself indicate a 
facility with precise numbers.  But just as noteworthy is the fact that the Pirahã didn’t succeed on 
the tasks despite the possibility of using fairly simple non-numerical strategies.  On five of 
Gordon’s eight tasks (with no published data for a sixth), the Pirahã did so badly that they 
weren’t able to succeed even for the numbers one, two, and three. For example, in the candy-in-
box task, the subjects were unable to reliably distinguish containers with 1 vs. 2 fish on them (the 
case that began and illustrated the task).  Likewise, the Pirahã subjects had less than perfect 
accuracy for two nuts in the nuts-in-can task (again, the case that began and illustrated the task) 
and they were only about 70% accurate for three.  

It’s important to recognize just how substantial such failures are.  Infants and animals, 
including dogs and monkeys, routinely succeed on quasi-numerical tasks that can be solved 
using non-numerical strategies (e.g., Wynn’s addition and subtraction task; see section 1) and yet 
the Pirahã are failing on essentially similar tasks.  Although a fully parallel study is not available, 
a study with rhesus monkeys by Hauser, Carey, & Hauser (2000) offers an instructive 
comparison.  The monkeys watched as differing numbers of apple slices were placed into two 
opaque buckets.  The question was which bucket they would approach first.  Figure 6b shows the 
results.  The monkeys chose the bucket with the larger number of slices more than 75% of the 
time for up to 4 slices, doing better than the Pirahã subjects did on the related nuts-in-can task.  
The Pirahã subjects fell significantly below 75% for as few as 3 nuts! 
 
 

 
17 The brief presentation task could in principle be solved in an analogous manner, but this would require subjects to 
form a highly accurate mental image very quickly and be capable of accurate and detailed inspection of the image. 
18 The nuts-in-can task is perhaps the most difficult to fully succeed on using non-numerical strategies.  While there 
certainly are non-numerical confounds in this case (e.g., volume of nuts), and the task could be solved perfectly for 
small numbers without numerical representations (again, using the object-indexing system), it is unlikely that there 
is a non-numerical strategy that would guarantee complete success on the task. 
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(6a)           (6b) 
 

 
 
Figure 6.  (6a) shows how the Pirahã performed on the nuts-in-can task (based on Gordon 2004a, 
figure 1G).  They had significant difficulties even with smaller numbers.  (6b) shows the results 
for rhesus monkeys on the related task of choosing between two buckets with differing numbers of 
apple slices (based on data reported in Hauser et al. 2000, for choices between quantities that 
differed by 1).   

 
 

It’s unclear what to make of the Pirahã’s difficulties where animals do better.  Since in 
many of these cases the Pirahã ought to be able to succeed regardless of whether they can 
represent precise numerical quantity, we have to ask whether Gordon’s tasks have features that 
may have inadvertently prohibited the Pirahã from revealing their true abilities.19  We see a 
number of reasons why this might be so but the most serious is that the tasks weren’t 
accompanied by measures to ensure that the Pirahã understood what was expected of them.20  In 
other words, it is possible that they simply didn’t understand what they were supposed to do.  We 
turn to this objection next. 
 
3.6 Gordon’s Subjects Didn’t Understand the Tasks 
 
We noted earlier that the matching tasks began with Gordon placing down a number of items and 
telling his subject to “make it the same”.  Then, regardless of how they responded, they were 
given the same encouraging feedback (“Aiyo!”).  This combination of vague instructions and a 
guaranteed positive response is a dangerous mix.  It has the troubling consequence that however 
the Pirahã initially interpreted the task, that interpretation was reinforced.  As a result, the 
experimental conditions wouldn’t have conveyed the intended goal except to people who 
guessed correctly from the start.  And given that precise numerical quantities aren’t supposed to 
be salient for the Pirahã, they would be extremely unlikely to start off with the right hypothesis.  

