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Abstract Any adequate semantics of generic sentences (e.g., “Philosophers evaluate arguments”) 

must accommodate both what we call the positive data and the negative data. The positive data 

consists of observations about what felicitous interpretations of generic sentences are available. 

Conversely, the negative data consists of observations about which interpretations of generic 

sentences are unavailable. Nguyen argues that only his pragmatic neo-Gricean account and 

Sterken’s indexical account can accommodate the positive data. Lee and Nguyen have advanced 

the debate by arguing that the negative data is a problem for both Nguyen’s and Sterken’s accounts; 

these two accounts seem to incorrectly predict that generics have felicitous interpretations that 

they, in fact, fail to have. In this paper, we advance this debate—and, more generally, the task of 

developing an adequate formal semantics of generics—by arguing that a neglected class of theories 

are compatible with both the positive data and the negative data. Specifically, we argue that 

treating the generic operator GEN as a relative gradable expression with a positive, upper- and 

lower- bounded scale helps accommodate the positive data and the negative data. While 

developing this view, we show how several previously developed semantics of generics may 

systematically accommodate both sets of data. One broad contribution of this paper is to show that, 

while they generate important desiderata, the positive and negative data cannot determine a unique 

semantics for generics. A further contribution of this paper is to highlight previously unnoted ways 

in which degree semantics may inform semantic theories of generic meaning. 
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1. Introduction 

Generics—such as “Dogs bark”, “Parents owe much to their children”, and “Racist institutions are 

common”—pervade everyday conversations and express significant generalizations.1 However, 

there is no consensus on the semantics of generics. What philosophers and linguists do generally 

agree on is syntactic: generic sentences carry a two-place generic operator GEN.2  

Nguyen (2020) has recently challenged most of the theories on generics by arguing that 

while GEN gives rise to a wide range of quantificational forces—what we will call the positive 

data—most theories of GEN fail to explain this data. He argues that only Sterken’s (2015a) 

indexical view and his Neo-Gricean pragmatic view are compatible with the positive data. Lee and 

Nguyen (2022) consider more data on the limitations on generic interpretation—what we call the 

negative data—and argue that Sterken’s and Nguyen’s views are both empirically inadequate; they 

each fail to explain the negative data. Instead, Lee and Nguyen (2022) offer a refined version of 

the indexical view to accommodate the positive data and the negative data. If their semantics is 

the only empirically adequate one, we must accept it. 

However, we argue that a neglected class of theories can capture both the positive data and 

the negative data. In particular, viewing GEN as a relative gradable expression (e.g., “tall”, “long”) 

with a positive, upper- and lower- bounded scale has the following two explanatory virtues: 

(a) It explains the positive data (i.e., the flexibility of generic interpretation), and 

(b) It explains the negative data (i.e., the limitations on generic interpretation) 

 
1 Bare plurals are commonly employed to convey generic meanings. But generics can take various forms. 
Some feature a mass noun in the subject position (e.g., “Candy rots teeth”). Some involve a singular definite 
noun (e.g., “The whale is a mammal”). Some contain a singular indefinite noun (e.g., “A madrigal is 
polyphonic”). In this paper, we will focus on bare plurals.  
2 Schubert & Pelletier 1987, 1989; Krifka et al, 1995; Asher & Morreau, 1995; Pelletier & Asher, 1997; 
Eckardt, 1999; Cohen, 1996, 1999a,b, 2001a,b, 2004; Leslie, 2007, 2008, 2012, 2014; Nickel; 2009, 2016; 
Sterken, 2015a,b; Tessler & Goodman, 2019; van Rooij & Schulz, 2020; Lee & Nguyen, 2022. 



 3 

The idea that GEN is like a relative gradable expression is inspired by Cohen (1996, 1999a, 

2001a,b, 2004), Tessler & Goodman (2019), and van Rooij & Schulz (2020), among others. Our 

contribution is that this idea can be used to help explain the positive data and the negative data, 

once we impose a constraint on the type of scale GEN takes. In particular, GEN takes a positive 

lower- and upper-bounded, uni-dimensional scale. We will consider probability, typicality, and 

normality scales as concrete examples, and then show how they can explain the positive data and 

the negative data. The main upshot of our findings is that while the positive and negative data 

provide some important constraints on semantic theorizing about generics, they do not suffice to 

show that any particular semantics is correct. Other desiderata must also be appealed to in order to 

persuasively defend a particular semantics. 

 We also believe that our findings have broader implications for the literature on the 

semantics of generics. In particular, the idea that GEN must take a positive, lower- and upper-

bounded uni-dimensional scale is a novel claim. If our arguments succeed, this claim generates a 

new desideratum that semantic theories about generics must capture. Indeed, perhaps our most 

novel contribution is to suggest previously unnoticed ways in which degree semantics can 

illuminate generic meaning. And while we are content here to show that several existing 

accounts—or at least close relatives of them—can readily capture this desideratum, we suspect 

that future work on generic scale structure can set new informative constraints on semantic theories 

of generics.  

 

2. The Positive Data 

Generics have attracted considerable attention from both philosophers and linguists. But 

constructing systematic semantic theories for generics has proven to be a challenging undertaking. 
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This difficulty arises largely because generics can be used to express propositions with radically 

different quantificational forces: universal quantificational forces (e.g., “all”, “almost all”), 

modalized universal quantificational forces (e.g., “all … can”, “ideally, all”, “under normal 

circumstances, all”), proportional quantificational forces (e.g., “most”, “many”), and quasi-

existential quantificational forces (e.g., “a few”). Nguyen (2020) calls this data The Variety Data, 

but we will call it The Positive Data: 

 

The Positive Data3,4  

(1) [A few] mosquitoes transmit malaria. 

(2) [Many] barns are red. 

(3) [All] prime numbers are odd. 

(4) [Under normal circumstances, almost all] ravens are black. 

(5) [Necessarily, all] round squares are round. 

(6) [Ideally, all] boys don’t cry. 

(7) [All] orange crushers [can] crush oranges. 

 

 
3 When no specific context is explicitly given, we consider typical contexts as the starting point. According 
to Bach (2002) and Bach (2005), when an explicit context is absent, speakers assess sentences by imagining 
a typical context. 
4 Below are sample lexical entries for the quantifiers in the positive data, defined in terms of frequency: 
⟦“all”⟧c = λF. λG. #(#&%)

##
 = 1 

⟦“almost all”⟧c = λF. λG. #(#&%)
##

 ³ nc, where nc is some contextually given number very close to 1 (e.g., 0.9).  

⟦“most”⟧c = λF. λG. #(#&%)
##

 > 0.5. 

⟦“many”⟧c = λF. λG. #(#&%)
##

 ³ 0.3. 

⟦“a few”⟧c = λF. λG. #(#&%)
##

 ³ nc, where nc is some contextually given number very close to 0 (e.g., 0.01).  



 5 

Only the unbracketed material is overtly pronounced. The bracketed material indicates the 

quantificational force of what is asserted. For example, (1) reports that one can utter “Mosquitoes 

transmit malaria” to mean that a few mosquitoes transmit malaria. The positive data shows that 

generics are compatible with a wide range of quantificational forces. However, Nguyen (2020) 

argues that most theories of generics are not flexible enough to capture the positive data.5 He 

argues that only his radically pragmatic account and Sterken’s (2015a) indexical account are 

compatible with the positive data. 

On Sterken’s (2015a) indexical account, GEN is an indexical over quantifiers. The 

semantic value of GEN can potentially encompass any quantifiers including “a few”, “many”, 

“most”, and “all”. Thus, Sterken’s view can easily accommodate the positive data.  

