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Abstract 

A famous mathematical theorem says that the sum of an infinite series of numbers can 

depend on the order in which those numbers occur. Suppose we interpret the numbers in 

such a series as representing instances of some physical quantity, such as the weights of a 

collection of items. The mathematics seems to lead to the result that the weight of a 

collection of items can depend on the order in which those items are weighed. But that is 

very hard to believe! A puzzle then arises: How do we interpret the metaphysical 

significance of this mathematical theorem? I first argue that prior solutions to the puzzle 

lead to implausible consequences. Then I develop my own solution, where the basic idea 

is that the weight of a collection of items is equal to the limit of the weights of its finite 

subcollections contained within ever-expanding regions of space. I show how my solution 

is intuitively plausible and philosophically motivated, how it reveals an underexplored 

line of metaphysical inquiry about quantities and locations, and how it elucidates some 

classic puzzles concerning supertasks. 
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§1 A Puzzle 

Let’s start with a principle that initially seems unremarkable, yet that turns 

out to be puzzling: 

 

SUM 

For any collection of items, the weight of the collection equals the 

sum of the weights of the items within that collection.1 

 

If the collection contains only finitely many items, then SUM is indeed rather 

boring. But if the collection is infinite, then a puzzle arises. The puzzle 

doesn’t cast doubt on the truth of SUM. Instead, it raises questions about 

how to interpret the principle in the first place. As a prelude, consider the 

following thought-experiment (call it Infinite Scale) from Linnebo [2020: 1]: 

 

Infinite Scale 

Suppose you have a scale that is capable of weighing infinitely many items 

and an infinite amount of weight. Suppose also that you have an infinite 

number of iron balls and an infinite number of balloons. The first ball 

weighs 1 kg, the second ball weighs 
1

3
 kg, the third ball weighs 

1

5
 kg, and so 

forth. The first balloon lifts 
1

2
  kg, the second balloon lifts 

1

4
  kg, the third 

balloon lifts 
1

6
 kg, and so forth. Now, suppose you first place the 1 kg ball 

on the scale, then attach the −
1

2
  kg balloon, then add the 

1

3
  kg ball, then 

attach the −
1

4
  kg balloon, and so forth. This infinite sequence of actions 

results in an infinite progression of weights and counterweights added to 

the scale. What is the weight of the scale once every item has been added? 

 

To figure out the answer to the question, we need to sum the weights of all 

the individual items. The scale starts with nothing on it, so we start at 0. 

 
1 Are collections sets? Well, sets are abstract objects, and abstract objects don’t weigh 

anything. It may be better to think of collections as fusions or pluralities. 
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Then we add 1 (for the first ball), then subtract 
1

2
 (for the first balloon), then 

add 
1

3
  , then subtract 

1

4
  , and so on. This infinite sequence of actions is 

modeled by the following infinite series, which is sometimes called the 

‘alternating harmonic series’: 

 

The Alternating Harmonic Series 

1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
… =  ∑

(−1)𝑛

𝑛 + 1

∞

𝑛=0

= 𝑙𝑛(2) ≈ 0.69. 

  

The equation says that when we sum the sequence of numbers on the left, 

the result will gradually converge to ln(2), which is approximately 0.69. 

Therefore, it seems reasonable to conclude that the weight on the scale at 

the end of the procedure is ~.69kg. But the puzzle arises when we ask the 

following question: what if we were to rearrange the items in the series? 

A surprising result from mathematics is that merely rearranging the 

order of the terms in a series can result in convergence to a different sum. 

In other words, the sum of an infinite series sometimes depends on the 

order of its terms. In fact, an astonishing result is that by rearranging terms, 

we can make a series sum to any arbitrary real number, or even tend 

towards positive or negative infinity. This is known as “Riemann’s 

Rearrangement Theorem,” after its discovery by the 19th-century 

mathematician Bernhard Riemann.2 Here’s a statement of the theorem: 

 

Riemann’s Rearrangement Theorem 

If an infinite series is conditionally convergent, then its terms can be 

rearranged so that the new series converges to an arbitrary number, or 

diverges. 

 

 
2 Riemann [1876]. 
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An infinite series converges =def the sum of its terms grows arbitrarily close 

to some finite number as the series progresses; otherwise, the infinite series 

diverges. An infinite series conditionally converges =def it converges but the 

series consisting of the absolute values of all its terms diverges. 

The alternating harmonic series described above is an example of a 

conditionally convergent series: it sums to ln(2), but if we rearrange its 

terms, we can generate a different sum. To do so, we take terms from the 

original series until the sum reaches the number we want to converge on, 

and then alternate between positive and negative terms from the original 

series so that the rearranged series converges to the desired limit. For the 

purposes of this paper, it isn’t necessary to go deeper into the mathematical 

reasoning behind Riemann’s Rearrangement Theorem, though interested 

readers may refer to the APPENDIX. 

The mathematical result is secure. The philosophical puzzle is how 

to interpret the metaphysical significance of that result. It’s surprising that 

the sum of an infinite series depends on the order of its terms, but that may 

be regarded merely as a mathematical curiosity. What’s much harder to 

believe is that the weight of a collection of items can depend on the order in 

which those items are weighed. Order of weighing seems a mere matter of 

convention, rather than an actual matter of metaphysics. And there’s 

nothing special about weight: as I’ll discuss later, analogous puzzles arise 

with any quantity that satisfies certain formal conditions. So, we have a 

metaphysical puzzle. Let’s call it the puzzle of conditional convergence. 

 The aims of this paper are to (1) explain why existing solutions to 

the puzzle are unsatisfactory, (2) develop a new solution, (3) support my 

solution by investigating an underexplored collection of metaphysical 

questions about quantities and locations, and (4) apply my results to some 

existing puzzles about supertasks. As we will see, the puzzle of conditional 

convergence isn’t merely an isolated technical problem. Instead, the 

solution to the puzzle has much more general ramifications, yielding new 

lines of metaphysical inquiry and new tools for solving classic problems.  
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As for the puzzle itself, I’ll argue that Riemann’s Rearrangement 

Theorem indeed has interesting metaphysical implications. But it will take 

some work to uncover the exact nature of those implications. To solve the 

puzzle, we will need to consider the relationship between quantification 

over individuals and quantification over locations. Once we do so, the 

following solution will come to light: the weight of a collection of items 

(whether finite or infinite) is equal to the limit value of the weights of the 

finite subcollections contained within ever-expanding regions of space. The 

initial statement of this solution may feel a bit complex. But I’ll argue over 

the course of the paper that the solution is intuitively plausible, 

philosophically motivated, and explanatorily fruitful. 

 The puzzle of conditional convergence doesn’t require one to think 

of infinite scale scenarios as metaphysically possible. In fact, given the 

connections between weight, mass, and gravitational fields, I think there’s 

good reason to think that the infinite scale scenario described above is 

metaphysically impossible. Instead, think of the thought-experiments as 

illustrative tools that allow us to more vividly assess some general 

questions concerning quantities, objects, and locations. As analogies, 

consider the role that scenarios like Hilbert’s Hotel, philosophical zombies, 

and Cartesian demons play in discussions of infinity, consciousness, and 

knowledge.3 

The solution I develop will be applicable to all quantities, even those 

that cannot generate puzzles of conditional convergence. And while the 

prime example in this paper will be weight (and space), the view I favor 

will generalize to quantities beyond weight (and locations beyond spatial 

regions). The aim of this paper is to not only develop a solution to the initial 

puzzle, but to use that puzzle to motivate some bigger ideas about the 

metaphysical relationships between quantities and locations. Furthermore, 

 
3  Furthermore, even if infinite scales are metaphysically impossible, infinite sums of 

quantities may nevertheless be possible, or even actual. At least, it’s an open possibility 

that the actual world contains infinitely many instances of some physical quantities. 
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I’ll explain how pursuing this line of inquiry yields explanatory payoffs for 

some classic puzzles about supertasks, such as the Ross-Littlewood 

Paradox and Thomson’s Lamp. 

Here’s the structure of the paper: §2 argues against prior solutions to 

the puzzle, developed by Linnebo [2020] and Hoek [2021]; §3 presents my 

view, which I call the ‘expansionist analysis’; §4 supports the expansionist 

analysis by exploring some general questions about quantities and 

locations; and §5 applies the expansionist analysis to some puzzles about 

supertasks. 

 

§2 The Order-Relative and Balance Analyses 

Two solutions to the puzzle of conditional convergence already exist. The 

first, developed by Øystein Linnebo, is what I’ll call the order-relative 

analysis: the weight of a collection depends on the order in which the 

individual items are weighed. The second solution, developed by Daniel 

Hoek, is what I’ll call the balance analysis: the weight of a collection is zero 

whenever it contains both infinite positive weight and infinite negative 

weight. I’ll argue that neither solution is satisfactory. 

 

The Order-Relative Analysis 

Since the puzzle was introduced by Linnebo [2020], it’s fitting to start with 

his solution. Linnebo’s view, in effect, is that we ought to take Riemann’s 

Rearrangement Theorem at face value. According to his order-relative 

analysis, the weight of a collection of items depends on the order in which 

the individual items are weighed. The order-relative analysis predicts that 

in the scenario described above, the weight is approximately .69kg. But the 

order-relative analysis also holds that if the items were placed on the scale 

in a different order, then the result would be different. 

The order-relative analysis is the most straightforward 

interpretation of the mathematical results. But the solution feels 

unsatisfying: it’s very hard to believe that the order in which individual 
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items are put on a scale can make a difference to the weight of the collection. 

