
CHAPTER 5

Agreement and Equilibrium with Minimal

Introspection

Abstract. Standard models in epistemic game theory make strong assumptions

about agents’ knowledge of their own beliefs. Agents are typically assumed to be

introspectively omniscient : if an agent believes an event with probability p, she is

certain that she believes it with probability p. This paper investigates the extent to

which this assumption can be relaxed while preserving some standard epistemic re-

sults. Geanakoplos (1989) claims to provide an Agreement Theorem using the “truth”

axiom, together with the property of balancedness, a significant relaxation of intro-

spective omniscience. I provide an example which shows that Geanakoplos’s state-

ment is incorrect. I then introduce a new property, local balancedness, which allows

us both to correct Geanakoplos’s result, and to extend it to cases where the truth

axiom may fail. I exploit this general Agreement Theorem to provide novel epistemic

conditions for correlated and Nash equilibrium, both of which relax the assumption of

introspective omniscience. In all three cases, the results are also extended to infinite

state spaces.
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5.1. Introduction

5.1.1. Motivation. People often don’t know what they want.1 They don’t know

what they want for dinner, they don’t know who they want to win the game, they don’t

know where they’d prefer to go on vacation, and so on. The simplest way of modeling

this uncertainty is to take it at face value: agents are uncertain about their preferences.

This kind of uncertainty is not just pervasive; in many cases it seems intuitively

rational. Learning one’s own preferences can require considerable time, effort, and cost.

People who try many varieties of wine, for example, expend effort and resources to learn

not just about wine, but also about their own preferences for different wines. Similarly,

1Thanks to Frank Arntzenius, Amanda Friedenberg, Peter Fritz, Stephen Morris, Sujoy Mukerji and
Timothy Williamson for discussion of aspects of this material.

134



5.1. INTRODUCTION 135

it takes investors a great deal of experience to learn their own levels of risk tolerance.

In a range of areas, “you can’t know what you like until you try it”. But if the cost of

determining one’s own preferences over a given choice set is greater than the expected

value derived from knowing those preferences, it may be rational to remain uncertain of

them.

In many cases, it is natural to model agents’ uncertainty about their own preferences

as uncertainty about their utility function, and this has been the usual approach in

economics. But in other cases, agents’ uncertainty about their preferences seems better

represented as uncertainty about their beliefs. Agents are often unable to draw fine

distinctions in their hypothetical choice behavior. For example, most people don’t know

at what odds they would bet on Hilary Clinton’s election to the presidency. While this fact

can be modeled by agents’ uncertainty of their own utilities, a more natural strategy is to

represent these people as uncertain about which probability distribution represents their

preferences. As before, being uncertain of this distribution can be intuitively rational.

Since it can take a great deal of time and effort to imagine bets with sufficient clarity

to predict one’s own choice behavior, there may be cases where it is efficient to remain

uncertain of one’s own probabilistic beliefs.

This uncertainty about one’s own preferences—and the resulting uncertainty about

one’s own beliefs—can be rational in a formal sense as well. Agents who satisfy Savage’s

axioms on preferences may still be uncertain of their own preferences, and thus of their

own beliefs.2 As a matter of fact, even agents who are rational in Savage’s sense may still

be uncertain whether they satisfy Savage’s axioms at all. In an important paper, Stephen

Morris (1996) states additional axioms which can be added to Savage’s to ensure that

agents are certain of their beliefs. But Morris himself concludes that the new axioms on

preferences are unpersuasive from a normative standpoint.3 Even rational agents may

fail to know their own beliefs.

Standard epistemic models abstract from the phenomenon of agents’ uncertainty

about their own beliefs. In Harsanyi type structures, for example, agents are generally

assumed to “know” their own type. Since each type is associated with a single probability

distribution, by knowing his or her own type, each agent knows his or her own distribu-

tion. Let an agent be introspectively omniscient just in case, if the agent believes an event

2For this formal observation, see Morris 1996 and Epstein and Wang 1996: 1351. Savage himself also
made some interesting remarks on the conceptual side of the issue (1967: 308).
3Morris 1996: 22.
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with probability p, she is certain of believing that event with probability p.4 In standard

Harsanyi type structures, then, agents are introspectively omniscient. Moreover, since

every type of every player satisfies this condition, the players in the model have common

belief that each of them is introspectively omniscient.

Introspective omniscience implies two more familiar “introspection axioms” on cer-

tainty. An agent is positively introspective if, if she is certain of an event, she is certain

of being certain of that event. She is negatively introspective if, if she is not certain of

an event, she is certain of not being certain of it. Negative and positive introspection

together are still weaker than introspective omniscience: an agent may satisfy both of

these conditions but still fail to be certain what probability p (where p is less than 1) she

assigns to a given event.

Uncertainty about preferences can lead to failures of both positive and negative in-

trospection (and thus of introspective omniscience). First, consider an example which

merely reports an empirical fact. I am uncertain whether my preferences would be rep-

resented as assigning the event of there being a banking crisis in 2008 probability 1 or

merely very high probability. If in fact I assign this event probability less than 1, then I

fail to be negatively introspective; if in fact I assign it probability 1, I fail to be positively

introspective.

But less brute, subtler examples can also be given. As mentioned earlier, even agents

who satisfy Savage’s axioms on preferences may be uncertain whether they are rational

in Savage’s sense at all. Someone might reasonably assign positive probability to the

event that she herself is ambiguity averse, and so be uncertain whether she is rational

in Savage’s sense. Such a person would be disposed to bet at some odds that there is no

single distribution which represents her preferences. If in fact there is a distribution which

represents her preferences, she fails to be positively introspective: she may be certain of

some event, but since she is uncertain whether she is represented by a single probability

distribution at all, she is not certain of being certain of this event.

These observations raise the question: do standard epistemic analyses survive without

the usual, idealized assumptions about introspection? Our first example will show that

the simple answer is: “not in full generality”. This paper then takes up the task of finding

weak sufficient conditions which do guarantee that these standard results hold. As a test

case, I will restrict attention to one class of prominent models, in which it is assumed

4I will use “is certain of E” and “E is a certainty” to mean an agent “assigns E probability 1” and “E is
an event the agent assigns probability 1”, respectively.
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that agents’ interim beliefs are consistent with a “common prior”. In this common prior

setting, I provide a new agreement theorem and new epistemic conditions for correlated

equilibrium and Nash equilibrium.

An earlier literature explored the extent to which the Agreement Theorem survives

relaxing some of these axioms, and, in particular, negative introspection.5 But this work

was carried out in the presence of the “truth” axiom—that if an agent is certain of an

event, that event obtains. The truth axiom is now recognized to be overly strong: rational

agents, too, may be wrong about the state of the world. In this paper, I will be exploring

not just failures of introspection axioms, but failures of introspection axioms for agents

who also may be wrong about the state of the world.6

5.1.2. Example. Aumann (1987) showed that if introspectively omniscient agents

update on a common prior, commonly know the game, and are commonly known to

be rational, then the prior forms a correlated equilibrium distribution for the game in

question. We do not yet have a formal definition of the game, rationality or the common

prior, but I will present a simple example somewhat informally, to give a feel for the

topic of the paper.

Example 5.1.1. In this example, there are three states of the world (⌦ = {!1,!2,!3}),

two players, a and b, and two actions for each player, Aa = {u, d}; Ab({l, r}. At each

world, player a considers only that world possible; a always knows the exact state of

the world. (Formally, Pa(!1) = {!1}; Pa(!2) = {!2} Pa(!3) = {!3}.) Player b is not

so lucky. If the state of the world is !2, then b knows that this is the true state. But

if the state of the world is !1, player b is uncertain whether the state is !1 or !2. And

if the state is !3, player b is uncertain whether the true state is !2 or !3. (Formally,

Pb(!1) = {!1,!2}; Pb(!2) = {!2}; Pb(!3) = {!2,!3}.) The players assign probabilities

to events as if they were updating on a common prior µ which assigns 1
3 to each possible

state. So, for example, in !1, a assigns {!1} probability 1 = µ({!1}|Pa(!1)), while b

assigns the same event 1
2 = µ({!1}|Pb(!1)).

5Bacharach 1985, Cave 1983, Geanakoplos 1989, Monderer and Samet 1989, Rubinstein and Wolinsky
1990, Samet 1990, Shin 1993, Brandenburger et al. 1992. Two further motivations for studying failures
of negative introspection are well known. First, the condition of “plausibility” on unawareness structures
(see Dekel et al. 1998) requires a failure of negative introspection. Second, a plausible constraint on
the idealization of a rational agent is that the set of sentences of which the agent is certain at least
be recursively enumerable. Moreover, it seems plausible that a rational agent could be certain of the
theorems of arithmetic. But if such an agent in addition satisfies negative introspection, then it can be
shown that the agent is certain of a contradiction: his or her theory of the world is logically inconsistent
(McGee 1991 n. 7, Shin and Williamson 1994, Proposition 1).
6Agreement Theorems have also been proven with introspective omniscience, but without truth: see,
e.g., Bonanno and Nehring 1999 and Hellman 2012. I discuss these results in Section 3.4.
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The players’ payoffs are the same regardless of the actual state; they are given by

the matrix in Figure 5.1.1 where a picks rows and b picks columns.