On Nguyen’s pragmatic account, there is no need to posit GEN to explain the positive data. 

All bare plurals are semantically incomplete in the sense that they do not express complete 

propositions. They only express propositional radicals. Nguyen remains undecided whether the 

logical form of “Fs are Gs” is either “[Fx][Gx]” or “Ux[Fx][Gx]”. The first logical form is that of 

an open sentence lacking any quantifier. The second logical form is that of a quantified sentence 

in which a variable is bound by the syntactically real but semantically null operator U in the 

quantifier position. Either way, its quantificational force should be supplemented through a 

 
5 Nguyen (2020) briefly considers some proposed semantics and rejects them. To summarize: Against 
Cohen (1999b), who holds an account on when “Fs G” is true (on one proposed reading) if most Fs G, 
Nguyen observes that “Primes numbers are odd” is false even if most prime numbers are odd. Against 
Nickel (2016), who roughly holds the view that “Fs G” is true just in case there is a way of being a normal 
F such that all Fs that are normal in this way G, Nguyen observes that generics are sometimes not about 
what is normal for a kind. Against Liebesman (2011), who holds that all generics are direct kind 
predications, Nguyen objects that this view cannot give any explanation for the positive data. (Why does it 
only take a few individual mosquitoes to transmit malaria for the kind Mosquito to inherit the property of 
transmitting malaria and all individual prime numbers to be odd for the kind Prime number to inherit the 
property of oddness? Moreover, how can this inheritance relation, which Liebesman (2011) claims is within 
the purview of metaphysics, be context-sensitive?) Finally, against Leslie (2007), Nguyen endorses 
Sterken’s (2015b) objection that Leslie’s disquotational semantics cannot explanatorily predict context-
sensitivity. 
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pragmatic mechanism—such as Bach’s (1994) impliciture, Recanati’s (2004) free enrichment, 

Sperber and Wilson’s (1986) explicature. Speakers should pragmatically complete a propositional 

radical to assert something with a generic. On this picture, the speaker’s communicative intentions 

determine what is added to propositional radicals. 

Thus far, we have considered the positive data and how it can be accommodated on 

Sterken’s and Nguyen’s accounts. Before moving on to the next set of data, let us consider one 

possible objection against the positive data. One might challenge the positive data by claiming that 

the positive data is not about a semantically uniform phenomenon. For example, according to 

Almotahari (2024), bare plurals can be an elided form of an ordinary universal quantifier such as 

“all” or “all the”. Consider the following conversation: 

A: What distinguishes all the green bottles in the bin from the clear ones?  

B: Green bottles have narrow necks. 

We will grant that the most natural interpretation of B’s response is that all the green bottles in the 

bin have narrow necks. 6  One might infer that bare plurals can carry either GEN or an 

unpronounced universal quantifier such as “all”, “all the”, or “every”. If so, then the universal 

quantificational forces in the positive data plausibly arise from an ordinary universal quantifier 

rather than GEN. There would be no need for the semantics of GEN to explain bare plurals with 

universal quantificational force.  

However, there is an important difference between the universal quantificational forces 

expressed by GEN and the universal quantificational forces expressed by ordinary universal 

quantifiers.  While ordinary universal quantifiers carry a domain restriction device (Stanley & 

 
6 An anonymous reviewer finds B’s reply to be odd, and perhaps even infelicitous. Of course, if B’s reply 
is indeed infelicitous, that would better support our view that the universal quantificational force of some 
(seemingly) generic utterances is not to be explained by a covert universal quantifier. 



 7 

Szabó 2000; Kratzer 2021), generics do not. Imagine a situation where a student is gazing at a 

blackboard filled with numbers, with the specific task of identifying prime numbers among the 

displayed numbers. In this situation, “All prime numbers are odd” can be used to convey the 

proposition that all prime numbers on the blackboard are odd. On the other hand, consider the bare 

plural “Prime numbers (as such) are odd” with the addition of “as such” to help facilitate its generic 

reading (Almotahari, 2024). This sentence can be used to express a proposition with universal 

quantificational force, but the universal quantificational force expressed by GEN is unrestricted. 

For evidence that GEN does not take restricted universal quantificational force, note that “Ducks 

are female” is infelicitous, which is inexplicable if it can mean all female ducks are female (Leslie 

2007, p. 376). This argument about quantifier domain restriction suffices to show that covert 

universal quantifiers cannot explain the relevant data.   

 

3. The Negative Data 

Both Sterken’s (2015a) and Nguyen’s (2022) accounts successfully capture the positive data. 

However, Lee and Nguyen (2022) present data—what we call the negative data—that poses 

problems for both Nguyen’s and Sterken’s accounts. This data indicates that Nguyen’s and 

Sterken’s accounts are too flexible, overgenerating true generics: 

 

The Negative Data7 

 
7 The following are sample lexical entries illustrating the quantifiers used in the negative data: 
⟦“not all”⟧c = λF. λG. #(#&%)

##
 < 1 

⟦“not many”⟧c = λF. λG. #(#&%)
##

 < 0.3. 

⟦“few”⟧c = λF. λG. #(#&%)
##

 < nc, where nc is some contextually given number very close to 0 (e.g., 0.01). 

⟦“no”⟧c = λF. λG. #(#&%)
##

 = 0. 

⟦“at most half”⟧c = λF. λG. #(#&%)
##

 ≤ 0.5. 
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(1*) [#Few] mosquitoes transmit malaria. 

(2*) [#The] barns are red. 

(3*) [#Not all] prime numbers are odd. 

(4*) [#At least five] ravens are black. 

(5*) [#Necessarily, no] squares are round. 

(6*) [#All] girls [except Mary] cry. 

(7*) [#Exactly five] orange crushers [can] crush oranges. 

 

The “#” indicates that the depicted reading is unavailable. For example, (5*) reports that one 

cannot utter “Squares are round” to mean that no squares are round. The negative data shows that 

not all quantificational forces are compatible with generics. Both Nguyen’s and Sterken’s accounts 

may be flexible enough to accommodate the positive data, but they are too unconstrained to 

accommodate the negative data.  

Sterken’s (2015a) account does not explain the negative data. According to Sterken (2015a), 

GEN is an indexical over quantifiers. The negative data suggests that GEN cannot be used to 

express quantificational forces such as those of “few”, “no”, “not all”, “at least five”, “at most 

half”, “exactly five”, and so on. Nevertheless, Sterken does not provide a satisfactory explanation 

for why GEN cannot encompass these quantifiers as its values. That is, it remains unexplained 

why GEN can express the quantificational forces in the positive data such as those of “a few”, 

“many”, “most” and “all” but cannot express the quantificational forces in the negative data such 

as those of “few”, “no”, “not all”, “at least five”, “at most five”, “exactly five”. 

 
⟦“exactly five”⟧c = λF. λG. #(F&G) = 5. 
⟦“at least five”⟧c = λF. λG. #(F&G) ≥ 5. 
⟦“at most five”⟧c = λF. λG. #(F&G) ≤ 5. 
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In a similar vein, Nguyen’s (2020) pragmatic account has difficulty in explaining the 

negative data. If the quantificational forces of generics are provided through a pragmatic process 

such as free enrichment, there seems to be no reason why generic sentences cannot be enriched so 

as to express the quantificational forces in the negative data. The readings in (1*)–(7*) are, in some 

possible contexts, (considered to be) true and informative. If so, then the pragmatic account seems 

to incorrectly predict that these readings are in principle available. 