In fact, we might wonder how weight works when our method of weighing 

doesn’t involve any physical intervention on the items that are weighed. 

Suppose, for example, that we already know the weights of the individual 

items, the items are already lying on the ground, and we calculate the 

weight of the collection by inputting the weights of the items into a 

calculator. It’s implausible that the weight of the collection depends on the 

order in which we enter numbers into the calculator. And if you and I were 

to enter the weights of the items in different orders, would that mean that 

the collection would then have multiple weight values? The reason these 

consequences feel absurd is because weight isn’t a matter of mere 

bookkeeping; it’s an objective physical quantity. The solution I develop will 

preserve the order-invariance of weight (and other quantities). 

 To put pressure on the order-relative analysis, let’s consider a variant 

on Infinite Scale. The variant invokes an application of Riemann’s 

Rearrangement Theorem. Recall that the weights of the items in Infinite Scale 

were mathematically represented by the alternating harmonic series. Since 

that series is conditionally convergent, there’s a rearrangement that 

diverges to ∞. Here’s a procedure for achieving that result. We first separate 

the positive terms (which I’ll label the pi’s) from the negative terms (which 

I’ll label the ni’s). To construct the new series, we start with the first positive 

term p1 (which is 1), followed by the first negative term n1, followed by 

positive terms p2, p3, …, pj until the sum is approximately 2, followed by the 

second negative term n2, followed by positive terms pj+1, pj+2, …, pk until the 

sum is approximately 3, and so forth. The result is a rearrangement of the 

alternating harmonic series with the following structure: 

 

The Divergent Rearrangement 

p1 + (n1 + p2 + … + pj) + (n2 + pj+1 + … pk) + … = 1 + ~1 + ~1 + … = ∞ 

 

Now we can construct a variant on Infinite Scale: 
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——— 

Clustered Items 

——— 

Items:  The same collection of items as in Infinite Scale. 

Setup: The temporal order in which the items are placed corresponds to 

the alternating harmonic series (so the same as in Infinite Scale). 

But the spatial arrangement of the items corresponds to the 

divergent rearrangement (so an iron ball, followed by a balloon, 

followed by many iron balls, followed by a second balloon, 

followed by many, many iron balls, and so forth). 

 

Clustered Items and Infinite Scale are indistinguishable with respect to both 

(1) the items that comprise the collection, and (2) the order in which the 

items are placed on the scale. They differ only with respect to (3) the spatial 

arrangement of those items. In Clustered Items, the iron balls are clustered 

together, and the balloons become sparse at an exponential rate; in Infinite 

Scale, every iron ball is adjacent to two balloons, and every balloon is 

adjacent to two iron balls. The order-relative analysis predicts that the 

weights of the collections are the same: namely, ln(2). But while that result 

is plausible for Infinite Scale, it’s not at all obvious for Clustered Items. 

In fact, a natural answer for Clustered Items is that the weight is ∞.4 

That’s the answer I’ll eventually endorse. But my present point is modest: 

I’m simply claiming that it’s not obvious that we should assign Clustered 

Items and Infinite Scale the same weight value. 

 
4 Is ∞ a number? Well, this doesn’t really matter for my arguments. The important 

point is that the weight in Clustered Items exceeds every finite weight value. 

Throughout the paper, I’ll treat ∞ as a possible weight value, but I’ll leave open how 

exactly that is to be interpreted. If ∞ is treated as a number, then interesting questions 

arise about which trans-finite number system to deploy, but I won’t discuss that here. 

See Easwaran et al [2021: §3] for discussion of related issues. 
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There’s another clever argument against the order-relative analysis 

that comes from Hoek [2021]. Suppose we start with all the items already 

placed on the infinite scale, and then remove them—as follows—until the 

scale is empty: 

 

——— 

Emptied Scale 

——— 

Items:  The same collection of items as in Infinite Scale. 

Setup: We start at the end-state of Infinite Scale, where all items have 

already been placed and where (per the order-relative analysis) 

the resulting weight is .69kg. Then we remove the items as 

follows: first the 1kg ball and the 
1

3
 kg ball, then the −

1

2
 kg balloon, 

then the 
1

5
 kg and the 

1

7
 kg ball, then the −

1

4
 kg balloon, and so forth 

until all items have been removed from the scale. 

 

As Hoek notes, the natural generalization of the order-relative analysis will 

entail that the weight after all the items have been removed is a negative 

number. But that’s absurd, since at the end of the procedure there’s nothing 

on the scale. This is strong reason to reject the order-relative analysis. 

 

The Balance Analysis 

According to Hoek [2021], the weight of the collection in Infinite Scale is 0. 

He appeals to the following principle: 

 

BALANCE 

If equal weights and counterweights lie on a scale, then the scale is 

in the same state as when it holds no weights. 

 

Call this view the balance analysis. The basic idea is that for any collection of 

items, we can partition it into two equivalence classes, one containing the 

positively weighted items and the other containing the negatively weighted 
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items. If the sum of the positive weights is equal to the inverse of the sum 

of the negative weights, then the weight of the whole collection is 0. To 

motivate the balance analysis, Hoek reinterprets the infinite scale (where 

the counterweights are balloons) as an infinite balance (where the weights 

are on the left side and the counterweights are on the right side). Here’s the 

relevant passage, from Hoek [2021: 2]: 

 

Infinite Balance 

Imagine an infinite stock of brass weights of 1kg, 
1

3
 kg, 

1

5
 kg, and so on; and 

an infinite stock of counterweights of 
1

2
 kg, 

1

4
 kg, 

1

6
 kg, and so on. At 1pm, we 

begin alternatively placing a weight on the left of our indestructible 

balance, and a counterweight on the right. We start with the biggest 

weights and work our way down...We speed up the steps as we go, so that 

at 2pm exactly, all steps have been performed. Which way will the balance 

lean after 2pm? 

  

Here's the idea. Since both the left side and the right side of the balance 

contain an infinite amount of weight, it seems plausible that the balance will 

be in equilibrium. But Infinite Balance seems to be merely a redescription of 

Infinite Scale. Therefore, if Infinite Balance is in equilibrium, then we ought 

to think that Infinite Scale outputs 0kg. Here’s that argument in premise-

conclusion form: 

 

The Balance Argument 

P1: Infinite Balance is in equilibrium. 

P2: If Infinite Balance is in equilibrium, then the weight in Infinite 

Scale is 0. 

— 

C: The weight in Infinite Scale is 0. 

 

Hoek [2021] focuses mainly on defending P1. This is because the order-

relative analysis denies P1. Or, more precisely, it’s in the spirit of the order-
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relative analysis to accept that it’s possible for Infinite Balance to lean in one 

direction or the other (rather than to be in equilibrium), depending on the 

order in which the individual items are weighed. To defend P1, Hoek argues 

against the following principle, which he thinks of as the underlying 

motivation behind the order-relative analysis: 

 

CONTINUITY 

If a quantity converges to a limit x over time interval [t0, t1), then the 

quantity attains value x at t1.5 

 

I won’t argue against P1—I’ll grant that Infinite Balance is in equilibrium. In 

fact, I agree with Hoek that CONTINUITY doesn’t hold in all cases, and in §5 

I’ll provide a diagnosis of when CONTINUITY works and when it doesn’t. 

Instead, I want to contest P2. On my view, Infinite Balance isn’t merely an 

innocuous reinterpretation of Infinite Scale. The scenarios differ in ways that 

matter for how we assess the results for each case. As an initial challenge to 

the balance analysis, consider the following principle:6 

 

FINITE ADDITIVITY 

If a and b both have finite weight values, then the weight of a and b 

equals the weight of a plus the weight of b. 

 

The balance analysis must deny FINITE ADDITIVITY. Let a be the collection of 

items in Infinite Scale, which the balance analysis says weighs 0, and let b be 

an additional iron ball that weighs 1. Given FINITE ADDITIVITY, the weight of 

a and b should be 1. But the balance analysis instead predicts that the weight 

of a and b is 0. In fact, this holds no matter how much the additional item 

weighs, and no matter how many additional items we add. I don’t take this 

 
5  Principles of continuity—and in particular, extensions from finite to infinitary 

cases—are often attributed to Leibniz. See Jorgensen [2009]. 
6 Assume a and b don’t overlap—I’ll briefly discuss overlapping objects later, in §4. 
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consideration to be decisive; unexpected results often occur when dealing 

with the infinite. But I think the violation of FINITE ADDITIVITY is at least a 

strike against the balance analysis, especially since the mathematical 

analogue of FINITE ADDITIVITY holds even for conditionally convergent 

series. 

Here's another challenge to the balance analysis: 

 

——— 

Heavy Items 

——— 

Items:  An infinite number of elephants, each of which weighs 5000kg. 

An infinite number of balloons, each of which lifts 0.01kg. 

Setup: An elephant is placed on the scale, then a balloon is attached to 

that elephant, then a second elephant is placed on the scale, then 

a second balloon is attached to that second elephant, and so on. 

