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Frege, Thomae, and Formalism:
Shifting Perspectives

Richard Lawrence

Mathematical formalism is the the view that numbers are “signs”
and that arithmetic is like a game played with such signs. Frege’s
colleague Thomae defended formalism using an analogy with
chess, and Frege’s critique of this analogy has had a major in-
fluence on discussions in analytic philosophy about signs, rules,
meaning, and mathematics. Here I offer a new interpretation of
formalism as defended by Thomae and his predecessors, paying
close attention to the mathematical details and historical context.
I argue that for Thomae, the formal standpoint is an algebraic per-
spective on a domain of objects, and a “sign” is not a linguistic
expression or mark, but a representation of an object within
that perspective. Thomae exploits a shift into this perspective
to give a purely algebraic construction of the real numbers from
the rational numbers. I suggest that Thomae’s chess analogy is
intended to provide a model for such shifts in perspective.
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Frege, Thomae, and Formalism:
Shifting Perspectives

Richard Lawrence

1. Frege, Thomae, and the Chess Analogy

For a mathematical formalist, numbers are signs. So say both pro-
ponents and opponents of formalism in their earliest discussions,
starting around the middle of the nineteenth century. Johannes
Thomae was one of those early proponents. Gottlob Frege, his
colleague in Jena, was one of the early critics. Today Thomae
is best known in philosophy because of the extensive criticism
that Frege leveled at his formalism, which occupies almost fifty
pages of Frege’s Grundgesetze (1903/2013b, §§86–137). For many,
Frege’s attack marks both the beginning and the end of Thomae’s
relevance in the philosophy of mathematics. I am here to say that
there’s more to the story: once we see Thomae’s formalism with-
out the distorting lens of Frege’s criticisms, we’ll be able to see
both why Frege felt it needed attacking, and why it was impor-
tant for later developments.

For Frege, Thomae was the focal point of the formalist milieu.
Before coming to Jena, Thomae was a student and later col-
league of Eduard Heine, whose formalism Frege attacks along-
side Thomae’s. Thomae may also have known Hermann Hankel,
another of Frege’s formalist targets, from his graduate studies in
Göttingen; certainly he knew Hankel’s work, and cited Han-
kel’s formalism as a predecessor of his own (Thomae 1908). At
the same time, Thomae was close to Frege. They had a com-
mon dissertation advisor in Göttingen (Ernst Schering), though
several years apart. After Thomae’s arrival in Jena in 1879, the

two worked closely together for more than 20 years1, handling
most of the university administrative tasks in mathematics to-
gether; they also met privately for discussion at Ernst Abbe’s
house (Dathe 1997; Tappenden 2008). It was thus natural for
Frege’s longest and most intense discussion of formalism to fo-
cus on Thomae’s view, which he probably knew best, and which
he regarded as more precisely worked out than Heine’s (Frege
1903/2013b, §86).

Thomae advocates a formalist point of view in the opening
pages of his Elementare Theorie der analytischen Functionen einer
complexen Veränderlichen (1898), a textbook on complex analysis.
To explain his “formal conception” of numbers, he offers an
analogy:

The formal conception of numbers draws itself more modest limits
than the logical. It asks not: what are the numbers and what shall
they be?2 but rather it asks: what does one require of the numbers
in arithmetic? Now, for the formal conception, arithmetic is a game
with signs which one may well call empty, thereby conveying that
(in the calculating game) no other content belongs to them than
the content attributed to them with respect to their behavior under
certain combinatorial rules (game rules). A chess player makes
similar use of his figures: he attributes certain properties to them
which determine their behavior in the game, and the figures are
only external signs for this behavior.3 (Thomae 1898, 3)

1Frege’s attack in Grundgesetze unfortunately coincided with the collapse
of their professional relationship, which is on display in a poisonous ex-
change in the Jahresbericht der Deutschen Mathematiker-Vereinigung that begins
with Thomae’s reply to Frege’s criticisms (Thomae 1906b; Frege 1906; Thomae
1906a; Frege 1908a; Thomae 1908; Frege 1908b; for discussion see Gabriel 1979;
Dathe 1997; Wille 2020).

2This question is a clear reference to Dedekind’s book Was sind und was
sollen die Zahlen? (1893), which attempts to develop purely logical foundations
for the natural numbers. Thomae is contrasting his “formal” conception of
numbers with the “logical” conception he sees in both Dedekind and Frege.

3Die formale Auffassung der Zahlen zieht sich bescheidenere Grenzen als
die logische. Sie fragt nicht, was sind und was wollen [sic] die Zahlen, son-
dern sie fragt, was braucht man von den Zahlen in der Arithmetik. Die Arith-

Journal for the History of Analytical Philosophy vol. 11 no. 2 [1]



Thomae is among the first to defend formalism by drawing an
analogy between arithmetic and chess, though similar ideas were
in the air.4 Thomae’s version of formalism has been called game
formalism by recent commentators to mark this aspect of his view
(Resnik 1980; Linnebo 2017; Weir 2010, 2020).

The analogy compares the signs of arithmetic and pieces in
the game of chess. The passage suggests that signs in arithmetic
are “empty”: like arbitrary pieces of wood, they don’t mean
anything on their own. But in the presence of a system of rules
for manipulating them, they take on a kind of meaning, just as
those pieces of wood take on a meaning in a chess game.

That, anyway, is how Frege himself interpreted the analogy:
it’s meant to show how a system of rules can impart content
to meaningless signs. Frege assumes throughout his discussion
in Grundgesetze that “signs” are “formations that are created by
means of writing or printing on the surface of a physical object

metik ist für die formale Auffassung ein Spiel mit Zeichen, die man wohl leere
nennt, womit man sagen will, dass ihnen (im Rechenspiel) kein anderer Inhalt
zukommt als der, der ihnen in Bezug auf ihr Verhalten gegenüber gewissen
Verknüpfungsregeln (Spielregeln) beigelegt wird. Aehnlich bedient sich der
Schachspieler seiner Figuren, er legt ihnen gewisse Eigenschaften bei, die ihr
Verhalten im Spiel bedingen, und die Figuren sind nur äussere Zeichen für
dies Verhalten.

4The idea of treating numbers as “signs” equipped with rules appears
already in Heine (1872, 173), and Thomae deploys this idea in the first edition
of his book (1880); but neither makes mention of games or a comparison with
chess. Paul Du Bois-Reymond, who also knew Thomae personally, came closer:
he criticizes formalism as treating numbers as “figures” which one can use as
“play magnitudes” (Spielgrößen), rather than signs for “actual magnitudes”
(wirkliche Größen), but also makes no direct comparison with chess (Du Bois-
Reymond 1882, 50; compare Kienzler 2009, 278). Frege (1885/1984, 118) gives
the earliest explicit comparison I’ve found between the rules of chess and
arithmetic, though as part of a criticism of formalism, not a defense. The French
mathematician Louis Couturat also compared mathematical objects with chess
pieces shortly before Thomae (1898), writing that the mathematician “creates
mathematical entities by means of arbitrary conventions, in the same way that
the several chessmen are defined by the conventions which govern their moves
and the relations between them” (Couturat 1896; quoted in Stenlund 2015, 53).

(blackboard, paper)” (Frege 1903/2013b, §98).5 Signs are thus
concrete, perceptible items for Frege, bare pieces of syntax which
we could write down or say aloud, but which are meaningless on
their own. Accordingly, he assumes that Thomae’s chess analogy
is meant to show how rules can infuse such concrete items with
meaning or content. Against this, he objects that a system of
rules can’t impart content, as we can see already in the case of
chess:

I acknowledge that the chess pieces are there, and also that rules
have been laid down for their manipulation; but I know nothing of
any content. It cannot simply be said that the black king designates
something as a consequence of these rules, like the name “Sirius”
designates a certain fixed star. (Frege 1903/2013b, §95)

Thomae’s chess analogy, and Frege’s interpretation of it, have
gone on to play an important role in analytic philosophy. On
the one hand, Frege’s interpretation of the analogy continues to
permeate contemporary discussions of formalism in the philos-
ophy of mathematics. Linnebo, for example, reads Thomae as a
formalist who holds that “mathematics revolves around formal
systems, which are syntactical games played with meaningless
expressions” (Linnebo 2017, 40). On the other hand, Frege’s in-
terpretation inspired later developments in the philosophy of
language, especially through Wittgenstein. Many discussions of
how linguistic meaning relates to rules of use can be traced back
to Wittgenstein’s reflections on formalism, the chess analogy,
and Frege’s criticism of Thomae (Kienzler 1997, chap. 5; Sten-
lund 2015; Dehnel 2020; Weir 2020). Wittgenstein thought that
Frege “did not see the other, justified side of formalism”, and
used the chess analogy to explain a conception of meaning that
he thought Frege had missed (Waismann 1979, 105).

