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Abstract

What does it mean to ‘give’ the value of a variable in an algebraic context,
and how does giving the value of a variable differ from merely describing
it? I argue that to answer this question, we need to examine the role that
giving the value of a variable plays in problem-solving practice. I argue
that four different features are required for a statement to count as giving
the value of a variable in the context of solving an elementary algebra prob-
lem: the variable must be in the scope opened by the problem statement;
the values given must be in the range of the variable, which is determined
by the problem; the statement giving the values must represent a complete
solution; and it must be in a canonical form. This account helps us better
understand elementary algebra itself, as well as the use of algebraic tools to
analyze phenomena in natural language.
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1 Algebraic investigations

I want to discuss an activity I call an ‘algebraic investigation’. In general, an
investigation is the process of answering a question. When you investigate, you
start by understanding a question, and then you take certain steps to find the
answer. In an algebraic investigation, the question is an elementary algebra
problem, and the steps you take are the algebraic manipulations that lead you
to its solution. For example, consider a simple polynomial equation of the form:

2?2 —6x+9=0 (1)

In a beginning algebra course, an equation like this is typically used to give
a problem or exercise. This equation gives a problem because it describes a
certain number, x, without specifying which number that is. The ‘2’ represents
an epistemic gap in the statement, something unknown which must be found
out. The equation therefore invokes a question: which number x is such that
z? — 6z + 9 = 0? In a classroom or textbook, this question might only appear



in an abbreviated form, like “What is 2?” or “Find «”, or it might not be given
explicitly at all. Nevertheless, the process of solving this problem begins from
an understanding of this question. To get started in solving the problem, you
need to understand that finding the answer to this question is your goal.

This goal imposes a structure on the activity of solving the problem. To
reach that goal, you might proceed like this:

(x—3)(z—3)=0 (2)
r—3= (3)
rz=3 (4)

These manipulations—factoring, eliminating a duplicate root, and arithmeti-
cally simplifying—are the steps you take to find the answer to the question.
They are appropriate in this context because they bring you closer to that goal.
Many other manipulations are also possible, but unproductive: you could add
7 to both sides of these equations, for example, but that would only carry you
further away from the solution. When you arrive at the last equation, you have
solved the problem. This equation tells you what you didn’t know at the start,
namely, that 3 is the number which makes equation true. Thus, you have
found the answer to the initial question, so your investigation concludes.

The main issue I want to address in this essay is: why does the investigation
end exactly here? Why does writing down the equation count as solving
the problem given with ()?

It may seem that this question has an obvious answer: this equation solves
the problem because it gives the value of x. In general, one answers questions
in elementary algebra by giving the values of variables. But what does that
mean? Most of us take for granted that we understand what ‘giving’ the value
of a variable means in the context of an algebra problem; but if questioned, we’d
find it difficult to say exactly what counts as doing so. Why does equation (4)
count as giving the value of z, for example, while (I)-(3) do not? After all, the
four equations are truth-conditionally equivalent, and contain exactly the same
information: each is true if, and only if, the value of z is 3. Yet () is the only line
in the derivation that counts as answering the question posed with (). What
confers this special status on (4)?

My primary aim here is to provide a systematic answer to this puzzle. My
account will give some criteria that an algebraic statement must satisfy for it
to count as giving the value of a variable and concluding an algebraic investi-
gation. It will depend on the idea that an algebraic investigation is a kind of
inquiry, an activity structured by the goal of finding the answer to an algebraic
question. As we will see, what counts as giving the value of a variable depends
strongly on how that initial question is understood, and how subsequent steps
in the investigation are seen in its light.



2 Some motivations

Why is such an account interesting? What will it help us understand? First and
foremost, the account I offer here will interest philosophers of mathematics,
because it improves our understanding of a fundamental part of mathematical
practice. Elementary algebra is the first place where students encounter the
idea that variables stand for ‘unknowns’ whose values can only be given or
specified later, as the result of further investigation. This idea is so fundamental
to modern mathematics and logic that it is hard to imagine them without it.
But the idea is far from an obvious one; historically, it actually took a long time
to developﬂ Precisely because it is now so fundamental to our mathematical
practice and education, it is worthwhile to bring its complex epistemological
structure to light.