 

Suppose we apply the balance analysis to Heavy Items. First, we partition 

the weights (the elephants) from the counterweights (the balloons). Then, 

we place all the elephants on one side of an infinite balance. Since balloons 

have negative weights, we need to find a kind of item for the other side of 

the balance whose positive weights exactly balance the negative weights of 

balloons. Well, it’s common knowledge that a standard helium balloon lifts 

approximately the weight of a slice of cheese. So, imagine that we replace 

each balloon with a slice of cheese, and then put all that cheese on the other 

side of the balance. Although one side contains elephants and the other side 

contains cheese, one might still conclude that the balance will be in 

equilibrium (since both sides contain an infinite amount of weight). But it’s 

implausible that the weight in Heavy Items is 0: instead, it's much more 

plausible that the weight is ∞. Therefore, even if we assume that Infinite 

Balance is in equilibrium, we ought not thereby infer that Infinite Scale 

outputs 0. 
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 A proponent of the balance analysis might contend that our finite 

imaginative capacities are leading us astray. Just because any finite number 

of elephants and balloons has a positive weight doesn’t mean that an 

infinite number of elephants and balloons likewise has a positive weight. 

As an analogy, consider the erroneous intuition that there are fewer prime 

numbers than integers (when, in fact, both sets have the same cardinality). 

However, this error-theoretic explanation is unlikely to be an apt diagnosis 

of the present case. Any finite number of elephants would outweigh the 

same number of slices of cheese—yet I granted above that an infinite 

number of elephants may very well weigh the same as an infinite number 

of slices of cheese. This is evidence that the intuition behind Heavy Items is 

sensitive to the aforementioned asymmetries between finitary versus 

infinitary cases. 

Besides, the argument can be strengthened. Here’s a variant on 

Heavy Items that yields an especially forceful argument against the balance 

analysis: 

 

——— 

Hungry Items 

——— 

Items:  An infinite number of elephants, each of which weighs 5000kg. 

An infinite number of balloons, each of which lifts 0.01kg. 

Setup: An elephant is placed on the scale, then a balloon is fed to that 

elephant, then a second elephant is placed on the scale, then a 

second balloon is fed to that second elephant, and so on. 

Fortunately, the elephants have large gullets and flexible 

stomachs, so each balloon is swallowed whole by its elephant and 

remains inflated once inside its elephant’s stomach. 

 

The only difference between Heavy Items and Hungry Items is the relative 

locations of the elephants and balloons. In Heavy Items, the balloons are 

floating above the elephants; in Hungry Items, the balloons are inside the 
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elephants. Unless we have independent reason for thinking that this change 

is relevant to the weights of the collections, we ought to treat Heavy Items 

and Hungry Items with parity. But surely the weight in Hungry Items is ∞. 

So, we ought to think that the weight in Heavy Items is likewise ∞. This 

indicates that we ought to reject BALANCE (and, by consequence, the balance 

analysis). 

We can now appreciate a more general problem for both the order-

relative and balance analyses. Both solutions tacitly assume that we already 

know how to individuate the relevant items. However, when dealing with 

scenarios such as Hungry Items, it’s unobvious how to do that. Should we 

count the balloons as separate from the elephants, or should each elephant 

(with a balloon inside) count as a single item? How we answer such 

questions will generate predictive differences for both the order-relative 

and balance analyses. Yet there seem to be no non-arbitrary answers. And 

we cannot simply permit any method of individuation whatsoever, since 

doing so would lead to contradiction. 

 We have now evaluated two solutions to the puzzle. Both initially 

appeared promising, but both turned out to be vulnerable to compelling 

counterarguments. Let’s now turn to the solution I favor. 

 

§3 The Expansionist Analysis 

Here’s the basic idea behind my view. To solve the puzzle of conditional 

convergence, we need to know not only the weights of the individual items, 

but also their spatial arrangement. More precisely, we need to know 

whether the finite subcollections of items contained within ever-expanding 

regions of space always converge to the same weight value. If so, then that’s 

the weight of the collection. Otherwise, the collection’s weight is either 

infinite or undefined. I’ll call this the expansionist analysis.7 

 
7 In the infinite ethics literature, there’s a prominent view called ‘expansionism’ (for 

some discussions, see Vallentyne & Kagan [1997], Bostrom [2011], and Wilkinson 
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The present section will focus mainly on explaining how the 

expansionist analysis works. But the full story—including the explanation 

for why weight and space are connected—will be developed also in §4, 

where I explore some general metaphysical questions about quantities and 

locations. Some of the discussion in this section will be a bit technical—for 

those less interested in that kind of stuff, it’s possible to skim the technical 

details while still grasping the core ideas. 

  

Definitions 

Let a ball be the set of spatial points that lie within a given distance from 

some center.8 To denote balls, I’ll use the notation ‘B(p, d)’, where p is the 

ball’s center and d is the ball’s radius. For any collection A and ball B(p, d), 

we can identify the subcollection of A that lies inside B(p, d).9 To denote this 

subcollection, I’ll use the notation ‘A|B(p, d)’. If no items of A lie inside B(p, 

d), then A|B(p, d) = ∅; if every item of A lies inside B(p, d)), then A|B(p, d) = A. 

 

[2020]). My view is similar in spirit, and my expansionist analysis is in some ways 

inspired by ideas from that literature. But it’s important to appreciate that the target 

issues are distinct (even when we set aside the superficial difference concerning 

whether value or weight is the target quantity). The core difference is that expansionist 

theories in infinite ethics aim to yield comparisons between worlds with infinite total 

values, whereas my concern is with non-comparative evaluations of infinitary 

collections of items that sum to finite total values. Because of this, the main question of 

this paper is logically orthogonal to the main question examined in the infinite ethics 

literature. Still, my view is a natural complement to expansionist theories in infinite 

ethics. Moreover, some of my later arguments (especially in §4) might be taken to 

indirectly support those theories. 
8 It doesn’t matter whether the ball is open (excluding its boundary points) or closed 

(containing its boundary points). 
9  What does it mean for an item a to be inside a region of space? Well, the answer 

doesn’t matter. We can choose either (1) a is wholly inside the region, or (2) a is partially 

inside the region, or (3) a is mostly inside the region. Any of these choices will yield 

the same results. 
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Let ω be a function whose input is a finite collection of items and 

whose output is the weight of that collection. Hence, ω(A|B(p, d)) is the 

weight of the finite subcollection of A that lies within the spatial ball with 

center p and radius d. For simplicity, I’ll assume that any finite region of 

space contains only a finite number of weighted items (in §5, I’ll discuss 

some cases where infinitely many items are in a finite region). Since we 

know how to calculate the weights of finite collections, and since any ball 

B(p, d) is finite, there will always be a straightforward answer as to the value 

of ω(A|B(p, d)). 

 

Procedure 

The expansionist analysis says that the weight of collection A is x iff the 

weights of A’s subcollections contained inside ever-expanding balls always 

converge to x, no matter which spatial point those balls are centered on. 

More precisely, ω(A) = x iff for all spatial points p, ω(A|B(p, d)) approaches 

the limit x as d tends to ∞. 

 Here’s a procedure for determining whether that condition is 

satisfied. We start by picking an arbitrary spatial point p and an arbitrary 

distance d. These two values determine a ball B(p, d)—the ball with center p 

and radius d. This in turn determines a set of items A|B(p, d)—the 

subcollection of A that lies within B(p, d). Then we ask: what happens to 

ω(A|B(p, d)) as the ball grows larger? 

To answer this, we define a sequence of balls that satisfies the 

following conditions: (1) every ball has the same center (namely, p), (2) 

every subsequent ball has a radius larger than the preceding ball, and (3) 

for every distance di, there’s a ball in the sequence with radius dn such that 

dn > di. Put another way, the sequence of balls will be (B(p, d1), B(p, d2), B(p, d3), 

…). The first term denotes the ball with center p and radius d1, the second 

term denotes the ball with center p and radius d2, and so forth. Hence, we 

have a sequence of ever-expanding balls, each centered on the point p. 

We then use this sequence of balls to define a corresponding 

sequence of weights: in particular, the sequence (ω(A|B(p, d1)), ω(A|B(p, d2)), 
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ω(A|B(p, d3)), …). Here the first term denotes the weight of the subcollection 

of A that lies inside the ball with center p and radius d1, the second term 

denotes the weight of the subcollection of A that lies inside the ball with 

center p and radius d2, and so forth. Hence, we now have a sequence of the 

weights of the subcollections of A contained inside the sequence of ever-

expanding balls (anchored on some center). 

What we have defined so far is illustrated in the diagram below: 

 

 
 

FIGURE 1: The weights of finite subcollections of A contained within ever-expanding spatial balls. 

 

Let’s call any sequence of weights derived through this kind of procedure 

an ω-sequence. The ω-sequence illustrated by the diagram above is (1kg, 
1

2
kg,

5

6
kg, …). 

For any collection A, we can generate a set of ω-sequences. For 

simplicity, let’s suppose the distance intervals are always fixed (this won’t 

make a difference in the end). Then the ω-sequences for any given collection 

will be individuated by which spatial point p marks the center of the balls. 

In other words, for any collection A, there will be exactly one ω-sequence 

for every spatial point p. Now, for any ω-sequence, we can ask whether it 

p

d1

ω(A | B(p, d1) = 1kg

B(p, d1)
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approaches some limit x, meaning that the terms in the sequence get 

arbitrarily close to x as the sequence progresses. In other words, as the balls 

grow arbitrarily large, the weights of the subcollections of A within the balls 

become arbitrarily close to x. 

Now I can state the core claim of the expansionist analysis. If every 

ω-sequence for A approaches the limit x, then the weight of A is x. If not, 

then the weight of A is either ∞ or undefined. For the moment, I’ll assume 

that every item in A is eventually captured by the ω-sequence (meaning that 

every item will eventually be contained within the ever-expanding 

sequence of balls). I’ll later explain how to deal with cases where we drop 

that assumption. 