Frege’s interpretation of the “signs” in Thomae’s analogy as
pieces of syntax in search of a semantics is admittedly natural

5Frege stuck to this understanding of signs across his discussions of for-
malism over many years: see Frege (1884/1980, §95), Frege (1885/1984, 115),
Frege (1891/1997, 132), Frege (1893/2013a, XIII).
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when the analogy is read on its own. But there are some reasons
to be cautious about this reading. First of all, Thomae was not
writing in a context where our modern notions of a formal lan-
guage and the distinction between syntax and semantics were
available, and could not have thought of signs as syntactic items
in our sense. He also clearly understands signs to be different
from linguistic expressions or printed marks: as I will discuss
below, the main kind of “sign” Thomae is interested in is an
infinite decimal representation of a real number, and thus not
something we could write down or say aloud. Finally, we ought
to remember that Frege is a notoriously uncharitable interpreter
of his intellectual opponents, including other formalists like Her-
mann Hankel (Tait 1996; Tappenden 2019; Lawrence 2021). As
the rest of this essay will show, Frege’s interpretation of the chess
analogy is in fact pretty far from what Thomae intends.

The real story is much more interesting, and provides an im-
portant window onto the context in which Frege developed his
logicism, and from which twentieth century discussions of signs,
rules and meaning begin.

When Thomae and other formalists speak of “signs”, they
don’t mean concrete pieces of syntax, but representations of ob-
jects from a certain mathematical perspective. This is an algebraic
perspective which they call the “formal standpoint”. When we
take up this perspective on a domain of objects, we focus on
their relations under the arithmetical operations, ignoring other
properties they have from other perspectives. We can come to
view a domain of objects as numbers from the formal standpoint
by defining the arithmetical operations on those objects.

To understand this “formal conception” of numbers, we need
to look at its historical context. The formal standpoint originates
in Kant’s understanding of algebra, and is closely associated with
an algebraic approach to the foundations of analysis advocated
by Karl Weierstrass in the late nineteenth century. This program
required a purely algebraic construction of the real numbers.
For Thomae, formalism provides a route to that construction,

because it allows us to view certain sequences of rational num-
bers as real numbers. When we adopt the formal standpoint on
these sequences, we shift into a perspective in which we ignore
their internal structure and just think of them as operands for
arithmetic operations.6

This, I will conclude, is the idea that Thomae’s chess analogy
is meant to support. When we play chess, we shift from a per-
spective where we think of the pieces using physical concepts,
like being brown or made of wood, into a perspective where we
think of them using chess concepts, like being a white bishop
or being in check. Similarly, we can shift between thinking of
mathematical objects from different perspectives, using differ-
ent mathematical concepts. The chess analogy’s most important
function is to show us that such shifts are possible.

2. Formalism as an Algebraic Perspective

Thomae describes his formalism as a “standpoint” (1898, 3), and
this language should be taken seriously. Formalism is a perspec-

6As I develop my interpretation, it will become clear that Thomae’s view
has parallels to the views now discussed under the heading of mathematical
structuralism, since structuralism also involves adopting a standpoint in which
we focus on certain properties of a domain of objects (namely, the “structural”
properties) and ignore others. In terms of the taxonomy of Reck and Schiemer
(2023), Thomae’s formalism can be usefully compared to set-theoretic as well as
to (Dedekindian) abstractionist structuralism, since it involves both a particular
construction of the real numbers from sequences of rationals, together with an
attitude of indifference to, or abstraction from, the non-arithmetical features
of that particular construction.

I would caution against taking these parallels too far, though. Much dis-
cussion of structuralism is focused on metaphysical issues for which Thomae
displays little patience. Thomae is also uncomfortable with set theory, a point
I discuss below. Finally, structuralism and formalism generally take different
attitudes toward the results of abstractions, which shows up for example in
Dedekind’s talk of “free creation” of numbers (see Reck 2003) in contrast to
Thomae’s talk of “signs”. Just how far the parallels extend is an interesting
but complex issue that I must leave for future work.
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tive or point of view we can adopt on numbers. Thomae’s view
is that this perspective is useful for certain mathematical pur-
poses, but not that we must adopt it for all of mathematics, to
the exclusion of all others.

What do I mean by “perspective” or “standpoint”? A full
answer to this question goes well beyond the scope of this paper,
but here is a sketch that will suffice for now. To have a perspective
on a domain of objects is to see or look at them in a certain way.
In the cases I am interested in, having a “way of looking at” some
objects means applying a certain set of concepts to them, and not
applying other concepts. Thus, looking at some stones, I can
adopt a geological perspective and think of them as metamorphic
or from different strata, and within this geological perspective,
I refrain from thinking of the stones as paperweights or from
considering one more beautiful than another.

There are mathematical perspectives in this sense, too. The
formal standpoint is an algebraic perspective. To adopt it means
to conceive and reason about a domain of objects using alge-
braic concepts. Such reasoning considers their relations to each
other under the arithmetic operations; it considers them only as
operands for these operations. An algebraic perspective likewise
excludes conceiving and reasoning about these objects using
non-algebraic concepts, such as geometric ones. I will explain
the notion of algebraic perspective here and argue that the for-
mal standpoint is best seen as an algebraic perspective. The next
section will then explain the role of this perspective in Thomae’s
presentation of analysis, and what it tells us about his under-
standing of “signs”.

2.1. Form, content and algebra

To understand the idea that the formal standpoint is an algebraic
perspective, it helps to look at how algebraic problem solving
was understood in Thomae’s context. I shall start the story with
Kant, who had a major influence on that context. As Shabel

(1998) explains, in Kant’s time, algebra was not seen as having
its own subject matter. It was instead conceived as a general tool
for manipulating “magnitudes”, different kinds of which were
studied in the branches of mathematics that did have subject
matter, namely, arithmetic and geometry. One would translate a
problem given about a certain number, or a certain figure, into
algebraic notation in order to apply algebraic problem solving
methods, and then translate the result back to a specification of
the solution in the original problem domain.

Here is how Kant expresses this understanding of algebra in
the pre-critical essay “Inquiry concerning the distinctness of the
principles of natural theology and morality”:

In both [algebra and arithmetic], there are posited first of all not
things themselves but their signs. . . one operates with these signs ac-
cording to easy and certain rules, by means of substitution, combi-
nation, subtraction and many kinds of transformation, so that the
things signified are themselves completely forgotten in the process, until
eventually, when the conclusion is drawn, the meaning of the sym-
bolic conclusion is deciphered. (Kant 1992, 250, emphasis added)

According to Kant’s understanding here, algebraic problem solv-
ing involves temporarily adopting a perspective in which we
ignore what signs originally signify, and just manipulate them
“according to easy and certain rules”. The rules Kant has in mind
are laws governing the arithmetic operations. For example, the
law of the distribution of multiplication over addition,

0(1 + 2) = 01 + 02

may be understood as a rule that permits transforming, say,
G(G+1) into G2 + G or vice versa. When such manipulations have
transformed the problem statement into a more useful form, we
can then return to our original perspective, “deciphering” the
result into a conclusion about the original “things signified”.

For Kant, the algebraic perspective was “formal” because it
was indifferent to the kind of content signified. It operated with
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whatever content it inherited from the original problem domain:
that is, numerical or geometric magnitudes. So long as those
magnitudes could be equipped with an appropriate definition of
the arithmetic operations—addition, multiplication, exponenti-
ation, and their inverses—then problems concerning those mag-
nitudes could be translated into the language of algebra, and the
rules governing those operations could be used to find solutions
to those problems via algebraic manipulation.

Although Kant calls the representations transformed in such
manipulations “signs”, we should not understand them in a syn-
tactic sense, akin to words in a language. In the passage where
this quote appears, Kant is drawing a distinction between math-
ematical and philosophical reasoning, and he does so in part by
contrasting mathematical signs with words. The problem with
philosophical reasoning is that “the signs employed. . . are never
anything other than words”, which do not reveal the relation-
ships between the concepts they signify. Mathematical signs, in
contrast, are particular representations like geometric diagrams,
which “facilitate thought” by exhibiting such conceptual rela-
tionships (Kant 1992, 251). So mathematical signs here are less
like arbitrary pieces of syntax, and more like what Kant will
later describe as constructions of concepts in intuition: they are
particular representations that support reasoning to universally
valid conclusions in mathematics. The algebraic perspective is
thus one in which we can represent any kind of magnitude as
an arithmetic operand, and transform those representations ac-
cording to the laws of arithmetic.