Any empirically adequate account of generics must accommodate both the positive data 

and the negative data. To accommodate both the positive data and the negative data, Lee and 

Nguyen (2022) develop a refined version of the indexical approach, according to which GEN is 

an indexical over quantifiers, carrying the semantic constraint that the semantic value of GEN is 

upward monotone and non-symmetric. In this paper, we will identify a neglected class of theories 

that are compatible with both the positive data and the negative data. More specifically, we argue 

that viewing GEN as a relative gradable expression with a positive, upper- and lower-bounded 

scale can also accommodate both the positive data and the negative data. However, it would be 

worth noting that it is not one of our aims to argue that this approach is the only account that can 

capture the positive data and the negative data. The main aim of this paper is to show the need to 

construct a semantics that accommodates the positive data and the negative data, and to motivate 

a novel way of capturing them in a degree-theoretic framework. 

 

4. GEN as a Relative Gradable Expression 

In this paper, we defend the conditional claim that if GEN is treated like a relative gradable 

expression, then we can capture the positive and negative data. Although it is not our primary aim 

to argue that GEN is like a relative gradable expression, we believe that there is independent reason 
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to believe that GEN is like a relative gradable expression. More specifically, in this section, we 

will discuss the following two questions: (i) What are some reasons to treat GEN as a relative 

gradable expression? (ii) If GEN is like a relative gradable expression, what type of scale does it 

take? 

Let us begin with the first question. Although the semantic interpretation of GEN is 

contentious, the consensus among philosophers of language and linguists is that GEN is a two-

place operator that functions like adverbs of quantification (Schubert & Pelletier, 1987; Krifka et 

al, 1995; Leslie, 2008; Leslie & Lerner 2022). Adverbs of quantification include “generally”, 

“typically”, “usually”, “always”, “sometimes” and so on. These adverbs can be divided into two 

kinds: one that allows for degree modification (e.g., “generally”, “typically”, “usually”) and one 

that does not (“always”, “sometimes”). For example, while “generally” can be modified by degree 

modifiers (e.g., “more generally”, “as generally as”, “very generally”, etc.),8 “always” cannot (e.g., 

*“more always”, *“as always as”, *“very always”). This suggests that adverbs of quantification 

are not semantically uniform. That is, some adverbs of quantification are gradable while some are 

not.9  Since GEN has been likened to gradable adverbs of quantification such as “generally”, 

“typically”, and “usually”, if GEN belongs to the same category as “generally”, “typically” and 

“usually”, it seems reasonable to think that GEN is gradable as well.  

If GEN is like a relative gradable expression, it shouldn’t be surprising that GEN receives 

the same semantics as relative gradable expressions. In the standard semantics for gradable 

 
8 This data shows that some adverbs of quantification pass the standard tests for being gradable expressions. 
Since these adverbs pass these tests, we have strong evidence that they are gradable. For more details on 
these tests, see Wellwood (2019). 
9 Similarly, quantificational determiners are not semantically uniform. While “many” allows for degree 
modification—e.g., “as many as”, “how many”, “very many” (as in “There aren’t very many parks in 
town”)—“all” and “some” do not allow for degree modification. This suggests that “many” is gradable 
while “all” and “some” are not. 
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expressions (Kennedy 1999, 2007; Heim 2000; Lassiter 2011, 2017), the sentence “Bill is tall” is 

analyzed as meaning that Bill’s height meets some contextual threshold for tallness.10 In a similar 

vein, “GENx(Fx)(Gx)” can be analyzed as meaning that F and G’s degree on the relevant scale 

meets some contextual threshold for generalization. However, there is an important gap in this 

analysis. That is, we need to fill in the analysis by determining what scale GEN takes. This 

naturally leads us to the second question “If GEN is like a relative gradable expression, what type 

of scale does it take?” We will discuss this issue in the remainder of this section.   

Relative gradable expressions can be divided into two kinds, depending on the type of scale 

they take: (i) uni-dimensional expressions that are associated with a particular scale (e.g., “tall”, 

“long”, “likely”), and (ii) multi-dimensional expressions that can take various scales 

simultaneously (e.g., “smart”, “identical”, “good”). What type of scale does GEN take if it is like 

an adverb of quantification such as “generally” and so a gradable expression? We answer that GEN 

should be treated as a uni-dimensional gradable expression. This is because GEN does not pass 

the standard tests for multi-dimensionality. Consider the following data:  

 

Two Tests for Multi-Dimensionality (Sassoon, 2013; Lassiter, 2017) 

(8) a. #Bill is tall and he is not. (uni-dimensional) 

b. Mary is smart and she is not. (multi-dimensional)11 

 
10 More specifically, the sentence “Bill is tall” is analyzed as meaning that Bill’s height meets some 
contextual threshold for tallness, provided that the threshold is significantly greater than the average height 
of the comparison class (if a comparison class is contextually provided). For example, in a context in which 
the speaker is talking about basketball players, “Bill is tall” is true just in case Bill’s height meets some 
contextual threshold, provided that the threshold is significantly greater than the average height of 
basketball players. However, in this paper, we will not consider relativization to comparison classes. 
11 To help hear (8b) as felicitous, imagine a context in which it is not clear which kinds of intelligence are 
most relevant. (Lassiter (2017, p. 244) uses a similar strategy to argue that “Mary is more clever than Bill 
and she is not” can be felicitous.) Consider an example. Suppose that Mary is a mathematical prodigy but 
prudentially irrational. Furthermore, suppose that a historian friend of yours, who has just met Mary, asks 
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c. #Mosquitoes transmit malaria and they don’t. 

d. #Sea turtles live long and they don’t. 

(9) a. #In all/most/three/some respects, Bill is tall. (uni-dimensional) 

b. In all/most/three/some respects, Mary is smart. (multi-dimensional) 

c. #In all/most/three/some respects, mosquitoes transmit malaria.  

d. #In all/most/three/some respects, sea turtles live long.  

 

First, one can utter (8b) to communicate that there is a relevant kind of smartness on which 

Mary is smart and a relevant kind of smartness on which she is not. For example, perhaps she is a 

mathematical prodigy but is prudentially irrational, lacking common sense. But we cannot use (8a) 

to communicate that there is a relevant kind of tallness on which Bill is tall and a relevant kind of 

tallness on which he is not. (8c) and (8d) suggest that generics pattern like uni-dimensional 

gradable expressions such as “tall”. Secondly, while multi-dimensional expressions can take 

modifiers like “with respect to” or “in all/most/three/some respects”, uni-dimensional expressions 

cannot. (9c) and (9d) also suggest that generics pattern like uni-dimensional expressions.12  

 
you privately whether Mary is smart. You can felicitously reply by uttering (8b) in order to assert, roughly, 
that Mary is smart overall on only some reasonable weightings of respects in which one can be smart. 
Interestingly, it is much harder to hear an analogous interpretation for (8a) even though “tall”, like “smart”, 
is a gradable adjective. Hence, we judge that (8a) is, at the very least, more marked than (8b). In any case, 
we and the three native English-speaking informants we have consulted unanimously find (9b) to be 
felicitous but (9a) to be infelicitous. So even if one disagrees with the contradiction test for 
multidimensionality that we apply in (8a)-(8d), the “in multiple respects” test that we apply in (9a)-(9d) 
surely succeeds as a test of multidimensionality. And this latter data suggests that if GEN is gradable, it is 
a uni-dimensional gradable expression. We thank an anonymous reviewer for encouraging us to further 
discuss the contradiction test used in (8a)–(8d).  
12  What about generics with multi-dimensional relative expressions in scope position? For example, 
consider “Philosophers are smart”. That generic can be felicitously conjoined with either “and are not smart” 
or “in all/most/three/some respects”. However, this result is unsurprising since we already know that “smart” 
is multi-dimensional. The infelicity of (8c), (8d), (9c), and (9d) suffice to show that if GEN is a relative 
gradable expression, it is a uni-dimensional one. These are better test cases because “transmit malaria” and 
“live long” fail to be multi-dimensional relative gradable expressions in the first place. 
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Another distinction for relative gradable expressions is the distinction between a positive 

and a negative gradable expression (Kennedy, 2007. p.33). Many gradable adjectives, though not 

all, are found in antonymous pairs. Examples include “tall”/“short”, “full”/“empty”, “wet”/“dry”, 

and so on (Kennedy, 1999, 2007). Gradable adjectives like “tall”, “full”, and “wet” are called 

positive and measure increasing degrees of a property. If Ann is taller than Betty, then Ann has 

more height than Betty. That is, Ann’s height is greater than Betty’s height (i.e., Ann’s height > 