 

The Expansionist Analysis 

The expansionist analysis can be elegantly expressed with an equation (as 

reminders, A is a collection of items, x is a real number, and ω(A|B(p, d)) is 

the weight of the subcollection of A that lies within the ball that has center p 

and radius d): 

 

 The Expansionist Analysis 

A weighs x ≡ ∀p 𝑙𝑖𝑚
𝑑 → ∞

ω(A|B(p, d)) = x 

 

The analysis says that the weight of a collection A is x iff for every spatial 

point, if we consider an ever-expanding sequence of balls centered on that 

point, then the weights of the finite subcollections of A contained with those 

balls will approach x. That’s equivalent to saying all of A’s ω-sequences 

approach x.  

To make sure that the background mathematics is clear, it’s worth 

making some remarks about the relationship between sequences and series. 

A sequence is an ordered list of terms; a series is the operation of summing 

all the terms of an infinite sequence. What it means for a series to converge 

is for its sequence of partial sums to approach a limit. If, for example, the 
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series is a + b + c +…, then its sequence of partial sums is (a, a + b, a + b + c, 

…). If that sequence approaches a finite limit x, then the sequence (and the 

associated series) converges to x. Otherwise, the sequence diverges. 

There’s a natural way of connecting the mathematics to the 

metaphysics. Each of the solutions to the puzzle of conditional convergence 

offers a different answer as to which sequences of partial sums are relevant 

for determining the weight of a collection. The order-relative analysis says 

that the relevant sequence of partial sums corresponds to the order in which 

the items are weighed. The balance analysis identifies two relevant 

sequences of partial sums, one comprised of all the positively weighted 

items and the other comprised of all the negatively weighted items. And the 

expansionist analysis takes the relevant sequences of partial sums to 

correspond to the weights of the finite subcollections contained inside ever-

expanding balls. The fact that these different answers are available 

illustrates how the mathematics underdetermines the metaphysics. Finding 

a solution to the puzzle of conditional convergence is a matter of identifying 

the right metaphysical interpretation of the mathematics. 

I’ve now explained how the expansionist analysis works for cases 

involving conditional convergence. But what about cases involving 

divergence? If some of A’s ω-sequences approach limit x while others 

approach limit y, then the weight of A is undefined. If each of A’s ω-

sequences tends to ∞ (or −∞). then the weight of A is ∞ (or −∞). 

Furthermore, while the expansionist analysis is motivated by the puzzle of 

conditional convergence (which involves infinitary collections), it 

generalizes to finite cases as well. If A is finite, then every item in A will 

eventually be contained within any sequence of ever-expanding balls, so 

every ω-sequence will eventually converge to exactly the weight of A. 

Some might wonder why the expansionist analysis appeals to 

uniform expansions from a center. In principle, we could consider a more 

permissive restriction on expansions, such as a convexity or connectedness 

restriction. But it’s plausible that uniformity is the relevant restriction, at 

least in the analysis of weight. If we were to instead adopt a more 
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permissive constraint on expansions, then we would be faced with 

implausible predictions. Consider, for example, Hungry Items. Since there 

are gruesome sequences of spatial expansions where the associated partial 

sums in this scenario don’t diverge to ∞, adopting a more permissive 

restriction on expansions would predict that the weight in Hungry Items is 

undefined rather than ∞. This strikes me as a good reason for rejecting a 

more permissive restriction on expansions for weight. 

Are there other quantities for which non-uniform expansions are 

permissible? I suspect that when dealing with natural quantities, we will 

need to always restrict the analysis to natural expansions. But that’s a 

speculation: to figure out the answer, we would need to undertake a more 

systematic exploration of the relevant expansionist analyses for other 

quantities. If there are other quantities for which it’s appropriate to appeal 

to more permissive restrictions on expansions, though, then it should be 

easy enough to modify the expansionist analysis accordingly. 

 

Isolated Items 

The analysis above assumes that all the items in the collection are located 

within the same space. But what happens when we have isolated spaces?10  

Let’s say two items are isolated from each other if their distance is 

undefined. Imagine, for example, that a multiverse hypothesis is true, 

where there are infinitely many spatiotemporally isolated universes (all of 

which are actual). And consider a finite collection of isolated items: 

 

 
10  Technically, it doesn’t even make sense to quantify weights across spatiotemporally 

isolated universes since there’s no common gravitational force between isolated items. But 

analogous questions arise even when we consider other quantities (such as utility) where 

such questions do make sense. For the purposes of this subsection, I’ll frame the discussion 

more neutrally and simply talk about the “values” of the items under consideration 

(without specification of any particular quantity). Afterwards, I’ll return to weight. 



A PUZZLE ABOUT SUMS 

 

 

 

20 

——— 

Finite Isolation 

——— 

Items:  Two iron balls, a and b, where a has quantity value 1 and is 

located in universe A, and b has quantity value 2 and is in 

universe B. 

 

What’s the total value of the collection comprised of a and b? Well, 

it’s clear the answer ought to be 3. But no ever-expanding sequence of 

balls starting in a’s universe will ever reach any point in b’s universe, since 

the universes are spatially isolated. In fact, every ω-sequence starting in A 

will converge to 1, and every ω-sequence starting in B will converge to 2. 

Fortunately, it’s easy to deal with this sort of case. To determine 

the value of a collection that contains some isolated items, we partition 

the collection into a set of equivalence classes, where each equivalence 

class consists of all and only the items that aren’t isolated from each other. 

Put another way, we group together items that inhabit the same space. 

Then we apply the expansionist analysis to each equivalence class, 

yielding a set of values. After that, we simply add up the values associated 

with each equivalence class to get a total value. In Finite Isolation, we apply 

the expansionist analysis twice—once to the subcollection in universe A, 

yielding a subtotal of 1, and again to the subcollection in universe B, 

yielding a subtotal of 2—and add up those subtotals, yielding a total of 3. 

What justifies the procedure above? The answer to that question 

involves ideas that will be developed in the next section. But here’s a 

preview. There are two distinct ways of summing quantities: (1) over a 

collection of individuals, and (2) over a collection of locations. In some 

cases, such as Infinite Scale, summation over individuals doesn’t yield a 

definite verdict, since different orderings of the terms yield different 

sums. Yet we can still appeal to summation over locations (using the 

expansionist analysis) to find an answer. Conversely, in other cases, such 
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as Finite Isolation, summation over locations doesn’t yield a definite 

verdict, since some of the items are isolated from each other. Yet we can 

still appeal to summation over individuals (using FINITE ADDITIVITY) to 

find an answer. 

In fact, even when we have an infinite collection of isolated items, 

we can still appeal to summation over the values of the individual items 

to find an answer, so long as the values either generate an absolutely 

convergent series or diverge to ∞. But what if the values of a collection 

of isolated items generate a conditionally convergent series? 

 

——— 

Infinite Isolation 

——— 

Items:  The exact same collection of items as in Infinite Scale, with 

every item located in a spatiotemporally isolated universe. 

 

My view is that the value in Infinite Isolation is undefined. At least, I see no 

non-arbitrary way of summing the values of the items in this scenario. This 

might elicit the worry that ‘undefined’ is a non-answer. But nearly everyone 

will want to accept that there are undefined values in at least some 

scenarios. Setting aside isolation cases, we can construct scenarios involving 

unbounded oscillating divergence, such as the sequence 1 − 2 + 3 − 4 + …. 

Those who reject ‘undefined’ as a possible answer must figure out what to 

say about these sorts of scenarios. I see no good answer besides ‘undefined’ 

for such cases. And if we accept ‘undefined’ as the right answer in those 

cases, it’s reasonable to think that it likewise applies in Infinite Isolation. 

 

Verdicts about Cases 

Let’s return to the big picture. I’ll now review how the expansionist analysis 

does better than the order-relative and balance analyses in generating 

plausible predictions. Here are the scenarios that have occurred throughout 
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the paper (in the order in which they appeared), alongside the verdicts of 

the expansionist analysis: 

 

Scenario Prediction 

Infinite Scale .69 

Clustered Items ∞ 

Emptied Scale 0 

Infinite Balance11 Equilibrium 

Heavy Items ∞ 

Hungry Items ∞ 

Finite Isolation 3 

Infinite Isolation Undefined 

 

I’ve already discussed the isolation cases. I’ll briefly walk through the other 

predictions, starting with Infinite Scale. 

Strictly speaking, Infinite Scale is under-described, since the scenario 

didn’t specify the spatial arrangement of the items. But suppose the spatial 

arrangement of items corresponds to the temporal order in which those 

items are placed. Imagine, for example, that the first item is placed all the 

way on the left, the second item to the right of the first, the third item to the 

right of the second, and so forth. Then the expansionist analysis plausibly 

predicts (alongside the order-relative analysis) that the weight of Infinite 

Scale is .69. Next, consider Infinite Balance. It’s uncontroversial that the 

weight on each side of the balance is ∞. If we then grant that a balance is in 

equilibrium just in case both sides carry the same amount of weight,12 then 

we reach the result that Infinite Balance is in equilibrium.  