This association between rule-governed algebraic manipula-
tion of signs and the “form” side of the form-content distinction
persisted into the nineteenth century, even as algebra broke new
ground and significantly expanded its scope. Indeed, the associ-
ation still holds today. Modern algebra studies structures such as
groups or fields which pair a set of objects with some operations
on those objects. The structure is defined by the properties of the
operations—the rules that they follow, such as being associative

or transitive. Even more so than in Kant’s day, the study of the
structure is agnostic to the kind of objects being operated on: they
might be numbers, or polynomials, or matrices, or transforma-
tions of planar figures, or any other objects that can be equipped
with suitable definitions of the relevant operations. Applying
algebraic methods means moving to a perspective in which we
temporarily ignore the features which distinguish these kinds
of objects, and just focus on the common features they share as
operands of these operations. Once we have obtained a result
from this formal perspective, we can re-interpret it as a result
about numbers, or polynomials, or whatever.

2.2. Signs, numbers, and the focus on operations

In speaking of a “formal standpoint”, Thomae and other formal-
ists of the nineteenth century are invoking the understanding
of algebra just laid out. The formal standpoint is formal because
it is content-agnostic, focused on the common features different
kinds of objects have qua operands for a set of operations. Like
Kant, they call the content-agnostic representations of these ob-
jects signs.

While modern algebra takes a more general view of which op-
erations can induce an algebraic perspective, Thomae and other
nineteenth century formalists remained focused on the oper-
ations of elementary arithmetic. They emphasized the role of
laws governing these operations for defining systems of num-
bers. Their idea was that numbers, from the formal perspective,
should just be conceived as “whatever the operations operate
on”. For example, in one widely read defense of formalism, Her-
mann Hankel says:

I call the signs of such a system numbers, and thus set their concept
in a necessary context with the operations through which they are
formed and pass into one another. Every change of the operations
brings a change of the numbers with it. (Hankel 1867, 36)
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Similarly, Eduard Heine, Thomae’s teacher and later colleague
in Halle, emphasized the arithmetic operations in his formalist
construction of the real numbers:

I adopt the purely formal standpoint for the definition, in that I
call certain graspable signs numbers. . . A main emphasis is to be laid on
arithmetic calculation, and the number-sign must be so chosen, or
equipped with such an apparatus, that it affords an insight into the
definition of the operations.7 (Heine 1872, 173)

Thomae also thinks of systems of numbers as being defined by
the arithmetic operations, emphasizing in several places that this
exhausts the conception of numbers we get from such a definition:

If one puts forward the postulate that these operations should
always be able to be carried out, one arrives at new number-
constructs, at zero, the negative numbers, and the rational num-
bers. These can be understood as purely formal constructs, i.e., as
concepts whose content is exhausted through their behavior with
respect to the calculating rules.8 (Thomae 1898, 4)

Notice that these authors all speak of numbers as “signs” in con-
nection with the idea that numbers are to be defined in relation
to the arithmetic operations. Again, this language can be traced
back to the view of algebra expressed by Kant: when we adopt
an algebraic perspective, we temporarily ignore any content as-
sociated with signs outside this perspective, and just work with
the signs themselves, which are representations that facilitate al-
gebraic reasoning. For Kant, the “things signified” by such signs

7Ich stelle mich bei der Definition auf den rein formalen Standpunkt, indem
ich gewisse greifbare Zeichen Zahlen nenne. . . Ein Hauptgewicht is auf die Rechenop-
eration zu legen, und das Zahlzeichen muss so gewählt, oder mit einem solchen
Apparate ausgerüstet werden, dass es einen Anhalt zur Definition der Opera-
tionen gewährt.

8Stellt man aber die Forderung, dass diese Operationen immer ausführbar
sein sollen, so gelangt man zu neuen Zahlengebilden, der Null, den negativen
und gebrochenen Zahlen. Diese lassen sich als rein formale Gebilde auffassen,
d. h. als Begriffe, deren Inhalt durch ihr Verhalten gegen die Rechnungsregeln
erschöpft ist.

were paradigmatically quantities given in intuition, and adopt-
ing an algebraic perspective meant temporarily ignoring their
other given features, such as geometric relations or empirical
properties. But we might just as well take signs to be represen-
tations of other kinds of mathematical objects, like vectors or
sequences. As we will see below, that is exactly what Thomae
did. For Thomae, a “sign” is a representation of a certain kind of
sequence. This representation focuses on its behavior under the
arithmetic operations, and ignores its other features; it is a way
of thinking of the sequence as an arithmetic operand—that is, as
a number.

This reading helps clarify one of Thomae’s more puzzling re-
marks. As we saw above, Thomae introduces the formal stand-
point by saying that it “asks not: what are the numbers and what
shall they be?” (1898, 3) In saying that formalism does not ask
what the numbers “are”, he is invoking the content-agnostic na-
ture of algebraic methods: numbers are anything it makes sense
to add, subtract, multiply, and divide. Formalism instead asks
“what does one require of the numbers in arithmetic?” because
algebraic methods presuppose a definition of these operations
for the objects to be operated on. Such definitions are what we
require of the numbers (or whatever other objects we’re working
with) in order to take up an algebraic perspective.

2.3. The formal standpoint is not exclusive

When we think of the formal standpoint as an algebraic perspec-
tive in this sense, it becomes clear that it is only one perspec-
tive among others. When we look at, say, geometric quantities
from the formal standpoint, we focus only on adding, subtract-
ing, multiplying and dividing them. But we could also look at
those same quantities from a geometric perspective, focusing
on whether they are parallel, whether they are commensurable,
how to construct them, and so on. The formal standpoint makes
no claim to being the only perspective we can adopt. As Thomae
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says, the formal standpoint “draws itself more modest limits
than the logical”.

Thomae suggests in several places that there are other perspec-
tives on numbers we can adopt. For example, he thinks “named”
numbers take us beyond the formal standpoint:

However there are cases in which not merely a formal meaning
(formale Bedeutung) is attributed to the numbers, for example in
the sentence “This equation is of degree three”, that is, when the
numbers occur as named.9 (Thomae 1898, 3, emphasis added)

Despite the mathematical character of his example, Thomae’s
main reason for this view is that “named” numbers10 occur in
applications of arithmetic, when some quantity is counted or mea-
sured. (The terminology appears to derive from the fact that in
applying arithmetic, we name the unit of the quantity to which a
number applies: three “apples”, 14.8 “degrees”, etc.) This rela-
tion to another quantity gives the numbers a non-formal meaning
or content. We can think of such applications as involving a shift
in perspective, in which we stop viewing the numbers purely as
operands for the arithmetic operations and instead view them
as properties of something else, like quantities in the empirical
world.

But Thomae insists that in analysis, we do not need such a
perspective on the numbers:

9Allerdings giebt es Fälle, in denen auch in der Arithmetik den Zahlen nicht
blos eine formale Bedeutung zukommt, z.B. in dem Satze, “diese Gleichung
ist vom Grade drei”, also wenn die Zahlen als benannte auftreten.

10The distinction between benannte (named) and unbenannte (unnamed)
numbers which Thomae invokes here was evidently an established idiom.
In, for example Müller (1900, 309), a French-German mathematical dictionary,
benannt is equated with French concret (concrete) and unbenannt with abstrait
(abstract). (Thanks to Ansten Klev for bringing this to my attention, and to
Tabea Rohr for the reference.) I have not yet found a more exact explana-
tion, and so have not attempted a non-literal translation; but it is clear that
the benannt-unbenannt distinction goes beyond the literal meaning of “nam-
ing” numbers and expresses a distinction between numbers as used in applied
vs. pure arithmetic. Interestingly, Frege also uses the terminology this way
(1884, §46), though he later objected to it as confusing (1903/2013b, §73 n. 2).

In the formulae of arithmetic and analysis, the numbers are un-
named, and one needs nothing more from them as a medium
for operations than that which the formal definition gives them.11
(Thomae 1898, 4)

The “unnamed” numbers Thomae has in mind here are those in
the domain or range of a function—the “medium” on which that
function operates. Of course, particular numbers are sometimes
named in analysis, for example as coefficients. Thomae’s point is
not that we never refer to individual numbers in analysis, but that
analysis is not concerned with how the elements of a function’s
domain are interpreted in applications of arithmetic—say, as
lengths or temporal durations. From the perspective we adopt
in analysis, all that matters about a domain of numbers is their
behavior under the basic arithmetic operations.

Thus, when Thomae compares arithmetic to a “calculating
game” in which

no other content belongs to [signs] than the content attributed to
them with respect to their behaviour under certain combinatorial
rules (Thomae 1898, 3)

the negative form of this claim is important: no other content
belongs to the signs in this perspective. Thomae is emphasizing
that when we adopt the formal standpoint in analysis, we ignore
or “screen off” the non-algebraic content we attach to numbers
from other perspectives, such as when we make applications of
arithmetic in geometry or physics.

Thomae’s formal standpoint is therefore a non-exclusive alge-
braic perspective. It is a useful perspective on the numbers in
analysis; but adopting it does not preclude us from adopting
other perspectives. Why, though, might it be useful to adopt this
perspective in analysis? That is the question to which I now turn.