Betty’s height). On the other hand, gradable adjectives like “short”, “empty”, “dry” are called 

negative, and measure decreasing degrees of the same property. If Ann is shorter than Betty, then 

Ann has less height than Betty. That is, Ann’s height is not as great as Betty’s height (i.e., Ann’s 

height < Betty’s height). Scales can be represented as an ordered pair consisting of a set of degrees 

and an ordering on it (Kennedy 2007, fn.29). If so, positive and negative scales can be understood 

as having different orderings on the same set of degrees. For example, the scale of “tall” can be 

represented as áDheight, ≺ñ, where ≺ is an ascending order on the degrees of heights. “Ann is taller 

than Betty is” means that Ann is more highly ranked than Betty in an ascending order of heights. 

So, it means that Ann’s height is greater than Betty’s height. On the other hand, the scale of “short” 

can be represented as áDheight, ≻ñ, where ≻ is a descending order on the same domain. “Ann is 

shorter than Betty is” means that Ann is more highly ranked than Betty is in a descending order of 

heights. So, it means that Ann’s height is smaller than Betty’s height. In the literature, GEN has 

been associated with probability, typicality, and normality scales. Since “probable”, “typical”, and 

“normal” are positive gradable expressions while their antonyms “improbable”, “atypical” and 

“abnormal” are negative gradable expressions, this suggests that if GEN is a gradable expression, 

it is a positive gradable expression.  
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If GEN is a uni-dimensional, positive gradable expression, exactly what kind of scale is it 

associated with? We will consider three families of proposals addressing this question: probability 

(Cohen, 1996, 1999a, b, 2001b, 2004; Tessler & Goodman, 2019), typicality (van Rooij & Schulz, 

2020), and normality (Schubert & Pelletier, 1989; Asher & Morreau, 1995; Pelletier & Asher, 

1997; Eckardt 1999; Nickel, 2009, 2016). The following are formalizations for each scale: 

 

(10) Probability: P(G/F). (Cohen, 1996, 1999b, 2001b; Tessler & Goodman, 2019) 

(11) Typicality: !(#/%)'!(#/¬%)
)'!(#/¬%)

, where (i) P(G/F) > P(G/¬F). (van Rooij & Schulz, 2020)13  

(12) Normality: ac × P(G/Actual:F) + bc × P(G/Ideal:F), where ac + bc = 1. (Bear & Knobe, 

2017)14 

 

Based on (10)–(12), the following candidate definitions of GEN can be given:  

 

The Definitions of GEN 

(10*) ⟦GEN⟧c,g,w = λF<e,t>. λG<e,t>. P(G/F) ≥ qc 

(11*) ⟦GEN⟧c,g,w = λF<e,t>. λG<e,t>. !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ qc, where P(G/F) > P(G/¬F) 

(12*) ⟦GEN⟧c,g,w = λF<e,t>. λG<e,t>. ac × P(G/Actual: F) + bc × P(G/Idealg(w): F) ≥ qc, where ac + 

bc = 1 

 

 
13 (11) is a simplified version of van Rooij and Schulz’s proposal without taking into account the value 
function and alternative-sensitivity.   
14 (12) is inspired by Bear and Knobe’s (2017) discovery that people’s notion of what is normal is influenced 
by both what they believe to be descriptively average and what they believe to be prescriptively ideal. But 
they are not officially committed to this formalization.  
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e is a neutral semantic type for either e (i.e., the semantic type for entities/individuals) or s (i.e., 

the semantic type for situations). Following Lewis (1975), Cohen (1999a), and Fara (2006), we 

assume that GEN can freely quantify over either individuals or situations. If GEN quantifies over 

situations, generic sentences have habitual readings. If GEN quantifies over individuals, then they 

have individual (or I-generic) readings. (10*)–(12*) say that “GENx(Fx)(Gx)” is true just in case 

F and G’s degree on the probability/typicality/normality scale meets some contextual threshold for 

generalization.15  

According to the above definitions of GEN, GEN is associated with a particular kind of 

scale, as “tall” is associated with just a height scale. However, the three kinds of scales do not 

necessarily have to compete. GEN might be context-sensitive in the sense that it can freely take 

any of the three kinds of scales. Consider the gradable adjective “long” that can measure either a 

temporal or spatial dimension, depending on context. On this view, the definition of GEN can be 

given as follows:  

 
15  In degree semantics, gradable adjectives (e.g., “tall”) express mappings from individuals/entities to 
degrees on a scale (Kennedy 2007). However, there have been attempts to extend this approach. For 
example, Wellwood (2019) argues that gradable adverbs (e.g., “fast” in “Ann ran faster than Bill did”) 
express mappings from events to degrees. Lassiter (2017) argues that modal adjectives (e.g., “likely”, 
“good”, “necessary”) express mappings from propositions to degrees. In this paper, we argue that GEN 
maps two properties to a degree on a scale. The logical form of a generic is often analyzed as GENx(Fx)(Gx). 
Given this logical form, if GEN is treated as a gradable expression, it would be natural to treat GEN as 
expressing a measure function mapping two properties to a degree. Let e be the semantic type for entities, 
t the semantic type for truth values and d the semantic type for degrees. Suppose also that GEN is associated 
with the normality scale. Then, the lexical entries for “tall” and GEN can be given as follows:  
⟦“tall”⟧c = λxe. tall(x) (áe,dñ-type)  
⟦posGA⟧c = λg<e,d>. λxe. g(x) ³ qc (ááe,dñ áe,tññ-type) 
⟦GEN⟧c = λF<e,t>. λG<e,t>. Normality(F, G) (áet, áet, dññ-type) 
⟦posGEN⟧c = λg<et,<et, d>>. λF<e,t>. λG<e,t>. g(F, G) ³ qc (ááet, áet, dññ áet, áet, tñññ-type) 
Following Kennedy (2007) and Lassiter (2017), we can posit a silent morpheme for gradable adjectives 
posGA to derive the positive form of “tall” (with no overt degree modification) as in “Bill is tall”. θc is a free 
variable for thresholds whose value is supplied by context c. Similarly, we can posit a silent morpheme for 
GEN posGEN to derive the quantificational meaning of GEN. On this view, the lexical entries for GEN as a 
quantifier (10*)–(12*) can be understood as an elliptical form of posGEN(GEN). For more compositional 
details, see Kennedy (1999, 2007), Lassiter (2017) and Wellwood (2019).  
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The Definition of Context-Sensitive GEN 

(13) ⟦GEN⟧c = λF<e,t>. λG<e,t>. gc(F, G) ³ qc, where gc is uni-dimensional, positive, and upper-and 

lower-bounded.  

 

gc is a free variable for measure functions whose value should be supplied by context c. It comes 

with uni-dimensionality, positivity, and upper- and lower- boundedness as presuppositions or 

definedness conditions. 16  Since probability, typicality, and normality scales satisfy these 

presuppositions, GEN might take one of those scales as its value. Note, however, that (13) is 

schematic; we do not claim that GEN can take all scales that satisfy these presuppositions. We are 

open to the possibility that there may be additional constraints on GEN. 