 
11 Here I interpret Infinite Balance as involving two collections of weights, one on either 

side of the balance. 
12  Actually, this principle is more contestable than you might initially think. In the 

infinite ethics literature, many deny the analogous principle concerning value (so that 
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 The counterexamples to the order-relative analysis were Clustered 

Items, in which we arranged the items from Infinite Scale so that the iron 

balls were clustered together, and Emptied Scale, in which we removed all 

the items from Infinite Scale in a different order than they were placed. The 

order-relative analysis predicted that the weight of Clustered Items was .69 

(instead of ∞) and that the weight on Emptied Scale would be negative 

(instead of 0). By contrast, the expansionist analysis plausibly predicts that 

the weight in Clustered Items is ∞ (since sequences of ever-expanding balls 

will generate sequences of ever greater weight) and that the weight in 

Emptied Scale is 0 (since there are no items on the scale when the scale is 

empty). Moreover, whereas the order-relative analysis takes weight to 

depend on what seems to be a mere matter of convention, the expansionist 

analysis (as we will soon see) appeals to independently motivated 

connections between quantities and locations. 

The counterexamples to the balance analysis were Heavy Items, 

where infinitely many elephants had balloons attached to their backs, and 

Hungry Items, where infinitely many elephants had balloons inside their 

stomachs. The predictions of the balance analysis depend on how we 

individuate the items in the scenario. But on the most natural method of 

individuation, the balance analysis predicts that the weight in Heavy Items 

is 0 while the weight in Hungry Items is ∞. By contrast, the expansionist 

analysis treats these scenarios with parity: in both cases, the weight is ∞ 

(since in both cases, all sequences of ever-expanding balls generate 

sequences of ever greater weight). Moreover, whereas the balance analysis 

had to give up FINITE ADDITIVITY, the expansionist analysis can retain that 

principle. 

Although I’ve argued that neither the order-relative nor the balance 

analyses are correct, I think that both still get something fundamentally 

right. The order-relative analysis is fundamentally correct that Riemann’s 

 

even if worlds A and B each have value ∞, it may nevertheless be that A is better than 

B). Perhaps analogous considerations apply to other quantities as well. 
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Rearrangement Theorem has surprising metaphysical implications: by 

simply rearranging the items within a collection, we can change the weight 

of that collection. However, the order-relative analysis misidentifies the 

relevant parameter of rearrangement: it’s spatial distribution, rather than 

temporal order, that matters. The balance analysis is fundamentally correct 

in rejecting CONTINUITY: just because the weights in a sequence of finite 

subcollections approaches the value x before time t doesn’t mean that the 

resulting infinite collection at time t weighs x. However, the balance 

analysis is too quick to dismiss the relevance of convergence to limits: it’s 

convergence over regions of space, rather than intervals of time, that 

matters for weight. The expansionist analysis incorporates these lessons. 

You might still feel uneasy about taking the sum of a collection of 

items along a quantity to depend on the spatial arrangement of those items. 

But if you deny any such connections, then you must also accept some 

uncomfortable consequences. To elicit this, consider an example that 

involves utility (rather than weight). Imagine two scenarios where Hilbert’s 

Hotel is fully occupied. In the first scenario, the odd-numbered rooms are 

occupied by residents with +1 utility and the even-numbered rooms are 

occupied by residents with –1 utility. In the second scenario, the composite-

numbered rooms are occupied by residents with +1 utility and the prime-

numbered rooms are occupied by residents with –1 utility. Since the 

occurrence of prime numbers grows increasingly infrequent as we move 

along the natural number line,13 the positive utility is much more densely 

distributed in the second scenario. Yet the two scenarios may be thought of 

as mere spatial rearrangements, since every item in one scenario can be 

mapped to a corresponding item in the other scenario. If you think that 

spatial rearrangements never matters for summing quantities, then you will 

 
13 This follows from the prime number theorem, proved by Hadamard and de la Vallée 

Poussin in 1896. Interestingly, this theorem was also based on work by Riemann (in 

particular, the Riemann zeta function). See Weisstein [2022]. 



A PUZZLE ABOUT SUMS 

 

 

 

25 

be forced to say that these scenarios involve equal total utilities. That strikes 

me as a terrible cost to incur. 

The expansionist analysis has some surprising consequences. But 

everyone must accept some surprising consequences about infinitary 

scenarios, and I believe this is a consequence that we can get used to, learn 

to live with, and perhaps even come to love. Furthermore—as I’ll discuss 

next—there’s a deeper diagnosis of the connections between quantities and 

locations that will help us to make sense of this consequence. 

 

§4 Quantities and Locations 

In the expansionist analysis, physical space plays the role of the locative 

category: to determine the weight of a collection, we consider ever-

expanding regions of space (rather than time, spacetime, or something else). 

Yet nothing in the formalism necessitates an appeal to physical space: in 

principle, we could have instead appealed to ever-expanding temporal 

intervals, ever-expanding light cones, or ever-expanding regions of some 

other kind. In fact, anything with metric structure—the kind of structure 

associated with distances between elements—could (at least for 

mathematical purposes) be used for the locative category. Therefore, you 

might wonder: What justifies the connection between weight and space?14 

This section aims to answer that question. By doing so, I’ll also 

introduce some new lines of inquiry about the metaphysics of quantities 

and locations. At some points, I’ll offer more questions than answers. But I 

 
14 The ensuing discussion will assume a classical picture of space and time. One reason 

is merely to simplify the discussion. But another reason is that many of our concepts—

including WEIGHT—are arguably classical concepts. That is, regardless of the actual 

metaphysics of space and time, WEIGHT bears different conceptual relations to SPACE 

than it does to TIME. Now, this raises some interesting questions about conceptual 

engineering: how should we adjust our concept of weight when we move to a 

relativistic framework? The natural options are to (1) appeal to frame-variant regions 

of space, or (2) appeal to frame-invariant regions of spacetime. I won’t attempt to settle 

which of these options is best. 
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think that’s indicative of how much of the metaphysical terrain is 

underexplored. 

 

Category Mistakes 

Consider an asymmetry: it makes sense to ask how much weight is in a 

given region of space, but it doesn’t make sense to ask how much weight is 

in a given region of time. Contrast 1a with 1b–1d:15 

 

  (1a) How much weight is in this room? 

 # (1b) How much weight is in this hour? 

 # (1c) How much weight is in the red region of color space? 

 # (1d) How much weight is in the interval (0, 1)? 

 

Whereas 1a is a sensible question, 1b−1d are category mistakes:16 weight can 

be instantiated at regions of physical space, but it can’t be instantiated at 

regions of other sorts of spaces. This asymmetry with respect to locations is 

analogous to a more familiar asymmetry with respect to individuals. Only 

certain kinds of entities—namely, material objects—have weight values. 

Other kinds of entities—colors, abstract objects, feelings, etc.—aren’t the 

sorts of things for which it makes sense to ascribe weight values. Consider 

the asymmetry between 2a and 2b−2d: 

 

  (2a) How much does Riemann weigh? 

 # (2b) How much does redness weigh? 

 # (2c) How much does the number 3 weigh? 

 # (2d) How much does love weigh? 

 
15 These sentences are all formulated as questions, but other syntactic constructions 

(such as declarative sentences) would work just as well. 
16 1c and 1d are especially odd because they commit an extra category mistake: only 

concrete objects can have weights, but concrete objects don’t occupy regions of color 

space (rather, colors do) or regions of the real line ℝ (rather, numbers do). 



A PUZZLE ABOUT SUMS 

 

 

 

27 

 

Just as weight can be instantiated only by material objects, weight can be 

instantiated only at spatial locations. Even though the formalism for the 

expansionist analysis leaves open which locative category has the relevant 

metric structure, the interpretation of the formalism makes sense only if we 

take the locative category to be space. For any quantity, we can ask both 

about its category of individuals (which kinds of things can instantiate the 

quantity?) and its category of locations (which kinds of locations are those at 

which the quantity can be instantiated?). The answer to the latter question 

tells us which kinds of locations are relevant to the expansionist analysis for 

that quantity.17 

Not every quantity has space as its locative category. Contrast 

weight with pain. While it doesn’t make sense to ask how much weight 

occurred over an interval of time, it does make sense to ask how much pain 

occurred over an interval of time. If one feels pain for a longer duration, 

then more pain is instantiated. This indicates that time is a locative category 

for pain, even though it isn’t for weight. Or contrast weight and number-of-

prime-integers. While it doesn’t make sense to ask how many primes there 

are in a given region of physical space, it does make sense to ask how many 

primes there are in a given interval of the number line. This indicates that 

while space is a locative category for weight, it isn’t for number-of-primes. 

Now, in one sense, weight values are indexed to times. If we ask how 

much weight is in a given region R (or instantiated by a given collection A), 

then we must specify the time at which we’re evaluating the weight of R (or 

A). Otherwise, there won’t be a determinate answer to the question, since 

the weight of a given region or collection may vary across different times. 

However, the way in which weight is indexed to time is different from the 

 
17  This point is especially relevant to expansionist theories in the infinite ethics 

literature. A common criticism of these theories is that it’s not clear why spacetime is 

ethically significant. My arguments here point to a response: spacetime is the locative 

category for value. 
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way in which weight is indexed to space (and to material objects). As we 

saw above, it doesn’t make sense to sum weight over intervals of time, 

whereas it does make sense to sum weight over regions of space or 

collections of individuals. The specification of a time fixes the context of 

evaluation, rather than the domain of summation. Weight values are 

specified at particular times, but they aren’t summed over temporal 

intervals. 