11In den Formeln der Arithmetik und Analysis sind die Zahlen unbenan-
nte, und man braucht von ihnen als Operationsmedium nichts, als was die formale
Definition in sie legt.
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3. Formalism and the History of Analysis

Thomae presents his formalism in a textbook about complex
analysis. Analysis is often thought of as a part of mathematics
which contrasts with algebra: non-algebraic concepts and oper-
ations play an important role in analysis, especially those that
come from calculus, such as continuity and differentiation. If
Thomae’s formal standpoint is an algebraic standpoint, what is
it doing in a textbook on complex analysis? What mathematical
purpose does the formal standpoint serve?

As Thomae’s title (“Elementary theory of functions of a com-
plex variable”) indicates, his goal is to give an elementary pre-
sentation of his topic. He explains what he means by this in the
foreword to the book’s first edition, which appeared in 1880:

Although the thought of grounding the theory of functions
elementarily—I mean without application of infinitesimal calcu-
lus, but only on the representation through power series—is an old
one, and although this method possesses so many advantages be-
cause of the absolute rigor that it permits, a consistent execution of
such a plan has nevertheless not been undertaken to my knowledge
by any author.12 (Thomae 1898, Foreword to first ed.)

An “elementary” presentation thus means avoiding presenting
the concepts of analysis in a way that irreducibly relies on certain
ideas from calculus, and instead representing functions using
power series. In a power series, a function 5 (G) is defined via a
possibly infinite sum of terms, where the =th term involves the
=th power of G, multiplied by a coefficient 0= which does not
depend on G:

12So alt der Gedanke ist, die Functionentheorie elementar, ich meine ohne
Anwendung der Infinitesimalrechnung, nur auf die Darstellung durch Poten-
zreihen zu gründen, so viele Vorzüge diese Methode besitzt, wegen der ab-
soluten Strenge, die sie gestattet, so ist trotzdem meines Wissens eine conse-
quente Durchführung eines solchen Planes noch von keinem Autor unternom-
men.

5 (G) =
∞
∑

==0

0=(G − 2)= = 00 + 01(G − 2) + 02(G − 2)2 + 03(G − 2)3 . . .

Such a series is “centered” at the point 2, and converges for values
of G in a certain neighborhood around 2.13

Notice that in a power series representation, though there may
be infinitely many non-zero terms in the sum, each term involves
only basic arithmetic operations. By restricting himself to power
series representations, Thomae is thus adopting an approach
where algebraic methods are particularly applicable and em-
phasized. As Thomae says, the advantage of this approach is
that it offers “absolute rigor”.

In fact, this passage signals a commitment to a definite math-
ematical point of view. The method and conception of rigor that
Thomae evokes here come from Karl Weierstrass, who Thomae
names a few sentences later. In the period in which Thomae was
writing, there was a rivalry among mathematicians working on
the foundations of complex analysis in Germany, between the
broadly “conceptual” methods favored by Bernhard Riemann
and his followers, and broadly “computational” methods fa-
vored by Weierstrass and his followers. (Bottazzini 1994, 2002;
Tappenden 2006; Gray 2015; Ferreirós and Reck 2020) The two
approaches are now mostly integrated, but that process only be-
gan in the early twentieth century. For the second half of the
nineteenth century, they were in competition, disagreeing even
about how to define the object of study in complex analysis.
Members of each camp were critical of the methods and results
of the other. Thomae’s pursuit, in 1880, of an elementary approach

13Notice, for example, that when G = 2, all terms but the first are zero, so
the series converges to 00. But once the distance between G and 2 is greater
than 1, the powers (G − 2)= start growing infinitely large, so the series will
diverge unless the coefficients 0= compensate. The Cauchy-Hadamard theo-
rem describes the values of G for which the series converges in terms of these
coefficients 0= .
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to analysis via power series representations, is a clear declara-
tion of Weierstrassian commitments, and his formalism should
be understood against that background.

3.1. Thomae as a Weierstrassian14

Weierstrass emphasized that analysis should be founded on “al-
gebraic truths”. As he wrote in an 1875 letter to his student and
colleague H. A. Schwarz, for example:

The more I think about the principles of function theory—and I
do it incessantly—the more I am convinced that this must be built
on the foundation of algebraic truths, and that it is consequently
not correct when the ‘transcendental’, to express myself briefly, is
taken as the basis of simple and fundamental algebraic proposi-
tions. (Weierstrass 1894a, 235; translated in Gray 2015, 204)

Because Weierstrass regarded algebraic truths as fundamental
for analysis, it was natural for him to work with algebraic meth-
ods. That in turn made power series representations of functions
a central part of his approach: because they involve only arith-
metic operations, power series representations are especially
convenient for algebraic manipulation and thus for algebraic
proofs of facts about, for example, convergence properties of
those functions. The (sometimes long) algebraic manipulations
in such proofs give them a very “calculational” feeling. Although
these algebraic methods are not always convenient, and some-
times resulted in difficulties Weierstrass could not solve, he felt
they were more rigorous than the “transcendental” approach in
Cauchy and Riemann’s work.

Exactly which methods did Weierstrass reject as too “transcen-
dental” for the foundations of analysis? Gray (2015, 204) char-
acterizes them as methods “involving the integral” and notes

14I am indebted in this section to much detective work by others, especially
Liebmann (1921), Bottazzini (1994), Göpfert (1999), Bottazzini (2002), Epple
(2003), O’Connor and Robertson (2006), Tappenden (2006), and Gray (2015,
Ch. 19).

that integral calculus hardly played any role in Weierstrass’ lec-
tures; Bottazzini (1994, 428) says more specifically that Weier-
strass avoided using Cauchy’s integral theorem and the theory
of residues. Thomae’s “elementary” presentation of complex
analysis follows Weierstrass in this respect, only mentioning in-
tegrals in a few asides and footnotes. It is also worth noting that
in other texts, Weierstrass often thinks of the “transcendental”
(usually opposed to the “rational”) as involving essential appeal
or passage to the infinite. His remark to Schwarz thus suggests a
certain skepticism about using the infinite in the foundations of
analysis. Thomae explicitly voices such skepticism; I will return
to this point below.

Thomae was not an exclusively Weierstrassian mathematician.
He completed his doctorate in Riemann’s Göttingen, and in fact
would have been Riemann’s doctoral student, if Riemann hadn’t
become too ill. He brought ideas from Riemann with him after
leaving Göttingen, and some of his work adopts a Riemannian
approach.15 But in the early years of his academic career, Thomae
was in close contact with Weierstrassian mathematics, during a
period in which it scored some major victories in the rivalry with
Riemann. These developments had an influence on Thomae, and
a brief look at them will help us understand his formalism.

Thomae studied as an undergraduate in Halle in 1861 and
1862, where he attended Heine’s lectures on analysis. In 1862
he moved to Göttingen, finishing his doctorate there in 1864.
Meanwhile, in the early 1860s, Weierstrass had begun lecturing
in analysis and developing his own foundational approach. In
1861 he offered a course on “Differential and Integral Calculus”
in which he proved some important results about infinite series
representations of functions that made them a viable foundation

15In his obituary of Thomae, Liebmann (1921) refers to Thomae as a “pupil
of Riemann” [Riemannschüler] and cites a number of places in which Thomae
built on Riemann’s work, such as his 1867 Habilitation thesis in Halle, “De
Propositione Quadam Riemanniana Ex Analysi Situs” (1867).
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for analysis.16 This course was attended by Schwarz, who would
later bring its ideas to Heine and Thomae in Halle. Weierstrass
became increasingly concerned in this period with rigor in the
foundations of analysis, and began to develop his work through a
four-semester cycle of lectures on analysis. Since Weierstrass re-
frained from publishing, attending these lectures was generally
the only way to access his research.

For this reason, like many young mathematicians of the day,
Thomae went to Berlin for two semesters to attend Weierstrass’
lectures after finishing his doctorate. Thomae then spent a cou-
ple of years developing his own work, submitting two Habilita-
tion theses, first in 1866 in Göttingen, and then in 1867 in Halle,
where he became a lecturer. Thomae arrived back in Halle in the
same year as Schwarz and Georg Cantor, who had just finished
his doctorate under Weierstrass in Berlin.

So in 1867, three young mathematicians who had direct contact
to Weierstrass’ new program of rigor in analysis converged in
Halle, where Heine was already a professor. Schwarz moved on
in 1869, but Heine, Thomae and Cantor remained together in
Halle from 1867 until 1874, when Thomae moved to Freiburg.