It may be interesting to inquire whether GEN is associated with a particular kind of scale 

(cf., “tall”) or it is context-sensitive (cf., “long”). However, for the purposes of this paper, we do 

not have to take a stand on this issue. Rather, we will focus on how, using the three kinds of scales 

as concrete examples, the constraint that the scale of GEN is positive, and upper- and lower- 

bounded can be used to explain the positive data and the negative data.  

 

 

 
16 As noted in fn.15, in degree semantics, GEN can be understood as expressing a measure function mapping 
two properties to a degree on a scale. If so, following Kennedy (1999, 2007) and Lassiter (2017), we can 
posit the positive morpheme pos to derive its quantificational meaning (áet, áet ,tññ-type) as follows: 
⟦GEN⟧c = λF<e,t>. λG<e,t>. gc(F, G), where gc is uni-dimensional, positive, and upper- and lower- bounded. 

((áet, áet, dññ-type)) 
⟦posGEN⟧c = λg<et,<et, d>>. λF<e,t>. λG<e,t>. g(F, G) ³ qc. (ááet, áet, dññ áet, áet, tñññ-type) 
On this view, the lexical entry for context sensitive GEN can be understood as an elliptical form of 
posGEN(GEN). On this picture, the scale is introduced by GEN and the threshold is introduced by the positive 
morpheme for GEN. 
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5. Explaining the Positive Data and the Negative Data 

5.1. Probability 

Let’s first consider the probability scale. The idea that generics state probabilities goes back to 

Cohen (1996, 1999b, 2001b). Cohen (2001b) views GEN as a quantificational determiner such as 

“most”. On his view, a generic of the form “GENx(Fx)(Gx)” has ambiguous readings, and is true 

iff the probability of G given F is bigger than 0.5 (on the absolute reading) or the probability of G 

given the union of alternatives, ÈA (on the relative reading). Let “ALT(Φ)” be a set of alternatives 

to Φ. Then, the alternative set for a generic “Fs G” is defined as A = {F′ ∧ G′| F′ ∈ ALT(F) & G′ 

∈ ALT(G)}. Given this, GEN is defined as follows: 

(14) “GENx(Fx)(Gx)” is true iff P(G/(F ∧ ÈA)) > ρ, where: 

(i) ρ = 0.5 (absolute reading), or 

(ii) ρ = P(G/ÈA) (relative reading). 

Cohen assumes that ALT(F) includes F (i.e., F ∈ ALT(F)). So, (F ∧ ÈA) is equivalent to F. Thus, 

“GENx (Fx)(Gx)” is true on the relative reading iff P(G|F) > P(G|ÈA). For example, let’s consider 

“Scandinavians win the Nobel Prize in literature”. Cohen proposes that ALT(Scandinavian) = 

{Scandinavian, English, French, . . .} and ALT(win-lit-Nobel) = {win-lit-Nobel, ¬win-lit-Nobel}. 

Since A = {Scandinavian & win-lit-Nobel, Scandinavian & ¬win-lit-Nobel, English & win-lit-

Nobel, English & ¬win-lit-Nobel, …}, ÈA = {Scandinavian ∨ English ∨ French ∨ …}. Thus, 

“Scandinavians win the Nobel Prize in literature” is true on the relative reading iff P(win-lit-

Nobel/Scandinavian) > P(win-lit-Nobel/person). 

However, Cohen’s account does not capture (3) from the positive data. That is, Cohen’s 

account incorrectly predicts that in a typical context, “Prime numbers are odd” is true. Most prime 

numbers are odd. That is, the probability of being odd given being a prime number is bigger than 
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0.5. So, “Prime numbers are odd” is true on the absolute reading. On the other hand, suppose that 

ALT(Prime number) = {Prime number, Non-prime number} and ALT(odd) = {odd, even}. Since 

A = {Prime number & odd, Prime number & even, Non-prime number & odd, Non-prime number 

& even}, ÈA is the set of natural numbers. So, “Prime numbers are odd” is true on the relative 

reading iff P(odd/prime number) > P(odd/natural number). Thus, on Cohen’s account, “Prime 

numbers are odd” is true on either the absolute or relative reading. However, in a typical context, 

this generic sentence can be used to assert, falsely, that all prime numbers are odd. Cohen’s 

account, then, is not flexible enough to capture this interpretation.  

On the other hand, Tessler and Goodman (2019) treat generics as analogous to a gradable 

adjective like “tall” and propose a simple semantics for GEN: 

(15) “GENx(Fx)(Gx)” is true iff P(G/F) ≥ qc, where qc is a contextually determined threshold such 

 that 0 < qc ≤ 1. 

On their view, generics are not ambiguous (contra Cohen), and the threshold for GEN is context-

sensitive. Context is formalized as prior background knowledge about different kinds of properties 

(Tessler & Goodman, 2019, p.397). Although Tessler and Goodman do not discuss the example 

“Prime numbers are odd”, they can propose that the threshold for this sentence is set to 1 in a 

typical context because, according to our intuitive theories about mathematical properties, 

mathematical properties allow for no exceptions. We concede that, to fully develop a gradable 

approach to generics, we need to provide an explanation of how the threshold for GEN is 

contextually determined. But what’s important for the purpose of this paper is whether (15) is 

flexible enough to allow for the quantificational forces in the positive data and constrained enough 

to exclude the quantificational forces in the negative data. Thus, we will remain neutral on 

questions like what context consists of and how the threshold is determined by context.  
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The definition (15) can be used to explain the positive data, because the threshold qc is 

allowed to vary with context. The quantificational forces in the positive data are all positive in the 

sense that they say that a probability meets some threshold. For example, GEN has universal 

quantificational force (e.g., “all”) or something equivalent when the threshold is set to 1. GEN has 

quasi-existential quantificational force (e.g., “a few”) when the threshold is set to a very small 

number such as 0.01. GEN has a proportional quantificational force (e.g., “many”, “most”) when 

the threshold is set to an intermediate number such as 0.5. The quantificational forces in the 

positive data can be interpreted in terms of probability as follows:  

 

Lexical Entries for the Quantificational Forces in the Positive Data 

(16) a. ⟦“all”⟧c = λF. λG. P(G/F) = 1. 

b.	⟦“almost all”⟧c = λF. λG. P(G/F) ³ 0.9. 

c. ⟦“most”⟧c = λF. λG. P(G/F) ³ 0.5+ϵ.17 

d. ⟦“many”⟧c = λF. λG. P(G/F) ³ 0.3. 

e. ⟦“a few”⟧c = λF. λG. P(G/F) ³ 0.01. 

 

The force of “all” corresponds to the threshold 1, the force of “most” corresponds to some 

threshold just above 0.5, and the force of “a few” corresponds to some very low number that is 

 
17 Due to the density of the real numbers, there is no real number r greater than 0.5 that should be fixed as 
a constant threshold for “most”. We doubt this complication seriously threatens the plausibility of our 
proposal. For convenience, we appeal to infinitesimals in our lexical entry for “most”. For a brief discussion 
of infinitesimals in philosophy and mathematics, see Marquis (2006), who tells us that “infinitesimals [are] 
back with a vengeance” (p.395) within contemporary mathematics—nonstandard analysis and synthetic 
differential geometry in particular—even if there is some reason to be optimistic that “it will always be 
possible to eliminate them” (p.395). But even if mathematics can be done without infinitesimals, it is unclear 
why we should therefore be unhappy to appeal to them in semantics when it is theoretically convenient and 
useful to do so.  
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non-zero. Thus, it should be straightforward how, according to the gradable approach employing 

the probability scale, GEN can be used to express the quantificational forces in the positive data.  

