MARKET PRICE PREDICTION OF CROPS USING MACHINE LEARNING

B.Laxman Kumar¹, K.Harika Reddy², P.Randheer³, J.Siva Prashanth⁴

^{1,2,3}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India. ⁴Assistant Professor, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. In today's agricultural landscape, farmers face challenges in navigating fluctuating market prices, impacting their income and livelihoods. The agricultural sector plays a pivotal role in sustaining global economies by providing essential food resources. However, the volatility of crops prices poses challenges for farmers, distributors and policy makers, necessitating innovative approaches for more informed decisionmaking. In this context, the integration of machine learning techniques offers a promising avenue to predict market crops prices accurately. This technology empowers farmers to make informed decisions, maximizing profits and contributing to improved living standards.

Problem Statement

In traditional agriculture, uncertainties in crop pricing create challenges for farmers agribusinesses, and policymakers. The lack of accurate and timely information about future crop prices hinders optimal decision-making in planting, harvesting, and marketing. Existing methods often rely on historical data and manual analysis, leading to suboptimal outcomes and increased agricultural waste. To address these challenges, the Crop Price Prediction System aims to leverage advanced machine learning techniques, specifically employing the Scikit-Learn library. The goal is to provide a reliable and automated solution for forecasting crop prices based on diverse factors such as climate conditions, market trends, and historical pricing data. By overcoming the limitations of traditional approaches, this system seeks to empower stakeholders with predictive insights, enabling them to make informed and strategic choices in the dynamic agricultural landscape.

Existing System

Here are some general trends and aspects related to existing systems:

- Statistical Models and Time series Analysis
- Data Platforms and Analytics Tools
- Government and Agricultural Agencies
- Research Initiatives and Academic Studies
- Weather and Climate Models
- Private agencies.

Proposed Solution

This project focuses on addressing the challenges in the agriculture industry, particularly in the areas of crop prediction and price estimation. Accurately predicting and production is crucial for efficient resource allocation and profitability. Traditional methods of prediction are often time-consuming and prone to errors, leading to inefficient resource utilization and revenue loss. To overcome these challenges, an intelligent platform leveraging machine learning algorithms has been developed.

INTRODUCTION

The agricultural sector plays a crucial role in the economy, providing food and raw materials while sustaining livelihoods for millions. However, one of the significant challenges faced by farmers is the unpredictability of crop prices. Market fluctuations can be influenced by various factors, including weather conditions and government policies. Predicting these prices accurately can lead to better decision-making, optimizing production, and improving profitability. With advancements in technology, machine learning (ML) has emerged as a powerful tool for analyzing complex datasets and identifying patterns that traditional statistical

methods might miss. By leveraging historical data, weather forecasts, and other relevant variables, ML models can provide insights into future crop prices, enabling farmers and traders to make informed choices.

RESEARCH METHODOLOGY

Define Research Objectives

- Establish clear goals for the study, such as improving crop price prediction accuracy, identifying significant factors influencing crop prices, or understanding market behavior.
- Example objective: "To develop a predictive model that accurately forecasts the market price of wheat in the coming season using historical data and weather patterns."

Data Collection

- **Data Sources**: Gather data from government databases, agricultural boards, meteorological departments, and open-source platforms.
- Data Types:
 - Historical Crop Prices: Collect past market prices of crops.
 - Weather Data: Temperature, rainfall, humidity, and other climatic factors.
 - **Production Data**: Crop yield, harvested area, and related agricultural statistics.
 - Economic Data: Inflation rates, input costs, and market demand.
- **Timeframe**: Collect data over multiple years (e.g., 5-10 years) to capture seasonal and economic cycles.

Data Preprocessing

- Data Cleaning: Handle missing values, outliers, and inconsistencies in the dataset.
- Normalization and Scaling: Apply feature scaling to ensure data is within a standard range, especially if using algorithms sensitive to scale, like neural networks.
- Feature Selection: Use correlation analysis and statistical techniques to select features that significantly impact crop prices.
- **Feature Engineering**: Create new variables, such as price trends, or climate indices, that may add predictive value.