The years Thomae spent in Halle brought a string of suc-
cesses for the Weierstrass camp. In 1870, Weierstrass presented
a challenge to Dirichlet’s principle (1894d), which had been an
important foundational principle for the Riemannian approach
to analysis. Then in 1872, Weierstrass presented his example of
a function which is everywhere continuous but nowhere differ-
entiable (1894c), dealing a serious blow to the role of geometric
intuition in analysis, which again challenged Riemann’s more ge-
ometric approach. These results spurred Riemannians to search
for more rigorous foundations in their own school. Meanwhile,
also in 1872, Heine and Cantor both published constructions of
the irrational numbers providing for the continuity of the real
line, which at the time represented an important and novel ad-

16For example, he proved that term-by-term differentation is valid for such
a series when the series converges uniformly (Gray 2015, 201).

vance. Dedekind, whose construction using “cuts” is often used
today, notes that he was prompted to publish his own construc-
tion because he received a copy of Heine’s article (1963, 3).

Heine’s (1872) construction is of particular interest here. Heine
opens his article by invoking Weierstrass, saying that Weierstrass’
ideas have been spread in lectures and conversation but have
not been presented together, and that as a result there are still
certain doubts in the foundations of analysis. Indeed, he says
that he has hesitated to publish the article for a long time because
he didn’t think he was making any contribution himself, but
just setting out Weierstrass’ ideas and eliminating gaps in the
presentation. Only then does Heine introduce his “purely formal
standpoint” on which numbers are “certain graspable signs” and
“a main emphasis is to be laid on arithmetic calculation”, noting
in a footnote that he generally introduces this perspective in
his lectures on “algebraic analysis”. Heine thus explicitly links
Weierstrass, the formal standpoint, and an algebraic approach to
analysis.

The first edition of Thomae’s book appeared eight years af-
ter these developments, in 1880. By the time Thomae published
the second edition of his book in 1898, Weierstrass’ algebraic,
power series-based approach was ascendent. In the foreword to
the second edition, Thomae mentions that other such elemen-
tary presentations have appeared in the meantime, especially
lectures from Weierstrass published as a textbook by Biermann
(Biermann 1887).17 Thomae is thus clearly positioning his pre-
sentation of complex function theory within the Weierstrassian
approach to analysis. That was also the approach of his col-
leagues and teachers; and it was gaining ground during most
of his academic career. Even though Thomae took a more Rie-
mannian approach in other work, the formalism he defends in
Thomae (1898) should be seen in that historical context.

17As Tappenden (2006, 126) has noted, this textbook presents itself and was
received as a standard presentation of the Weierstrass approach.

Journal for the History of Analytical Philosophy vol. 11 no. 2 [10]



3.2. The mathematical advantages of the power series
approach

The Weierstrass approach is not just about rigor for rigor’s sake;
it offers some real mathematical advantages. These advantages
stem from the restriction to working with power series repre-
sentations of functions. For example, Bottazzini (2002) and Gray
(2015, 197) point out that the power series approach can be read-
ily generalized to functions of more than one variable, which
seems to have been Weierstrass’ own reason for adopting this
approach.

The most relevant feature of power series representations for
my purposes here, though, is that a power series representa-
tion is composed only of elementary arithmetic operations. It is
thus “content-agnostic” in the sense described above. In a power
series representation of a function 5 (G), it doesn’t matter what
sort of object G is: so long as we know how to do elementary
arithmetic operations with it, it makes sense to plug it into that
representation of the function.

This means that power series representations are particularly
useful when we want to generalize functions to a wider domain.
Consider for example the problem of extending the exponential
function 4G to the complex plane. What does it mean to raise 4 to
a complex power I? If you think about exponentiation in terms
of repeated multiplication, it’s not clear that 4I has any meaning
at all. But if you think about this function in terms of its power
series representation,

5 (I) = 4I = 1 + I + I2

2!
+ I3

3!
+ . . .

then you reduce the problem of raising a number to a complex
power to the problem of doing elementary arithmetic operations
with complex numbers.18 So long as we have an account of the

18Notice especially that I= can be thought of in terms of repeated multipli-
cation of I by itself.

elementary operations for complex numbers, we can use the
power series representation to extend the exponential function
to the complex plane.

This basic idea lies at the heart of a technique called analytic
continuation, one of the most powerful problem-solving meth-
ods in complex analysis. Every power series representation has
a limited domain of convergence around its center: the infinite
sum only converges when the terms 0=(G − 2)= get smaller with
increasing =. The basic idea of analytic continuation is that, by
“recentering” the power series at a different point inside its do-
main of convergence, one obtains a new power series represen-
tation which can have a different domain of convergence. The
two representations agree on every point where their domains
overlap, but the new representation can also converge at points
where the original representation didn’t, thus “extending” or
“continuing” the original function to a wider domain. By iterat-
ing this procedure, one can extend a function from one part of
the complex plane to another part, sometimes even from the real
line to the entire complex plane (as with 4G). Power series rep-
resentations are thus a powerful conceptual tool for extending
the theory of functions of a real variable to results about func-
tions of complex variables. Giving an elementary presentation
of complex analysis is a way to obtain access to this powerful
conceptual tool.

This observation adds another dimension to Thomae’s remark
that the formal standpoint only asks “what does one need from
the numbers in arithmetic?” The formal standpoint can be seen
as part of a two-part strategy for building up complex analysis
from algebraic foundations. First, we restrict attention to func-
tions that have power series representations—that is, functions
which can be defined in terms of (perhaps infinitely many) basic
arithmetic operations. This restriction forbids certain ways of
defining functions. But in return, it means that such functions
can be readily extended to a new domain, such as the complex
numbers. “What one needs” from the numbers in that domain
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is a definition of the arithmetic operations, because that is what
makes them suitable inputs for these functions and thus a suit-
able target for the extension. The second part of the strategy is
then to supply these definitions of the basic operations for the
new domain. Let us see how Thomae does this.

4. Signs and Infinitary Representations

In the context of analysis, we need a representation of numbers
that provides for the continuity of the domains of real and com-
plex numbers.

Before Weierstrass, the real and complex numbers were gen-
erally thought of as geometric quantities, and this representa-
tion automatically provides for their continuity. But for a Weier-
strassian mathematician, a geometric conception of the reals is
not a suitable foundation for analysis. A Weierstrassian needs
an elementary, algebraic representation of the numbers, inde-
pendent of geometric intuition. Thus it became important, in
the last third of the nineteenth century, to provide this represen-
tation.19

One strategy, going back to Gauss, was to start with the nat-
ural numbers and introduce successively-wider classes of num-
bers as inverse elements, while preserving the laws of arithmetic
(Boniface 2007; see also Detlefsen 2005; Tappenden 2019). Thus,
starting with the natural numbers, we introduce the negative
numbers to ensure that addition always has an inverse, i.e., that
there is always a number G such that 0 + G = 1, even when
0 > 1. Similarly, we introduce the rational numbers as inverse

19This need was also felt outside the Weierstrass camp. Weierstrass’ results
in the 1870s, mentioned above, put pressure on any view of functions on the real
numbers which made essential appeal to geometric intuition. Thus Dedekind,
for example, writes in his introduction to “Continuity and the irrational num-
bers” that geometric intuition is “useful, from the didactic standpoint” but
“this form of introduction into the differential calculus can make no claim to
being scientific” (1963, 1).

elements for multiplication. But the strategy of inverse elements
does not work to develop the real numbers out of the rationals,
so the Weierstrassians looked for a different construction that
could still be considered purely arithmetical. Heine and Can-
tor, Thomae’s colleagues in Halle, published such a construction
in 1872, based on treating real numbers as convergent infinite
sequences of rationals (Heine 1872; Cantor 1872). Thomae’s con-
struction essentially follows theirs in its technical details.

4.1. Thomae’s construction of the real numbers

To motivate the need for this construction, think about what �
means for a Weierstrassian. If we ignore any geometric inter-
pretation of �, it is just a certain irrational number. To get an
arithmetical grip on this number, we can perhaps think of it in
terms of its infinite decimal representation 3.1415. . . . But what
does it mean to add another number to that, especially another
irrational number, given by another infinite decimal? More im-
portantly, what does it mean to pass such numbers as arguments
into functions, like the exponential function?

In Weierstrassian analysis, we need a way to do arithmetic
with such irrational values. But it would be circular, in Thomae’s
view, to assume from the outset that we can calculate with infinite
decimals. An infinite decimal is fundamentally a power series
representation, an infinite sum over terms based on successive
powers. The infinite decimal representation of �, for example,
really means

3 ·
(

1

10

)0

+ 1 ·
(

1

10

)1

+ 4 ·
(

1

10

)2

+ 1 ·
(

1

10

)3

+ 5 ·
(

1

10

)4

+ . . .

which is simply the value at G =
1
10

of a certain function 5 (G),
represented as a power series. Accordingly, calculation with infi-
nite decimals must first be grounded in the elementary theory of
functions which Thomae is in the process of giving; it would be
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circular for that theory to presuppose such calculation (Thomae
1898, 5).