Furthermore, the definition (15) explains the negative data as well. Many of the quantifiers 

in the negative data are negative in the sense that they say that a probability does not meet some 

threshold. However, according to (15), “GENx(Fx)(Gx)” says that the probability of G given F 

meets some contextual threshold. So, GEN cannot be used to express negative quantificational 

forces such as those of “not all”, “not many”, “few”, etc. Also, since generics concern probabilities, 

they are not suitable for expressing propositions with cardinal quantificational forces such as those 

of “exactly five”, “at least five”, “at most five”, or propositions that involve the definite determiner 

“the”. Furthermore, according to (10*) and (15), GEN is a two-place operator, making it unsuitable 

for expressing the three-place operator expressed by “all…except…”. Below are some sample 

lexical entries for the quantificational forces in the negative data. It should be obvious from these 

lexical entries why, according to (10*) and (15), GEN cannot be used to express the 

quantificational forces in the negative data.  

 

Lexical Entries for the Quantificational Forces in the Negative Data 

(17) a. ⟦“not all”⟧c = λF. λG. P(G/F) < 1. 

b. ⟦“not many”⟧c = λF. λG. P(G/F) < 0.3. 

c. ⟦“few”⟧c = λF. λG. P(G/F) < 0.01.  

d. ⟦“no”⟧c = λF. λG. P(G/F) = 0. 

e. ⟦“all…except…”⟧c = λF. λH. λG. P(G/F&¬H)	= 1  

f. ⟦“exactly five”⟧c = λF. λG. #(F&G) = 5. 

g. ⟦“at least five”⟧c = λF. λG. #(F&G) ≥ 5. 
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h. ⟦“at most five”⟧c = λF. λG. #(F&G) ≤ 5. 

 

At this point, one might point out that the positive data suggests that GEN can express not 

only the contents of simple quantifiers (e.g., “all”, “many”, “most”) but also those of modalized 

quantifiers (e.g., “all normal”, “all ideal”). To accommodate this worry, proponents of the 

probability approach might argue that there is an ambiguity in probability.  

For example, Tessler and Goodman (2019) argue that there are two kinds of prevalences: 

objective and subjective. Indeed, they explicitly recognize these two classes of prevalences in their 

discussion of the habitual “Mary handles mail from Antarctica”. Intuitively, “Mary handles mail 

from Antarctica” can be true even though nobody has sent mail to Mary’s office from Antarctica 

and so Mary has never had the opportunity to handle mail from Antarctica. Tessler and Goodman 

state that there is “an important ambiguity in…[their] uncertain threshold model…the prevalence 

[can] represent the actual, objective frequency in the world…or a subjective, predictive degree of 

belief in the head” (Tessler & Goodman, 2019, p.400). The actual, objectual probability measures 

the number of past occurrences where Mary has handled mail from Antarctica. On the other hand, 

the predictive probability measures the number of future occurrences where Mary will handle mail 

from Antarctica.  

However, Tessler and Goodman’s suggestion does not fully capture the range of modalized 

quantifiers GEN can express. Consider a hypothetical scenario in which a plant species, dubbed 

“orange crusher”, is recently discovered. Orange crushers bear resemblance to Venus fly traps and 

are capable of effortlessly crushing an orange when given one. Intuitively, “Orange crushers crush 

oranges” can be true, even in situations where no orange crushers have ever crushed an orange and 

never will. (Perhaps, orange crushers will soon become extinct). For instance, imagine a situation 
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where some biologists are, for amusement, categorizing species based on their members’ ability 

to reliably crush oranges when provided with one. In this context, “Orange crushers crush oranges” 

can be interpreted as most orange crushers have a disposition to crush oranges in appropriate 

circumstances—e.g., when healthy and given an orange. However, on Tessler and Goodman’s 

(2019) account, “Orange crushers crush oranges” cannot be true in the above scenario. This is 

because no orange crushers have crushed an orange (i.e., the actual, objectual probability is zero) 

and no orange crushers will ever crush an orange (i.e., the predictive probability is zero). So, the 

statement is incorrectly predicted to be false. 

However, we believe that the idea that there is an ambiguity in probability is on the right 

track to capture that GEN can express both simple quantificational forces and modalized 

quantificational forces. We propose that there are two different kinds of probabilities: statistical 

and ideal. The actual, statistical probability measures how many actual Fs are G and can be 

represented as P(G/Actual:F), where Actual is a function that takes the property F and produces 

the set of actual Fs. The ideal probability measures how many ideal Fs are G and can be represented 

as P(G/Ideal:F), where Ideal is a function that takes the property F and produces the set of ideal 

Fs. According to Kratzer’s (1991, 2012) modal semantics, which is the dominant paradigm in the 

semantics for modals, modals are relativized to two contextual parameters: the modal base f and 

the ordering source g. The modal base f, which is a set of possible worlds, determines the 

preliminary domain, and the ordering source g imposes an ordering on the worlds in the modal 

base. Similarly, we can think of Ideal as relativized to F and g. On this picture, F, which is a set of 

entities, provides the preliminary domain, and the ordering source g, which is a set of properties,18 

 
18 Properties are understood as sets of entities.  
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imposes an ordering ³g(w) on the individuals in F. The ordering ³g(w), Actual, and Ideal, can be 

formally defined as follows: 

(18) Actual: F = {x | x Î F & x is at the actual world @} 

(19) a. For any x, y in F, x ³g(w) y iff {fÎg(w) | yÎf} Í {fÎg(w) | xÎf} 

        b. Idealg(w): F = {x | xÎF & "yÎF [y ³g(w) x ® x ³g(w) y]} 

³g(w) is a relation between two individuals. “x ³g(w) y” can be read as x is at least as close to the 

ideal given by g(w) as y is. x is at least as close to the ideal given by g(w) as y iff x satisfies all 

properties in g(w) that y satisfies. “Idealg(w): F” denotes the set of entities in F that are maximally 

ranked by g(w). In other words, it picks out the most ideal entities of the domain F relative to g(w). 

The ideal probability can be used to explain a wide range of GEN’s modalized 

quantificational forces. When GEN has a modal reading, their modal flavor is determined by the 

ordering source g(w). The ordering source g(w) may or may not be empty. If it is empty, then GEN 

picks out all possible entities with the property F. We believe that mathematical, logical, and 

definitional generics usually take an empty ordering source, so GEN picks out all possible objects 

of the kind in question such as “Squares are four-sided” (mathematical generic statement), 

“Objects are self-identical” (logical generic statement), and “Bachelors are male” (definitional 

generic statement), etc.19 If the ordering source is not empty, GEN picks out the relevant kind of 

ideal objects. We believe GEN can take various ordering sources including causal (e.g., “Children 

from Rainbow Lake are left-handed”), dispositional (e.g., “Orange crushers crush oranges”), 

inertial (e.g., “Sea turtles live long”) and normative (e.g., “Friends don’t let friends drive drunk”) 

 
19 Note that it is possible, although unusual, for (ostensibly) mathematical, logical, and definitional generics 
not to have universal quantificational force. For example, Sterken (2015a, p.22) observes that “Prime 
numbers are odd” can, in some unusual contexts, be true. In those contexts, this generic means, roughly, 
that most prime numbers are odd. 
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ordering sources. Based on the discussion so far, the simple and modalized quantificational forces 

in the positive data can be interpreted in terms of probability as follows: 

 

Lexical Entries for the Simple and Modalized Quantificational Forces in the Positive Data 

(20) a. ⟦“all (actual)”⟧c,g,w = λF. λG. P(G/Actual:F) = 1. 

        b.	⟦“almost all (actual)”⟧c,g,w = λF. λG. P(G/Actual:F) ³ 0.9. 

        c. ⟦“most (actual)”⟧c,g,w = λF. λG. P(G/Actual:F) ³ 0.5+ϵ. 

        d. ⟦“many (actual)”⟧c,g,w = λF. λG. P(G/Actual:F) ³ 0.3. 

        e. ⟦“a few (actual)”⟧c,g,w = λF. λG. P(G/Actual:F) ³ 0.01. 