Elementary algebra is the simplest and clearest place where we find this
structure, but it is hardly the only one. Any place in mathematics where we ask
the question of which things satisfy a certain condition has the same structure.
When we investigate questions like “What is the Galois group of this polyno-
mial?” or “What are the bounded harmonic functions on the plane?” we go
through a process similar to an algebraic investigationE] This process begins
with an understanding of the question, which asks for ‘unknowns’ satisfying a
certain condition. The condition plays a role similar to a polynomial equation
like ([I)): it describes certain values without specifying them. The investigation
proceeds by searching for these values, and ends by giving a specification of ex-
actly which values they are. The search will use different methods than those
of elementary algebra, and the answer will be expressed in different ways, but
the basic structure is the same.

Of course, there are other kinds of questions in mathematics, such as yes-no
questions like “Are there functions which are nowhere differentiable but ev-
erywhere continuous?” or “Are there any primes between 2256 and 2257?” We
can often investigate whether something is true without asking which things
make it true, and in such cases, the investigation has a different epistemological
structureﬂ Still, for a large class of mathematical questions, elementary algebra
serves as a particularly clear model of how investigations into these questions
proceed. My account of what it means to give the value of a variable in elemen-
tary algebra readily extends to these other cases, so it can help us understand a
widespread phenomenon in the epistemology of mathematics.

IFor a fascinating history of how this central algebraic idea developed and how it enabled so
much of modern mathematics, see [9]].

2Thanks to an anonymous referee and Peter McGrath for these examples.

3Belnap and Steel [4]] recognize (wisely, I think) a fundamental distinction between which-
questions and whether-questions, because they have different sorts of possible answers, and so
different processes are required to answer them. The questions which give rise to investigations
with the structure I describe here are all which-questions, in their sense.



Indeed, the account is also of more general interest, because this same epis-
temological structure appears outside of mathematics. Investigations with this
structure are pervasive in both scientific practice and in ordinary life, and al-
gebraic variables play an important role in our understanding of the language
used to carry them out. Suppose, for example, that I say:

A man walked in.
Or suppose, observing the same scene, you ask:
Who walked in?

The indefinite description “a man” in my statement, as well as the question
word “who” in your question, will typically be analyzed as introducing a vari-
ableﬁ That's because both sentences describe a certain person who remains
‘unknown’: in much the same way that equation (1)) describes a number with-
out specifying which number it is, these sentences tell us that a person walked
in without specifying which person it wasE] A variable is an appropriate choice
for representing the semantic contribution of these expressions because both
sentences invite further investigation to find out who that unknown person is,
just like a polynomial equation.

Natural language also contains sentences that we might think of as giving
the values of such variables. If the next statement in the context is

It was George.
or, more explicitly,
The man who walked in was George.

then what was unknown becomes known. These sentences feel very much like
equation (4)): they specify the person in question, so they seem to give the value
of the variable introduced earlierE] They conclude the investigations that the

“The analysis of indefinites as introducing variables bound by a quantifier traces back to Russell’s
analysis of descriptions [28]], and has become completely standard; see also the analysis in [[16]],
which treats indefinites as unbound variables. The use of variables to analyze question words also
has a long tradition and has become standard [[15} 4} [14].

5The question tells us this by presupposing that someone walked in, rather than by asserting it.

6Such sentences are known in linguistics as specificational sentences. When linguists characterize
them, they often spontaneously resort to a comparison with equations like ([@). Mikkelsen [25]
pp- 1809-1810] writes, for example, that in specificational sentences, the left side “introduces a
variable”, while the right side “provides the value for that variable”. Similar remarks appear in
much of the linguistics literature on specificational sentences [e.g.,[2|[19,[17]]. Recently, philosophers
have become interested in specificational sentences in the context of a debate about how to analyze
sentences like “The number of Jupiter’s moons is four” [[7} 26} 12,21} |13} 30]].