Thomae therefore adopts a different strategy based on infi-
nite sequences of rationals. We think of � in terms of a sequence
like (3; 3.1; 3.14; 3.141; . . .) whose successive values approximate
� ever more closely. Each term in the sequence is a finite deci-
mal, so this sequence representation does not involve the notion
of summing over infinitely many terms and thus does not raise
the circularity problem. Thomae’s strategy for constructing the
reals is to define real numbers as a certain class of these infinite
sequences, and then to define the arithmetic operations on those
sequences.

He begins by defining this class of sequences using an epsilon-
delta style definition. A regular sequence (today known as a
Cauchy sequence) is an infinite sequence of rational numbers
such that one can always find a point in the sequence beyond
which the differences between terms remain inside a given
bound.20 Every rational number can be trivially represented as a
regular sequence: just take the number itself as each term of the
sequence, so that the difference between terms is always zero.
But there are also non-trivial regular sequences; among these are
sequences of the initial segments of an infinite decimal. Thus,
“we can calculate with infinite decimals”—and thus with irra-
tional numbers like �—“as soon as we can calculate with regular
sequences” (Thomae 1898, 7).21

Thomae then proceeds to define arithmetic operations on these
regular sequences of rationals. Each definition essentially de-
fines the operation on two sequences by applying the operation

20More formally and in modern notation, a regular sequence
(01; 02; . . . 0= . . .) is one such that

∀& > 0∃#∀= ≥ #, < ≥ 1|0=+< − 0= | < &

See Thomae (1898, §7).
21Wir können also mit unendlichen Decimalbrüchen rechnen, sobald wir

mit regulären Folgen rechnen können.

pairwise on its terms. For example, given two regular sequences
0 and 1:

0 = (01; 02; 03; . . .) 1 = (11; 12; 13; . . .)

Thomae defines their sum 0 + 1 as the sequence:

0 + 1 := (01 + 11; 02 + 12; 03 + 13; . . .)

Note that the “+” being defined on the left here applies to se-
quences, while the “+” being used on the right applies to rational
numbers. These definitions “lift” the arithmetic operations on
the rationals up to infinite sequences of rationals.

Finally, Thomae proves that, given these definitions for the
arithmetic operations, regular sequences are closed under these
operations (i.e., if 0 and 1 are regular sequences, so is 0 + 1, etc.)
and they obey trichotomy (i.e., if 0 and 1 are regular sequences,
then 0 < 1 or 1 < 0 or 0 = 1). He also points out that addi-
tion and multiplication are associative and commutative, and
that multiplication distributes over addition. In effect, he shows
that from an algebraic perspective, the regular sequences form a
number system—a field, in modern terminology.22

A modern reader might worry here: shouldn’t real numbers
be identified as something like equivalence classes of regular se-
quences? Aren’t their identity conditions coarser than those of
the sequences themselves? Thomae sidesteps this issue, though,
by focusing on equality rather than identity of regular sequences.
He expresses equality with “=” and defines it as co-convergence,

22Thomae’s presentation does not follow the modern axiomatic definition
of a field, but the regular sequences satisfy those axioms under the operations
as he defines them. Besides the laws of commutativity, associativity, and
distributivity for multiplication and addition, the modern axioms also require
the existence of additive and multiplicative identity elements, and the existence
of inverse elements for addition and multiplication. Thomae uses the constant
regular sequences (0; 0; . . .) and (1; 1; . . .) as identity elements, and the existence
of inverse elements follows immediately from his definitions of subtraction and
division.
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that is, convergence of the difference of two sequences to 0 (1898,
§8).23 Since he works directly with equalities, there is no need for
a further abstraction over sequences to produce the elements of
the field. Instead, this definition of equality, like the definitions
of the arithmetic operations, should be considered as introducing
one of the concepts needed to take up an algebraic perspective
on the regular sequences.

At this point, Thomae says we can call the “signs” for these
sequences numbers:

Since it has been shown that the signs assigned to regular sequences
satisfy the fundamental rules. . . the signs for regular sequences
may be incorporated among the numbers, and we call them num-
bers.24 (Thomae 1898, 10)

The signs Thomae has in mind here are infinite decimals: “an
infinite decimal is. . . an abbreviation, a sign for an infinite se-
quence of the usual finite decimals, or a sign that is assigned
to such a sequence”25 (Thomae 1898, 5). Thus the construction
justifies calculations with infinite decimals, since these represent
calculations with regular sequences of rationals. With this con-
struction in place, then, Thomae has an elementary definition of
the real numbers which allows for our ordinary way of doing
arithmetic with them, and is an adequate domain for functions
given by power series representations.

23In fact, Thomae objects to understanding “=” as expressing identity on
grounds that will be familiar to Frege’s readers: if we did that, “we would
remain stuck at the trivial knowledge. . . that 0 = 0” (1898, 2).

24Nachdem gezeigt worden ist, dass die regulären Folgen zugeordneten
Zeichen den Fundamentalregeln. . . genügen, dürfen die Zeichen für reguläre
Folgen unter die Zahlen aufgenommen werden, wir nennen sie Zahlen.

25Ein unendlicher Decimalbruch. . . ist eine Abkürzung, ein Zeichen für eine
unendliche Folge von gewöhnlichen endlichen Decimalbrüchen, oder ein Ze-
ichen, das einer solchen Folge zugeordnet ist.

4.2. Why “signs”?

In the passages just quoted, Thomae follows Heine (1872) in re-
ferring to irrationals represented by infinite decimals as “signs”,
and says that his construction justifies us in “calling” those signs
numbers. This language is puzzling for several reasons. First of
all, what does Thomae mean by “sign” here? As we have just
seen, Thomae calls infinite decimal representations of irrational
numbers “signs”, so he is clearly not thinking of signs as marks
we could actually write down. So how does he think of them?
Second, why does Thomae feel the need to speak of “signs” in
this context at all? This seems like an extra level of indirection:
why not just talk about doing arithmetic with regular sequences
themselves, instead of with signs for them? Finally, there is a
historical puzzle. By 1880 and certainly by 1898, the early results
in set theory had been established and a set-theoretic construc-
tion of the reals was available.26 Why, in 1898, does Thomae stick
with a formalist conception of the irrationals, instead of using
these newer tools?

Part of the answer to all three puzzles is that Thomae expresses
a deep skepticism about actual infinity. He says that “the actual
infinite is. . . best banished from arithmetic and analysis” (1898,
6).27 This bars him from using the newer set-theoretic tools,
since they involve thinking of infinite sets as actually completed
totalities. For Thomae, infinite sequences cannot be viewed as
completed mathematical objects. He is thus unwilling to look
at the definitions he has given as defining arithmetic operations

26Both Dedekind’s construction of the reals using cuts, and Cantor’s early
results in set theory (including his first proof that the cardinality of the contin-
uum is greater than the cardinality of the natural numbers) followed soon after
Heine’s formalist construction in 1872, and appeared well before the first edi-
tion of Thomae’s book in 1880. Further developments in set theory, including
Dedekind’s construction of the natural numbers, appeared before the second
edition. Thomae was aware of these developments and discusses them briefly
(see 1898, §3, §11), but he shies away from making use of them.

27Das actuelle, das wirkliche Unendlich wird. . . am besten aus der Arith-
metik und der Analysis verbannt.
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on regular sequences. Officially, the completed sequences aren’t
“there” to be operated “on”; and the sequence output by such
an operation is no more completed than its inputs. Instead, we
must think of the definitions as giving a rule which correlates the
terms of the input sequences with those of the output sequence,
so that the =th term of, say, 0+1 is completely determined by the
=th terms of 0 and 1, for any finite =. For any given sequences,
we can continue such a process of calculation as far as we need
to, but the calculated sequence, like the input sequences, is only
potentially infinite.

From the point of view of such skepticism, it would be mislead-
ing to speak of adding or multiplying the sequences themselves,
insofar as such talk involves thinking of them as completed ob-
jects which are the input or output of an infinite process. But
Thomae also holds that it is sometimes unproblematic to pass
in thought from a potentially infinite process to its completed
result. There is no problem with such “idealism” so long as it
only relies on the same rules as formalism:

But it appears to be a need of the human mind (which one can also
observe in other areas of thought) to attribute to every unending
process of taking more and more decimals an eventual end, which
is in a certain sense real and only inaccessible to our powers and
therefore ideal but not imaginary28, which one can actually reach
in the case of a periodic decimal and to which we are especially
driven by geometric representation in other cases, for example in
the determination of

√
2 (diagonal of a square). Such an idealism

is also entirely harmless, insofar as it only makes use of the same
rules for the recognition of its ideals as formalism.29 (Thomae 1898,
6)

28Compare §12, where Thomae uses “ideal or imaginary” to describe points
introduced in projective geometry as an analogy to justify the introduction of
complex numbers, which he also describes as “ideal” (1898, 13). Thomae thus
appears to be gesturing here toward the broader debate about “ideal elements”
which began in the nineteenth century.