Players’ actions at each state are also represented in Figure 5.1.1 (along with their

possibility correspondences). As is easily checked, at each state, each player’s actions

maximizes subjective expected utility relative to their probabilistic beliefs at that state.

(As in this figure, I will use directed graphs throughout the paper to represent simple

models. In these figures, directed edges are labelled to indicate that the edge is part of a

given player’s graph. The out-neighborhood of a vertex ! 2 ⌦ in a player i’s graph is the

event i considers possible at !: in symbols, Pi(!) = N+
Gi
(!).)

Aa(!) : u d u

Pb(!) : !1a,b
%% b // !2

a,b

⌅⌅
!3 a,b
zzboo

Ab(!) : l l l

l r
u 3, 0 2, 2
d 3, 3 0, 0

The game

Figure 5.1.1. Example of Failure of Correlated Equilibrium

The players, as usual, commonly believe the universe ⌦ = {!1,!2,!3}. Thus, since

the players’ beliefs are consistent with the prior at every world, and they maximize

expected utility at every world, they commonly believe that they are rational and that

their beliefs are consistent with the prior. By the same reasoning, they also commonly

believe that their payoffs are the ones depicted in the matrix.

But the prior induces a distribution over action profiles such that (u, l) is played with

probability 2
3 , and (d, l) is played with probability 1

3 . This distribution is not a correlated

equilibrium distribution: given a’s play, the correlated distribution would require that b

play r at least as often as a plays u.

As later definitions will make clear, this result fails even though the players obey the

“truth axiom” and also positive introspection.

5.1.3. Interpretation and Outline. As this example illustrates, standard com-

mon prior-based results cannot be extended if we allow even slight weakenings of the

usual introspection assumptions. The bulk of this paper is dedicated to providing weak

conditions on introspection which are sufficient to “resurrect” these standard results. The

possibility of providing necessary conditions is discussed in the conclusion.

But these results are best understood negatively. They exhibit the way in which

standard common prior-based results rely on introspection assumptions of one form or
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another. The fact that these common prior-based analyses depend on introspection as-

sumptions can be seen as a conceptual difficulty with these analyses, and with the com-

mon prior assumption itself.

The plan of the paper is then as follows. Section 5.2 lays out the basic model.

Geanakoplos (1989) “Theorem 6” provides what would be, if it were correct, the most

general known Agreement Theorem for interim beliefs. I present a counterexample to

Geanakoplos’s statement, which motivates the search for a correct, general Agreement

Theorem. Section 5.3 introduces the property of local balancedness, an extension of

the property used by Geanakoplos (1989). I then provide a new result which corrects

Geanakoplos’s, extends it to cases where the truth axiom may fail, and also extends it to

infinite state spaces. This is the main result of the paper. The rest of the paper exploits

this agreement theorem to provide epistemic conditions for correlated equilibrium and

Nash equilibrium. Section 5.4 presents two results for correlated equilibrium: one extends

the result of Brandenburger et al. (1992); the other has a new form. Section 5.5 presents

epistemic conditions for Nash equilibrium which improve those of Bach and Tsakas (2014)

by allowing failures of introspection. In each case, the details of the epistemic conditions

are somewhat involved. The main payoff is rather that we can use the new agreement

theorem to give these epistemic conditions.

Section 5.6 concludes; discussion of related work is given at the close of each section.

5.2. The Basic Model: Earlier Use of Balancedness

5.2.1. The Model. A pure epistemic model will be a tuple hI, (⌦, T ), (pi)i2Ii in-

cluding a finite set of players I = 1, 2, ...n; and a topological space (⌦, T ), which is

separable and completely metrizable (it is “Polish”). The Borel algebra generated by the

topology is then used to give the measurable state space (⌦,B), where elements of B are

events. In the sequel, I will often omit reference to B and T ; when the algebra is clear

from context I write simply ⌦. In Sections 2 and 3, “model” will mean a pure epistemic

model; in Sections 4 and 5, a “model” will be a game model.

For a Polish space such as ⌦, let �(⌦) be the set of probability measures on ⌦, where

�(⌦) itself is endowed with the weak topology. The belief maps pi : ⌦ ! �(⌦) represent

the players’ probabilistic beliefs at elements of ⌦; these too are required to be measurable

(where the algebra on �(⌦) is taken to be the Borel algebra of the weak topology). A

player i is said to be certain of an event E 2 B at a state ! if and only if pi(!)(E) = 1.
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Now for a measure µ on ⌦, let supp(µ) denote the support of µ, {! : ! 2 N! 2

T ) µ(N! > 0)}, that is, the set of states such that every open neighborhood of every

state has positive measure. We use this idea to define possibility correspondences from

the belief maps, as follows: Pi(!) = supp(pi(!)). A player i is then said to believe an

event E 2 B at a state ! 2 ⌦ if and only if Pi(!) ✓ E. It will be useful also to

have belief functions Bi : B ! B, defined in terms of the possibility correspondences:

Bi(E) := {! : Pi(!) ✓ E}. A player i’s belief function takes each event E to the event

of i’s believing E. Note that these definitions allow that a player may be certain of an

event which he or she does not believe.

Later, we will describe events in terms of elements of the model. For example, for

some p⇤ 2 �(⌦), we may wish to speak of the event that i’s probabilistic beliefs are equal

to p⇤. To do this, I will use square brackets as follows: [pi = p⇤] will denote the event of i’s

probabilistic beliefs being equal to the distribution p⇤, that is, the event {! : pi(!) = p⇤}.

Similarly, if E is an event and k 2 [0, 1], I will write [pi(E) = k] for the event that i

assigns E probability k: {! : pi(!)(E) = k}.

Introspective omniscience is defined as follows:

Introspective Omniscience: 8! 2 ⌦, Pi(!) ✓ {!0 : pi(!0) = pi(!) ^ Pi(!0) = Pi(!)}

As noted in the introduction, introspective omniscience implies the following two condi-

tions:

Positive Introspection: 8!,!0 !0 2 Pi(!) ! (Pi(!0) ✓ Pi(!)) (also called (4))

Negative Introspection: 8!,!0 !0 2 Pi(!) ! Pi(!) ✓ Pi(!0) (also called (5))

These axioms are more familiar when stated using the notion of belief. Positive intro-

spection says that if an agent believes an event, then she believes that she believes it

(Bi(E) ✓ BiBi(E)). Negative introspection says that if she does not believe an event,

she believes that she does not believe it (using ¬ for relative complement within ⌦,

¬Bi(E) ✓ Bi(¬Bi(E))). (Note that introspective omniscience also implies the analogous

conditions for certainty, but in our setting it is more natural to consider the ones for

belief.)

Aumann’s (1976) original models were “partitional”. Every agent in these models

satisfies (T ), (4) and (5), where (T ) is:

Truth: 8! ! 2 Pi(!) (also called (T ))

(in fact, the conjunction of (T ) and (5) entails (4)).
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We wish to describe not just one player’s beliefs, but the relationship between players’

beliefs. Accordingly, we introduce some key interactive notions.

Definition 5.2.1. Fix a model M. An event E is self-evident to i if and only if for

all ! 2 E, Pi(!) ✓ E. An event is public to a group G ✓ I if it is self-evident to all i 2 G.

A group G ✓ I commonly believes an event F at ! just in case there is some event E

with E public to G, ! 2 E, and, for all i 2 G, 8! 2 E,Pi(!) ✓ F .7 Just as with belief,

we define a function CBG(F ) which takes events to the event of their being commonly

believed by G.

This paper studies cases in which agents’ interim beliefs are consistent with a common

prior. We define a prior as follows:

Definition 5.2.2. Fix a model M and a group G ✓ I. An event E 2 B is common

prior consistent for a group G ✓ I if there exists a measure µ 2 �(⌦) such that

(i) µ(E) = 1;

for every i 2 G, for every ! 2 E,

(iia)µ(Pi(!)) > 0; and

(iib) pi(!) = µ(·|Pi(!)).

µ is then a common prior for G over E. If G = I, µ is a common prior over E.

Note that this definition is consistent with more recent justifications of the common

prior assumption, as a form of consistency among interim beliefs (Bonanno and Nehring

1999; Feinberg 2000). The common prior is not assumed to be unique or to be a “genuine”

representation of agents’ beliefs at some prior time.

5.2.2. Earlier Definitions of Balancedness; Geanakoplos’s Theorem. Geanako-

plos (1989) defines his property of “balancedness” for a restricted class of models.

Definition 5.2.3. A model M is regular if:

(i) |⌦| is finite;

(ii) ⌦ is common prior consistent for the group I; and,

(iii) for some common prior µ over ⌦, for all ! 2 ⌦, µ({!}) > 0.

7Monderer and Samet (1989) prove that in finite spaces, the characterization in terms of public events
(suggested originally by Aumann 1976, and informally by Lewis 1969: 52-7; cf. also Friedell 1969) is
equivalent to the characterization as an infinite intersection: letting B

1
G(E) = \i2GBi(E) and B

n
G(E) =

\i2GBiB
n�1
G (E) \ B

n�1
B (E), CBG(E) = \n2NBn

G(E). Their result holds in our “regular models” (see
below, Definition 5.2.3). Kajii and Morris (1997, Theorem 9) prove an analogous result for measure
spaces in general, using equivalence classes of measurable sets defined by symmetric difference under
a prior µ. Their result applies to a well-behaved subset of the models considered here. But since I am
taking the Pi as primitive, and not defined from certainties, I do not need this machinery.