earlier sentences invite. But without a systematic account of what it means to
give the value of a variable, we can't yet fully exploit the analogy with algebra
to understand their internal semantics, or their relationship to expressions like
“a man” or “who” in prior discourse. Relatedly, we might say that someone
who hears the above exchange “knows who walked in”. An account of what
it means to give the value of a variable is needed to analyze this ascription of
knowledge, and to explain the relationship between knowing who walked in
and knowing that George walked inﬂ

Of course, the same phenomena arise in scientific uses of natural language.
Consider a chemist who says: “A strange compound precipitated out during
the experiment this morning” and later reports: “It was arsenic sulfide.” Or
consider an astronomer who wonders which pair of galaxies she is looking at,
and later determines that it was NGC 2207 and IC 2163. In all such cases, an
investigator starts from a question about which unknown thing or things meet
a certain condition, and through investigation comes to know and to say which
things those are; and this process can be looked at as finding out and giving the
value of a variable. A secondary aim of this essay, then, is to provide the foun-
dations which support such applications of algebraic variables to the analysis
of natural and scientific language, and to the shifts in our knowledge that such
language is used to express. Though I will not say more about these applica-
tions here, I have looked at them in more detail elsewheref]

3 Four criteria for concluding an algebraic investi-
gation

Let’s now turn to the details of the account. We have seen that when an equation
like gives the value of a variable, it has a special status: it marks the end
of an algebraic investigation, the point at which the goal is reached and the
question is answered. What confers this special status on (@), in contrast to
equations ([I)-(3) in the derivation above? That is, why does writing down this
equation, in this context, have the epistemological significance of concluding
the investigation—as the other lines do not, and as the same equation would
not in a different context? This is the question to be addressed here.

7This relationship has been important in recent discussions about knowledge-wh [27]]. The main
issue in those discussions is how to understand claims of the form “S knows Q”, where Q is an
interrogative formed with a wh-word. Reductionists hold that such claims are true just in case S
knows that p, where p is the (or a) true answer to Q [see e.g.[20,/531]]. A number of authors have
recently challenged reductionism, arguing that knowledge-wh ineliminably involves the question
Q [29}/8} 24} [11]]. In one typical kind of case, p answers Q by virtue of having definite values in the
places where Q has variables, so understanding what it means to give the value of a variable is an
important preliminary step toward resolving the debate over reductionism about knowledge-wh.

8See Lawrence [23].



As I have already noted, each line of this derivation is truth-conditionally
equivalent to the others. Thus, to understand why only the final equation counts
as giving the value of x, we need to look beyond its truth conditions. For its
truth conditions are the same as the other equations’, but we need to know what
makes it different: we need to explain why deriving this final equation counts
as discovering the value of x, and therefore as coming to know the answer to the
algebraic question, but deriving the earlier equations does not. What else, then,
could explain this equation’s unique epistemic role?

Here is my answer, in outline. There are four different features of equation
which are crucial for it to count as giving the value of x and as answering
the question invoked by (I)). These are: that the variable is in the same scope
as the variable introduced by the problem statement; that the value given is in
the range of the variable; that the equation represents a complete answer to the
question; and that the equation is in a canonical form. These are not features of
the equation itself; they are features of how it is used and understood in this
particular context. Each of them is individually necessary for this equation to
be understood as giving the value of . Together, they provide a reasonably
complete account of why this equation answers the problem, but the earlier
equations do not. Let me describe each in turn.

Scope. It is easiest to see what I mean by ‘scope’ if we ask: why does the
equation z = 3, as it is used on line (4, give the solution to the problem given
on line ([I]), as opposed to some other problem? The obvious answer is that the
equations on these two lines of the derivation employ the same variable. But
what is it for the variable to be ‘the same” in these two lines? This is obviously
not a purely typographical matter. The symbol ‘z” can be used to express a vari-
able in many different problems. I might introduce a new problem to you with
an equation like

22 —4r +4=0 (5)

without causing any confusion. Students of elementary algebra have to learn
that the symbol ‘z” is being used differently here than in ((I]), and that its use in
is connected with its use in ((I]) but not in (5]). This is what I mean by scope:
a variable’s scope includes just those statements in which its occurrences are
understood to be connected.