29Aber es scheint dem menschlichen Geiste ein Bedürfniss zu sein (was man
auch auf andern Denkgebieten beobachten kann), jenem endlosen Processe
mehr und mehr Decimalen zu nehmen, ein schliessliches, gewissermaassen

That is, it is harmless to shift from thinking about an unending
process of calculation to its completed result so long as that re-
sult is “reachable” just via an infinite sequence of arithmetic op-
erations. That is precisely the form that Thomae’s construction
takes: he’s defined arithmetic operations on infinite sequences—
Thomae’s real numbers—via an infinite sequence of operations on
rational numbers. Because we can do arithmetic operations with
rational numbers any finite number of times, in Thomae’s view
we are justified in passing from such regular sequences of ratio-
nals to their limit in a real number and doing arithmetic with
those real numbers.

Still, why call these limits “signs”? It is instructive at this point
to look back at Heine. When Heine introduces his formalism, he
contrasts the formal standpoint with a strategy of introducing the
irrationals as limits:

If I do not want to stop at the positive rational numbers, I do not
answer the question of what a number is by conceptually defining30
the number, for example by introducing the irrationals as limits,
whose existence would be presupposed. I adopt the purely formal
standpoint for the definition, in that I call certain graspable signs
numbers, so that the existence of these numbers is not in question.31
(Heine 1872, 173)

reales, nur unsern unzulänglichen Kräften unerreichbares und deshalb ideales,
aber nicht imaginäres Ende zuzuschreiben, zu dem man bei einem periodis-
chen Decimalbruch wirklich gelangen kann und wozu wir in andern Fällen, z.
B. bei Bestimmung von

√
2, durch geometrische Vorstellungen (Diagonale eines

Quadrates) besonders veranlasst werden. Ein solcher Idealismus ist auch ganz
ungefährlich, sofern er sich nur zur Wiedererkennung seiner Ideale derselben
Regeln bedient als der Formalismus.

30Heine’s phrasing here may be a jab at the rival Riemannian approach,
which emphasizes “conceptual definitions”; see Tappenden (2006) and Fer-
reirós and Reck (2020).

31Die Frage, was eine Zahl sei, beantworte ich, wenn ich nicht bei den ratio-
nalen positiven stehen bleiben will, nicht dadurch dass ich die Zahl begrifflich
definire, die irrationalen etwa gar als Grenze einführe, deren Existenz eine
Voraussetzung wäre. Ich stelle mich bei der Definition auf den rein formalen
Standpunkt, indem ich gewisse greifbare Zeichen Zahlen nenne, so dass die Existenz
dieser Zahlen also nicht in Frage steht.
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Because Heine calls signs “graspable” or “tangible” (greifbar), his
formalism is often read as a simple-minded empiricism.32 But
the preceding sentence indicates that Heine has a more mathe-
matical worry in mind, namely, that introducing irrationals as
limits presupposes the existence of those limits. Weierstrass ex-
pressed this worry more clearly in 1886:

If we start from the existence of rational numerical magnitudes, it
makes no sense to define the irrationals as limits of them, because
we cannot know at first whether there are other magnitudes besides
the rational ones. (Weierstrass 1886; quoted in Boniface 2007, 327,
translation slightly adapted)

The problem is that, if we attempt to construct the real num-
bers assuming only the rational numbers as given, then we have
nothing to identify with the limits, since in general those limits
don’t exist among the rationals. We cannot identify an irrational
number as the limit of a sequence 0, since we often won’t be able
to show that there is such a limit, unless we simply assume or
postulate its existence. For Heine, speaking of “signs” instead of
limits is a way to avoid this problem. The existence of a sign for
a sequence is not in doubt, even when the existence of a limit for
that sequence is.

Although Heine does not specify exactly what he means by
“sign”, the results of Section 2 offer us a natural interpretation:
the sign is simply the sequence of rationals itself, as viewed from
an algebraic perspective.33 The existence of the sign is then just as
obvious as the existence of the rationals in the sequence. We don’t
need to find a new object, outside the rationals, to identify with
the sign. We just need to look at the objects we’ve already got
from a different perspective, namely, from the formal standpoint.

32See for example the comments about Heine in Epple (2003) or Detlefsen
(2005).

33Heine indicates that he identifies the sign with the sequence itself, though
his language does not clearly separate the sign from his notation for it: “One
introduces the sequence itself, set in brackets, as sign, so that e.g. the sign
belonging to the sequence 0, 1, 2, etc. is [0, 1, 2, etc.]” (1872, 176).

As we saw above, this means that we focus on sequences of
rationals as operands for the arithmetic operations (once these
operations have been defined). Within this perspective, we can
ignore the other, non-algebraic properties of sequences, such as
their internal structure or their infinite length. By ignoring these
properties, we arrive at a different representation, a “sign” for
the sequence as originally conceived.

Thus it is Heine’s commitment to constructing the reals out
of the rationals which motivates his formalism and his talk of
“signs”. Thomae is following Heine in using “sign” this way,
and I see his remarks about “harmless idealism” as intended
to explain and justify this aspect of Heine’s approach. Thomae
seems more aware than Heine that, when we shift from thinking
about a regular sequence of rationals to a sign for that sequence,
we make a nontrivial abstraction, which involves representing
the sequence as a completed object, rather than something un-
ending and incomplete. But for both authors, the advantage of
calling this object a sign for the sequence is that this does not pre-
suppose the existence of anything but the underlying rationals
of the sequence.34 In contrast, talk of limits either already pre-
supposes the existence of irrational numbers, or would need to
be justified by exactly the same sort of construction that Thomae
has given.

So for Thomae, a “sign” for a regular sequence of rationals is
a representation of that sequence. It is a view of that sequence
within an algebraic perspective, in which we just look at it as
an operand for the arithmetic operations. In order to adopt this

34This does not mean there are no other conditions for the sign’s existence:
the sequence also needs to converge, for example. But the rationals in the
sequences are the only objects whose existence is presupposed by the existence
of the sign. This may seem strange to a modern reader: in modern set theory,
the rationals in a sequence are different from the sequence itself, so the existence
of the rationals in that sequence doesn’t necessarily guarantee the existence of
the sequence. But for Heine and Thomae, the sequence simply consists of the
rationals within it, given in a certain order. This was a natural assumption for
them to make in their historical context, at the very beginning of set theory.
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perspective—the formal standpoint—we first need to define the
arithmetic operations on regular sequences and prove that they
are closed under these operations and obey the usual laws of
arithmetic. Then within this perspective, we think of signs as
completed objects, even though the sequences they represent
are infinite, and calculations with them involve an infinity of cal-
culations with the underlying rationals. The abstraction of signs
idealizes away these aspects of operating with sequences; but
this idealization is justified, in Thomae’s view. His intention is
that signs are a relatively harmless abstraction from the under-
lying sequences, an abstraction which does not presuppose the
existence of any objects besides the rationals themselves.

Thus, Thomae’s conception of “sign” is not a linguistic or syn-
tactic one, but a notion with a Kantian pedigree: a sign is a repre-
sentation that has been obtained by adopting a new perspective
on something, by temporarily ignoring some features it has in
the original perspective, and focusing on others. Thomae’s chess
analogy, I now want to suggest, gives us a model for thinking
about such shifts in perspectives.

5. Some Reflections on the Chess Analogy

We have seen above that the crucial step in Thomae’s formalist
construction of the real numbers involves a shift into an algebraic
perspective: by defining the arithmetic operations on regular se-
quences of rationals, we come to see those regular sequences
as numbers. In the formal standpoint, we think of regular se-
quences simply as things we can add, subtract, multiply, and
divide, ignoring their other properties.

Such a shift in perspective involves re-conceiving a domain
of objects, representing or thinking of them under a new set of
concepts. The chess analogy is important for Thomae because it
provides an example of this process which is familiar and easy
to grasp.

How does this work? Consider a perspective from which we
view the pieces on a chessboard as ordinary physical objects.
Within that perspective, we might describe them as made of
wood or plastic or stone, as brown or gray, or as being 3.4cm
apart. But when we actually play chess, we adopt a different
perspective, in which these physical properties are ignored. We
consider the pieces only as bishops or knights, as black or white,
as occupying certain board positions. Material properties like
what they are made of or the distance between them are irrel-
evant. Shifting into the chess-playing perspective thus means
conceiving a domain of objects in a new way, ignoring their
properties which are not relevant for playing chess.