5.2. THE BASIC MODEL: EARLIER USE OF BALANCEDNESS 142

(Note that condition (iii) implies that the algebra B must contain all singletons.) In

regular models, we can replace the pi with the specification of a prior µ, since together

with the Pi, this is enough to determine players’ interim probabilistic beliefs.

Balancedness comes in two varieties. In the first instance it is defined with respect to

a specific event. The second, general definition is then given with respect to all self-evident

events. Here is Geanakoplos’s definition:

Definition 5.2.4. Fix a regular model M. A possibility correspondence Pi is bal-

anced with respect to an event E ✓ ⌦ if and only if there exists some function � :

{Pi(!)|! 2 ⌦} ! R such that for every ! 2 ⌦,
P

C2{Pi(!0)|!02⌦} �(C)�C(!) = �E(!).

Pi is then balanced if and only if, for every self-evident event E, it is balanced with

respect to E.

Note that in the unqualified definition of balancedness, different functions � may be

used to “balance” each self-evident event: all that is required is that for each self-evident

event, there is some such �.

Geanakoplos (1989) claims that agents in regular models agents who are balanced

and satisfy (T ) cannot agree to disagree (“Theorem 6”):

Claim 5.2.5. Let M be a regular model and G ✓ I a group where for each i 2 G, Pi

is balanced and satisfies (T ). If there is a state ! 2 ⌦, an event E and for each i 2 G, a

ki 2 [0, 1] such that it is commonly known that i assigns E probability ki, then for each

i, j, ki = kj .

The following example shows that this claim is incorrect.

Example 5.2.6. Let M be a model with: I = {a, b}, ⌦ = {!1,!2,!3,!4,!5}.

The model is depicted in Figure 5.2.1. (Note that the directed graph is altered for the

sake of simplicity; arrows pointing to the box indicate that an agent considers the worlds

in the box possible.) The table describes what players consider possible at each world.

Their probabilities at each world ! are consistent with the uniform prior µ, defined so

that 8! 2 ⌦, µ(!) = 1
5 . For this µ, for all ! 2 ⌦ and i 2 I, pi(!) = µ(·|Pi(!)). Thus the

model is regular.
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!1a
%%

boo

oo a // !2

a

⌅⌅

b

✏✏

!3 ahh

b //

aoo

!4
oo

a,b
//a,b

%%
!5

a

OO

a,bhh

Pa(!n) Pb(!n)
!1 {!1,!2} {!1,!2,!3}
!2 {!1,!2} {!1,!2,!3}
!3 {!2,!3} {!1,!2,!3}
!4 {!4,!5} {!4,!5}
!5 ⌦ {!4,!5}

Figure 5.2.1. Countermodel to Geanakoplos’s Agreement Theorem

It is easily seen that both agents in the example are balanced. For b, this is trivial.

The only self-evident events are {!1,!2,!3}, {!4,!5} and the universe ⌦. The first is

balanced by �(Pb(!1)) = 1, and for all other admissible E, �(E) = 0. The second is

balanced by �(Pb(!4)) = 1 and for all other admissible E, �(E) = 0. For ⌦, we let � be

1 on both Pb(!1) and on Pb(!4).

For a, balancedness is similarly trivial for the self-evident events {!1!2}, {!2,!3}

{!4,!5} and ⌦. The only mildly tricky case is the event {!1,!2,!3}. Here we set

�(Pa(!5)) = 1, �(Pa(!4) = �1, and for all other admissible E, �(E) = 0.

The event E = {!1,!2,!3} is public, and thus a matter of common belief. Consider

now the event F = {!1,!3}. Given the prior µ, it is easy to see that for all ! 2 E,

pa(!)(F ) = µ(F |Pa(!)) = 1
2 . But it is equally easy to see that 8! 2 E, Pb(!)(F ) =

µ(F |E) = 2
3 . So it is both common belief that pa(F ) = 1

2 and pb(F ) = 2
3 . The agents

“agree to disagree”.

The problem in this example arises because a’s correspondence can be balanced only

by using sets “outside” of the relevant self-evident event. Geanakoplos’s “balancing” sum

allows this correspondence to count as balanced because it ranges over the whole set

{Pi(!)|! 2 ⌦}. We need some restriction to rule out the counterexample.

Brandenburger et al. (1992) restrict this sum. They also call their property balanced-

ness, but I will call it subset balancedness:

Definition 5.2.7. Fix a regular model M. A possibility correspondence is subset

balanced with respect to an event E ✓ ⌦ if and only if there exists some function � :

{Pi(!)|! 2 ⌦} ! R such that 8! 2 ⌦,
P

C2{Pi(!0)|Pi(!0)✓E} �(C)�C(!) = �E(!).

As usual it is subset balanced if it is subset balanced with respect to all self-evident

events.

Note here that the sum ranges only over elements of {Pi(!)|Pi(!) ✓ E}.
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If subset balancedness were used instead of balancedness plus truth (T ), then we

could prove a version of the Agreement Theorem. But this is only because we require

that the correspondence be subset balanced on the whole universe. Later, however, we

will want to relax the truth axiom, and to use the Agreement Theorem “locally” within

a specific self-evident event, without requiring any “global” properties on the whole uni-

verse. But under these conditions, subset balancedness is ill-behaved. To see this, con-

sider a modification of Example 5.2.6 so that Pa(!5) = {!1,!2,!3}. Pa is now subset

balanced with respect to the self-evident event E = {!1,!2,!3}. Since this event is still

self-evident, and since for all ! 2 E the possibility correspondences are unchanged, the

same argument as above shows that a and b can agree to disagree in their probabilities

for F .8 The property of local balancedness, introduced in the next section, will avoid this

kind of problem.

5.3. Local Balancedness: The Agreement Theorem

5.3.1. Local Balancedness. To give the intuition for local balancedness, I will

first define it in the finite case, providing two results which relate it to better-known

properties from epistemic models.

Subset balancedness uses a particular restriction on the sum in the definition of

balancedness. Local balancedness is a variation on this theme. It will be convenient to

have the following notation. The set CE will denote the events the agent could believe,

if E obtains: CE = {C|9!(! 2 E ^ Pi(!) = C)}. The elements of CE are events “local”

to E in the sense that, if E occurs, they might represent the information of the agent in

question.

Definition 5.3.1. Fix a regular model M. A possibility correspondence Pi is lo-

cally balanced with respect to an event E ✓ ⌦ if and only if there exists a function

� : {Pi(!)|! 2 ⌦} ! R such that for all ! 2 ⌦,
P

C2CE
�(C)�C(!) = �E(!).

A possibility correspondence is locally balanced within ⌦ if it is locally balanced with

respect to every self-evident event.

This is not our official definition, since it is restricted to regular models. But the

definition for regular models allows us to prove some preliminary results which help to

give a sense for the property.

8To see that this correspondence is not subset balanced globally, consider the self-evident event
{!1,!2,!3,!5}.
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First, let M be a regular model, i 2 I a player so that Pi satisfies (T ), and an E

which is self-evident to i. Then it is easy to see that Pi is subset balanced with respect E

if and only if it is locally balanced with respect to E. The two properties (for self-evident

events) differ only once we have relaxed the truth axiom.

Next, we can show, following Geanakoplos:

Proposition 5.3.2. (Geanakoplos) Let M be a regular model and i a player. If Pi

satisfies (4) and (T ), Pi is locally balanced.

Geanakoplos proves this proposition for his property of balancedness, but the argu-

ment is the same for local balancedness.

Proof. By induction on |⌦|. The base case is trivial. Now we suppose the result

holds for all |⌦| < n, and consider |⌦| = n. Find some !⇤ such that |Pi(!⇤)| is minimal

among {Pi(!)|! 2 ⌦}. By (4), every !0 2 Pi(!⇤), has Pi(!0) ✓ Pi(!⇤). Since |Pi(!⇤)|

is minimal, it must be that Pi(!0) = Pi(!⇤). Now construct a new model, F 0, where

⌦0 = ⌦ \ Pi(!⇤), and P
0

i (!) = Pi(!) \ Pi(!⇤). The new P 0
i itself satisfies (4) and (T ),

and |⌦0| < n, so P 0
i is locally balanced, by the induction hypothesis. Now consider an

E which is self evident for the original Pi. If E \ Pi(!⇤) = ;, then E is self-evident to

the new P 0
i as well, so we use the � which witnesses the local balancedness of P 0

i . If

E = Pi(!⇤), we simply use �(Pi(!⇤)) = 1, and �(Pi(!)) = 0 for all other sets Pi(!).

Finally if Pi(!⇤) ( E, we first consider F = E \ Pi(!⇤), which must be self-evident for

P 0
i . We use the � which witnesses the local balancedness of P 0 on F . This leaves Pi(!⇤)

unbalanced, but we can simply set �(Pi(!⇤)) to whatever value is needed. ⇤

It is an immediate corollary of this proposition that every partitional correspondence

is locally balanced (since partitional correspondences obey both (T ) and (4)). Thus lo-

cal balancedness affords more generality than the standard partitions of Aumann 1976.