In elementary algebra, a variable’s scope thus depends on the problem-
solver’s understanding of her own activity. Its scope extends exactly as far as the
statements belonging to a single algebraic investigation, and no further. This is
because an algebraic variable originates as an “‘unknown’ with the question that
structures the investigation. Understanding a statement containing a variable
requires recognizing it as part of an attempt to answer that question by finding
the variable’s value. A variable’s scope thus opens with a posing of a problem,



using one or more equations; it closes with a statement of its solution, which
gives the value (or values) of that variable; and it includes whatever statements
occur between the problem statement and the solution statement that are part
of the problem-solver’s effort to move from the former to the latter.

There is no sense in asking for the value of a variable apart from some scope
or other. A variable only has a value relative to the question which introduces
it. To say that an equation gives the value of a variable is therefore to connect
that equation with an attempt to answer a particular problem or questionﬂ Itis
to place the use of that equation in the context of some algebraic investigation
or other. This gives us our first criterion: for an equation to count as giving the
value of a variable, the variable in that equation must occur in the same scope
as in the problem to which the equation gives the solution.

Range. Of course, the problem which introduces a variable must actually
have a solution if its value is to be given. This depends on a feature of how the
problem is understood: the variable’s range. Take, for example, the problem
given by the following equation:

22 +524+6=0 (6)

If x is taken to range over the natural numbers in this problem, then it has no
solution, as you can see once it has been factored:

(z+2)(z+3) =0 7)

The roots of (6)) are —2 and —3. They are both negative integers, so they are
not among the natural numbers. So whether or not this problem has solutions
depends on whether x ranges over just the natural numbers, or over some more
inclusive set, like the integers. It is only possible to give a value for x in this case
when z is understood as ranging over some set that includes at least —2 or —3.
Different understandings of the range of a variable thus influence whether, and
how, a value for that variable can be given. This gives us a second criterion:
for an equation to count as giving the value of a variable, that variable must be

9Thus, in the language used by authors like Schaffer [29]], Masto [24]] and Farkas [[11]], I am
proposing an ‘anti-reductionist’ view of the knowledge acquired in an algebraic investigation. Anti-
reductionism is the view that the question plays an essential role in characterizing this knowledge:
the student who derives (@) does not simply come to know that = 3, but comes to know it as the
answer to the question of which number z is such that 2 — 6z + 9 = 0. Apart from the context of
some such question, it makes no sense to say that someone comes to know ‘that x = 3'.

A key argument for anti-reductionism is the observation that, since the same proposition p
can answer different, non-equivalent questions, knowing that p must be compatible with having
knowledge-wh of one these questions without the others. In the present context, this corresponds
to the observation that deriving an equation that gives the value of a variable only counts as coming
to know the answer to the algebraic question in whose scope it occurs. The student who derives
@ from knows which number z is such that 2 — 6z + 9 = 0, but not which number z is such
that 23 — 922 + 272 = 27, even though x = 3 in both cases.



understood to have a certain range, and the value given must fall within that
range.

Completeness. The previous example raises another important point. Many
polynomial equations, unlike (1)), have more than one root, at least on some
ways of understanding the range of the variable. For this reason, it is in gen-
eral too simple to ask under what conditions a statement gives the value of a
variable. When z is understood to range over the integers in (f]), an equation
like

T =2

could be said to give ‘a’ value of z, but not ‘the” value of , since no value in
that range uniquely satisfies the equation. For an algebraic statement to count
as a solution statement, it must give at least one value for the problem’s variable.
But in general, there is a further question as to how many such values must be
given for the end of an algebraic investigation to be attained.

For equations with multiple distinct roots, we need to distinguish among
several possible understandings of the problem in order to answer this question.
Because it has multiple roots, an equation like ([6]) actually underdetermines
which question is being asked. If the question is “What are all the numbers
z such that 22 4+ 5z + 6 = 0?”, then a complete answer must give both roots.
Someone solving this problem would have to write something like

xr=—-2o0orx=-3 (8)

to completely answer this question and achieve the end of her investigation. On
the other hand, if the question is “What is one number z such that 2? + 52+ 6 =
0?” then

r=-3 (9)

gives a complete answer to the problem. Even though it does not exhaustively
list the roots of the equation, the problem-solver can stop at this point, since
this equation provides everything the question asks for.