Theory and calculation

The price of agricultural products is influenced by a combination of **supply-side factors** (e.g., crop yield, seasonal production, storage, weather conditions) and **demand-side factors** (e.g., market demand, exportimport policies, and changes in consumption patterns). Key data sources for predictions include:

- Historical prices: Daily, monthly, or yearly prices provide a basis for trend analysis.
- **Crop yield and acreage data**: Accurate forecasts of crop yield from farmed land, possibly derived from remote sensing data, help predict supply.
- Weather conditions: Seasonal forecasts, rainfall, temperature, and soil moisture can impact yields.
- Market sentiment: Economic indicators, import/export tariffs, subsidies, and regulations play a role.
- Macroeconomic indicators: Exchange rates, inflation, and fuel costs affect costs in farming and transport.

Kamatska	U	
Select the district:		
Chikmagalar	č	
Select the market:		
Chikkamagalore	۳.	
Select the commodity:		
Rice	~	
Show Prices		
The average minimum price for Rice in	Chikkamagalore is: 4000.0	
The average maximum price for Rice i	Chikkamagalore is: 4000.0	
on of Crops Using Mach	ine Learning	
on of Crops Using Mach	ine Learning	
on of Crops Using Mach	ine Learning	
		v
Select the state:		•
Select the state: Andhra Pradesh		~
Select the state: Andrea Pradesh Select the district:		
Select the state: Andrea Pradesh Select the district: Cuntur		
Select the state: Andrea Pradech Select the district: Guntur Select the market:		•
Select the state: Andrea Pradesh Select the district: Guntur Select the market: Guntur		•
Select the state: Andruin Prodesh Select the district: Cuntur Select the market: Cuntur Select the commodity:		*

RESULTS AND DISCUSSION

CONCLUSION

In conclusion, the Crop Price Prediction System harnesses the power of advanced machine learning techniques to revolutionize the agricultural landscape. By leveraging tools such as Scikit-Learn, NumPy, and Pandas, the system processes diverse datasets encompassing climate conditions, market trends, and historical pricing. The utilization of Decision Tree Regressors and ensemble methods enables accurate crop price predictions, empowering stakeholders with valuable insights for strategic decisionmaking. This innovative system addresses the inherent uncertainties in traditional agricultural practices, providing farmers, agribusinesses, and policymakers with timely and data-driven information.

The predictive models factor in crucial variables such as rainfall, historical prices, and crop-specific characteristics, contributing to a more holistic and informed approach to crop price forecasting. The system's adaptability and scalability, evidenced by its reliance on widely used machine learning libraries, position it as a transformative tool for sustainable agricultural management. By automating and optimizing the prediction process, the Crop Price Prediction System contributes to increased efficiency in planting, harvesting, and marketing strategies. As the global agricultural sector continues to face challenges, this system stands at the forefront, aligning with the broader push towards data-driven, efficient, and sustainable practices in contemporary farming ecosystems.

REFERENCES

- 1. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- Ramakrishna, C., Kumar, G. S., & Reddy, P. C. S. (2021). Quadruple band-notched compact monopole UWB antenna for wireless applications. *Journal of Electromagnetic Engineering and Science*, 21(5), 406-416.
- 3. Rasineni, G. K., Guha, A., & Reddy, A. R. (2013). Elevated CO2 atmosphere significantly increased photosynthesis and productivity in a fast growing tree species, Gmelina arborea Roxb. *Climate Change and Environmental Sustainability*, 1(1), 81-94.