Moreover, it is known that in finite spaces, the Agreement Theorem holds in the presence

of positive introspection and truth (Bacharach 1985, Samet 1990). If we can provide an

Agreement Theorem using local balancedness, it will be more general than those results.

We will also extend these results to infinite spaces, where local balancedness will prove

to be more flexible than standard conditions. Samet 1992 shows that, in infinite spaces,

positive introspection (4) plus truth (T ) is not enough to ensure that the Agreement

Theorem holds. Local balancedness not only generalizes the finite case; it also provides

the needed condition in infinite spaces.
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Before we define local balancedness in infinite spaces, we extend the notion of a

characteristic function, using intersection instead of membership.

Definition 5.3.3. Let �C : P(⌦) ! {0, 1} be the function with �C(F ) = 1 if

C \ F 6= ;, and �C(F ) = 0 otherwise.

Instead of using individual states in the definition of local balancedness, we now use

cells of finite partitions. Recall that a partition P of a set E is at least as fine as a

partition Q of E if for every P 2 P, there is some Q 2 Q such that P ✓ Q.

In addition to using finite partitions, we have to require finiteness in a further respect.

Note that when we move from regular models to infinite spaces, the sum in the definition

of local balancedness is no longer guaranteed to be well defined. For a given i and E, |CE |

is no longer be guaranteed to be finite, so even in the countable case we would need to

sum relative to a sequence. In the official definition of local balancedness, we avoid this

difficulty by simply stipulating that the balancing function � assign non-zero value to at

most finitely many elements of CE .

Definition 5.3.4. Fix a model M. A possibility correspondence Pi is locally balanced

with respect to an event E 2 B if and only if there is some partition Q of ⌦ which

(i) induces a finite partition of E; and

(ii) for all finite partitions P of ⌦ which are at least as fine as Q, there exists a

function � : {Pi(!)|! 2 ⌦} ! R so that

(a) |{C 2 CE : �(C) 6= 0}| 2 N; and

(b) for every P 2 P,
P

C2CE
�(C)�C(P ) = �E(P ).

A correspondence is locally balanced within E if it is locally balanced with respect

to every self-evident E0 ✓ E.

The definition of balancedness within E is not the global definition we used earlier

for balancedness and subset balancedness. Those definitions use the special case where a

correspondence is (locally) balanced within ⌦.

Since P is itself finite, (iia) and (iib) together have the consequence that there is a

finite cover of E contained in CE . In other words, there is an event F such that |F | is

finite and {Pi(!)|! 2 F} covers E.

We will be particularly interested in the following class of events:

Definition 5.3.5. Fix a model M and a group G ✓ I. A common prior consistent

event E is consistently balanced for G if for every i 2 G, Pi is locally balanced within E.
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E is consistently balanced if it is consistently balanced for I.

5.3.2. Agreement Theorem. The next lemma is key to the Agreement Theorem.

But in a way it is more flexible than the Agreement Theorem, and will also provide

the basis for the later epistemic conditions. The lemma gives conditions under which an

agent’s probabilistic beliefs throughout a self-evident event agree with the distribution

obtained by conditionalizing a prior on that event.

Lemma 5.3.6. Let M be a model, i a player, E an event which is consistently balanced

for i, and E⇤ ✓ E an event which is self-evident for i. If there is an event F and a

k 2 [0, 1] such that E⇤ ✓ [pi(F ) = k] then for any common prior µ over E, k = µ(F |E⇤).

Proof. By hypothesis, there is a k such that E⇤ ✓ [pi(F ) = k]. Since µ is a common

prior, we know that µ(C) > 0 for all C 2 {C|9!(! 2 E⇤ ^ Pi(!) = C)} = CE⇤ , and

moreover
µ(F \ C)

µ(C)
= k for all such C.

For a given C 2 CE , we rewrite as µ(F \ C) = kµ(C). Choose a finite partition

Q of E⇤ which is sufficiently fine that, for all C 2 CE which are given non-zero value

by a � which balances E⇤, Q induces a partition of F \ C, and Q itself witnesses local

balancedness with respect to E⇤. (It’s clear that such a partition exists by the definition

of local balancedness.) So for a given C we have:

X

Q2Q
�C(Q)�F (Q)µ(Q) =

X

Q2Q
k�C(Q)µ(Q)

Since this is true for each C 2 CE⇤ to which � assigns nonzero value, we have

(5.3.1)
X

C2CE⇤

�(C)
X

Q2Q
�C(Q)�F (Q)µ(Q) =

X

C2CE⇤

�(C)
X

Q2Q
k�C(Q)µ(Q)

for any function �. By local balancedness with respect to E⇤, and by our choice of Q, for

any cell Q 2 Q, we have, for an appropriately chosen �:

�E⇤(Q) =
X

C2CE⇤

�(C)�C(Q).

Using this �, equation 5.3.1 becomes:

X

Q2Q
�E⇤(Q)�F (Q)µ(Q) =

X

Q2Q
k�E⇤(Q)µ(Q)

Or, equivalently: µ(F |E⇤) = k, as required. ⇤

With this lemma in hand, the Agreement Theorem follows easily:
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Proposition 5.3.7. (Agreement Theorem) Let M be a model, G ✓ I a group, and

E an event which is consistently balanced for G. Suppose there is an ! 2 E, and an event

F so that for each i 2 G, there is a ki 2 [0, 1] such that ! 2 CBG([pi(F ) = ki]). Then

for all i, j 2 G, ki = kj.

Proof. For each i, we know there is a public event Ei ✓ [pi(F ) = ki]. For each such

Ei, ! 2 Ei, so choosing one for each player,
T

i2G Ei is nonempty and thus also public;

we denote this intersection E⇤. Now pick an arbitrary i 2 G. For any C 2 CE⇤ , we write,

as above:
µ(F \ C)

µ(C)
= ki. By the hypothesis that each agent is locally balanced with

respect to E⇤, it follows by Lemma 5.3.6, that, for each i, ki = µ(F |E⇤). Since µ, E⇤ and

F are the same for all agents in G, ki = kj for all i, j 2 G. ⇤

An extensive earlier literature examined failures of introspective omniscience in con-

nection with the Agreement Theorem and in the presence of the truth axiom (Bacharach

1985, Geanakoplos 1989, Rubinstein and Wolinsky 1990, Samet 1990, Shin 1993). Geanako-

plos’s theorem is the most general one presented in this initial body of work; Proposition

5.3.7 corrects this result, and extends it both to infinite spaces, and possibility corre-

spondences which do not satisfy (T ).

5.3.3. Conditioning Events and “False” Beliefs. More recently, Bonanno and

Nehring (1999) proved an Agreement Theorem for finite KD45 models (where, in addition

to (4) and (5), we have, as here: (D) 8! 2 ⌦ Pi(!) 6= ;). But there is an important

conceptual difference between their setting and the one used here. In defining consistency

with a common prior, Bonanno and Nehring take the agent’s “posterior” at ! (thought

of as “interim beliefs”) to be defined as µ(·|{!0|Pi(!0) = Pi(!)}). In words, the agent’s

interim beliefs are as if the agent had conditioned on the event of her having the beliefs she

has. This is conceptually difficult to understand; intuitively, agents should conditionalize

(or be consistent with regard to) their information, not the event of their having the

information they in fact have.

An example may help to illustrate the point.

!1b 66

a

!!
!2

b

cc
ahh

µ(!n) = .5 .5

Figure 5.3.1. Conditioning Events
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Example 5.3.8. Let M be a model with ⌦ = {!1,!2}, and I = {a, b}. The possibility

correspondences are as follows: 8! 2 ⌦, Pa(!) = {!2} while Pb(!) = {!1} (this is

depicted in the figure). Finally, pa(!1) = 0, pa(!2) = 1, pb(!1) = 1 and pb(!2) = 0.

Intuitively, these probabilistic beliefs are consistent with the uniform prior µ, defined

so that 8! 2 ⌦, µ(!) = .5. Player a conditionalizes this prior on what she believes; b

conditionalizes the prior on what he believes. But according to Bonanno and Nehring’s

definition, as is easily checked, these beliefs are not consistent with a common prior.

This is the conceptual difficulty just noted. The Pi are supposed to represent what

the agent believes. So the agent should conditionalize on Pi(!) itself—what she believes—

not on the event that she has the beliefs she in fact has. Even if we do not interpret the

relationship between the “prior” and “posterior” as given by the agents’ “update”, it is

unclear how to interpret the resulting property of “consistency”.

This definition of conditioning events is not specific to Bonanno and Nehring. In

results we will discuss later, Aumann and Brandenburger (1995), Barelli (2009) and Bach

and Tsakas (2014), all similarly define the conditioning events as the set of all worlds

where agents have a given type. As a formal matter, this means that if any agent has a

false belief at a state, the only admissible prior will be one which assigns 0 to this state.

But if the prior assigns a state 0 , then all agents’ interim beliefs must assign that state 0.

So although the models nominally relax the truth axiom, the common prior assumption

plus this definition of conditioning events effectively restores it. From the standpoint of

the probabilities, the agents in the models are de facto partitional.