Borrowing some terminology from Belnap and Steel [4]], we can say that al-
though these two problems are posed with the same polynomial, they make dif-
ferent requests. A problem’s request determines how many solutions an answer
should provide, and whether a correct answer should provide an exhaustive
list of them. In general, the answer to the question that initiates an algebraic
investigation is not complete unless it fulfills this request, so what counts as
completely solving a problem depends on how the problem’s request is under-
stood.

This shows that we should distinguish giving a value of a variable from giving
the answer to an algebraic question. Depending on the problem’s request, it may be



necessary to give more than one value for a variable in order to give a complete
answer. The same distinction is also needed when we look at the more general
class of algebra problems given by systems of equations in multiple variables,

such as the problem given by and ([LI):

22 +y? =25 (10)
r—y=1 (11)

Here is one solution to this problem:
r=4,y=3 (12)

This solution statement contains two equations as parts, each of which gives a
different value for a different variable. Giving a value for a variable is neces-
sary, but not sufficient, for completing an algebraic investigation. A problem-
solver only completes an investigation when she gives an answer that provides
as many solutions as requested, each of which must give values for each of the
variables in the problem.

Canonical form. The final criterion concerns which kinds of expressions are
suitable for giving the value of a variable. I call these criteria of canonical form.
When an equation is suitable for giving the value of a variable, it must also be
in canonical form. To see the importance of canonical form, consider again the
final two lines from the derivation in (I)-(&):

z—3=0

r=3

As we noted earlier, these equations are equivalent. What then is the difference
between them? Why is it that only the second of these equations counts as
giving the value of z, and thereby giving the solution to the problem in ([])?

The point I want to emphasize here is that some standard or other is al-
ways required in a problem-solving practice to distinguish among equations
like these. Part of understanding a problem is grasping the criteria that distin-
guish those statements which can be used to give values for the problem’s vari-
ables from those which, though otherwise equivalent, cannot. In the absence of
such criteria, we have no grounds for distinguishing equations that are used to
give problems from those that are used to give solutions, and so no possibility
of a problem-solving activity at all. Thus, for an equation to count as giving a
value of a variable, some such criteria must be in place, and the equation must
fulfill them.

What are those criteria? Looking at the two equations above, a natural first
thought is that the second equation is syntactically and arithmetically simpler



than the first. This can’t be the whole story about canonical form, though, be-
cause there are other pairs of equations in which one equation is no simpler than
the other, but only one counts as giving the value of x. Here are two examples:

2r = —xr =2

T =2

€r =

o= =

At least in the classrooms where I was taught, only the lower equation in each
pair would have counted as a complete solution to a problem, even though it is
no syntactically or arithmetically simpler than the upper one.

Usually, we can say that for an equation to be in canonical form, the variable
should be arithmetically isolated, and purely numerical expressions should be
fully computed. But even these generalizations are not exceptionless, and apart
from them, whether an expression counts as being in canonical form is a fairly
local matter. Consider, for example, the problem given by

18z =8
Here are two possible ways of writing a solution to this problem:

x:§ =04

Neither of these equations is ‘more canonical’ than the other in any global sense.
A teacher who assigns this problem as an exercise might accept one equation
as a solution but not the other depending on his pedagogical purposes. For ex-
ample, he might accept the right-hand equation as a complete solution, but the
left-hand equation as only a partial solution, in a lesson emphasizing decimal
expansions of rational numbers. In a lesson emphasizing exact expressions of
ratios, or where calculators are not permitted, the standard might be the other
way around.

Criteria of canonical form, then, are inherently local and purpose-relative,
even if there are some general rules that apply in most problem-solving settings.
So what, if anything, unifies the various standards we might have? Is there any
general account of what it is for an expression to be in canonical form?

Here is my answer: a standard of canonical form determines a distinguished
class of expressions such that, when one of these expressions is used to give the
value of a variable, no further question can be appropriate about which value
is meant. This becomes clearer if we imagine an algebraic investigation formu-
lated as an explicit question and a series of attempted answers:

Which number z is such that 422 — 42 + 1 = 0?