It may turn out that some quantities are locationless, meaning they 

lack a locative category. If a quantity Q is locationless, then there are no 

answers to questions of the form ‘Where is Q instantiated?’ and no true 

sentences of the form ‘Q is instantiated at R’. As a potential example, 

consider wealth. It’s not obvious that it makes sense to ask how much 

wealth is instantiated within a given region of space or time (or any other 

locative category).18  Similarly, it might turn out that some quantities are 

objectless, meaning they lack a category of individuals. As a potential 

example, consider number-of-prime-integers. While we can ask how many 

prime integers there are within a given region of the real line, it’s not 

obvious that number of prime integers is instantiable by any individual 

entity (unless we interpret regions of the real line as themselves 

individuals). 

If there are locationless quantities, then what happens when they 

generate puzzles of conditional convergence? Well, the expansionist 

analysis identifies restrictions on which sequences of partial sums are 

relevant for the sum of an infinite series. In particular, the relevant partial 

sums are the values of the finite subcollections inside ever-expanding balls 

of the relevant locative category. If a quantity is locationless, then there are 

no such restrictions. Therefore, it’s natural to think that for these quantities, 

all sequences of partial sums are relevant. By consequence, when we 

 
18  If your linguistic intuitions differ, make sure that you aren’t interpreting such 

expressions as elliptically asking how much wealth is instantiated by the collection of 

people within a given region of space or at a particular time. 
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construct a conditional convergence scenario for a locationless quantity, the 

value of the collection will be undefined. 

What exactly is a location, anyway? This is a hard question—I’m 

optimistic about the prospects for a metaphysical analysis, but I don’t have 

a settled answer. But I don’t think we need one for present purposes. The 

connections between quantities and locations that I’ve identified are 

compatible with a range of views about the nature of locations. As 

examples, my arguments are intended to leave open whether objects and 

locations are mutually exclusive categories, whether locations are 

fundamentally absolute or relational, and how to best develop a formal 

theory of locations.19 

The methodology I’ve applied to weight can be generalized. If R is a 

region that belongs to the category of locations for Q, then we should be 

able to sensibly ask ‘How much of quantity Q is instantiated within region 

R?’ If A is a collection of individuals that all belong to the category of 

individuals for Q, then we should be able to sensibly ask ‘What is the value 

of collection A with respect to quantity Q?’ The answers to such questions 

provide evidence as to the target quantity’s category of locations and 

category of individuals. 

 

Metaphysical Principles 

I’ll now turn to some metaphysical principles connecting quantities, 

locations, and individuals. My aim is partly to illustrate some of the 

questions that arise when we pursue this line of metaphysical inquiry. But 

these principles will also bear on the puzzle of conditional convergence: the 

first principle will mitigate one of the dialectical burdens of the expansionist 

analysis, the second principle illustrates how summation over locations 

behaves in systematic ways, and the third principle is a generalization of 

 
19 For some work on the nature of locations, see Casati & Varzi [1998], Hawthorne & 

Sider [2002], Parsons [2007], and Kleinschmidt (ed) [2014]. 
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the initial summation principle introduced at the very beginning of this 

paper. 

Suppose A is a collection of items and R is a region of space that 

contains all (and only) those items. Recall that ω is a function that takes as 

input a collection of items and outputs the weight of that collection. Let’s 

generalize ω so that it can also take as input a region of space (where the 

output would then be the weight contained within that region of space). 

Here’s a plausible principle about how the weights of collections of 

individuals relate to the weights contained within locations: 

 

QUANTIFICATION EQUALITY 

If A is the collection of weighted items in region R, then ω(A) = ω(R).20 

 

Our focus throughout the paper has been on questions about the weights of 

infinitary collections of items. But we could have instead focused on 

questions about the weights contained within infinitary regions of space. 

Let A be one of the infinitary collections of items we have considered (such 

as the collection in Infinite Scale) and R be the region of space that contains 

all and only those items. QUANTIFICATION EQUALITY entails that the answers 

to the following questions should be the same: 

 

Q1: What is the weight of A? 

Q2: What is the weight within R? 

 

The equivalence of these questions matters for the puzzle of conditional 

convergence. According to the expansionist analysis, we can answer Q1 by 

finding the limit of the weights of the finite subcollections of A contained 

 
20  According to supersubtantivalism, material objects are identical to regions of 

spacetime. If supersubstantivalism is true, then QUANTIFICATION EQUALITY trivially 

follows. But even if supersubstantivalism is false, QUANTIFICATION EQUALITY is 

plausible. 
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within ever-expanding regions of space. It’s natural to then ask why regions 

of space are relevant for calculating the weight of a collection of individuals. 

But that question feels less compelling when we shift the focus from Q1 to 

Q2. If we ask how much weight is contained within some region R, it seems 

obvious that the answer can be found by summing the weights contained 

within the subregions of R. But QUANTIFICATION EQUALITY entails that Q1 and 

Q2 will have the same answer. Hence, if it’s permissible to appeal to space 

to answer Q2, it should also be permissible to appeal to space to answer Q1. 

QUANTIFICATION EQUALITY also enables the expansionist analysis to 

avoid a problem that beset the order-relative and balance analyses. Recall 

that both analyses were subject to a problem about how to individuate the 

items within the collection. The problem was illustrated via Hungry Items, 

when we asked whether the elephants and the balloons counted as separate 

items or whether each elephant and the balloon inside of it counted as a 

single item. On the expansionist analysis, however, it doesn’t matter how 

we answer such questions. This is because of QUANTIFICATION EQUALITY. For 

any region of space, there’s some determinate answer as to the amount of 

weight contained within that region, no matter how we individuate the 

collection of items contained within that region. 

The second metaphysical principle I want to consider concerns sums 

over the weights contained within regions. Suppose we already know the 

weights contained within two regions of space, R1 and R2. What, then, is the 

weight of the union of R1 and R2? The following answer is plausible: 

 

SUMS OVER REGIONS 

ω(R1 ∪ R2) = ω(R1) + ω(R2) − ω(R1 ∩ R2). 

 

This principle yields the right verdicts across different cases. There are three 

possibilities for how R1 and R2 may be related: (1) R1 and R2 are identical, (2) 

R1 and R2 are disjoint, and (3) R1 and R2 overlap (where the overlap is partial, 

and where this includes cases where one region wholly contains the other). 

Here’s what the principle says for each case: 
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(1) Identity: The weight in R1 ∪ R2 is the weight contained within 

either region. That is: ω(R1 ∪ R2) = ω(R1) = ω(R2). 

(2) Disjointness: The weight in R1 ∪ R2 is the weight of R1 plus the weight 

of R2. That is: R1 ∩ R2 = ∅, so ω(R1 ∩ R2) = 0, so ω(R1 ∪ R2) 

= ω(R1) + ω(R1). 

(3) Overlap:  The weight in R1 ∪ R2 is the weight of the disjoint part 

of R1, plus the weight of the disjoint part of R2, plus the 

weight of the intersection of R1 and R2. That is: ω(R1 ∪ R2) 

= ω(R1\R2) + ω(R2\R1) + ω(R1 ∩ R2). 

 

It’s worth comparing SUMS OVER REGIONS to the corresponding principle 

concerning sums over individuals. We’ve already encountered a version of 

the latter principle: it was introduced at the beginning of the paper, under 

the simple label ‘SUM’, and it stated that for any collection of items, the 

weight of the collection equals the sum of the weights of the items within 

that collection. That principle is plausible if we assume that none of the 

items in the collection overlap with each other. But we can also generalize 

that principle so that it applies even when the items overlap. 

  Consider, for example, a statue and the clay that constitutes it, which 

are distinct but overlapping objects. If we’re calculating the weights of 

material objects, then (in most contexts)21  we wouldn’t want to double-

count the weight of the statue and the weight of the clay. Put another way, 

the weights of overlapping material objects are quantitatively redundant. 

To capture this precisely, we can construct a principle for sums over 

individuals that’s structurally analogous to the principle for sums over 

regions. Whereas our second metaphysical principle ranged over two 

 
21 There may be some unusual contexts where we would want to count the weights of 

the statue and the clay separately: perhaps, for example, in certain metaphysics 

seminars. But in these contexts, we would be deploying a non-standard method for 

summing weights. 
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regions R1 and R2, our third metaphysical principle ranges over two 

individuals a and b: 

 

SUMS OVER INDIVIDUALS 

ω(a, b) = ω(a) + ω(b) − ω(a ∩ b). 

 

An interesting question is how the intersection relation in SUMS OVER 

INDIVIDUALS relates to the intersection relation in SUMS OVER REGIONS. One 

option is to hold that they’re the same: for two individuals to intersect just 

is for them to intersect in their spatial locations. Another option is to hold 

that they differ: mereological intersection is distinct from spatial 

intersection. I won’t take a stance on this issue. But it’s worth noting that 

those who favor the second option face an explanatory challenge. Given 

QUANTIFICATION EQUALITY, SUMS OVER REGIONS, and SUMS OVER INDIVIDUALS, 

two individuals overlap just in case their spatial regions overlap. Those who 

postulate two overlap relations must explain why these relations 

systematically coincide. 

 

Generalizing the Puzzle 

To generate a puzzle of conditional convergence, a quantity must be (1) 

summative, meaning that the quantity value of a collection is the sum of the 

quantity values of the individuals within that collection, (2) convergeable, 

meaning that the quantity values can be arbitrarily close to zero,22 and (3) 

polar, meaning that the quantity has both positive and negative values. 