Hellman (2012) also proves an Agreement Theorem for KD45 models. His theo-

rem applies to KD45 models not included in the hypothesis of Proposition 5.3.7, but

Proposition 5.3.7 describes many models in which the Pi are not KD45.

5.4. Correlated Equilibrium

Example 5.1.1 showed that standard epistemic conditions for correlated equilibrium

may fail if agents are not introspectively omniscient. In this section, I will provide two

different sets of epistemic conditions for correlated equilibrium. Both results replace the

usual assumption of introspective omniscience with properties related to local balanced-

ness.
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5.4.1. Game Models, Conjectures, Rationality, and Games. To study games,

we must first extend our pure epistemic models. Let a game model be a tuple

M = hI, (⌦, T ), (pi)i2I , A, (Ai)i2I , (ui)i2Ii.

The new elements of the model are:

• a finite set of action profiles : A = A1 ⇥ A2, ...An, where each Ai is also finite

(and is assumed to be endowed with the discrete algebra);

• for each i, a measurable function Ai : ⌦ ! Ai mapping states to actions; and

• for each i, a state-dependent utility function ui : ⌦ ⇥ A ! R, which for all !,

is integrable with respect to (⌦,B, pi(!)).

In this section and Section 5, when I write “model”, I will mean a game model. Since

game models are extensions of epistemic models, the definitions in terms of pure epistemic

models can be carried over straightforwardly to this new class of models.

As before we will want to consider certain events, such as the event that a player takes

a given action. For a given ai 2 Ai, we use [ai] = {!|Ai(!) = ai} to denote the event

that i plays action ai. (This notation is slightly different than the one for conjectures

and utilities.) As usual, we will use A�i for A1 ⇥ A2...Ai�1 ⇥ Ai+1...An, and a�i for an

element of this set (recall that I use n for |I|). The event [a�i] is then defined in the

obvious way.

In earlier results, we considered groups of players, subsets of I. When dealing with

actions and utilities it becomes clumsy to achieve this kind of generality. So the main

results in the following sections will use I as the group in question. This loss of generality

is very slight, and it could be remedied easily, by requiring that some players’ utilities

be insensitive to the actions of others, and defining games relative to a group. But these

extensions are both cumbersome and mathematically trivial, so I won’t pursue them here.

We will consider one restriction on the relationship between actions and beliefs.

Definition 5.4.1. An event E is action evident for i if for all ! 2 E, 9ai 2 Ai such

that Pi(!) ✓ [ai] \ E.

This definition is motivated by the plausible idea that if players are playing a game

(E obtains), they know their own actions. Formally, action evidence means more than

this: each player’s actions are self-evident to him or her within E.

Beliefs over actions will be particularly important. A player i’s conjecture at a world

!, �i(!) 2 �(A�i), is a distribution over the action profiles of other players, defined
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as follows: �i(!)(a�i) := pi(!)([a�i]). i’s conjecture about j at !, �j
i (!) is defined by

�j
i (!)(aj) = pi(!)([aj ]).

A player i is rational at !⇤ if

ˆ
⌦
ui(!,Ai(!

⇤),A�i(!))dpi(!
⇤) >

ˆ
⌦
ui(!, bi,A�i(!))dpi(!

⇤)

for all bi 2 Ai.

I will use Rati for the event that i is rational (the set of states ! such that i is

rational at !), and RatI for \i2IRati.

For fixed ! 2 ⌦, ui(!, ·) denotes a state independent utility function. A game � is

then a tuple of pure actions and state independent payoff functions � = ((A)i2I , (ui(!⇤
i , ·))i2I).

Note again that the game is not defined for an arbitrary group, but only for I itself.

Fixing a game � = ((A)i2I , (ui(!⇤
i , ·))i2I), the event of a player i believing in �,

denoted Bi(�), is the event of i believing that he has the utilities he would have in �,

that is, Bi(�) = Bi[ui = ui(!⇤, ·)]. Note that for i to believe in the game, he doesn’t

have to have any beliefs about others’ utilities; i believes in the game in the very limited

sense that i believes his or her own utilities are as they would be in �.

Earlier, we used consistency with a common prior, where the prior must agree with

interim beliefs on all events. When considering games we won’t make this strong re-

quirement. Instead, we’ll use priors over actions. To do this, we extend the notion of

action-consistency introduced by Barelli (2009).

Definition 5.4.2. Fix a model M. An event E 2 B is action consistent among a

group G ✓ I if and only if there exists a probability distribution µ 2 �(⌦) such that

(i) µ(E) = 1;

for every i 2 G, and every ! 2 E,

(iia) µ(Pi(!)) > 0; and

(iib) for every a�i 2 A�i �i(!)([a�i]) = µ([a�i]|Pi(!)).

Call any such µ an action prior over E. If G = I, we call µ simply an action prior

over E.

Recall that our definition of conditioning events is different from the one used by

Barelli and others, as noted above in Section 3.4. Thus the above definition is slightly

different than Barelli’s.

Every common prior is an action prior, but the converse does not hold in general.

Action priors behave like a common prior over actions in E, by ensuring that players’
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conjectures (not necessarily the full complement of their beliefs) relate to each other as

if they were derived from a common prior.

5.4.2. Positive Local Balancedness and Brandenburger et al. (1992). Bran-

denburger et al. (1992) use a version of subset balancedness to provide epistemic condi-

tions for correlated equilibrium. Here, I will show that we can provide a related result

using local balancedness.

First, we modify the definition of local balancedness by restricting the sign of the

“balancing” function �:

Definition 5.4.3. Fix a model M. A possibility correspondence Pi is positively

locally balanced with respect to an event E 2 B if and only if it is locally balanced with

respect to E by a function � : {Pi(!)|! 2 ⌦} ! R>0.

It is positively locally balanced within E if it is positively locally balanced with

respect to every self-evident E⇤ ✓ E.

Instead of requiring that the agent be locally balanced with respect to every self-

evident event, we need only the following weaker property:

Definition 5.4.4. Fix a model M. An agent i 2 I is balanced in action within E if,

for every ai 2 Ai, Pi is locally balanced with respect to [ai] \ E.

i is positively balanced in action within E if, for every ai 2 Ai, i is positively locally

balanced with respect to [ai] \ E.

If E itself is action-evident then for each ai, [ai]\E is self-evident. So if a correspon-

dence Pi is locally balanced within an action-evident event E, it is balanced in action

within E. But since not every self-evident event need be of this form, a correspondence

Pi may be balanced in action within E, but not locally balanced within E.

Now, by analogy to the case of consistently balanced events, we use action consistency

and balancedness in action to define:

Definition 5.4.5. Fix a model M and a group G ✓ I. An action consistent event

E is (positively) consistently action balanced for G if for every i 2 G, Pi is (positively)

balanced in action within E.

An action consistent event E is (positively) consistently action balanced if for every

i 2 I, Pi is (positively) balanced in action within E.
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The general definition (not restricted by “positively”) will be used later, in Section 5.

The next proposition—our first epistemic condition for correlated equilibrium—uses the

notion of a positively consistently action balanced event:

Proposition 5.4.6. (Brandenburger et al. 1992) Let M be a model, � a game, and

E an action evident, positively consistently action balanced event. If E ✓
T

i2I(Bi(�) \

Rati), then the distribution µ̂ 2 �(A), given by µ̂(a) := µ([a]), is an objective correlated

equilibrium distribution for �.

Brandenburger et al. (1992) provide the basis of this proposition. The above state-

ment generalizes their result in three ways. (i) It allows for false beliefs (whereas they

require truth), (ii) it uses action-consistency in place of a common prior, and, finally (iii)

it extends the result to infinite spaces. Note also that we use local balancedness in place

of subset balancedness.

The proof, however, is a straightforward extension of theirs, so I simply recite it in

an appendix for completeness.

5.4.3. Local Action Balancedness: A Second Result. Now we turn to a new

kind of epistemic condition for correlated equilibrium, which will use our earlier results

about agreement. The basic strategy will be to show that the agents each agree with

an action prior conditioned on their own action, in spite of not being introspectively

omniscient.

First, we want to ensure that our earlier Lemma 5.3.6 about agreement carries over

to action priors:

Lemma 5.4.7. Let M be a model, i a player, and E an event which is consistently

balanced for i. Suppose there is an event E⇤ ✓ E which is action evident for i so that for

some A⇤
�i ✓ A�i, and some k 2 [0, 1], E⇤ ✓ [pi({!|A�i(!) 2 A⇤

�i}) = k]. Then for any

action prior µ for i over E, k = µ(F |E⇤).

Proof. Observe that Lemma 5.3.6 used only the fact that the prior µ is a prior

for Pi for the relevant event F , that is, for all ! 2 E, µ(F |Pi(!)) = pi(!)(F ). The

requirement that F have a fixed projection on A�i suffices to ensure that the action

prior µ is a prior for F , and the proof goes through as above. ⇤

With this Lemma in hand, we state epistemic conditions for correlated equilibrium:
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Proposition 5.4.8. Let M be a model, � a game, and E an action consistent event.