10



If you were to ask someone this question, it would obviously be unsatisfying to
be told, in reply, that

It is the number x such that 422 — 4z +1 = 0.

even though this answer is in a sense perfectly true. This ‘answer” merely re-
peats the problem,; it is unsatisfying because it invites the rejoinder, “But which
number is that? That’s what I wanted to know.” It would only be slightly more
satisfying if the reply was

It is the number z such that (22 — 1) = 0.

Here again, it can be appropriate to ask “But which number is that?”, and inso-
far as it is, the respondent has not fully answered the original questionET] But
this question is no longer appropriate if the respondent says:

It is the number « such that z = 3.

A further “Which number is that?’ question in this case would indicate a mis-
understanding on the part of the questioner. Our practices of giving numbers
simply do not allow any further request here; the expression ‘z = 1" makes it as
clear which number is meant as anyone has any right to demand. This equation,
unlike those in the other answers, is in canonical form. Its being in canonical

form just consists in the fact that no such demand is appropriate.

I am not the first to emphasize the importance of canonical form. In an un-
published lecture, Saul Kripke describes a closely related concept, which he
calls a buck-stopper. For Kripke, a buck-stopper is a term such that “the question
“Yes, but which [number is that] and how did I know this?” is completely idle,
and no answer to it need be given” [22, p. 15]. Thus, when an equation is in
canonical form in my sense, the term within it that specifies the variable’s value

117

2
appear in discussions by other authors, too. Kripke cites Ackerman [[1]], who

is a buck-stopper for Kripke, like 5" in the example just given. Similar concepts

calls numerals standard names for numbers, and contrasts their behavior under
propositional attitude verbs with complex arithmetical terms and descriptions

10 Authors like Boér and Lycan [j5] and Aloni [3] share my intuition here that an unsatisfying
reply to such a question does not count as an answer even if it is true, and thus that answerhood
depends on contextual features like the purposes of the questioner. A contrary view is offered by
Braun [6]], who distinguishes the notion of answering a question from that of satisfying the inquirer.
On Braun’s view, we should say that these replies answer the question but are unsatisfying. But
as Masto [[24]] notes, Braun’s invariantist understanding of the question-answer relation won’t help
us understand an inquiry like an algebraic investigation as a process of making progress toward
finding an answer, since even a trivial, unsatisfying answer counts as an answer on Braun’s view.

11



like ‘8 +3’ or ‘the least perfect number’. Dummett likewise suggests that a “pre-
ferred range of names” is needed to ground the (Fregean) senses of terms that
refer to numbers and other abstract objects [[10, p. 499]. More recently, Heylen
[[18] speaks of the Peano numerals as canonical terms for numbers, and argues
that their special status is explained by the induction schema in Peano arith-
metic. These authors all suggest, in different ways, that a certain subclass of
terms for numbers play a special role in our epistemic relations to them and
our language for reporting those relations.

I agree with these authors that such canonical ways of giving numbers are
crucial for mathematics. What is missing in their discussions, I think, is an
awareness of the crucial role of canonical terms in investigations. These discus-
sions have tended to focus on the natural numbers and our numerals for them,
and to explain the special status of these numerals by reference to the fact that
they form a recursively enumerable set. But the felt contrast between canonical
and non-canonical terms is not limited to this (fairly unusual) case. We can still
draw the distinction between canonical and non-canonical terms in algebraic
investigations where the range of a variable is not enumerable: we have both
canonical and non-canonical terms for transcendental numbers like 7 and e, for
example. We also feel a similar contrast in other problem domains. Consider a
question like: “What is the group of symmetries of a regular tetrahedron?” and
the contrast between answers like “S;” and ‘the symmetric group with 30 sub-
groups’. Or consider again a question in ordinary language like “Who walked
in?” and the contrast between replies like ‘George” and ‘the only person I saw
yesterday’. For any question that asks for a specification of the values satisfying
a certain condition, we can draw a contrast between answers which permit a
rejoinder of “But which one is that?” and answers which don’t, even if we have
no way of enumerating all and only the latter answers.