 
19 Another possibility, though one we think is unlikely, is that the Pirahã’s deficits are far more profound than 
Gordon claims. Perhaps they not only lack the ability to represent precise numerical quantities but also lack the 
ability to form simple one-to-one correspondences and even lack some of the basic capacities that rhesus monkeys 
exercise when evaluating the relative sizes of different sets.  
20 Interestingly, in spite of Pica et al.’s care to avoid non-numerical confounds, their precise numerical task (see note 
12 above) could also be solved with 100% accuracy for small numbers using a non-numerical strategy employing 
the object-indexing system, and yet the subjects performed at similar levels to the Pirahã.  It is unclear why the 
Mundurukú ignored the more effective strategy for this task, but we suspect that it was a combination of lack of 
training and feedback and irrelevant performance variables, such as the speed of presentation of the stimuli, which 
may have encouraged numerical approximation. 
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Further, as we just saw that the Pirahã failed abysmally on tasks that they could have completed 
with perfect accuracy using relatively simple non-numerical strategies.  This would certainly 
make sense on the assumption that Gordon’s subjects just didn’t understand what they were 
supposed to do.  

As it happens, we don’t have to speculate about what Gordon’s subjects were thinking.  
Daniel Everett has confirmed that they were unclear about what Gordon wanted from them and 
that they were self-conscious about their predicament (Everett, 2005, p. 644): 
 

… on the videotape he [Gordon] made of his experimental setting, the Pirahãs say 
repeatedly that they do not know what he wants them to do, and they have repeated these 
comments since Gordon’s visits.  Gordon did not realize that they were confused because 
he was unable to communicate with them directly, and he did not request help in 
interpreting the Pirahãs’ comments on his experiments. 

 
Everett’s observation is troubling.  Gordon’s apparent indifference to whether they were even 
trying to do what was expected of them in itself raises concerns about his experiments.  Perhaps 
he assumed that the goal of each task was sufficiently obvious once an example or two was given 
or that the most interesting response to measure is the one that involves the least coaxing—a 
spontaneous response.  But we’ve seen that neither assumption is warranted.  In any case, the 
simple fact that the Pirahã didn’t understand Gordon’s tasks shows that we shouldn’t take 
Gordon’s data at face value.  The fact is that if the Pirahã did not understand the tasks, then they 
would be likely to fail them whether or not they are capable of precise numerical thought.  So 
Gordon’s data—his negative results—can’t tell us anything substantive about the Pirahã’s 
numerical abilities.  And, of course, if they can’t tell us whether the Pirahã are capable of 
representing precise numerical quantities, they can’t tell us whether the Pirahã are capable of 
representing precise numerical quantities despite the limitations of their language.  The result is 
that Gordon’s study offers no support for either the Cultural Construct Thesis or linguistic 
determinism. 
 
3.7 Can the Pirahã be Taught to Count? 
 
While Gordon’s study focused on spontaneous judgments, it’s worth noting that, at one point, the 
Pirahã were given explicit instruction on the Portuguese counting system.  This program of 
education was administered by the Everetts and is briefly summarized in Everett (2005).  Though 
the details are scarce, the information that is available is interesting for the further light that it 
sheds on Gordon’s work. 

Everett (2005) reports that the attempts at instruction ended in failure: 
 

After eight months of daily efforts, without ever needing to call them to come for class 
(all meetings were started by them with much enthusiasm), the people concluded that 
they could not learn this material, and classes were abandoned. Not one learned to count 
to ten, and not one learned to add 3 + 1 or even 1 + 1 (if regularly responding “2” to the 
latter is evidence of learning). (p. 626) 

 
This surprising result might initially seem to favor Gordon by offering additional evidence of the 
Pirahã’s difficulties with precise number.  But on the contrary, the Pirahã’s difficulty doesn’t sit 
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at all comfortably with Gordon’s linguistic determinism.  If the problem for the Pirahã is that 
they have a linguistic deficit, as the thesis of linguistic determinism asserts, then teaching them 
number words in conjunction with the cultural practice of counting ought to give them just what 
they need to acquire concepts of natural numbers.  An advocate of linguistic determinism should 
predict the Pirahã would overcome their alleged difficulties with precise numbers as they are 
exposed to the Portuguese counting system.  (Advocates of the Cultural Construct Thesis should 
predict much the same thing, though they would be less focused on the linguistic character of the 
counting system.)  Thus the Pirahã’s reported failure to learn to count hardly supports Gordon’s 
position.  If anything, it argues against Gordon.21 