These properties are formally specified below (let ω be a function from an 

 
22 Convergeability is tricky. In most (maybe all) cases, only a finite set of values can be 

instantiated by the kinds of objects that actually exist. But that’s compatible with 

thinking that there are possible values of the quantity that aren’t instantiated in the 

actual world. For example, even if there’s a minimal weight instantiated by actual 

objects, perhaps there are still smaller weight values that aren’t instantiated by any 

actual objects. This is how I’ll think about the quantities under consideration. 
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individual to its quantity value, ε be a real number, and each vi be a quantity 

value): 

 

SUMMATIVE:  ω(a, b) = ω(a) + ω(b) − ω(a ∩ b) 

CONVERGEABLE: ∀ε > 0, ∃vn(vn < ε) 

POLAR:   ∀v1∃v2(v1 + v2 = 0) 

 

None of these conditions expresses a necessary property of all quantities. 

As examples, it’s arguable that (a) volume is summative and convergeable 

but not polar, (b) wealth is summative and polar but not convergeable,23 (c) 

height-above-sea-level is polar and convergeable but not summative, and 

(d) number-of-children isn’t summative, convergeable, or polar.24 

Philosophical work on quantities has focused mostly on what 

quantities have in common (and what distinguishes them from non-

quantitative properties). But the differences above illustrate the diversity 

that exists within the domain of quantities. An interesting project would be 

to identify the most important features that differentiate various kinds of 

quantities and to generate a natural taxonomy. 

 

§5 Supertasks 

Many philosophical puzzles concerning infinitary scenarios involve 

supertasks—scenarios where an infinite number of steps are completed 

within a finite amount of time. The goal of this last section is to illustrate 

how the expansionist analysis sheds light on puzzles about supertasks. To 

start, let’s return to a principle that was mentioned earlier: 

 
23  This assumes that wealth is measured in a currency with a minimal value: for 

example, the minimal unit for US dollars is 1 cent. If we instead consider an infinitely 

divisible currency, such as bitcoin, then wealth may be convergeable. 
24 Why isn’t number-of-children summative? Suppose Alice’s children are Ivan, Jade, 

and Kale, while Bob’s children are Kale and Lyra. Then Alice has 3 children and Bob 

has 2 children, but Alice and Bob collectively have 4 children. 
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CONTINUITY 

If a quantity converges to a limit x over time interval [t0, t1), then the 

quantity attains value x at t1. 

 

Hoek [2021] warns that CONTINUITY isn’t a reliable guide to the outcomes of 

supertasks. He says: “We cannot uncritically apply the Continuity 

Principle…[T]he answer is different in each case…[E]ach supertask raises 

its own, subject-specific set of questions” (p.4). I think Hoek is right that 

CONTINUITY doesn’t always yield the right results. But I also think that we 

can systematically diagnose when the principle holds and when it doesn’t. 

The answer depends on whether time is a locative category for the quantity 

under consideration. 

 Any supertask will take place over some interval of time [t0, t1), such 

that the supertask begins at t0 and is complete at t1. To apply the 

expansionist analysis to a supertask, we need to consider increasingly large 

temporal intervals (tj, tk) such that (1) for all j, tj is identical to or after t0, and 

(2) for all k, tk is before t1. In other words, we appeal to ever-expanding 

intervals of time that approach (but don’t reach) the start and end times of 

the supertask. However, before we get to that point, we must first ask 

whether the expansionist analysis is even appropriate for the supertask at 

hand. To do that, we need to figure out whether the supertask involves 

summation over some quantity, and if so, ask whether time is a locative 

category for that quantity. In what follows, I’ll discuss three supertasks and 

show how each warrants relevantly different analyses.25 

 
25 Another philosophical puzzle is the Pasadena game, introduced by Nover & Hajek 

[2004]. Imagine you’re presented with the following game: a coin is flipped n times, 

where n = the first flip where the coin comes up heads. If n is odd, then you pay 2n/2 

dollars. If n is even, then you receive 2n/2 dollars. How much should you be willing to 

pay to play this game? If we calculate the expected value for each value of n, then we 
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——— 

Infinite Flea 

——— 

Items:  A flea jumping around on a continuous line. 

Setup: Each position on the line corresponds to a real number. The flea 

starts at position 0. At 1pm, it jumps 1cm to the right. At 1:30pm, 

it jumps 
1

2
 cm to the left. At 1:45pm, 

1

3
 cm to the right. And so forth. 

 

Just as with Infinite Scale, the movements of the flea can be modeled by the 

alternating harmonic series: 1 −
1

2
+

1

3
−

1

4
+ ⋯ = 𝑙𝑛(2).  Linnebo [2020] 

suggests that Infinite Flea is merely another case where the result of an 

infinitary scenario depends on the order in which the individual items are 

evaluated—instead of iron balls and balloons, the relevant items are now 

left-jumps and right-jumps. This means that the order-relative analysis 

endorses CONTINUITY (at least for Infinite Flea). Since we’ve seen that appeals 

to temporal ordering relations can yield implausible results in some 

infinitary scenarios, it’s reasonable to be suspicious of this way of reasoning 

about Infinite Flea. But this suspicion can be assuaged by observing an 

important asymmetry between Infinite Scale and Infinite Flea. 

Think of the quantity in Infinite Flea as distance traveled, where 

jumps to the right are positive distances and jumps to the left are negative 

distances. To elicit the asymmetry between Infinite Scale and Infinite Flea, 

consider the contrast between the following questions: 

 

  (3a) How much distance was traveled in this interval of time? 

 

encounter a familiar series: 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ⋯ =  𝑙𝑛(2) . But Nover & Hajek 

argue that any order by which we sum these expected values is arbitrary, leading them 

to conclude that the value of the Pasadena game is indeterminate. The Pasadena game 

raises some tricky issues that warrant more discussion than the other puzzles 

discussed in this section. For limits of space, I won’t address it in this paper. 
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 # (3b) How much weight was there in this interval of time? 

 

Although time isn’t a locative category for weight, it is for distance traveled. 

In other words, it makes sense to sum distance traveled (but not weight) 

over intervals of time. Given this, we ought to expect CONTINUITY to yield 

the right results for Infinite Flea. This is because if we take time to be the 

relevant locative category, then an invocation of the expansionist analysis 

is effectively an invocation of CONTINUITY. Both CONTINUITY and the 

expansionist analysis appeal to convergence to a limit: it’s just that 

CONTINUITY requires that the limit is defined over intervals of time, whereas 

the expansionist analysis leaves open which locative category is relevant. 

For Infinite Flea, the question becomes whether the amount of distance 

traveled via the finite subsets of jumps occurring over ever-expanding 

intervals of time always approaches some limit x. The answer is ‘yes’: that 

limit is ln(2).  

 Consequently, the order-relative analysis happens to be right about 

Infinite Flea: the total distance traveled by the flea depends on the order in 

which the flea makes its jumps. But the expansionist analysis gives a deeper 

explanation for why the order-relative analysis works in this case: namely, 

because time is the relevant locative category in this scenario. However, that 

condition may not hold for other supertasks involving other quantities. In 

fact, we will now turn to one such case. 

 

——— 

The Ross-Littlewood Paradox 

——— 

Items:  A jar that can hold infinitely many balls, and a countably infinite 

pile of balls, numbered 1, 2, 3, and so forth. 

Setup: At t0, we place balls 1–10 into the jar. Then we remove ball 1. Then 

we add balls 11–20 into the jar. Then we remove ball 2. We repeat 

indefinitely. By time t1, every ball from the original infinite pile 

has been placed in the jar. 
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How many balls are in the jar once the supertask is complete? If we appeal 

to CONTINUITY, then it seems that we should conclude that the answer is ∞. 

For every time before t1, the number of balls in the jar grows increasingly 

large. If we mathematically represent the number of balls that are added to 

or removed from the jar at each step, we get the series 10 − 1 + 10 − 1 + ⋯, 

which clearly diverges to ∞. However, Littlewood [1953] and Ross [1976] 

both argue that the answer is 0. The reason is that every ball is eventually 

removed from the jar. That is, for every ball in the jar, there will be some 

time before t1 when that ball is removed. If one were to say that the number 

of balls at t1 is ∞, we could ask which balls are in the jar at t1. But any ball we 

pick would eventually be out of the jar at some time, so it seems that there’s 

no ball such that it remains in the jar at t1. 

 We can get insight into the Ross-Littlewood paradox by appealing to 

the expansionist analysis. The quantity under consideration is number-of-

balls. Should we expect the value of this quantity at t1 to be the limit value 

of the quantity for the times before t1? Well, we can ask whether time is a 

locative category for number of balls: 

 

 # (4a) How many balls are in this interval of time? 

  (4b) How many balls are in this region of space? 

 

The asymmetry is evidence that time isn’t a locative category for number-

of-balls. Given this, we ought to refrain from appealing to CONTINUITY when 

assessing the Ross-Littlewood Paradox. Now, that’s merely a negative 

result: it doesn’t yet settle how many balls are in the jar at t1. But it 

undermines the main motivation for thinking that the answer is ∞. On the 

other hand, the observation that every ball is eventually removed from the 

jar remains untouched. Given this, I think the most reasonable answer to 

the Ross-Littlewood Paradox is 0. 

 Let’s turn now to the last supertask: 
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———  

Thomson’s Lamp 

——— 

Items:  A lamp. 

Setup: The lamp is turned on at 1:00pm, then off at 1:30, on at 1:45, and 

so on. 