Suppose there is an action-evident E⇤ ✓ E such that for every i 2 I

(a) E⇤ ✓ Bi(�) \Rati;

(b) i is balanced in action within E⇤;

(c) for each ai 2 Ai, 9�⇤
i 2 �(A�i) such that E⇤ \ [ai] ✓ [�i = �⇤

i ];

Then for any action prior µ over E, the distribution µ̂ 2 �(A) given by µ̂(a) :=

µ([a]|E⇤) is an objective correlated equilibrium distribution for �.

This proposition is independent of the one given by Brandenburger et al. (1992).

Some correspondences are positively locally balanced within E but fail to be balanced

in action within E. Conversely, some correspondences are balanced in action within a

given E, and have constant conjectures in their actions, as above, but fail to be positively

balanced within E.

Proof. Since E⇤ is action-evident, for each i and each ai, E \ [ai] is self-evident.

Now for each i, Pi is balanced in action and �i is constant in each E⇤ \ [ai]. So by

Lemma 5.4.7, for every ! 2 E \ [ai], and a�i 2 A�i, �i(!)([a�i]) = µ̂([a�i]|[ai])). Since

each player is rational with respect to each of these conjectures in the game �, it follows

immediately that µ̂ is a correlated equilibrium distribution of �. ⇤

5.5. Epistemic Conditions for Nash

Aumann and Brandenburger (1995) provided epistemic conditions for games with

more than 2 players via the agreement theorem. Example 5.1.1 shows that the Agree-

ment Theorem cannot be extended to generalized possibility correspondences. With slight

alteration, the example could be used to show that we also cannot extend Aumann and

Brandenburger’s result to this more general setting.

The question then arises: can we use the Agreement Theorem of Section 5.3 to provide

epistemic conditions for Nash along the lines of Aumann and Brandenburger’s original?

Is the new Agreement Theorem also robust to more recent extensions of Aumann and

Brandenburger’s result? In this Section, I answer the question in the affirmative. The

details are somewhat involved, and the new result does not give a particularly clear form

to Aumann and Brandenburger’s core insights. But still it is of some interest that such

a result can be given.

5.5.1. Nash for Interim Beliefs without a Prior. We start by re-stating some

standard facts about Nash equilibrium—not in the common prior setting. These results
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are very clear conceptually, and they also form the basis of the more involved, technical

proposition which follows.

To state these results, we need one more definition. A player i’s conjectures about

j and k are independent if, for all aj 2 Aj and ak 2 Ak, �j
i (!)([aj ])�

k
i (!)([ak]) =

�j,k
i (!)([aj ] \ [ak]). A conjecture �i(!) is independent if it is independent for all j, k 2

I \ {i}. A player’s conjecture being independent is itself an event, which I will denote by

Ind(�i).

In general, for two measures µ1 and µ2, I will write the product measure as µ1 ⌦ µ2.

If more than two distributions are involved, I will use the symbol for product; for exam-

ple, �i(!) =
Q

j2I\{i} margAj�i(!) = margA1�i(!)⌦margA2�i(!)⌦ ...margAi�1�i(!)⌦

margAi+1 ⌦ ...margAb�i(!) expresses the statement that i’s conjecture at ! is indepen-

dent.

To set the stage for the common-prior based result, we first develop simple, minimal

epistemic conditions for Nash. The following Lemma is now standard:

Lemma 5.5.1. Let M be a model and � = ((A)i2I , (ui(!⇤
i , ·))i2I) a game. Suppose

that for some !, for some i, j 2 I with i 6= j,

(a) for some �⇤
i 2 �(A�i), ! 2 Bj [�i = �⇤

i ],

(b) ! 2 BjBi� and

(c) ! 2 Bj(Rati).

Then for any ai 2 Ai such that �j(!)([ai]) > 0,
P

a�i2A�i
�⇤
i ([a�i])ui(!⇤, ai, a�i) �

P
a�i2A�i

�⇤
i ([a�i])ui(!⇤, bi, a�i), for all bi 2 Ai.

Under conditions (a)-(c) any action which has positive support in j’s conjecture

about i is rational for i with respect to the conjecture j believes i has.

Proof. By hypothesis, at !, j believes three events: [�i = �⇤
i ], Bi� = {!0 2

⌦|Pi(!0) ✓ [ui(!⇤, ·)]} and Rati. It follows that pj(!) assigns 1 to these three events.

Since �j(!)([ai]) > 0, pj(!) assigns positive probability also to [�i = �⇤
i ]\Bi�\Rati\[ai].

So since this intersection is nonempty, it must be that ai maximizes ui(!⇤, ·), with respect

to the conjecture �⇤
i . ⇤

We then have:

Proposition 5.5.2. Let M be a model and � = ((A)i2I , (ui(!⇤
i , ·))i2I) a game.

Suppose that for some world ! 2 ⌦, for every player i 2 I, there is a �i 2 �(Ai) so that
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for every j, k 2 I \ {i}, �i
j(!) = �i

k(!) = �i. Suppose further that, for every i 2 I, there

is some player j 2 I \ {i}, such that

(a) for every k 2 I \ {i}, ! 2 Bj [�k
i = �k

i (!)];

(b) ! 2 BjBi(�),

(c) ! 2 Bj(Rati),

(d) ! 2 Bj(Ind(�i)).

Then (�1,�2...�I) is a Nash Equilibrium of �.

Notice that (a) in this Proposition is different from (a) in the previous Lemma. Here,

it is not just that there is some conjecture j believes i has; the believed conjecture must

(a) agree with i’s actual marginal conjectures (i’s marginal conjectures at !) and (d)

represent others’ actions as independent.

Proof. Consider an arbitrary player i. By hypothesis, there is some j 6= i such

that j believes that, for every k 2 I \ {i}, i0s conjecture about k is �k⇤
i , where in fact

this is correct and �k⇤
i = �k

i (!). Since every player agrees in their marginal conjectures

at !, then for all k 2 I \ {i}, this �k
i (!) = �k. Moreover, at !, j believes that i’s full

conjecture is
Q

k2I\{i} �
k
i (!) =

Q
k2I\{i} �k, j believes that i is rational, and believes

that i believes i has utility ui(!⇤
i , ·). By Lemma 5.5.1, it follows that every ai assigned

positive probability by �i
j(!) = �i is a best response to

Q
k2I\{i} �k, when i’s payoffs are

given by ui(!⇤
i , ·). Since i was chosen arbitrarily, this holds for every player, and thus

(�1,�2...�n) is a Nash Equilibrium of �. ⇤

Versions of this fact are given in Brandenburger and Dekel (1987: Proposition 4.1),

Aumann and Brandenburger (1995) Remark 7.1, Liu (2010 (unpublished)), Dekel and

Siniscalchi (2014: 21-2) and Battigalli et al. (2014). As usual, this result is more gen-

eral than the standard ones, since I have made no assumptions whatsoever about in-

trospection. In fact, this proposition is very general, since it does not even require local

balancedness.

5.5.2. Independence. As Proposition 5.5.2 illustrates, two claims must be estab-

lished to give the epistemic conditions for Nash: agreement of marginal conjectures,

and independence of believed conjectures. For agreement, we will simply use the earlier

Lemma 5.4.7. Independence will require two new lemmas.

In later results we will be using events E which are both action evident and consis-

tently action balanced (see Definition 5.4.5). Our first lemma will show that if E satisfies

these properties, it turns out that each Pi is also locally balanced with respect to E itself.
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Lemma 5.5.3. Let M be a model, i a player, and E an event which is action con-

sistent and action-evident for i. If Pi is balanced in action within E, then Pi is locally

balanced with respect to E.

Proof. P = {{[ai] \ E}|ai 2 Aj} is a finite partition of E. Moreover, since E is

action-evident, each of these events is self-evident to i, so for any distinct ai, âi 2 Ai of

CE\[ai]\CE\[âi] = ;. Fix an enumeration of the ai 2 Ai, and denote the nth action as ani .

For each such ani , by hypothesis, there exists Qn a finite partition of E \ [ani ], such that,

for Qn, and any finer finite partition of E \ [ani ], there is some �n which witnesses the

local balancedness of Pi with respect to this E \ [ani ]. For each ani pick such a Qn, and

now consider the union of all these partitions
S

16n6k Qn = Q. This new Q partitions

E, and is finite. We now construct � so that, if ! 2 Pn, �(Pi(!)) = �n(Pi(!)). (Given

any finer but still finite partition, we can construct � in the same way.) These � witness

the local balancedness of Pi with respect to E. ⇤

Now we turn to independence directly.

Lemma 5.5.4. Let M be a model, i a player, and E an event which is action evident,

and consistently action balanced for i. If for some �⇤
i 2 �(A�i), E ✓ [�i = �⇤

i ], then for

any action prior µ for i over E, margAµ = margAi ⌦ margA�i , and for every ! 2 E,

�i(!) = margA�iµ.