The first purpose of the analogy is simply to show that such
shifts are possible. It may not seem obvious that it is possible
to think of regular sequences of rationals as real numbers. But
it is obvious that it is possible to think of a piece of wood as
the black queen in a chess game, at least to anyone who has
learned to play chess. By comparing the formal standpoint to
the perspective we adopt to play chess, Thomae is seeking to
show that the important step in his formalist construction is of a
familiar, unmysterious kind.

Because the material properties of chess pieces are mostly ir-
relevant in chess, it is possible to play with many different sorts
of pieces. Indeed, one can play chess without any physical pieces
at all, for example using diagrams, or a computer program. This
makes the chess-playing perspective “content-agnostic” in the
same sense as algebra: from the chess-playing perspective, it
doesn’t matter whether the pieces we move are made of wood,
or plastic, or ink on paper; all that matters are their relations to
each other and the squares of the board. Similarly, from an al-
gebraic perspective, it doesn’t matter whether the objects we op-
erate with are numbers, matrices, or sequences; all that matters
are their relations to each other under the arithmetic operations.

So the second purpose of the analogy is to provide another
example of a formal, content-agnostic perspective. The formal
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standpoint is “formal” in the same way that the chess-playing
perspective is “formal”: when we adopt these perspectives on
different types of objects, we ignore the features which distin-
guish them. Again, this serves to dispel doubts about the coher-
ence of the formal standpoint. If anyone objects that it makes no
sense to perform arithmetic operations on regular sequences, be-
cause they are sequences and not numbers, Thomae has a straight-
forward reply: does it also make no sense to play chess with both
wooden and plastic pieces, or via post?

Thus, the purpose of the analogy goes beyond the idea that
chess is a game structured by rules. Indeed, we have not men-
tioned this aspect of chess at all yet. For Thomae’s mathematical
purposes, it is much more important that the formal standpoint,
like playing chess, involves adopting a new perspective, think-
ing of a domain of objects in a new way from the one in which
they are initially given. In ongoing discussions of the chess anal-
ogy and mathematical formalism, this aspect of Thomae’s view
should not be overlooked.

Still, it is clear that rules play an important role in the analogy
for Thomae. When he formulates the analogy between the for-
mal standpoint and chess, he calls the laws governing arithmetic
operations “game rules” to underscore this as a point of com-
parison, and emphasizes the role of rules in other places too. So
how exactly do rules fit into the analogy?

Roughly, Thomae’s idea is that in both chess and the formal
standpoint, rules determine the concepts we use to conceive of ob-
jects from the new perspective. This is why he says that from the
formal standpoint, signs have “no other content” than that which
belongs to them “under certain combinatorial rules”, and num-
bers are “concepts whose content is exhausted through their be-
havior with respect to the calculating rules” (Thomae 1898, 3, 4).
Again, the comparison with chess helps make this idea clearer.
From the chess-playing perspective, there is nothing more to be-
ing, say, a bishop, than to being a piece which starts at a certain
board position, is only allowed to move diagonally, and so on.

Any other aspect of bishops not specified in the rules of chess is
irrelevant from the chess-playing perspective and can vary from
one chess game to the next, and in this sense does not belong to
the concept of a bishop. Thus the rules determine the concept of
a bishop.

But if we leave things at that, we are led straight to Frege’s
objection. As we saw in the introduction, Frege understood the
chess analogy as an attempt to show that signs can acquire a
meaning or content in the presence of a system of rules for ma-
nipulating them, just as pieces of wood take on a meaning in
chess. He argued that this attempt fails: a system of rules sim-
ply does not suffice to attach content to meaningless marks, in
chess or arithmetic. Rules can’t give us concepts where there
were none already.

Given Thomae’s relationship to Frege, it is very likely that
he was aware of this objection: by the time Thomae (1898) was
published, Frege had been criticizing formalism, including this
aspect of the chess analogy, for almost fifteen years (see Frege
1885/1984, 1893/2013a, XIII). Yet Thomae held onto the chess
analogy as a good device for explicating and defending formal-
ism. Why was he unconcerned about Frege’s objection?

To answer this question, we need a clearer picture of the rela-
tionship between rules, signs, and the concepts they signify. The
key idea we need is that for Thomae, this relationship is non-
arbitrary. The problem with Frege’s objection is that he thinks of
the relationship between sign and signified in linguistic terms,
as the relationship between a linguistic expression and what it
means or designates, like the relationship of “Sirius” to a certain
star. His objection is that rules for manipulating an expression
cannot produce that kind of relationship. Thomae’s understand-
ing of signs, on the other hand, traces back to Kant’s understand-
ing of algebra, and as we saw above, Kant contrasts mathemat-
ical signs with words or linguistic expressions, which are only
arbitrary marks for the concepts they signify. For Kant, mathe-
matical signs are non-arbitrary representations, in the sense that
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operating with signs facilitates thinking with the concepts they
signify.

This Kantian conception of a non-arbitrary relationship be-
tween sign and signified shows up in a disanalogy that Thomae
stresses between chess and arithmetic. After introducing the
chess analogy, Thomae immediately contrasts the “arbitrary”
rules of chess with the rules of arithmetic, which allow the num-
bers to “perform essential service for us in the knowledge of
nature”, because they are not arbitrary in the same sense (1898,
3).35 Thomae thus implies that, since the rules of arithmetic are
non-arbitrary in an appropriate sense, manipulation of signs can
facilitate thinking and yield knowledge.

Thomae’s thought here is admittedly quite vague, but here is
one way we might spell it out. The representational relation-
ship in question is that between an infinite decimal (a sign,
in Thomae’s sense) and the corresponding regular sequence.
For example, as we saw above, the decimal representation of �,
3.1415 . . ., corresponds to the regular sequence of rationals

(3; 3.1; 3.14; 3.141; 3.1415; . . .)

Notice first that this relationship is very different from the (lin-
guistic) relationship of the letter “�” to this sequence. “�” is an
unstructured piece of syntax, and has a merely arbitrary rela-
tionship to the sequence, in the sense that you could not pro-
duce the sequence from “�” if you had not specifically learned
the connection. By contrast, the decimal representation encodes
the sequence: a simple procedure, applied to the decimal rep-
resentation, allows you to produce the sequence. This encoding
relationship is a regular, non-arbitrary one, and can be expressed
as a general rule relating infinite decimals to regular sequences.
Moreover, this rule sets up a correspondence of the sort Kant

35Die Schachspielregeln sind willkürliche, das System der Regeln der Arith-
metik ist ein solches, dass die Zahlen mittels einfacher Axiome auf an-
schauliche Mannigfaltigkeiten bezogen werden können und uns in Folge
dessen wesentliche Dienste in der Erkenntniss der Natur leisten.

envisioned, in which “easy and certain” manipulations of the
signs (akin to our school algorithms for decimal arithmetic) cor-
respond to the arithmetic operations on the sequences as Thomae
defines them.

Here then is a different and potentially important role for rules
in formal arithmetic: rules set up a non-linguistic, non-arbitrary
representational relation in which signs (decimals) encode what
they signify (regular sequences). We manipulate the signs be-
cause it is cognitively easier; the encoding relationship ensures
that these manipulations at the sign level correspond to oper-
ations at the level of what they signify, and thus that sign ma-
nipulations can give us genuine knowledge. By contrast, chess
pieces do not encode anything in this sense, which is why ma-
nipulations of chess pieces are arbitrary and do not produce
knowledge. This suggestion is speculative, but it seems to cap-
ture at least part of what Thomae (and Kant) had in mind about
how rules relate signs to what they signify in arithmetic. It also
explains why Thomae was unconcerned about Frege’s objection:
the objection presupposes a linguistic relationship between sign
and signified, not an encoding relationship. Rules clearly do de-
termine encoding relationships, even if they can’t determine the
relationship Frege called “designating”.

Let me close by making a suggestion about how the above dis-
cussion of Thomae’s formalism and the chess analogy can help
us understand the subsequent history. Frege too had a way of
talking about a relationship that mediates between a sign and
its Bedeutung: the notion of Sinn, which he at least sometimes
seems to think of as providing a rule or non-arbitrary connec-
tion between signs and their Bedeutungen. But Frege’s notion of
Sinn is notoriously underdeveloped. It may be that, had Frege
reflected more charitably on his colleague’s view, he would have
been led to something like the notion of encoding I sketched
above, which could have sharpened his own semantic picture.36

36Compare Costreie (2013), who suggests that Frege’s engagement with for-
malism may actually have led him to draw the Sinn-Bedeutung distinction.
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Certainly Wittgenstein thought that Frege had missed something
important in formalism about the relationship of signs and their
meanings, and he used the chess analogy to argue that Frege
had missed the possibility that “the signs can be used the way
they are in the game” without meaning anything in Frege’s sense
(Waismann 1979, 105). With a clearer picture of Thomae’s for-
malism in hand, we are now also in a better position to explicate
these passages in Wittgenstein’s thought.
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