How, then, should we understand the Pirahã’s failure to learn to count?  Given the few 
published details about the instruction they received, we can only speculate.  One possibility is 
that the Pirahã weren’t motivated students.  This conflicts with Everett’s claim that they 
themselves had requested the classes in order to avoid being cheated in their trading relations 
(Everett 2005, 625).  All the same, it is not unreasonable to suppose they were unreceptive to 
learning elements of the Portuguese language and culture.  As we noted earlier, the Pirahã 
actively resist the knowledge and practices of outsiders. According to Everett, 
 

[T]he Pirahã ultimately not only do not value Portuguese (or American) knowledge but 
oppose its coming into their lives. They ask questions about outside cultures largely for 
the entertainment value of the answers. If one tries to suggest (as we originally did, in a 
math class, for example) that there is a preferred response to a specific question, they will 
likely change the subject and/or show irritation (2005 p. 626) 

 
The Everetts also put on a series of evening literacy classes for the Pirahã, again at the Pirahã’s 
request.  The results are telling (Everett 2005, 626): 
 

After many classes, the Pirahã (most of the village we were living in, about 30 people) 
read together, out loud, the word bigí ‘ground/sky’. They immediately all laughed. I 
asked what was so funny. They answered that what they had just said sounded like their 
word for ‘sky’. I said that indeed it did because it was their word. They reacted by saying 
that if that is what we were trying to teach them, they wanted us to stop: “We don’t write 
our language.” The decision was based on a rejection of foreign knowledge; their 
motivation for attending the literacy classes turned out to be, according to them, that it 
was fun to be together and I made popcorn. 

 
Given the Pirahã’s contempt for foreign knowledge, one can imagine that the “math classes” 
were similarly valued simply as an excuse for getting together and that they weren’t actually 
interested in engaging with the instruction.   
 
 

 
21 Everett claims that Pirahã children easily learn to count in Portuguese as long as adjustments are made to how the 
words are pronounced and the instruction occurs in the context of an everyday task, e.g., stringing beads (personal 
communication reported in Gelman & Butterworth 2005, p. 9). This fact is consistent with linguistic determinism 
and the Cultural Construct Thesis, but it is also consistent with strong nativism.  For example, Pirahã children might 
be capitalizing on an innate ability to represent precise quantity coupled with the fact that they haven’t yet absorbed 
their parents’ strong aversion to foreign knowledge.  
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3.8 Summary 
 
On the face of it, Gordon’s work in the Amazon seems to offer an ideal case study.  What better 
way could there be of testing the dependence of number on language than looking at a population 
whose language has no terms for precise numerical quantities?  Moreover, if Gordon is right that 
precise numerical concepts are essentially dependent on language, then his results would provide 
powerful support for the Cultural Construct Thesis, thereby undermining strong nativism.  Given 
the suspicion with which strong nativism has come to be viewed in recent years, this outcome 
would be welcomed by a wide variety of theorists. 