Proof. By constancy of i’s conjectures within the action-evident E, and i’s local

balancedness with respect to E \ [ai], for each ai 2 Ai, it follows from Lemma 5.4.7 that,

for ! 2 E with Ai(!) = ai,

(5.5.1) �i(!)([a�i]) = µ([ai, a�i]|[ai])

for all a�i 2 A�i. Rearranging, for every ! 2 E with Ai(!) = ai, we have µ([ai, a�i]) =

�i(!)([a�i])µ([ai]), for all a�i 2 A�i. Since this holds for each ai 2 Ai, it follows that

margAµ = margAiµ⌦margA�iµ. But then for each ai, it’s clear that margA(µ(·|[ai]) =

margA�iµ. Since Pi is action balanced within the action evident E, and 9�⇤ such that E ✓

[�i = �⇤
i ], it follows from Lemma 5.4.7 that, for any ! 2 E, �i(!) = margAµ(·|[Ai(!)]) =

margA�iµ. ⇤

5.5.3. Pairwise Epistemic Conditions. Following Bach and Tsakas (2014), we

can give epistemic conditions for Nash equilibrium using a notion of pairwise general

action consistency, defined relative to a graph on the set of players. Our strategy will be



5.5. EPISTEMIC CONDITIONS FOR NASH 158

to build up agreement and independence pair-by-pair along the edges of the graph, to

show that the conjectures of the whole group agree, and that each conjecture treats all

others as acting independently.

First, we recall some graph-theoretic definitions. An undirected graph G = (N, E)

consists of a set of vertices and a set of edges described by the binary symmetric relation

E ✓ N ⇥N (where (i, j) 2 E describes the same edge as (j, i) 2 E). A sequence (ik)mk=1

of players is a path if and only if (ik, ik+1) 2 E for all k 2 {1, ...,m � 1}. A graph is

connected if for every i, j 2 N , there is a path (ik)mk=1 with i = i1 and j = im. A cut

vertex of a connected graph is a node i 2 N such that, if it is deleted (and any edges

containing it are removed), the resulting graph is not connected. A graph is biconnected

if it has no cut vertices.

Definition 5.5.5. Fix a model M. Let a state ! 2 ⌦ be pairwise action consistent

if and only if there exists a biconnected graph H = (I, E) where for each (j, k) 2 E , there

exists an action evident, consistently action balanced event Ejk for the group Gjk = {j, k}

such that:

(i) ! 2 Ej,k; and

(ii) for some �⇤
j 2 �(A�j), �⇤

k 2 �(A�k), Ejk ✓ [�j = �⇤
j ] \ [�k = �⇤

k].

This definition sets the stage for our final proposition:

Proposition 5.5.6. Let M be a model, � a game, and ! 2 ⌦ a pairwise action

consistent state.

Suppose that for every i 2 I, there exists some j 2 I with j 6= i, such that:

(a) ! 2 Bj [�i = �i(!)]

(b) ! 2 BjBi(�)

(c) ! 2 Bj(Rati).

Then all j 2 I \ {i} share the same conjecture �i about i, and the vector of these

conjectures about individuals, (�1, ...,�I) is a Nash Equilibrium for the game �.

Proof. We break the proof into three stages: (1) agreement; (2) independence; (3)

Nash.

Agreement. Pick an arbitrary i 2 I, and an arbitrary j 2 I \ {i}. We first show, by

induction on path length in H, that �i
j(!) = �i

k(!) for all k 2 I \ {i, j}. Suppose, for

the base case, that (j, k) 2 E : k is reachable from j in a single step. By Lemma 5.5.3,

Definition 5.5.5 (i)� (ii) imply j and k’s local balancedness with respect to Ejk. We now
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use Lemma 5.4.7, and Definition 5.5.5 (i)� (ii), to obtain �j(!)([ai]) = �k(!)([ai]), for

all ai 2 Ai.

Now we suppose this holds for any kn reachable in n steps on the graph H, and show

that it holds for any kn+1 reachable in n + 1 steps on H. Any such kn+1 is reachable

in one step from some kn with (kn, kn+1) 2 E . So Definition 5.5.5 (i) � (ii) hold for

Gkn,kn+1 = {kn, kn+1}, where kn 2 I is some player reachable in n steps from this initial

j. Now another application of Lemma 5.4.7 gives us that �kn(!)([ai]) = �kn+1(!)([ai]),

for all ai 2 Ai. But, by the induction hypothesis, �kn(!)([ai]) = �j(!)([ai]), for all

ai 2 Ai. Since the graph H is biconnected, and I is finite, we can reach every element

of I \ {i} in a finite number of steps, without passing through i,. Moreover, since the

initial i was chosen arbitrarily, it follows that for any i 2 I, all j, k 2 I \{i} agree in their

conjecture about i.

Independence. We now use agreement in marginal conjectures to show that all players’

conjectures are independent. First we show that, for every i, j, k, l 2 I, with (i, j), (k, l) 2

E , margAµij = margAµkl, by showing that an arbitrary subpath (a, b), (b, c) 2 E pre-

serves equality of margAµab = margAµbc. By b’s local action balancedness relative to

Eab and Lemma 5.5.4, we have margAµab = margAbµ ⌦ �b(!). By Lemma 5.4.7, a’s

constancy in Eab, and a’s local balancedness with respect to Eab (given, once again

by using Lemma 5.5.3, and Definition 5.5.5(i) � (ii)), we have margAbµ = �b
a = �b,

where �b is the marginal conjecture shared among all players other than b about b. Thus

margAµab = �b ⌦ �b(!). The same argument shows that µbc = �b ⌦ �b(!), and thus,

that µab = µbc. Since a, b, c were chosen arbitrarily, any such path preserves equality. By

the (bi)connectedness of H, there is such a path from any i to any l. Every step in any

such path preserves equality of the relevant action-priors, and thus, for all i, j, k, l 2 I,

with (i, j), (k, l) 2 E , margAµij = margAµkl, as required. From now on we denote this

distribution on actions simply by µ.

Now we show that µ =
Q

i2I margAiµ. Pick an arbitrary i 2 I. By connectedness

of H, there is some j with (i, j) 2 E . By the argument just given margAµij = µ.

Moreover, by i’s local action balancedness with respect to Eij , we have margAµij =

µ = margAiµ ⌦ margA�iµ. Since this holds for all i 2 I, we have, by Aumann and

Brandenburger (1995) Lemma 4.6, that µ =
Q

i2I margAiµ. (The full argument is by

induction on the cardinality of I, and may be found in their paper.)

To complete the proof of independence, it remains to show only that, for every i,

�i = margA�iµ. By the connectedness of H, every i has at least one neighbor, j, and for
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every (i, j) 2 E , there is some Eij , with µij an action prior on Eij , and i locally balanced

with respect to Eij . By the constancy of i’s conjecture in Eij , we can use Lemma 5.4.7, to

derive that �i(!) = margA�iµij . But, by the earlier argument margA�iµij = margA�iµ,

as required.

Nash. With agreement and independence in hand, Nash follows by Lemma 5.5.1. ⇤

Proposition 5.5.6 generalizes Bach and Tsakas (2014) in two ways. First, it allows

belief in rationality to float free from the graph structure. In the above statement, belief

in rationality may fail to form even a connected graph.9 Second, local action balancedness

is weaker than their assumption that agents are introspectively omniscient. Note once

again that the definition of conditioning events used here is different from theirs as well.

Polak (1999) observed that, in Aumann and Brandenburger’s Theorem B, common

knowledge of conjectures plus common knowledge of payoffs implies common knowledge

of rationality. As a result, in perfect information games, where payoffs are assumed to

be commonly known, satisfaction of Aumann and Brandenburger’s weak conditions still

implies common knowledge of rationality. Barelli (2009) and Bach and Tsakas (2014)

have shown that this result need not follow, by giving weaker epistemic conditions for

Nash Equilibrium. Proposition 5.5.6 and Proposition 5.5.2 share this feature, though the

more general and transparent Lemma 5.5.1 has a more striking version of it.

5.6. Conclusion: Interpretation of Local Balancedness

Without introspective omniscience, some common prior-based results fail. Local bal-

ancedness is considerably weaker than introspective omniscience, and it allows us to

preserve some standard results.

But this leaves us with two questions. First, are these the weakest constraints which

can be given which validate these results? Second, and somewhat relatedly, does local

balancedness have any interesting interpretation? Given positive introspection, for ex-

ample, the Agreement Theorem holds. Positive introspection has a simple interpretation,

and some might be happy maintaining positive introspection in this setting. But in oth-

ers, e.g. for correlated equilibrium, positive introspection is not enough. (Recall that the

agents in Example 5.1.1 were both positively introspective—they obeyed (4)—but the

prior there failed to form a correlated equilibrium.) For local balancedness, we don’t

seem to have an interpretation which is as clear as the one for positive introspection.

9For example, with four players, a, b, c, d: if the other conditions are satisfied, it suffices that a believe
that b is rational and b believe that a is rational, while c believe that d is rational, and d believes that c

is rational. a and b may each believe c and d not to be rational, and c and d may return the favor.
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Ideally we would like to find some way of understanding local balancedness in terms of

the constraints it imposes on players’ beliefs and knowledge.

The first question can be answered partly in the affirmative. As I have noted, the

main result of the paper is the Agreement Theorem. Geanakoplos provided a partial

converse to his version of this result. Recall that we can specify regular models just by

specifying a prior over the state space in the model. Then if M = h⌦, I, (P )i2I , µi is a

regular model, and i 2 I is a player, then a regular model M0 == h⌦, I 0, (P 0)i2I , µ
0i is

i-equivalent if i 2 I 0, and Pi = P 0
i .