- Ramaiah, M., Chithanuru, V., Padma, A., & Ravi, V. (2022). A review of security vulnerabilities in industry 4.0 application and the possible solutions using blockchain. *Cyber Security Applications for Industry* 4.0, 63-95.
- Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions–A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 6. Padma, A., Chithanuru, V., Uppamma, P., & VishnuKumar, R. (2024). Exploring Explainable AI in Healthcare: Challenges and Future Directions. In *Analyzing Explainable AI in Healthcare and the Pharmaceutical Industry* (pp. 199-233). IGI Global.
- Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 8. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2023, December). Security-Aware Information Classification Using Attributes Extraction for Big Data Cyber Security Analytics. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 365-373). Singapore: Springer Nature Singapore.
- 9. Tahseen, A., Shailaja, S. R., & Ashwini, Y. Extraction for Big Data Cyber Security Analytics. Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2023, 993, 365.
- 10. Murthy, G. V. L. N., Kavya, K. S., Krishna, A. V., & Ganesh, B. (2016). Chemical stabilization of subgrade soil with gypsum and NaCl. *International Journal of Advances in Engineering & Technology*, 9(5), 569.
- 11. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2014). Voltage stability analysis of radial distribution networks with distributed generation. *International Journal on Electrical Engineering and Informatics*, 6(1), 195.
- 12. Murthy, G. V. K., Sivanagaraju, S. S., & Rao, B. H. (2012). Artificial bee colony algorithm for distribution feeder reconfiguration with distributed generation. *International Journal of Engineering Sciences & Emerging Technologies*, *3*(2), 50-59.
- 13. Mallikarjunaswamy, M. C., & Murthy, G. V. K. (1997). Antibiogram of bacterial pathogens isolated from bovine subclinical mastitis cases.
- 14. Banerjee, D. C., Krishna, K. V. G., Murthy, G. V. G. K., Srivastava, S. K., & Sinha, R. P. (1994). Occurrence of Spodumene in the Rare Metal-Bearing Pegmatites of Mariagalla-Allapatna Area, Mandya Dist., Karnataka. *Journal Geological Society of India*, 44(2), 127-139.
- 15. Murthy, G., and R. Shankar. "Composite Fermions." (1998): 254-306.
- 16. Mahalakshmi, A., Goud, N. S., & Murthy, G. V. (2018). A survey on phishing and it's detection techniques based on support vector method (Svm) and software defined networking (sdn). *International Journal of Engineering and Advanced Technology*, 8(2), 498-503.
- 17. Murthy, G., & Shankar, R. (2002). Semiconductors II-Surfaces, interfaces, microstructures, and related topics-Hamiltonian theory of the fractional quantum Hall effect: Effect of Landau level mixing. *Physical Review-Section B-Condensed Matter*, 65(24), 245309-245309.
- 18. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2014). Optimal placement of DG in distribution system to mitigate power quality disturbances. *International Journal of Electrical and Computer Engineering*, 7(2), 266-271.
- 19. Muraleedharan, K., Raghavan, R., Murthy, G. V. K., Murthy, V. S. S., Swamy, K. G., & Prasanna, T. (1989). An investigation on the outbreaks of pox in buffaloes in Karnataka.
- Ramasamy, L. K., Khan, F., Shah, M., Prasad, B. V. V. S., Iwendi, C., & Biamba, C. (2022). Secure smart wearable computing through artificial intelligence-enabled internet of things and cyber-physical systems for health monitoring. *Sensors*, 22(3), 1076.
- 21. Edeh, M. O., Dalal, S., Obagbuwa, I. C., Prasad, B. S., Ninoria, S. Z., Wajid, M. A., & Adesina, A. O. (2022). Bootstrapping random forest and CHAID for prediction of white spot disease among shrimp farmers. *Scientific Reports*, *12*(1), 20876.
- 22. Onyema, E. M., Balasubaramanian, S., Iwendi, C., Prasad, B. S., & Edeh, C. D. (2023). Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. *Measurement: Sensors*, 27, 100718.
- 23. Imoize, A. L., Islam, S. M., Poongodi, T., Kumar, R. L., & Prasad, B. S. (Eds.). (2023). Unmanned Aerial Vehicle Cellular Communications. Springer International Publishing.
- 24. Syed, S. A., & Prasad, B. V. V. S. (2019, April). Merged technique to prevent SYBIL Attacks in VANETs. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
- 25. Prasad, B. V. V. S., & Angel, S. (2014). Predicting future resource requirement for efficient resource management in cloud. *International Journal of Computer Applications*, 101(15), 19-23.