 

What’s the state of the lamp at 2pm? Most philosophers who have thought 

about Thomson’s Lamp argue that the scenario is under-described. I agree; 

it seems to me that the specification of the scenario simply leaves open 

whether the lamp is on or off at 2pm. But set that aside: I want to instead 

make a more general point about how we reason about scenarios like 

Thomson’s Lamp.26 

It’s often thought that Thomson’s Lamp can be modeled by the 

infinite series 1 − 1 + 1 − 1 + ⋯ , often known as ‘Grandi’s Series’. But 

there’s an important asymmetry between Thomson’s Lamp and the other 

scenarios we’ve considered: the variable in Thomson’s Lamp—whether the 

lamp is on or off—isn’t a quantity. Consider how Thomson’s Lamp could 

just as well be defined as a scenario where the lamp flips back and forth 

between red light and green light, or as a screen that alternates between 

displaying ‘A’ and ‘B’. Given this, it strikes me as inappropriate to model 

Thomson’s Lamp using Grandi’s Series. If we wish to represent a scenario 

with an infinite series, then we should first ensure that the scenario involves 

modulations of some quantity. Otherwise, there won’t be a meaningful 

interpretation of the addition and subtraction operations, and we risk 

 
26  This scenario originates from Thomson [1954], which is also where the term 

‘supertask’ was first introduced. The idea that the scenario is underspecified is often 

associated with Benacerraf [1962]. 
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conflating features of the mathematical representation with features of the 

scenario being represented.27 

Granted, there is an obvious quantity that we could focus on in this 

scenario: namely, luminosity. We might interpret the luminosity level as 1 

when the lamp is on and 0 when the lamp is off. Then the question becomes 

whether time is a locative category for luminosity. Does it make sense to 

ask how much luminosity there is over an interval of time? I myself feel 

unsure in this particular case. But let’s conditionalize. If time isn’t a locative 

category for luminosity, then that means that even when we reinterpret 

Thomson’s Lamp as involving modulations in luminosity levels, it’s still 

inappropriate to use Grandi’s Series to model Thomson’s Lamp. On the 

other hand, if it does make sense to sum luminosity over time, then it’s clear 

that Grandi’s Series will be the appropriate mathematical representation for 

this case. And since Grandi’s Series diverges, we might then conclude that 

the luminosity level of Thomson’s Lamp at 2pm is undefined. 

Now, it’s actually possible to resist that conclusion. Throughout this 

paper, I’ve taken for granted the standard definition of the sum of an 

infinite series, where the sum is the limit of the sequence of partial sums of 

that series. But there are more powerful mathematical methods that assign 

finite numbers even to series that diverge under standard summation.28 For 

Grandi’s Series, nearly every one of the more sophisticated summation 

methods assign a sum of ½. And that brings us to a whole new 

philosophical question about infinite sums: which mathematical method 

for summation best captures the metaphysics of physical quantities? 

 
27 As a cautionary example, consider this passage from Thomson [1954: 6]: “[T]he reading-

lamp has either of two light-values, 0 ('off') and 1 (‘on’). To switch the lamp on is then to 

add 1 to its value and to switch if off is to subtract 1 from its value. Then the question 

whether the lamp is on or off after the infinite number of switchings have been performed 

is a question about the value of the lamp after an infinite number of alternating additions 

and subtractions of 1 to and from its value, i.e. is the question: What is the sum of the 

infinite divergent sequence +1, -1, +1, ...?” 
28 See Hardy [1992]. 
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I think that’s a fascinating question. But it’s a question that will have 

to be reserved for another time. 

 

Conclusion 

The puzzle of conditional convergence may initially seem like a remote 

curiosity. But the solution to the puzzle is surprisingly consequential. 

Though I’ve focused on weight, the puzzle generalizes to any quantity 

that’s summative, convergeable, and polar. And the solution I favor—the 

expansionist analysis—has metaphysical implications well beyond our 

initial puzzle. I’ve explained how it allows us to develop a diagnosis for 

when CONTINUITY yields the right verdicts in a supertask (and when it 

doesn’t). And although I’ve been focused on questions within metaphysics, 

the ideas I’ve developed are also applicable to infinite ethics and infinite 

decision theory. 

To properly solve the puzzle of conditional convergence, we needed 

to explore the general connections between quantities and locations. Only 

then were we in position to fully appreciate the metaphysical significance 

of Riemann’s Rearrangement Theorem. On the picture I’ve developed, 

quantities are indexed to both categories of individuals (namely, the 

individuals that can bear values along that quantity) and categories of 

locations (namely, the locations at which that quantity can be instantiated). 

And summation over locations and summation over individuals interact in 

systematic ways, as illustrated by QUANTIFICATION EQUALITY, SUMS OVER 

REGIONS, and SUMS OVER INDIVIDUALS. 

 To my knowledge, there has been little prior philosophical 

investigation into the relationships between quantities and locations. The 

philosophical literature on quantities tends to focus on the structural 

features that distinguish quantities from other kinds of properties and on 

the ontology of quantities. The philosophical literature on locations tends 

to focus on the formal principles connecting locations to mereology and on 

the debates between substantivalists and relationalists. Hence, the puzzle 
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of conditional convergence—and the expansionist analysis, in particular—

points towards a line of metaphysical inquiry that is ripe for exploration. 

 There are many interesting questions that remain open. I’ve focused 

on weight, but we might also ask what the relevant locative categories are 

for other quantities. I’ve focused on metric spaces, but we might also ask 

whether the expansionist analysis can be extended to more general spaces, 

such as topological spaces. I’ve focused on uniform expansions, but we 

might also ask whether there are quantities for which non-uniform 

expansions yield the right results. I’ve focused on infinitary regions, but we 

might also generalize the expansionist analysis to cases where infinitely 

many items lie within a finite region. And I’ve assumed that summation is 

simply a matter of the limits of partial sums, but we might ask whether a 

more powerful mathematical method for summation is more 

metaphysically apt. These all strike me as promising lines for future 

research.†  
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APPENDIX: Riemann’s Rearrangement Theorem 

A sequence is an ordered list of numbers. A series is the sum of all the terms 

in a sequence. A series converges =def there exists a real number l such that 

the sequence of partial sums of the series converges to l. This is equivalent 

to saying that a series converges =def for any ε > 0, there exists an 

integer m such that for all n ≥ m, the difference between l and the partial 

sum of the first n terms of the series is less than ε. 

Some series are absolutely convergent, meaning that the order of the 

terms in the series doesn’t make any difference to the sum. Other series are 

conditionally convergent, meaning that the sum of the series depends on the 

order of its terms. More precisely, a series is conditionally convergent =def 

the series converges yet its absolute series (consisting of the absolute values 

of all of its terms) diverges. That is: 

 

Definition: ∑𝑎𝑛 conditionally converges =def (∃l : ∑𝑎𝑛 = l) and (¬∃l : ∑|𝑎𝑛| = l). 

 

As an example, consider again the alternating harmonic series: 

 

The Alternating Harmonic Series 

1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ⋯ =  ∑

(−1)n

n + 1

∞

n=0

= ln(2) 

 

This series converges to ln(2). But it’s conditionally convergent: if we take 

the absolute values of its terms, then the resultant series | 1 | + |−
1

2
 | + | 

1

3
 | +

|−
1

4
 | + ⋯   diverges to ∞. Notably, whenever an infinite series is 

conditionally convergent, the series containing all and only its positive 

terms diverges to ∞, and the series containing all and only its negative terms 

diverges to −∞. That fact follows from the definition of ‘conditional 

convergence’, and will be important in what follows. Next, let’s turn to 

Riemann’s Rearrangement Theorem: 
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Riemann’s Rearrangement Theorem: 

If an infinite series is conditionally convergent, then its terms can be 

rearranged so that the new series converges to an arbitrary number, 

or diverges. 

 

In what follows, I’ll explain how to make the rearranged series sum to an 

arbitrary positive number or diverge to ∞. It will be straightforward to 

generalize to the cases involving arbitrary negative numbers and −∞. 

To start, let’s extract from the alternating harmonic series the series 

consisting of all and only its positive terms and the series consisting of all 

and only its negative terms. Note that for both the positive series and the 

negative series, the terms grow arbitrarily close to zero as the series 

progresses: 

 

The Positive Series 

1 +
1

3
+

1

5
+

1

7
+ ⋯ = ∞ 

 

The Negative Series 

−
1

2
−

1

4
−

1

6
−

1

8
− ⋯ =  −∞ 

 

Suppose we wish to rearrange the alternating harmonic series so that it 

converges to an arbitrary positive number l. We start by taking terms from 

the positive terms until the sum of those terms tips above l. Then we take 

terms from the negative series until the sum dips below l. Then we continue 

the procedure, moving to the positive series whenever the sum dips below 

l, then the negative series whenever the sum tips above l, and so on. Since 

the original alternating harmonic series converged, following this 

procedure guarantees that the rearranged series will converge. The result is 

a rearranged series that contains all and only the terms of the original series, 

yet which converges to l. 
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Suppose we wish to rearrange the alternating harmonic series so that 

it diverges to ∞. We start by taking the first term in the negative series. Then, 

we add terms in the positive series until the resultant sum is greater than 1. 

Next, we add the second term in the negative series. Then, we add terms in 

the positive series until the resultant sum is greater than 2. Since the positive 

series diverges to ∞, it’s guaranteed that our remaining set of positive terms 

will suffice to exceed any finite positive integer, no matter how far along 

we are in the procedure. We repeat this procedure indefinitely. The result 

is a rearranged series that contains all and only the terms in the original 

alternating harmonic series, yet which diverges to ∞. 
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