Then we can state Geanakoplos’s converse, using local balancedness, as follows:

Proposition 5.6.1. (Geanakoplos 1989) Let M be a regular model, and i 2 I a

player. If Pi is not locally balanced, there is an i-equivalent M0 and a j 2 I 0 such that

Pj is locally balanced within ⌦, and i and j agree to disagree.

This converse applies only to regular models. It also requires quantifying i-equivalent

models, that is, over possible priors and possible balanced possibility correspondences.

It says nothing about agents on a specific occasion, given the beliefs they in fact have.

But unfortunately, stronger converses are not available. If two agents have possibility

correspondences which are ill-behaved in exactly the same ways—that is, 8! Pi(!) =

Pj(!) and pi(!) = pj(!)—then they cannot agree to disagree, because they cannot

disagree at all. This converse may be the best we can hope for.10

How should we understand local balancedness? Geanakoplos suggested that “Bal-

ancedness is a condition under which one can say that every ! 2 E is equally scrutinized

by the information correspondence E. Every element C 2 P has an intensity �(C), and

the sum of the intensities with which each ! 2 E is considered possible by P is the

same, namely 1.” (1989: 18) The following model, however, is both balanced and locally

balanced, although it does not appear to exhibit “equal scrutiny” in any intuitive sense.

10Hellman 2012 gives more exact necessary conditions, but his theorem is of an essentially different
kind than the ones studied in this paper. The statement of Hellman’s conditions on agents’ beliefs are
essentially interactive: a given possibility correspondence does not satisfy them (or fail to satisfy them)
if a group has not been specified. This makes his result essentially different from the standard theorems,
where interactive results are derived from at least prima facie single-agent constraints.
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Figure 5.6.1. Local Balancedness and Truth do Not Imply Equal Scrutiny

(0 can see itself)

World 0 is seen from 9 worlds, whereas all other 8 worlds in the model are seen only

from one, namely, themselves. The example could be extended to yield any finite “degree

of scrutiny” for one world, while every other world is seen by only itself.

So we are still in need of an intuitive characterization. In the case of positive introspec-

tion, we give an intuitive characterization of a model-theoretic property by considering

the propositional modal logic which characterizes the class of models which satisfy this

property (or, in the logical terminology the class of “frames”). One might hope that, as

with positive introspection, we can similarly use a propositional modal logic to give a

transparent characterization of which models are locally balanced. Formally, this would

mean finding a logic of belief which is valid exactly on the class of models M in which

agents are (positively) locally balanced within the universe ⌦ of M. If a class of models

can be characterized in this way, we say that the class of models is definable. Unfor-

tunately, the following proposition shows that such an equivalence cannot be given; it

thus suggests that properties related to local balancedness may not admit an intuitive

characterization in terms of belief.

Proposition 5.6.2. The class of (positively) locally balanced models is undefinable

by a normal modal logic.

a⇤OO

✏✏

>>

~~

e⇤OO

✏✏

``

  
a oo //
__

��

b⇤??

��

OO

✏✏

oo // d⇤OO

✏✏

__

��

oo // e??

��

a ^^

��

e@@

��
c oo //__

��

b oo //
OO

✏✏

d oo //
OO

✏✏

f??

��

h +3 bAA

��

oo // d ^^

��
c⇤ f⇤ c f

Figure 5.6.2. A Locally Balanced model which has a Bounded Morphic

Image that is not Locally Balanced
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Recall that for conditions such as (T ) + (4) on possibility correspondences, the class

of models is definable by a normal modal logic, in this case, the logic S4.

Proof. By the Goldblatt-Thomason theorem, a class of models is definable by a nor-

mal modal logic only if it is closed under bounded morphic images.11 In figure 5.6.2 the

left-hand model is positively locally balanced (and therefore locally balanced). To see this,

note that the only self-evident event is the universe, and that {Pi(a⇤), Pi(e⇤), Pi(c⇤), Pi(f⇤)}

partitions the universe. The right-hand model is not locally balanced. To see this, con-

sider the uniform prior µ defined so that: 8! 2 ⌦, µ(!) = 1
6 . While µ({a, c, e, f}) = 2

3 ,

µ({a, c, e, f}|Pi(!)) = 1
2 for all ! 2 ⌦. Since µ({a, c, e, f}|Pi(!)) is constant within ⌦,

but does not agree with µ({a, c, e, f}|⌦), it follows by contraposition of Lemma 5.3.6

that the correspondence is not locally balanced. But the model on the right-hand side

of Figure 5.6.2 is a bounded morphic image of the one on the left. Consider the function

h which takes every unasterisked world to itself, but takes the asterisked worlds to their

unasterisked counterparts. Call the accessibility relation (the relation of directed adja-

cency) of the left-hand model ‘R’, and the accessibility relation of the right hand model

‘R0’. It is straightforward to check that (i) wRv implies h(w)R0h(v); (ii) h(w)R0v0 implies

that there is some v such that wRv and h(v) = v0; (iii) h is surjective. ⇤

Appendix

Proposition. (Brandenburger et al. 1992) Let M be a model, � a game, and E

an action evident, positively consistently action balanced event. If E ✓
T

i2I(Bi(�) \

Rati), then the distribution µ̂ 2 �(A) given by µ̂(a) := µ([a]) is an objective correlated

equilibrium distribution for �.

Proof. (Brandenburger et al. 1992) Following Brandenburger et al, fixing the game

� = ((A)i2I , (ui(!⇤
i , ·))i2I) and given a distribution ⌫ 2 �(A), with ⌫({ai}⇥A�i)) > 0,

let

Q⌫(ai) = {q 2 �(A) : supp(q) ✓ supp(⌫(·|ai)),

X

a�i2A�i

q(a�i)ui(!
⇤
i , ai, a�i) >

X

a�i2A�i

q(a�i)ui(!
⇤
i , bi, a�i) for all bi 2 Ai.}

(We use supp, as usual, to denote the smallest closed set with measure 1, and use the

discrete topology on the finite set of action profiles.) Observe that Q⌫(ai) is a compact,

11For a standard reference, and proof of the Goldblatt-Thomason theorem, see Blackburn et al. 2001:
Sections 3.8 and 5.4.
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convex subset of �(A�i). We now show that for any action-prior µ on E, µ̂, defined as

above, is a correlated equilibrium distribution. This claim is equivalent to the claim that,

for each i, for every ai 2 Ai such that µ([{ai}⇥A�i]) > 0, margA�i µ̂(·|[ai]) 2 Qµ̂(ai).

For every i 2 I, ai 2 Ai and ! 2 E \ [ai], it is straightforward to show that

�i(!) 2 Qµ̂(ai). Since µ is an action prior, for every i 2 I, and ! 2 E, supp(�i(!)) ✓

supp(margA�i(µ̂)). Moreover, by the fact that E ✓
T

i2I(Bi(�)\Rati), we have that for

every i 2 I, ai 2 Ai and ! 2 E \ [ai], ai is optimal with respect to �i(!), and ui(!⇤
i , ·).

Thus for every i 2 I, ai 2 Ai and ! 2 E \ [ai], �i(!) 2 Qµ̂(ai).

By the convexity of QmargAµ(ai), it now suffices to show that, for every i 2 I, for every

ai 2 Ai, margA�i µ̂(·|[ai]) 2 conv{�i(!)|! 2 E \ [ai]}, where conv denotes the convex

hull of the set of all such conjectures. By action consistency, we have �i(!)([a�i]) =

µ([a�i]|Pi(!)), for every a�i 2 A�i. Recall that given an event E and a player i, we use

CE to denote the set CE = {C|9!(! 2 E ^ Pi(!) = C)}. Consider an arbitrary i 2 I,

ai 2 Ai, and a�i 2 A�i, so that µ([a�i]|E \ [ai]) > 0. Now choose a finite partition Q,

but fine enough to partition E \ [ai, a�i], and fine enough to witness the positive local

balancedness of i with respect to E \ [ai]. Since i is positively locally balanced in action

within E,

µ([a�i]|[ai]) =
1

µ([ai])

X

Q2Q
�[ai]\E(Q)�[a�i](Q)µ(Q)

=
1

µ([ai])

X

Q2Q

X

C2CE\[ai]

�(C)�C(Q)�[a�i](Q)µ(Q)

for an appropriately chosen �. It follows that:

µ([a�i]|[ai]) =
1

µ([ai])

X

C2CE\[ai]

�(C)µ(C)
1

µ(C)

X

Q2Q
�C(Q)�[a�i](Q)µ(Q)

(5..1) =
1

µ([ai])

X

C2CE\[ai]

�(C)µ(C)µ([a�i]|C).

But local positive balancedness gives us that 1
µ([ai])

P
C2CE\[ai]

�(C)µ(C) = 1, and,

moreover, that every value in the sum is at least 0. So 5..1 gives us

(5..2) µ([a�i]|[ai]) 2 conv{�i(!)([a�i])|! 2 E \ [ai]}
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This holds for all a�i 2 A�i, so margA�iµ(·|[ai]) lies in the convex hull of the �i(!)

such that ! 2 E \ [ai], as required. Since QmargAµ(ai) is convex, it follows by 5..2 that

margA�iµ lies in QmargAµ(ai) as well, for every ai such that margAµ({ai}⇥A�i)) > 0.

So margAµ = µ̂ is a correlated equilibrium for �. ⇤
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