- Prasad, B. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. *Preventive Medicine*, 174, 107619.
- 27. Khan, F., Siva Prasad, B. V. V., Syed, S. A., Ashraf, I., & Ramasamy, L. K. (2022). An efficient, ensemble-based classification framework for big medical data. *Big Data*, *10*(2), 151-160.
- 28. Ali, S. S., & Prasad, B. V. V. S. (2017). Secure and energy aware routing protocol (SEARP) based on trust-factor in Mobile Ad-Hoc networks. *Journal of Statistics and Management Systems*, 20(4), 543-551.
- 29. Narayana, M. S., Prasad, B. V. V. S., Srividhya, A., & Reddy, K. P. R. (2011). Data mining machine learning techniques–A study on abnormal anomaly detection system. *International Journal of Computer Science and Telecommunications*, 2(6).
- 30. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. *International Journal of Advanced Computer Science and Applications*, 13(7).
- 31. Balram, G., & Kumar, K. K. (2018). Smart farming: Disease detection in crops. Int. J. Eng. Technol, 7(2.7), 33-36.
- 32. Balram, G., Rani, G. R., Mansour, S. Y., & Jafar, A. M. (2001). Medical management of otitis media with effusion. *Kuwait Medical Journal*, *33*(4), 317-319.
- 33. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 34. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 35. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 36. Prasad, P. S., & Rao, S. K. M. (2017). A Survey on Performance Analysis of ManetsUnder Security Attacks. *network*, 6(7).
- 37. Keshamma, E., Rohini, S., Sankara Rao, K., Madhusudhan, B., & Udaya Kumar, M. (2008). Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). *Journal of cotton* science, 12(3), 264-272.
- 38. Sundaresha, S., Manoj Kumar, A., Rohini, S., Math, S. A., Keshamma, E., Chandrashekar, S. C., & Udayakumar, M. (2010). Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. *European journal of plant pathology*, *126*, 497-508.
- 39. Keshamma, E., Sreevathsa, R., Manoj Kumar, A., Kumar, A., Kumar, A. R. V., Madhusudhan, B., & Udaya Kumar, M. (2008). A chimeric cry1X gene imparts resistance to Spodoptera litura (Fabricus) and Helicoverpa armigera (Hubner) in transgenic groundnut. *Eur J Biosci*, *2*, 53-65.
- 40. Keshamma, E., Rohini, S., Rao, K. S., Madhusudhan, B., & Kumar, M. U. (2008). Molecular biology and physiology tissue culture-independent In Planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). *J Cotton Sci*, *12*, 264-272.
- Nelson, V. K., Nuli, M. V., Ausali, S., Gupta, S., Sanga, V., Mishra, R., ... & Jha, N. K. (2024). Dietary Anti-inflammatory and Anti-bacterial medicinal Plants and its compounds in Bovine mastitis associated impact on human life: A Comprehensive Review. *Microbial Pathogenesis*, 106687.
- 42. Chary, S. S., Bhikshapathi, D. V. R. N., Vamsi, N. M., & Kumar, J. P. (2024). Optimizing Entrectinib Nanosuspension: Quality by Design for Enhanced Oral Bioavailability and Minimized Fast-Fed Variability. *BioNanoScience*, 1-19.
- Kumar, J. P., Ismail, Y., Reddy, K. T. K., Panigrahy, U. P., Shanmugasundaram, P., & Babu, M. K. (2022). PACLITAXEL NANOSPONGES'FORMULA AND IN VITRO EVALUATION. *Journal of Pharmaceutical Negative Results*, 2733-2740.
- 44. NULI, M., KUMAR, J. P., KORNI, R., & PUTTA, S. (2024). Cadmium Toxicity: Unveiling the Threat to Human Health. *Indian Journal of Pharmaceutical Sciences*, 86(5).
- 45. Mohammed, M. A., Fatma, G., Akhila, K. P., & Sarwar, S. DISCUSSION ON THE ROLE OF VIDEO GAMES IN CHILDHOOD STUDYING.
- 46. Labhane, S., Akhila, K. P., Rane, A. M., Siddiqui, S., Mirshad Rahman, T. M., & Srinivasan, K. (2023). Online Teaching at Its Best: Merging Instructions Design with Teaching and Learning Research; An Overview. *Journal of Informatics Education and Research*, 3(2).
- 47. KP, A., & John, J. (2021). The Impact Of COVID-19 On Children And Adolescents: An Indianperspectives And Reminiscent Model. *Int. J. of Aquatic Science*, *12*(2), 472-482.