(21) a. ⟦“all (ideal)”⟧c,g,w = λF. λG. P(G/Idealg(w):F) = 1. 

        b. ⟦“almost all (ideal)”⟧c,g,w = λF. λG. P(G/Idealg(w):F) ³ 0.9. 

        c. ⟦“most (ideal)”⟧c,g,w = λF. λG. P(G/Idealg(w):F) ³ 0.5+ϵ. 

        d. ⟦“many (ideal)”⟧c,g,w = λF. λG. P(G/Idealg(w):F) ³ 0.3. 

        e. ⟦“a few (ideal)”⟧c,g,w = λF. λG. P(G/Idealg(w):F) ³ 0.01. 

 

5.2. Typicality 

Next, let us move on to the typicality scale. van Rooij and Schulz (2020) borrow a notion of 

typicality in cognitive psychology to define the meaning of GEN. (11) is a simplified version of 

van Rooij and Schulz’s (2020) proposal for typicality. van Rooij and Schulz’s (2020) original 

proposal includes a value function Value(G) and is formalized as follows: 

(22) !(#/%)'!(#/¬%)
)'!(#/¬%)

	× Value	(G), where (i) P(G/F) > P(G/¬F), and (ii) Value (G) ≥ 1.  
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Value (G) measures the intensity of the property G, representing something like the utility, fear, or 

joy of having the property G (van Rooij & Schulz, 2020).20 For example, when G is a dangerous 

property such as carrying the West Nile virus, Value (G) will be very high. Also, van Rooij and 

Schulz (2020) assume that Value (G) must be at least as great as 1. However, one distinctive feature 

of the typicality scale, in contrast with the probability scale, is that the typicality scale has no 

natural upper bound. The threshold for probabilities is between 0 and 1, so the probability scale is 

upper- and lower-bounded. On the other hand, since Value (G) is at least as great as 1, there is no 

upper bound for typicality. If so, one might wonder which type of scale is more appropriate to 

capture the positive data and the negative data. We argue that a scale with an upper bound should 

be preferred over one without an upper bound. We do so because if a scale is upper-bounded and 

so there is a maximum degree in a scale, this maximum degree naturally corresponds to the 

universal quantificational force that—as the positive data shows—generic quantification can have.  

However, this is not an insurmountable objection against the typicality approach. 

Proponents of the typicality scale can respond to this objection by deleting Value (G), in which 

case the typicality scale is identified with (11), which is !(#/%)'!(#/¬%)
)'!(#/¬%)

. On the gradable approach 

employing the typicality scale, a generic sentence’s truth conditions can be given as follows:  

(23) “GENx(Fx)(Gx)” is defined iff (a) P(G/F) > P(G/¬F) 

if defined, is true iff (b)  !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ qc 

The intuitive idea behind (23) is that, a generic “Fs G” is true iff being G is a representative 

property of Fs. And, for typicality theorists, that is true, roughly, iff being G is typically associated 

 
20 The term '(%/#))'(%/¬#)

+)'(%/¬#)
 is intended to measure how representative, or contrastively (proto)typical, the 

property G is for Fs, collectively speaking. We discuss this term further below after introducing a more 
satisfactory analysis in (22). At this point in the main text, our main point is just that Value(G) must be 
eliminated if we desire a semantics that can give universal quantificational force to GEN.  
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with Fs, where typicality is understood contrastively. For example, paradigmatic typicality 

theorists argue that psychological findings suggest “typical members of a category…have features 

that distinguish them from members of other categories; as such they highlight, or exaggerate, real 

differences between groups” (van Rooij and Schulz 2020, p. 94). So, for “Fs G” to be true, being 

G must be a contrastively typical, or representative, feature of typical Fs. Put succinctly, “a generic 

of the form ‘Gs are f’ is true if f is a representative feature for G” (van Rooij and Schulz 2000). It 

is worth emphasizing that typicality and representativeness are understood contrastively here; in 

this sense, it is possible for property G to be representative for Fs if no non-Fs are G and only a 

minority of Fs are G (and thus most Fs are not G). 

(23) is intended to formalize these ideas. The presupposition (23a), which states that 

P(G/F) > P(G/¬F), encodes the claim the Fs are relatively likely—when compared to non-Fs—

to be G. The at-issue content (23b), which states that !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ qc, claims that the relative 

difference of Gs among Fs and Gs among non-Fs must be higher than the contextually determined 

threshold qc.21 This threshold qc determines, intuitively, how representative being G must be for 

Fs in order for “Fs G” to be true; it sets a lower bound on representativeness. The term 

!(#/%)'!(#/¬%)
)'!(#/¬%)

 measures, roughly, how representative the property G is for Fs. This term, assuming 

(23a) is satisfied, must be greater than 0. !(#/%)'!(#/¬%)
)'!(#/¬%)

  = 0 when P(G/F) = P(G/¬F). But this is 

 
21 van Rooij and Schulz (2020) attribute the concept of relative difference to Sheps (1958). van Rooij and 
Schulz (2020, p.95) appeal to relative difference to capture observations, from associative learning 
psychology, concerning how the absolute values of P(G/F) and P(G/¬F) influence association formation 
even when we hold the difference between them constant. For example, P(G/F) should, all other things 
being equal, influence association formation more than P(G/¬F). For instance, all other things being equal, 
a stronger association between Fs and Gs—the content of which is roughly that (relatively many) Fs G—
should exist when P(G/F) = 0.9 and P(G/¬F) = 0.8 than when P(G/F) = 0.5 and P P(G/¬F) = 0.4. Yet, in 
both cases, their absolute difference, or P(G/F) − P(G/¬F), is the same, namely 0.1. 
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impossible if (23a) is satisfied. Thus, !(#/%)'!(#/¬%)
)'!(#/¬%)

 > 0. And its maximum value is 1, which 

occurs when P(G/F) = 1 and so !(#/%)'!(#/¬%)
)'!(#/¬%)

 = 1; in that case, all Fs are G and so (23b) predicts, 

plausibly enough, that G is a maximally representative, or contrastively typical, property of Fs 

(van Rooij and Schulz 2020, p. 103). Therefore, when the presupposition (23a) is satisfied, 0 < 

!(#/%)'!(#/¬%)
)'!(#/¬%)

	≤ 1. The analysis in (23) is therefore both lower- and upper-bounded. 

The numerator in (23b), P(G/F) − P(G/¬F), measures the “contingency” of being G on 

being F. This concerns how much being G correlates with being F as opposed to being non-F. The 

intuitive thought behind this part of (23b) is that if Fs are much more likely to be G than non-Fs, 

then that is a powerful—though perhaps defeasible—consideration for thinking that being G is a 

representative, distinctively typical, property of Fs. Therefore, having the numerator being 

P(G/F) − P(G/¬F) makes it, all other things being equal, easier for a generic to be true according 

to (23) when Fs are more likely to be G than non-Fs are. The denominator in (23b), 1 − P A #
¬%
B, 

allows for the absolute difference between P(G/F) and P(G/¬F) to make a desired contribution to 

how representative the property G is for Fs. We can gloss over these details because they are not 

crucial for present purposes; however, interested readers may consult van Rooij and Schulz (2020, 

fn.17 and pp.95–97) for further details. 