The special status of these terms has less to do with their enumerability and
more to do with the epistemological structure of investigations in general. From
the perspective I have offered here, the crucial feature of standards of canoni-
cal form is that they allow us to recognize when a process of inquiry has come
to an end. When we start an investigation into a particular question, we don’t
know what the answer is (if we did, there would be no point in investigating!).
But unless we have at least some idea of what the answer must be like, the in-
vestigation could go on forever: without some way of distinguishing an answer
from what is merely a step toward an answer, we will have no way to recognize
an answer when we finally find it. It is true that recursively enumerable sets
of terms, like numerals for the natural numbers, provide us with an especially
clear idea of what the answers to many algebraic investigations should be like.
But as I have indicated, our standards of canonical form may still vary from
one problem-solving context to the next. The important point is that some such

12



standards are always in play during an algebraic investigation, because it is by
understanding and applying them that we recognize that the problem has been
solved, and the investigation is concluded.

4 Conclusions

Here is a summary of the above observations. Algebraic practice is a practice
of investigation, of posing questions and seeking their answers. When we say
that an equation like

r=3

‘gives the value of a variable’, we are assigning it a certain role within that prac-
tice. We are saying it is part of a solution statement, which concludes an al-
gebraic investigation by fulfilling its aim. It forms part of the answer to the
“Which numbers x are such that...?” question that structures the investigation,
by specifying one of the values that this question asks for. This distinguishes
it from equations which state problems, or mark intermediate steps between a
problem and a solution, which do not give a value for the variable and cannot
be part of a solution statement.

In order for an equation to play that role, it must be understood in a certain
way. Its variable must be in the same scope as the variable introduced by the
problem statement, and it must give a value within the range that the variable
is understood to have. To count as giving a value, rather than just describing
it, the equation must satisfy some criteria for being in canonical form, using
an expression for the value which is not subject to a “But which do you mean?”
rejoinder by the standards of the problem-solving practice. When a polynomial
used to pose a problem has more than one root, or contains more than one
variable, more than one such equation might be necessary to solve the problem
and complete the investigation. How many such equations are necessary is a
matter of how the question structuring the investigation is understood: how
many variables it introduces, how many solutions it requests, and whether or
not it requests an exhaustive list of solutions.

Through an algebraic investigation, one comes to know which number (or
numbers) make some polynomial equation (or system of equations) true. On
the view I have offered, this knowledge is best characterized in relation to the
question which opens the investigation; what one comes to know depends on
how exactly that question is understood. In this sense, knowing which number
z is such that 22 — 6z + 9 = 0 is different from simply knowing that 3> — 6 -
349 = 0. One can come to know the latter without going through an algebraic
investigation—say, by playing idly with a calculator. But in that case, there is
no need to characterize the knowledge in terms of the question it resolves, and
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precisely for that reason, there is no need to describe the acquisition of such
knowledge as a process of finding out the value of a variable. In elementary
algebra, a variable is a device which links the giving of a value back to a question
that asks which values it has. When we describe someone as knowing which
number z is such that 22 — 6z +9 = 0, or as knowing that z = 3, we characterize
her as knowing something as the answer to a prior algebraic question. Her
knowledge is the outcome of an investigation.

As T 'indicated at several points, the account I have given is also useful for
understanding other kinds of investigations, including other problems in math-
ematics, as well as investigations in science and everyday life. It makes sense to
look at many different investigations as a process with a structure similar to an
elementary algebra problem: it begins with a question that introduces one or
more variables as ‘unknowns’, and ends by giving the values of these variables,
that is, by specifying what was previously unknown. If we extend the account
developed here to this wider class of cases, many interesting further questions
arise. For example: what does it mean to understand the range of the variable in
a question like “Under what conditions can a planet support life?” How do we
recognize the scope of an investigation into this question, where the statements
which belong to it might be made over long distances in space or time, and by
many people? How do we converge on standards of canonical form that help us
recognize when the investigation is completed? The account offered here does
not answer these questions; but part of its interest is that it helps bring them to
light.
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