We’ve argued, however, that Gordon’s study doesn’t support either the thesis of 
linguistic determinism or the Cultural Construct Thesis.  Since this has been a rather long 
section, it might help to offer a brief recap.  We began with two general criticisms that were 
directed primarily to Gordon’s linguistic determinism.  Gordon claims to have established the 
dependence of precise number on language just by showing that the Pirahã do poorly on his eight 
tasks.  Putting aside the issue of whether his tasks amount to good tests for numerical abilities, 
we noted that Gordon’s argument doesn’t establish a direction of dependence and that the 
correlation that his argument turns on is extremely weak—it amounts to a single case.  Next we 
turned to the question of whether Gordon’s data do in fact show that the Pirahã are unable to 
represent precise numerical quantities.  We argued that they do not.  Part of the problem is that 
Gordon’s experimental procedures focus on spontaneous judgments, yet incorrect spontaneous 
judgments can’t tell us what subjects are or aren’t capable of.  This is all the more true when 
there exist plausible alternative explanations for their failure on such tasks, as there are in this 
case.  Further, Gordon’s vague task instructions and automatic positive feedback only serve to 
obscure the nature of the tasks for people, like the Pirahã, who don’t habitually think in terms of 
precise numerical quantities.  A rather different problem is that even if the Pirahã had succeeded 
on Gordon’s tasks, this in itself wouldn’t tell us about their numerical abilities either, since 
Gordon’s materials didn’t control for a variety of different non-numerical confounds.  Given that 
we know that animals can take advantage of such confounds to solve related tasks, it bears 
explaining why the Pirahã didn’t do better.  It would appear that the reason for their poor 
performance is that Gordon’s Pirahã subjects simply didn’t understand what Gordon expected of 
them.  In sum, despite the hope that an investigation of the Pirahã might settle the fundamental 
issues about the role of language and culture in mathematical cognition, Gordon’s results leave 
things pretty much where they were.  For strong nativists like ourselves, this means that a 
commitment to innate numerical concepts—something on the order of the number module 
outlined earlier—continues to be a genuine possibility.  The debate between weak nativists and 
strong nativists remains unsettled.   
 
 
4 Future Research 
 
Why have these serious problems with Gordon’s study been overlooked?  We believe that there 
is something like an intellectual blindspot when it comes to evaluating exotic anthropological 
data.  Paul Bloom reports a similar phenomenon with brain imaging data (Bloom 2006): 
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In a recent study, Deena Skolnick, a graduate student at Yale, asked her subjects to judge 
different explanations of a psychological phenomenon. Some of these explanations were 
crafted to be awful. And people were good at noticing that they were awful—unless 
Skolnick inserted a few sentences of neuroscience. These were entirely irrelevant, 
basically stating that the phenomenon occurred in a certain part of the brain. But they did 
the trick: For both the novices and the experts (cognitive neuroscientists in the Yale 
psychology department), the presence of a bit of apparently-hard science turned bad 
explanations into satisfactory ones. 
 

The scientific community isn’t as objective as we’d all like to think.  This means that we need to 
be more cautious when evaluating claims that play into our own weaknesses.  We’d suggest that 
extra caution is often needed when considering claims about cognitive differences in exotic 
communities, just as it is needed when considering the implications of neuroimaging data.  This 
isn’t to say that we should abandon cross-cultural research on numerical cognition.  On the 
contrary, we believe that cross-cultural data can provide an important source of evidence for 
understanding the nature of human mathematical abilities.  And we’d very much like to see more 
systematic research along these lines.  However, it is important that we guard against dropping 
our standards of evidence when we see phrases like “Amazonian tribe”.  For this reason, we’ll 
end the chapter by assembling a set of minimal guidelines for future research, guidelines that 
build on the critical discussion in section 3.  

First, future experiments need to make precise number more salient for the subjects.  
Given that the populations of particular interest are ones in which there is no communal practice 
of counting and which appear to have little regard for precise number, it is not enough to merely 
present tasks intended to test precise numerical abilities, or even to convey to the subjects that 
the tasks are broadly numerical.  We know from various recent work that approximate number 
can be represented non-linguistically.  So when a reliance on approximate number is the default 
response in a community, we need to find some way of conveying the goal of being more 
precise.  Perhaps one way of pushing things in this direction would be to use stimuli that evoke 
situations where careful numerical comparisons would be more natural to make, for example, by 
asking which of two mothers has more children.  This might be done using real families known 
to the local people or using photographs of people not personally known to the subjects (photos 
would have the advantage of allowing experimenters to control for various possible non-
numerical confounds).  