- 48. John, J., & Akhila, K. P. (2019). Deprivation of Social Justice among Sexually Abused Girls: A Background Study.
- 49. Sheta, S. V. (2022). A Comprehensive Analysis of Real-Time Data Processing Architectures for High-Throughput Applications. *International Journal of Computer Engineering and Technology*, 13(2), 175-184.
- 50. Sheta, S. V. (2022). A study on blockchain interoperability protocols for multi-cloud ecosystems. *International Journal of Information Technology and Electrical Engineering (IJITEE)-UGC Care List Group-I*, 11(1), 1-11.
- 51. Khadse, S. P., & Ingle, S. D. (2011, February). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data in the Bhuleshwari river basin, Amravati District, Maharashtra. In *National Conference on Geology and Mineral Resources of India, Aurangabad* (pp. 11-12).
- 52. Ingle, S. D. Monitoring and Modeling Approaches for Evaluating Managed Aquifer Recharge (MAR) Performance.
- 53. Ingle, S. D., & Tohare, S. P. (2022). Geological investigation in the Bhuleshwari River Basin, Amravati District, Maharashtra. *World Journal of Advanced Research and Reviews*, 16(3), 757-766.
- 54. Ingle, S. D. Hydrogeological Investingations in the Bhuleshwari River Basin with Emphasis on Groundwater Management Amravati District Maharashtra.
- 55. Thatikonda, R., Vaddadi, S. A., Arnepalli, P. R. R., & Padthe, A. (2023). Securing biomedical databases based on fuzzy method through blockchain technology. *Soft Computing*, 1-9.
- 56. Yendluri, D. K., Ponnala, J., Tatikonda, R., Kempanna, M., Thatikonda, R., & Bhuvanesh, A. (2023, November). Role of RPA & AI in Optimizing Network Field Services. In 2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS) (pp. 1-6). IEEE.
- 57. Vishwakarma, S., Goswami, R. S., Nayudu, P. P., Sekhar, K. R., Arnepalli, P. R. R., Thatikonda, R., & Abdel-Rehim, W. M. (2023). Secure federated learning architecture for fuzzy classifier in healthcare environment. *Soft Computing*, 1-12.
- 58. Thatikonda, R., Padthe, A., Vaddadi, S. A., & Arnepalli, P. R. R. (2023). Effective Secure Data Agreement Approach-based cloud storage for a healthcare organization. *International Journal of Smart Sensor and Adhoc Network*, *3*(4).
- 59. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE, Anurag Group of Institutions, Hyderabad, AP, India.*
- 60. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 61. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 62. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, *30*(3).
- 63. Rao, P. R., Kumar, K. H., & Reddy, P. R. S. (2012). Query decomposition and data localization issues in cloud computing. *International Journal*, 2(9).
- 64. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 65. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, *32*, 101054.
- 66. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 67. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 68. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, 13(1), 159-168.
- 69. Latha, S. B., Dastagiraiah, C., Kiran, A., Asif, S., Elangovan, D., & Reddy, P. C. S. (2023, August). An Adaptive Machine Learning model for Walmart sales prediction. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 988-992). IEEE.

- Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- Dastagiraiah, C., Reddy, V. K., & Pandurangarao, K. V. (2016). Evaluation of various VM based load balancing procedures in cloud environment. *International Journal of Engineering and Technology*, 8(2), 845-851.
- 72. Rao, K. R., Kumari, M. S., Eklarker, R., Reddy, P. C. S., Muley, K., & Burugari, V. K. (2024, February). An Adaptive Deep Learning Framework for Prediction of Agricultural Yield. In 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-6). IEEE.
- 73. Dastagiraiah, C., & Reddy, V. K. (2022). Novel Machine Learning Methodology In Resource Provisioning For Forecasting Of Workload In Distributed Cloud Environment. *Journal Of Theoretical and Applied Information Technology*, *100*(10).
- 74. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 2676-2681). IEEE.
- Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- 76. Sravan, K., Gunakar Rao, L., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2023, July). Analyze the Quality of Wine Based on Machine Learning Approach. In *International Conference on Data Science and Applications* (pp. 351-360). Singapore: Springer Nature Singapore.
- 77. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. Journal of Theoretical and Applied Information Technology, 15(1).
- 78. Ramineni, K., Harshith Reddy, K., Sai Thrikoteshwara Chary, L., Nikhil, L., & Akanksha, P. (2024, February). Designing an Intelligent Chatbot with Deep Learning: Leveraging FNN Algorithm for Conversational Agents to Improve the Chatbot Performance. In *World Conference on Artificial Intelligence: Advances and Applications* (pp. 143-151). Singapore: Springer Nature Singapore.
- 79. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 80. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 81. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 82. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 83. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 84. Tambi, Varun Kumar, and Nishan Singh. "A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data."
- 85. Tambi, V. K., & Singh, N. A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 86. Tambi, V. K., & Singh, N. Evaluation of Web Services using Various Metrics for Mobile Environments and Multimedia Conferences based on SOAP and REST Principles.
- 87. Tambi, V. K., & Singh, N. Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 88. Tambi, V. K., & Singh, N. A New Framework and Performance Assessment Method for Distributed Deep Neural Network-Based Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 89. Tambi, Varun Kumar, and Nishan Singh. "Creating J2EE Application Development Using a Pattern-based Environment."
- 90. Tambi, Varun Kumar, and Nishan Singh. "New Applications of Machine Learning and Artificial Intelligence in Cybersecurity Vulnerability Management."
- 91. Tambi, V. K., & Singh, N. Assessment of Possible REST Web Service Description for Hypermedia-Focused Graph-Based Service Discovery.
- 92. Tambi, V. K., & Singh, N. Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 93. Tambi, V. K., & Singh, N. Analysing Methods for Classification and Feature Extraction in AI-based Threat Detection.
- 94. Arora, P., & Bhardwaj, S. Mitigating the Security Issues and Challenges in the Internet of Things (IOT) Framework for Enhanced Security.

- 95. Arora, P., & Bhardwaj, S. Research on Various Security Techniques for Data Protection in Cloud Computing with Cryptography Structures.
- 96. Arora, P., & Bhardwaj, S. Examining Cloud Computing Data Confidentiality Techniques to Achieve Higher Security in Cloud Storage.
- 97. Arora, P., & Bhardwaj, S. Techniques to Implement Security Solutions and Improve Data Integrity and Security in Distributed Cloud Computing.
- 98. Arora, P., & Bhardwaj, S. Integrating Wireless Sensor Networks and the Internet of Things: A Hierarchical and Security-based Analysis.
- 99. Arora, P., & Bhardwaj, S. Using Knowledge Discovery and Data Mining Techniques in Cloud Computing to Advance Security.
- 100. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 101. Arora, P., & Bhardwaj, S. A Thorough Examination of Privacy Issues using Self-Service Paradigms in the Cloud Computing Context.
- 102. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 103. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 104.Khan, A. (2020). Formulation and Evaluation of Flurbiprofen Solid Dispersions using Novel Carriers for Enhancement of Solubility. *Asian Journal of Pharmaceutics (AJP)*, 14(03).
- 105.Shaik, R. (2023). Anti-Parkinsonian Effect Of Momordica Dioica On Haloperidol Induced Parkinsonism In Wistar Rats. *Journal of Pharmaceutical Negative Results*, 69-81.
- 106.Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 107.Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 108.Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).
- 109.FELIX, ARUL SELVAN M. Mr D., and XAVIER DHAS Mr S. KALAIVANAN. "Averting Eavesdrop Intrusion in Industrial Wireless Sensor Networks."
- 110.Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 111.Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 112.Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 113.Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 114. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 115. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators' neural network in financial sector. *Multimedia Tools and Applications*, 83(16), 48761-48797.
- 116. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 117. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 118. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.