 What’s important for the purposes of this paper is that (23) can be used to explain the 

positive data and the negative data. The quantificational forces in the positive data can be 

interpreted in terms of typicality as follows: 

 

Lexical Entries for the Quantificational Forces in the Positive Data 

(24) a. ⟦“all”⟧c = λF. λG. !(#/%)'!(#/¬%)
)'!(#/¬%)

 = 1. 
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b.	⟦“almost all”⟧c = λF. λG. !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ 0.9. 

c. ⟦“most”⟧c = λF. λG. !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ 0.5. 

d. ⟦“many”⟧c = λF. λG. !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ 0.3. 

e. ⟦“a few”⟧c = λF. λG. !(#/%)'!(#/¬%)
)'!(#/¬%)

 ³ 0.01. 

 

Let’s first consider a case in which the threshold is set to 1. In such a case, “GENx(Fx)(Gx)” is 

true just in case P(G/F) = 1. This captures the cases where GEN expresses universal 

quantificational force. Secondly, let’s consider a case in which the threshold is set to an arbitrary 

number n such that 1 > n > 0. Let a be P(G/¬F) and b be P(G/F). If so, “GENx(Fx)(Gx)” is true 

just in case *'+
)'+

 ³ n. This condition is equivalent to b ³ n + a(1−n). Since a(1−n) must be positive, 

this condition requires b to be at least as great as n. That is, this condition requires that P(G/F) ³ 

n. For example, if the threshold is set to 0.5, the truth of a generic sentence requires that P(G/F) ³ 

0.5. This seems to capture the cases where GEN expresses quantificational forces analogous to 

that of “most”.  

Furthermore, according to (23), “GENx(Fx)(Gx)” is true just in case F and G’s degree of 

typicality meets some contextual threshold. So, it naturally explains the negative data as well. The 

negative quantifiers in the negative data say that F and G’s degree of typicality does not meet some 

threshold. So, GEN cannot be used to express negative quantificational forces such as those of 

“not all”, “not many”, “few”, etc. Also, there is no obvious way for GEN to express the contents 

of quantifiers of exception such as “all…except…” or cardinal quantifiers such as “exactly five”, 

“at least five”, “at most five”.  
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5.3. Normality 

Lastly, let us consider the normality scale. (12), which we repeat below, takes its inspiration from 

Bear and Knobe’s (2017) notion of normality, and says that what is normal is a weighted sum of 

the statistical average and the ideal:  

(12) Normality: ac × P(G/Actual:F) + bc × P(G/Ideal:F), where ac + bc = 1.  

The weight of each element, that is “ac” and “bc”, represents how important that element is to the 

generalization judgment in a context. ac is the contextually determined weight of the descriptive 

average, and bc is the contextually determined weight of the ideal. And ac and bc must add up to 1. 

On the gradable approach employing the normality scale, a generic sentence’s truth conditions can 

be given as follows:  

(25) “GENx(Fx)(Gx)” is defined iff ac + bc = 1 

if defined, is true iff ac × P(G/Actual: F) + bc × P(G/Idealg(w): F) ³ qc 

As discussed in Section 5.1., P(G/Actual: F) is the probability of G given actual Fs, and 

P(G/Idealg(w): F) is the probability of G given ideal Fs. On (25), a generic “Fs G” is true iff 

sufficiently normal Fs are G, where what counts as sufficiently normal is provided by the 

contextually determined threshold qc. And as suggested above, normality is given by the weighted 

sum ac × P(G/Actual: F) + bc × P(G/Idealg(w): F). 

One distinctive feature of the normality scale is that the actual, statistical probability and 

the ideal probability are represented on a single, hybrid scale, so that these two kinds of 

probabilities can be treated as a special case of normality. The simple quantificational forces in the 

positive data (i.e., (20)) can be derived when the value of “ac” is 1. The modalized quantificational 

forces in the positive data (i.e., (21)) can be derived when the value of “ac” is 0 and so the value 

of “bc” is 1.  
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Furthermore, (25) naturally accounts for the negative data. According to (25), 

“GENx(Fx)(Gx)” is true iff the degree of normality of F and G meets some contextual threshold. 

So, GEN is ill-suited to expressing the negative quantificational forces in the negative data such 

as those of “not all”, “not many”, “few”, etc., because the negative quantifiers indicate that the 

degree of normality of F and G does not meet some threshold. Also, according to (25), GEN does 

not have a straightforward way to express the contents of quantifiers of exception such as 

“all…except…” or cardinal quantifiers such as “exactly five”, “at least five”, “at most five”.  

Thus far, we have seen how (25) can be used to capture the positive data and the negative 

data. Before closing the section, let us mention one interesting feature of the normality scale: the 

context may supply intermediate weights for the evaluation of a generic “Fs G”. This may be useful 

to explain the following observation: “Russians win at poker” seems to have a reading on which it 

is true only if sufficiently many actual Russians (regularly) win poker games and they do so not 

by sheer luck, but by some special causal mechanism (e.g., relatively high skill or rates of cheating). 

This generic is false if no Russians ever win at poker or there is no special, non-accidental causal  

explanation for why Russians win at poker.  

Suppose that “Russians win at poker” is uttered in a context c such that ac = bc = 0.5 and  

qc = 0.6. Moreover, suppose that P(win at poker/Actual: Russian) = 0.5 and P(win at poker/Idealg(w): 

Russian) = 0.7. Then ac × P(win at poker/Actual: Russian)  +  bc × P(win at poker/Idealg(w): 

Russian) = 0.5 × 0.5 + 0.5 × 0.7 = 0.6. But then 0.6 ≥ qc, since qc = 0.6. Then according to (25), 

“Russians win at poker” is true in c only if both P(win at poker/Actual: Russian) and P(win at 

poker/Idealg(w): Russian) are non-zero. Otherwise, it will be impossible for the weighted sum of 

these two values to be greater than or equal to qc = 0.6. The upshot is that, in this example, (25) 
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seems to correctly predict that “Russians win at poker” is true in context c only if some actual 

Russians win at poker and some causally ideal Russians win at poker.  

This consideration might give us a good reason to favor the normality scale over the other 

two. However, for the purposes of this paper, we do not have to be committed to any particular 

kind of scale for GEN. Besides, GEN might be context-sensitive in the sense that it can freely take 

any of the three kinds of scales we have discussed. Thus, while we are sympathetic to the normality 

scale, we will not be officially committed to it.   

 

6. Conclusion 

Nguyen (2020) introduced the positive data and argued that only his radically pragmatic account 

and Sterken’s (2015a) indexical account are compatible with the positive data. Lee and Nguyen 

(2022) provided the negative data and argued that the negative data is a problem for both Nguyen’s 

(2020) and Sterken’s (2015) accounts. In this paper, we identified a neglected class of theories that 

are compatible with both the positive data and the negative data. Any theory that analyzes GEN as 

a relative gradable expression with a positive, upper- and lower-bounded scale has the potential to 

explain the positive and negative data. We considered three concrete examples for the scale of 

GEN (i.e., probability, typicality, and normality), and showed how each of these examples can 

account for the positive data and the negative data. The upshot is that while the positive and 

negative data provide useful constraints on the semantic theories of generics that should be taken 

seriously, we must appeal to other desiderata in order to decide which of these theories to accept. 



 32 

We, however, leave this task to future work. Here, we have only aimed to build up some of the 

necessary foundation for this future work on generic meaning.22 
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