Second, measures need to be put in place for determining whether subjects understand the 
goal of a task.  To foster better understanding, meaningful feedback could be given on a series of 
trials that precede testing.  So long as the test trials use novel stimuli, we can exclude the 
possibility that good performance is achieved simply by memorizing the answers given in the 
pretest trials. 

Third, measures need to be put in place to ensure that subjects are well motivated to 
succeed on numerical tasks.  One possibility, again taking the lead from the literature on animals, 
would be to introduce a competitive paradigm. Tasks where subjects competed for a reward 
might substantially increase motivation.  A related possibility is to employ a non-competitive 
paradigm that offers rewards of differing value, where the greater reward is contingent upon a 
precise numerical discrimination.  In effect, this is what Hauser et al. (2000) did in the study with 
rhesus monkeys that we described in section 3.5 (the one where different numbers of apple slices 
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were placed into two buckets).  This general approach would be easy to adapt for use with 
human adults. 

Fourth, future experiments ought to be constructed so as to avoid excessive performance 
demands.  The tasks shouldn’t incorporate time constraints that encourage estimation and 
shouldn’t be taxing for reasons that have nothing to do with the numerical judgments being 
elicited.  It’s perfectly fine for the tasks to be simple ones.  In fact, the simpler the better.  Any 
extra complications only make it difficult to say whether poor task performance is owing to poor 
numerical abilities or to inessential features of a task.    

Fifth, future experiments should control for non-numerical confounds.  There are many 
ways of doing this, but anthropologists might consider adapting experiments that have already 
been done with infants or animals.  These tend to employ rigorous controls for non-numerical 
confounds but also have the advantage that they can be implemented without verbal instructions.  
See, for example, the study by Brannon and Terrace (1998) described in section 1.1 above. 
Although Brannon and Terrace’s study was intended to test ordinal knowledge, ceiling 
performance on the task requires detecting precise numerical differences (e.g., the difference 
between 5 and 6). Ideally, to tease apart different hypotheses with respect to both linguistic 
determinism and the Cultural Construct Thesis, such a task might be run under three different 
conditions—one with prior training on number words, one with prior training on a non-linguistic 
counting technique, and one with no prior numerical training.  In principle, this would allow 
experimenters to determine the relative contributions of language and counting to the 
representation of precise numbers.  

Sixth, to address the issue of linguistic determinism, test subjects should be given ample 
opportunity to learn precise numerical concepts.  The issue of linguistic determinism is what 
people are capable of representing in the absence of the relevant linguistic features, not what they 
happen to represent in their ordinary experience.  So while instruction shouldn’t employ a 
linguistic counting procedure or the inculcation of number words, this still leaves room for 
various forms of instruction that do not turn on such linguistic devices, including the use of body 
parts or other external symbols. 

Seventh, if at all possible, it would be beneficial to train and test children, not just adults, 
since this would help to clarify the source of difficulty in those cases where adults are resistant to 
instruction.  There is anecdotal evidence that Pirahã children are able to learn precise quantities 
even if their parents can’t (see note 21).  But only a systematic evaluation can tell us if such 
claims hold up.  One hypothesis as to why Pirahã children might do better than Pirahã adults is 
that the children haven’t fully embraced their parents’ strong aversion to knowledge based on 
other cultures.  This could be tested, at least provisionally, by questioning children about their 
views of their Portuguese-speaking Brazilian neighbors. 

Implementing these guidelines and suggestions would enable future cross-cultural 
research to make significant contributions to our understanding of numerical cognition and could 
help to resolve some of the large-scale issues regarding the nature and development of numerical 
concepts.  We realize that fieldwork involves all sorts of practical limitations and that desirable 
experiments may not always be feasible.  Nonetheless, if cross-cultural data are going to be more 
meaningful than the suggestive anecdotes that are already in the literature, we have to try to 
maintain the highest possible experimental standards.   
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